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Abstract
A camera footage which is essential for forensic investigations can easily be
modified with advanced video tampering techniques. This makes it necessary
to employ novel methods to retain and prove the integrity of captured scene
in criminal investigations. In this vein, blockchain technology has received a
substantial interest in the last decade as it provides trust among users without
a trusted third party, which enabled a myriad of applications. To this end, we
propose a framework that utilizes blockchain technology to verify integrity of a
camera footage recorded by a resource-constrained wireless Internet of Things
(IoT) device. The proposed approach computes the hash of the video data before
it leaves the IoT device to ensure the integrity. The hash is then stored on a per-
missioned blockchain platform that enables detection of tampering in the video.
The continuous stream is segmented efficiently to have periodic hash value to
minimize the risk of video loss in case of device failure. The system has been
implemented on a Raspberry Pi and Hyperledger to validate its efficiency. We
are able to process high resolution videos on a resource-constrained with rea-
sonable amount of delay. The integrity of recorded video is successfully verified
by using the digest kept in permissioned blockchain.
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1 INTRODUCTION

With the widespread use of Internet of Things (IoT) devices, capturing information from our environments turned into
a common practice. In particular, visual information can be easily delivered through numerous available cameras with
wireless communication capabilities. Indeed, a large number of wireless cameras are increasingly being utilized on build-
ings and streets for surveillance and in many smart city applications.1 In addition, wireless cameras and drones are also
being used by law enforcement while responding to a call or pursuing crimes.2,3

In these applications, video scene provides significant visual information to analyze and interrogate a crime and
resolve any dispute about an incident because it has a spatio-temporal context that reveals detailed information about

A very preliminary version of this paper appeared in the Proceedings of 16th International Conference on Mobile Ad Hoc and Sensor Systems Workshops
(MASSW), San Diego, 2019.
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the case.4 Since description of visual context by viewers could be biased, miss important details, and sometimes the order
of information provided may not be correct, availability of visual information would clarify many ambiguities or vague
information provided by witnesses. As video data are to be used as a type of evidence in some scenarios, the authenticity
of video information is critical to make decisions and reach conclusions. If the video is captured by a personal camera
or a smart device, the verification of visual information is achieved by the testimony of the person who recorded the
video.5 However, for videos that are automatically and continuously recorded by IoT devices, testimonials would not work
because there is no actual person actively recording the scene. In fact, for such cases, the problem becomes very challeng-
ing since video forgery techniques are now very sophisticated that even a typical user can change a video scene by using
off-the-shelf open source video editing tools that are supported by machine learning. As an example, available video edit-
ing tools can easily destroy the trust in visual information obtained by video capturing since some scenes may be deleted,
new scenes can be inserted and furthermore, even insertion and deletion of objects are possible. The manipulations are
so sophisticated that it may almost be impossible to determine whether the video has been edited or not6 without seeing
the original video. In addition to manipulating stored video data, the wireless channels could be another source for data
tampering7 since the videos may be altered while being transmitted through the wireless communication channels.

For a video to be admissible in a trial, it must satisfy several requirements. In addition to (a) relevancy and (b) legal
acquisition, (c) chain of custody is highly important to ensure the authenticity which means that the evidence must be
maintained in accordance with the conditions it was acquired.8 Thus, three phases; acquisition, transfer, and storage
should be handled in a secure manner to establish authenticity which implies integrity and non-repudiation. In order to
prove the authenticity in such cases, various methods have been proposed. For instance, as digital piracy has been an issue
for a long time, some of the techniques that are used to fight against piracy such as watermarking9 are used by embedding
a hidden signature into the video. This signature can be analyzed whether the video has been tampered or not. But,
IoT-based security cameras are not equipped with this capability, and watermarks are prone to various transformational
attacks such as scaling, shearing10 as well as removal, cryptographic, geometric, and protocol attacks.11

Another method for integrity verification is hashing where a hash is computed and delivered with the video. This is
a simple and cost-efficient technique as long as the used hash functions are collision-resistant. However, there is also a
need to maintain the integrity of the hash from the time it leaves the camera to its storage in a server. To this end, we
advocate the use of blockchain in this paper. Blockchain has emerged as an alternative method to transfer money between
non-trusting participants without having a trusted third party such as a bank.12 The idea of using a distributed ledger
has surpassed its original goal and led to many applications as being considered as a game changer by some people. In
this regard, blockchain can also be utilized to ensure the authenticity of information by storing data in a distributed and
retroactively unmodifiable manner which will ensure the integrity of data.

In this paper, we present a blockchain-based forensic framework to verify the integrity and authenticity of videos
captured by wireless-based IoT devices where this video data might be used as an evidence in court. It is important to
note that we adopt an existing blockchain platform, Hyperledger, to build the system as it is without changing the internal
mechanism of the blockchain. We verify the integrity of the data outside by using the hash stored in the Hyperledger.
Specifically, we consider drone application cases where they are capable of streaming in many surveillance applications
that can record a crime or accident scene to be used as future forensic evidence. The framework includes authenticating
the source, maintaining the integrity of video data by getting the hash, and storing in blockchain and being able to receive
the original video that came out of the drone in a lossless way while providing real-time streaming.

More specifically, first, our framework performs the hash computation on the video data on the device where it is cap-
tured without sending to an edge device or servers. This will mitigate the risk of the hash being tampered during or after
transmission. Furthermore, we segment the video stream periodically to reduce the risk of losing the whole footage due
to any potential problem on the drone or a glitch in another part of the video. Since processing the stream in real-time
is computationally demanding, it is challenging on a resource-constrained device. To handle this issue, we perform cost
efficient segmentation on H.264 base profile encoding by splitting the stream at specific points as opposed to using com-
putation intensive video processing tools. Once processing the recent segment is done, the drone communicates with
blockchain and sends the video metadata (hash, id, etc) gathered to blockchain immediately. For this communication, we
utilize TCP to ensure its reliability.

In this respect, the actual video data should also utilize TCP to ensure that whatever processed at the drone is received
at the remote server without any losses. This is very critical to guarantee that the hash sent to blockchain will match the
hash of the received video in the server. However, TCP is not suitable for video streaming since it will introduce jitter
to video frames when there is any loss during transmissions. Therefore, in order to handle real-time streaming from IoT
device to remote server, we propose a UDP-based reliable data transmission that enables low latency streaming in addition
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to an external loss recovery mechanism over UDP to achieve data integrity, and adaptive resolution against changing
bandwidth. Finally, once a video segment is transferred to the remote server, we compute the hash of each segment
there instantly, and compare it with the previously saved hash on blockchain by querying the blockchain via a smart
contract. This enables instant integrity check to ensure secure transmission, and detect any compromise in the system
that might otherwise be detected in the future. For future forensic investigations, since the hash is retained in blockchain
permanently in a tamper-proof way, it could be easily retrieved to perform verification on specific part of the video footage.

We implemented our approach on a Raspberry Pi equipped with a camera that has a wireless connection to a remote
server. We used Hyperledger, a permissioned blockchain platform, to establish test environment that will act as a dis-
tributed storage for hash values. The decision for a permissioned blockchain environment stems from the fact that the
system will be restricted to only registered users, and public blockchains will be cost-inefficient. The results show that we
can effectively use wireless-IoT device to transmit video without a quality degradation while providing the integrity and
authenticity utilizing blockchain.

This paper is organized as follows. The related work in the literature is summarized in the following section. Section 3
introduces some background on the blockchain concepts while Section 4 provides the system model, and our approach
is explained in Section 5. Section 6 presents a security analysis while Section 7 evaluates the performance of the proposed
mechanism. The last section concludes the paper.

2 RELATED WORK

Various ideas have been proposed related to blockchain utilization for data integrity verification. Security and trust related
challenges, and potential blockchain-based solutions are identified and discussed in References 13 and 14 for IoT gen-
erated data. Block-DEF15 is proposed as a secure digital evidence framework. The idea is to store evidence and evidence
information separately. In order to avoid data bloat, a lightweight blockchain design is utilized. Cebe et al16 suggest a
framework for car accident scenarios to save data in blockchain when an accident happens. They use a simplified public
key infrastructure tailored for vehicular networks to preserve the privacy. The data saved in blockchain are used to solve
any dispute among the insurer, owner, and manufacturer.

The video data can be tampered during transmission as well as after being stored because of because of outside
attackers, malicious employee, transmission failure, and storage loss. It is important to verify that video has originated
from the actual source and then the video that has been delivered and stored is the same as the video originated from
the source. Current techniques to provide and verify integrity in videos and images are using various methods such as
watermarking, device fingerprinting.4,17 However, many cameras do not support adding watermarks. Along with these
existing approaches, there is a growing interest in using blockchain as a tamper-proof environment to protect sensitive
information.18-20

Gallo et al21 utilized blockchain to protect video content in addition to camera settings such as angle of camera in
surveillance systems. The authors try to prevent hackers from changing camera orientation which might either violate the
privacy of neighbors or prevent the recording of some criminal scenes. They distinguish the background and foreground
images. Background is used to deduce the camera settings by using some features that do not change over time such as
corners and edges, while the foreground is used to identify events occurring in the scene. This requires video analysis in
frame level, thus not feasible to implement on an IoT device.

Gipp et al22 implemented a similar approach on smartphones which is used as dashboard camera in cars using pub-
lic blockchain Bitcoin. Once smartphone detects an accident via accelerometer sensor, it starts recording the scene and
calculates the hash at the end to be written to the public blockchain. In order to keep the cost to minimum, it stores the
aggregation of the hashes. In order to prove that the video stored on the phone has not been changed, the user provides
the original video with the hash. Using public blockchain will not be feasible in terms of cost and speed when we need to
store high volume of data.

Karthik et al23 work on a case that if the video has to be redacted by the owner after the video has been recorded
in order to conceal private information such as faces. It still needs to be proved that significant content has not been
modified. They propose to utilize blockchain as trusted platform by both a creator and its recipients to store the initial
sanitizable signature and transparently update the signature upon content modification. Ghimire et al24 adopt segmented
video hashing where each segment is connected to the previous and next block with hash chain, which resembles original
blockchain structure. They assume that surveillance cameras produce segments every few minutes, thus they do not deal
with the segmentation and inter-dependency among frames (eg, dependency of P frames). They compute the hash of
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encoded video from camera and does not deal with encode+ decode operation since it is computationally expensive. We
handle segmentation problem by using a built-in decoder which enables us to segment the video at any point. They also
employed hmac algorithm instead of a standalone hash function. A system has been presented in Reference 25 for CCTV
cameras for a smart city scenario. They first register the devices and users to the system through membership service
provider (MSP) to be able to interact securely. The devices only send specific frames to the blockchain to be used for
validation. They choose Hyperledger as a blockchain platform to store hash values.

Michelin et al26 proposes a blockchain solution for surveillance cameras in case of airport. Different entities that have
CCTV cameras store the video in interplanetary file system network which is blockchain-based file storage system. In this
model, video is first transferred to a gateway, a part of the blockchain network, which processes the video to calculate the
metadata. The video is not processed at the source which exposes the data to various threats during transmission.

Our work focuses on the video transmission from resource constrained IoT devices as we address those limitations.
We segment the video and perform hash calculation for each segment on the device to mitigate potential risks at the
source. We also address real-time streaming while providing integrity and adaptive streaming.

3 BACKGROUND

3.1 Blockchain

Blockchain is a list of records called blocks linked together by containing the hash of the previous block. The list of blocks
continues to grow with the addition of new ones as it is not possible to delete existing blocks. For Bitcoin, a block is simply
comprised of transactions (data), timestamp, nonce, the hash of the block, and the hash of the previous block12 as shown
in Figure 1.

The hash of transaction is inserted into a Merkle tree which enables users to easily verify whether a transaction is in
the block or not. A critical feature of blockchain is that all of these blocks, and the data they contain, are distributed among
many different nodes. These nodes have to agree on the state of the blockchain by using a consensus protocol for the
approval of a block, making it nearly impossible to modify any data that has been written to a blockchain. This working
scheme of blockchain carries unique properties such as elimination of central authority trust, immutability of record. In
blockchain, it is possible to create smart contracts which enables participant to define rules which will be enforced by the
network. The joining parties will interact under the defined rules. It provides mechanisms to embed governance rules
in verifiable way that can be audited by the consensus algorithm. Blockchain is classified as public and private based on
user participation policy. While public blockchains are open anyone, private (permissioned) blockchains are established
by a group of stakeholders who are only allowed to make transactions.

3.2 Consensus mechanism

The process of adding a new block to the chain is carried out via a protocol, which establishes consensus among partici-
pants to confirm the new block. In other words, it validates the transactions within the block and provides an agreement
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F I G U R E 2 An illustration of how BA protocol works with
replicated nodes

on the last state of blockchain.27 There are two types of blockchain structure, public and permissioned, according to
the used consensus mechanism.28 The most widely known blockchains, such as Bitcoin and Ethereum fall into public
blockchain category where consensus is established via a mechanism called proof-of-work (PoW). The PoW consensus is
typically a form of hash puzzle which requires finding a predefined hash value. This consensus protocol brings a signif-
icant level of security on the chain (withstand up to 50% of nodes are being malicious), but at the cost of computational
power and time. For instance, Bitcoin’s maximum throughput is seven transactions per second and the consensus final-
ity can take an hour. On the other hand, permissioned blockchains utilize some kind of Byzantine fault tolerant voting
based algorithm as consensus mechanism, such as practical Byzantine fault tolerance29 or Stellar consensus protocol,30

which do not require computationally expensive hash puzzles. As a result, reaching a consensus is faster which means
higher transaction throughput. However, permissioned blockchains generally require more than two-thirds of nodes to
be trustworthy rather than 51%.

3.3 Voting based consensus protocol

Voting based consensus protocol first emerged in distributed computing29 to provide reliability of data or computation,
even if arbitrary nodes conduct malicious actions or fail. Permissioned blockchain mechanisms adapt the same idea to
establish consensus where some of some nodes may act maliciously.

In this setting, where there are n nodes, a consensus can be achieved if at least (2n− 1)/3 number of nodes act honestly.
Honesty means providing correct information to the other participants. In a permissioned blockchain, there are two
different types of nodes called Leader and Validator. First, a randomly selected Leader builds a block from transactions.
This block is then distributed by the leader to Validator nodes for verification. Validators check the transactions within
the block, sign it, and distribute it again to the other Validators, as shown in Figure 2. Each node, again, distributes the
block captured from the other node. This continues until each Validator node collects individually signed versions of the
block from the other ones. After n− 1 version of blocks are gathered, the Validators check differences between blocks. If
(2n− 1)/3 of these blocks are valid, the Validator nodes inform the Leader about confirmation and add the block to its
local chain.

3.4 Hyperledger

Hyperledger is an open source umbrella community and platform founded by the Linux Foundation for the development
of blockchain projects, frameworks, libraries, and tools (Figure 3). Throughout its inception, Hyperledger has received
various contributions from Intel and IBM to support a collaborative development of blockchain-based distributed ledgers.
It is a permissioned blockchain platform where access is restricted to stakeholders unlike the public blockchain where
anyone can access the produced blocks. It is using voting based consensus algorithm defined in the previous section. There
are numerous applications of Hyperledger blockchain-based distributed ledgers. The applications include distributed
ledgers dealing with finance, banking, healthcare, manufacturing, and supply chains. Unlike most blockchain technolo-
gies, Hyperledger does not support cryptocurrencies like Bitcoin, Ethereum, Litecoin, and so on. The executives governing
Hyperledger ultimately decided not to have a blockchain infrastructure focused on cryptocurrencies or tokens to promote
non-monetary, high scaling industrial applications of blockchain technologies. Presently, Hyperledger’s most notable
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frameworks are Hyperledger Fabric, Sawtooth, Iroha, and Besu. It uses JavaScript, Go, and Java Software Development
Kits (SDK) for integration projects that needs to use Distributed Ledger Technology (DLT).

3.5 Camera fingerprinting

Images and videos captured by a camera can be identified using some hardware parameters of the device which is called
camera calibration. It involves intrinsic parameters of the camera while some applications require determining extrin-
sic parameters as well. Intrinsic parameters generally include focal length, scale factor, principle point, and the lens
radial distortion.31 Camera calibration is generally achieved by taking pictures of a template pattern, whose structure (ie,
distances between points) is known such as a checkerbox, from many angles and distances. While distortion can be deter-
mined from images, information about the environment would be required for verifying other parameters of the camera.
If a gyroscope sensor is included, it provides angular velocity and can be used to verify the center point of rotation in
the image and can be matched with the principle point of the camera. Available methods to identify the camera that has
been used for recording an environment categorized into two whether they aim to determine a model for the camera
or use machine learning methods by extracting features from images.32 The first type of methods uses photo-response
non-uniformity (PRNU),33 lens radial distortion,34 sensor pattern noise35 to devise a model. Second method employs
machine learning approaches such convolutional neural networks to identify the camera based on an input image.32

4 SYSTEM AND THREAT MODEL

This section defines the problem along with requirements and lists the potential threats.

4.1 Problem definition

The overall problem can be stated as designing a framework to ensure the integrity of a video (evidence) recorded by a
resource constrained wireless device. This main problem can be defined as the combination of subproblems to further
clarify the challenges and solutions.

4.1.1 Integrity verification

Integrity verification refers specifically to determining if the video currently possesses the conditions at the time it was
recorded. If the initial video is V i and the final version is denoted as V f , when the evidence is investigated in a trial, it
must be proved that V i = V f . In order to minimize the risk of tampering, the hash is computed on the device where the
video is being recorded and it is transmitted immediately. This increases the complexity because of additional limitations
of IoT device in terms of computation and connectivity as new subproblems emerge to be addressed. In case of any failure
such as hardware malfunction, battery exhaustion, Wi-Fi disconnection, we want to save hash periodically not to lose
previous portions. The problem turns into verifying each subset of frames individually. Then, V i = {V i1, V i2, … , V in} and
V f = {V f 1, V f 2, … , V fn}, thus each corresponding portion must be verified that they are equal such as V ik = V fk. Other
challenges stemming from resource limitation are further elaborated as system requirements. Those are also subproblems
to be addressed within the framework.
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4.1.2 System requirements

• High resolution processing. Video processing is a computationally expensive process especially for resource-constrained
IoT devices. However, it is important to record a high quality video for clear interpretation of scenes. Therefore, the
system should enable processing high resolution videos on IoT devices.

• Real-time streaming. Transmitted video could be used to control the device in real-time by the operator. This necessitates
the low-delay video transmission.

• Adaptive streaming. Since the drone is navigating, the connection bandwidth between the IoT device and the control
room might change during the operation. The video quality should be adjusted based on the available bandwidth.

• Efficient segmentation. To save the recorded part of the video, the hash must be calculated periodically thus requiring
the segmentation of video into small chunks efficiently using limited computational resources.

4.1.3 Secure transmission and storage

After the video and hash are acquired on the device, they must be securely communicated and stored for later use. Threats
that might compromise the integrity might take place during the transmission or storage phases. Various threats to the
system are listed in the next section and investigated later in Section 6.

4.2 Threat model and security goals

As our threat model, we consider both physical and network threats against our framework. We assume that the adversary
has both read and write access to the communication interfaces of the device (eg, LTE, wireless). This is a practical
presumption as IoT video devices are installed on drones/body-cams which are physically accessible to attackers. We also
assume that the adversaries may intercept communication of the device by altering/dropping/replaying the messages sent
from the device to video database and blockchains.

Threat 1: In this scenario, the attacker disguises itself as a legitimate device by stealing private key of the device to
push false surveillance data to our forensic system.

Security Goal 1: Validate the participation of unauthorized devices to our system by prohibiting them using stolen keys
as if they are authenticated.

Threat 2: In this attack scenario, the attacker attacks the device communication layer and drops packets to break the
integrity of forensic system. The malicious actor can also fulfill this attack selectively, for example, by dropping packets
for particular types or dropping randomly selected packets. Considering the lossy network environment of our system,
this attack is hard to detect and may cause differences between the blockchain hash and the video in the database.

Security Goal 2: Track the missing packets and provide holistic integrity of the forensic system along with the integrity
of each packet.

Threat 3: In this attack scenario, the attacker first alters the video stored in the database. Then, s/he updates the hashes
of corresponding frames in blockchain. Thus, the attacker succeeds in altering the original stored forensic data without
breaking its feature of being an evidence in the court.

Security Goal 3: Prevent an attacker altering both the database and blockchain simultaneously to produce false
evidence.

5 BLOCKCHAIN-BASED VIDEO FORENSICS

5.1 Motivation

Using videos as evidence is a fairly complicated task and poses many questions. Sophisticated video tampering methods
enable modifying the original footage such as deleting scenes or frames,36 inserting new frames, manipulating frames,
or removing moving objects in the scene, or cropping regions.37 Some image processing techniques such as blurring can
be applied to blur the important objects or people in the scenes. Moreover, deep learning introduces new challenges for
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authenticating the originality of a video. Unless the original video is available, it could be impossible for ordinary users
to determine whether the video is original or fake. For instance, DeepFake is one major video tampering technique where
the face of a person in a video can be replaced with the face of another person38 and it is shown to be very realistic.
Furthermore, generative adversarial networks (GANs)39 are used to generate new content such as adding gestures by
analyzing content from multiple sources. For example, GestureGAN can generate new images of a person with new hand
gestures by using the original scene and a sample skeleton image of a hand gesture.40

Availability of such advanced techniques makes it necessary to come up with novel ideas to retain and prove the
integrity and authenticity of critical footages. Thus, as a more reliable alternative, we propose a video forensic framework
for integrity verification by leveraging blockchain concept. The proposed system enables capturing high-resolution videos
and allows the investigators to detect tampered video captured by drones. The remaining of this section explains the
details of the framework.

5.2 Framework architecture

Camera-equipped drone continually records video as shown in Figure 4 and transmits the captured scene to the remote
server. To be able to prove or verify the integrity of the recorded video, the hash of it which is a unique signature is utilized.
However, the hash value is also vulnerable to attacks as well as the video itself.

Thus, the secure calculation and storage of hash must be handled. To this end, we propose handling the hash compu-
tation in the device before it is transmitted, and store it in blockchain to prevent any further compromise. So, as the video
is streamed, the drone computes the hash of the streamed data which is sent directly from the device to the permissioned
blockchain consisting of stakeholders’ nodes. Once the transmission of a segment is complete, the remote server retrieves
the hash by querying blockchain via smart contract to make sure the stored hash matches with the received video. This
check ensures the integrity during transmission. Whenever a video is needed for any investigation, its integrity can be ver-
ified in the same way. This second check is to protect the information during storage phase against a malicious employee
or attacker.

Before any device is used for this type of recording, it must be registered in the system. This process includes assigning
keys to device so that it can communicate with system. The admin can revoke the permission at any time. In addition to
key generation, our model assumes that the fingerprint of the device such as PRNU, and sample videos from the device
is taken and saved in the blockchain to compare to future footage. This information is used to prove the source of a video.

5.3 Segmentation

While the video is being streamed, it is possible to wait until the recording is complete to transfer the hash of the whole
video to the blockchain. However, this method poses several risks that threatens the security of the recording. The drone
may stop running because of the battery or physical crash. The wireless connection may go down, any malfunctioning
or attack may cause termination of recording or loss of recorded data. In order to eliminate these types of problems that
would make the whole video useless, we adopt a segmentation approach. Instead of waiting to transfer the hash of the
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F I G U R E 5 Segmentation is
illustrated in low level BBB I B BB I
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complete video, we periodically calculate the hash of small units. However, this requires dividing the stream into small
chunks which might add delay and computation cost. Since, these operations are to be performed on resource-constrained
device, there is a need for an efficient method. Video segmentation can be achieved using video processing tools such
as opencv, mpeg-dash, and ffmpeg streamer, which requires “decode & re-encode” process. This is a resource demanding
operation, and not feasible for an IoT device. This method allows only processing low resolution videos.

Most security cameras use the base profile of H.264 encoding which only contains I and P frames which are known as
the frames within a typical video (there is no B frame). So, it is possible to capture the stream in small units by dividing at
appropriate points (ie, I frames) without “decode & re-encode” process, thus to handle higher quality videos. For instance,
the Raspberry Pi, widely used IoT device, has a hardware encoding unit that can generate H.264 video stream and allows
to generate segments with appropriate size.

Figure 5 illustrates the segmentation process. Encoder compresses the raw video coming from camera by generating
I and B frames. Whenever it receives a split command, it waits until next I frame to terminate the current segment and
start a new one. A segment may contain multiple I frames and many B frames, but always start with an I frame. The
length of the segment is customizable but we choose 3 seconds in our implementation.

5.4 Sending video hash to blockchain

The video integrity verification can be accomplished by storing the video file on a blockchain, which would make it
immutable, thus it can be used as evidence for forensic purposes. However, the size would be too big to put on a blockchain,
so we compute hash of video stream and put it on a blockchain. The hash is unique and can later be used to verify the
video. As the data generated from the camera, before dumped into network, it is fed into hash function as shown in
Figure 5. It updates the hash value with new arriving data.

h (a + b) = h.update (a) + h.update (b) .

Thus, hash function does not have to wait for the video to be complete. With this approach, the video is instantly sent
from the IoT device which enables real-time streaming. Various hash functions exist such as MD5, SHA2, and SHA3.
Even though MD5 is faster in terms of computation time, it is considered weak in terms of collision. We choose SHA3
that can generate 512 bit long output.

Figure 6 explains the interaction between end-user and blockchain. In our case, nodes represents regional police
stations, each operates its own node independently with a Certificate Authority which handles issuing and validating
certificates for device authentication In order to allow a device to access the network, the admin of a peer creates a user,
which means creating cryptographic credentials for the device when it is registered to the system. The interaction between
the device and blockchain must always go through peers using APIs. The device invokes smart contract to submit an
update or query the ledger. When the user submits a transaction, the signature is verified by the MSP. If the transaction has
a valid signature, the transaction is processed. The transaction created by the device consists of video ID (V id), sequence
number of segment (Si), timestamp (TS), and hash of the video segment (H(Si)).

Ti =
{

Vid, Si,TS,H
(

Sj
)}

.

The transaction is stored on the Hyperledger with a transaction id which is also sent to remote server to be saved in
the database.
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5.5 Real-time streaming with loss recovery

The proposed approach can be used in various scenarios that have different requirements in terms of latency. If the video
is only to be stored in database not for real-time viewing, then video transmission is performed using a TCP connection
which automatically handles packet loss recovery by requesting re-transmission of dropped packets from the sender.
However, this induces a delay on the receiver application especially in a lossy environment. This type of communication
can be adopted for some applications where drone is controlled visually but transmission is only needed to store the video
for later investigations. Nevertheless, TCP communication is not suitable for real-time control which cannot tolerate high
delay. UDP is the only option to utilize for such scenarios as it forwards incoming packets directly to application. Packet
loss can be tolerated to some extent although it may cause quality degradation. On the other hand, UDP does not provide
reliable transfer as we need it for integrity. As a result, we need a solution that provides both real-time transmission and
reliable delivery as detailed next. We utilize datagram transport layer security (DTLS) for data transmission to enable
secure communication.

5.5.1 Loss recovery

We propose a loss recovery mechanism to UDP communication, which is integrated to the receiver side by augmenting
UDP with an explicit re-transmission capability at the application layer. Essentially, this is adding another layer to the
protocol stack by introducing new headers to keep track of the lost packets after they are passed to the application layer.

To perform this, we start by identifying the right packet size. As is known, the size of a video frame is mostly much
bigger than maximum transmission unit which means that the frames are fragmented by the IP layer. The loss of one
fragment requires re-transmission of the whole frame. In order to avoid fragmentation, we divide the frames into a rea-
sonable size so that we can track and request each individual packet exclusively. Basically, each packet is indexed with a
unique number that identifies video, segment, and sequence of packet.

As shown in Figure 7, the drone produces small UDP packets and embeds sequence number to each as the frames
arrive from the encoder. The packets are retained in the IoT device in order to respond to any re-transmission request. The
order of packets may change or any of them may be dropped because of congestion/wireless channel during transmission.
On the receiver side, the incoming packets are fed directly into player regardless of loss or out of order. The player itself
might have a short buffer before rendering the video. In order to retain the integrity of the video, the missing packets are
requested from sender side explicitly using the sequence number in packets after waiting a certain amount of time. This
process is repeated until the missing chunks are completed. Whenever all the chunks of a frame are complete, they are
written to the corresponding segment file and when all the frames of a segment arrived, the segment file is complete.

Note that we are also utilizing a separate TCP connection between drone and remote server to send control commands,
in a similar manner to RTP and real-time control protocol (RTCP) where RTCP is used to communicate with the server
such as managing the quality of the video. In our case, the remote server sends re-transmission request messages over
TCP, and the drone informs the receiver about end of video using the same channel. Additionally, resolution change
command used in the next section is also transmitted over this channel.
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5.5.2 Adaptive streaming

While the drone is navigating in the air, the bandwidth of wireless connection might change because of physi-
cal distance to access point, congestion in the network traffic, blocking objects in the transmission medium. This
might cause very long delay and freezes in the stream which makes controlling the drone remotely impossible.
Moreover, the integrity of the stream is put in danger because re-transmission requests may not be fulfilled. This
necessitates an adaptive streaming scheme. MPEG-DASH is the prominent protocol to handle streaming under
variable network conditions. It generates short segments of a source video in different resolutions simultaneously
so that the user can switch to any of them depending on the connection quality. Such a solution is not feasi-
ble to implement on an IoT device as it requires a high computation power. Changing the capture resolution
of the camera can be considered as a possible solution, but this requires restarting the capture process which
causes a few seconds pause in the stream. This is also not an acceptable alternative as we need a continuous
stream.

Our solution utilizes the resize capability of encoder together with two additional parameters; quality and bandwidth
which also impacts the output size. These parameters can only be adjusted at the beginning of a new segment. Since we
are using a segmented scheme, we easily deployed adaptive streaming in our solution. The process is initiated by the
receiver which observes the connection quality by considering bandwidth estimation parameters such as number of lost
packets, and so on. Then, it notifies the sender either to increase or decrease the resolution, and the sender switches to
an appropriate resolution based on the feedback from sender.

5.6 Video storage

The video sent from the drone is received by the remote server. It is viewed by an operator and also stored for future
use. Since the video is split at specific points on the sender side, the receiver must be communicated to store the
pieces properly. This is achieved by a “split” message that contains the sequence number at which the new segment
starts as shown in Figure 8. Whenever the receiver gets this message, it will start dumping data into another file
starting from split point. Once the transmission of a segment is complete, it will be compared to blockchain using
its associated transaction id to check the integrity. Then, the frames will be stored in two versions. The first one will
be complete file that contains all frames without a segmentation whose purpose is to make view and search easy
for the end-user. The second one will be stored as segments in order to make integrity verification for each segment
separately.

5.7 Integrity verification

Validation process is requested by an investigator if a video is needed to be used as evidence. This process includes the
following steps:

• Hash re-calculation: The investigator needs to access the original video that s/he needs to verify and identify the seg-
ment s/he is interested in. Then, the hashing process is performed for the stored video segment to get the current
signature.
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• Blockchain query: The blockchain is queried using transaction ID associated with segment to access previously saved
hash along with other metadata such as video ID, segment ID, time stamp, and so on. Querying a transaction is simpler
and faster than update which has less steps to finalize the procedure.

• Validation: The query will return the original hash stored in Hyperledger. If the retrieved hash and computed hash
match, the segment is authentic; if they do not match, it can be inferred that the video is a fake or altered video. The
stored hash is secure because it is distributed on all stakeholders and they agree on its correctness. If any stakeholder
is compromised, the other nodes will still provide the correct information.

6 SECURITY ANALYSIS

In this section, we provide a security analysis of our proposed approach with respect to our threat model described in
Section 4.2.

Threat 1: Stolen Keys Attack: In our proposed scheme, only registered devices are able to produce forensically sound
data to our system. This is achieved through MSP component which is available in Hyperledger. In addition to this, the
scheme will refuse any generated video signed with valid stolen keys (ie, cryptographically authentic) due to the fact that
the genesis block produced by that device store the fingerprint (PRNU parameters) of the device in blockchain as well.
Thus, generated videos from another device will be rejected when the fingerprint of that device and the saved one in
genesis block does not match during investigation.

Threat 2: Selective Packet Dropping Attack: Our system excludes this attack since it requires breaking the reliable
transmission methods used both streaming the video and transferring the corresponding hashes. We utilize DTLS which
prevents eavesdropping, tampering and replay attacks. The applied loss recovery technique in Section 5.5.1 ensures the
reliability of video frames while DTLS does not guarantee reliable delivery.

Threat 3: Generation of Forensically Sound Data Attack: Our scheme acts as an unbreakable seal to provide a long-term
integrity ensuring mechanism for forensic investigations. This is due to the fact that, changing an old transaction, in other
words, rollback will require to counterfeit 2/3 of the peers in the system. Considering the well-protected and distributed
nature of the members, this is hard to achieve even for insider attackers since it requires a coordination with other insiders
to infiltrate at least 2/3 of the members.

7 PERFORMANCE EVALUATION

7.1 Experiment setup

In order to evaluate the performance of the proposed approach, we set up a testbed and performed various tests. We used
a Raspberry Pi3 to simulate a drone, or similar IoT device which communicates with remote server and Hyperledger
network through Wi-Fi. It ran the code that would be installed on a drone equipped with a camera. This setup is shown
in Figure 9. Raspberry Pi3 B+ specs shown in Table 1 are used to run the experiments. Therefore, the values in the results
are specific to this configuration.

For the blockchain implementation, we used Hyperledger Fabric, a permissioned blockchain, to create a test network.
First, the prerequisites are installed such as Python, Node.js, Docker, Docker Compose, Git, CURL, and Go. Hyperledger
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T A B L E 1 Raspberry Pi3 specifications

CPU(SoC) BCM2837B0 quad-core A53 1.4 GHz

RAM 1 GB LPDDR2 SDRAM

Networking 2.4 GHz and 5 GHz 802.11b/g/n/ac Wi-Fi

T A B L E 2 Video resolutions Version Resolution

v1 320× 240

v2 640× 480

v3 960× 720

v4 1280× 960

v5 1600× 1200

Fabric uses JavaScript, Go, and Java SDK for integration projects that needs to use DLT. We created a test network consists
of peers, channels, admin, user to run a test application. The most fundamental component of the Hyperledger Fabric net-
work is peers which have the role of storing the blockchain ledger and validating transactions before they are committed
to the ledger. Peers run smart contracts on the blockchain ledger. Every peer in the network belongs to an organization.
Channels are a private communication layer between certain network users. Users a part of the network utilizes appli-
cations to invoke smart contracts to create transactions on the ledger and execute query to read data from the ledger.
In Hyperledger Fabric, smart contracts are deployed on the network in the form of packages known as chaincode. The
chaincode is installed on the peers of an organization.

We performed test using various resolutions which are shown in Table 2 with 24 fps.

7.2 Metrics and baselines

We use the following metrics to assess the performance of the proposed approach:

• CPU utilization: Processing time is a crucial metric since we are operating on an IoT device. We measure the CPU
utilization required for segmentation, hashing, and so on.

• Transmission latency: It shows the latency of video packets from IoT device to remote server. It affects the real-time
view and control of the drone.

• Jitter: It is defined as the inter-arrival time between the packets. It is important for quality of service.
• Blockchain transaction latency: We use this metric to measure the time needed to write and read data from Hyperledger.
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7.3 Performance results

7.3.1 Video processing efficiency

Figure 10A compares the CPU utilization on Raspberry during video capturing while calculating the hash. We use the
OpenCV method as baseline to compare our proposed approach. OpenCV first decodes the stream in order to split, then
must encode again which is depicted as “decode+ encode.” Since these processes are performed on CPU, it is possible
to handle only low resolution video. However, using our splitting technique, Direct split, we complete the whole process
for much higher resolutions under 1 second CPU utilization. This leaves time to perform other computations such as
encryption. We perform hash computation explicitly as opposed to segmentation for which we used a built-in decoder
instead of doing it on the CPU. The complexity is crucial for the overall performance especially as the resolution increases.
Block ciphers work on fixed-size blocks of bits and the work done per block is constant. Thus, the complexity is O(n)
where n is the number of blocks in the video segment.

Figure 10B shows computation time of our approach with precise values. We tested three different hashing algorithms.
Even though SHA512 needs more time, it is still very close to others. It is also worth to mention that the time needed for
a hash algorithm depends on the input size. So, hashing raw frames generated by OpenCV would take a lot more time.

7.3.2 UDP performance

In Figure 10C, we compare TCP and UDP communication by considering real-time streaming which requires low latency
for an efficient control of a drone. We varied the loss rate on Raspberry wireless interface from 2% to 10% and run the test
within a WLAN which gives very low transmission latency (0-5 ms) in a lossless environment. That would increase for
long distance communication, and it also depends on current network conditions such as congestion etc. However, we
want to highlight that the gap between TCP and UDP is significantly increasing with higher loss rate especially after 5%.
We achieve very low latency packet transmission over Wi-Fi using UDP-based streaming at the cost of some lost packets
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which is tolerable up to some extent. However, reliable transmission provided by TCP incurs delay in order to recover lost
packet which increases the average packet delay up to 200 ms which seems not very high because non-delayed packets
arrive almost instantly. Thus, the jitter time of lost packets is more important to understand the quality for this case since
a lost packet will hold off all the packets waiting behind from being transmitted to application layer. This means frequent
pauses will appear in the stream that makes operating an interactive device impossible. We observed that jitter can be up
to 1000 ms which means TCP is infeasible for such applications. Our UDP-based solution provides low latency transmis-
sion and reliable transfer with explicit re-transmission capability. Although we consider this application for the use of
security forces in which case the source of the video may not want to hide himself. However, if the system is adopted for
public use and a third party wants to keep himself anonymous, video and hash may be transferred through one of privacy
preserving tools41 such as Tor, although the performance will be dependent on the tool’s features used as communication
platform.

7.3.3 Hyperledger performance

In Figure 10D, we present the transaction latency for write and read operations on Hyperledger platform. A bunch of
transactions, from 1 to 20, is submitted concurrently in order to test the performance. Query latency increases from
20 to 100 ms with increasing number of transactions, which still can be considered fast. Average time of invoke oper-
ation, on the other hand, depends on the number of transactions submitted together and the blocksize. We are using
the default block size which is 10 transactions per block. For a single transaction, it takes around 2 seconds because
it waits for block timeout to submit the block for validation. When we look at 10 transactions, the average latency is
much lower because the block is submitted immediately. This pattern will continue up to a saturation point which is
generally measured as 140 tps, then it will start increasing. So, Hyperledger is capable of processing the transactions
from a drone fast enough, and the system can scale to handling many drones simultaneously. In order to optimize
the blockchain part, other parameters such as block size can also be tuned depending on the transaction arrival
expectation.

8 CONCLUSION

Video recordings are precious for security and judicial system to investigate criminal cases and resolve disputes as they
reveal meaningful and trustable information. However, since they are vulnerable to manipulation with the existence of
advanced editing tools, it is mandatory to show its authenticity to make it a valid evidence in trials. This calls for efficient
integrity validation mechanisms. In this work, we presented a forensic framework specifically designed for video integrity
in case of transmission from wireless IoT devices to capture videos for forensic investigations. In order to avoid data loss
due to the failure of devices, we adopted segmentation approach for precise integrity check. High computation power
requirement for splitting is overcome by utilizing a built-in decoder. The results show that we are able to process high
resolution videos on a resource-constrained IoT device. Moreover, we developed a UDP-based reliable transmission by
adding external re-transmission feature. It enabled to have real time streaming with lossless file transfer with low delay. We
also showed that video quality can be adapted in real time based on available bandwidth with varying distance to control
center. The proposed system is tested with a Hyperledger permissioned blockchain platform and the results indicate its
feasibility in terms of transaction throughput for such a framework. We also provided a security analysis of the proposed
framework that discusses how the desired security goals are achieved.
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