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Abstract

We initiate the study of the asymptotic behavior of small solutions to one-
dimensional Klein-Gordon equations with variable coefficient quadratic nonlinear-
ities. The main discovery in this work is a striking resonant interaction between
specific spatial frequencies of the variable coefficient and the temporal oscillations
of the solutions. In the resonant case a novel type of modified scattering behavior
occurs that exhibits a logarithmic slow-down of the decay rate along certain rays.
In the non-resonant case we introduce a new variable coefficient quadratic normal
form and establish sharp decay estimates and asymptotics in the presence of a criti-
cally dispersing constant coefficient cubic nonlinearity. The Klein-Gordon models
considered in this paper are motivated by the study of the asymptotic stability of
kink solutions to classical nonlinear scalar field equations on the real line.
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1. Introduction

We consider the Cauchy problem for Klein-Gordon equations in one space
dimension with variable coefficient quadratic nonlinearities of the form

(82 — 32 4 Du = a(x)u® + Bou® + B(x)u’ on RI T,

(u, 0ru)|r=0 = (uo, uy),

(1.1)

where o(x) and B(x) are smooth and decaying functions, By € R, and the initial
data (ug, u1) are assumed to be real-valued, smooth, and sufficiently decaying.
Global existence of solutions to (1.1) follows readily from energy conservation for
small smooth initial data. The goal of our investigation is to establish sharp decay
estimates and asymptotics for small solutions to (1.1). A striking discovery in this
work is a delicate resonant interaction between specific spatial frequencies of the
variable coefficient and the temporal oscillations of the solutions.

1.1. Motivation

The main motivation for our investigation stems from the asymptotic stability
problem for kink solutions occurring in classical nonlinear scalar field equations
on the real line. The two most well-known examples are the ¢* model

(02 =3¢ =¢ — > on R, (1.2)
and the sine-Gordon equation
(82 — 9%y = —sin(y) on R, (1.3)
These admit special static solutions, called kinks, that are explicitly given by
do(x) = tanh(%), respectively yo(x) = 4 arctan(e”). (1.4)

Kinks are the simplest (one-dimensional) examples of topological solitons, we refer
to [64,74] for more background. Note that the Lorentz invariance and the translation
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invariance of the field equations (1.2) and (1.3) also give rise to moving and shifted
versions of the kinks (1.4).

Itis a classical problem to understand the asymptotic stability of the kinks ¢ (x)
and o (x) under general smooth perturbations. The basic strategy of a perturbative
approach to this problem is to decompose the evolution of a perturbation into a
modulated kink, which takes into account the symmetries of the equation, and
a small residue term. The asymptotic stability problem then largely amounts to
studying the long-time behavior of the modulation parameters and of the residue
term. This strategy is generally easier to implement in higher space dimensions due
to stronger decay properties. In the following discussion we ignore for simplicity
the issue of modulation. Then for the ¢* model, the remainder term u(r, x) =
¢ (t, x) — ¢o(x) satisfies the equation

(97 — 0F +2 = 3sech’(J5))u = —3tanh(J5)u’ — u?, (1.5)

while for the sine-Gordon equation the residue term w(z, x) = ¥ (¢, x) — Yo(x) is
a solution to the equation

1
(87 — 82 + 1 — 2 sech?(x))w = sech(x) tanh(x)w?* + —w?
| 6 (1.6)
-3 sech?(x)w® + {higher order terms}.

A salient feature of these nonlinear Klein-Gordon equations is the presence of
variable coefficient quadratic nonlinearities.

The analysis of the asymptotic behavior of small solutions to (1.5) and to (1.6)
poses several significant difficulties. Due to the slow decay of Klein-Gordon waves
in one space dimension, constant coefficient quadratic and cubic nonlinearities are
known to exhibit long-range effects leading to a modified scattering behavior of the
solutions. The variable coefficient quadratic nonlinearities compound the treatment
of these long-range effects and at the same time introduce new resonance phenom-
ena. Moreover, the linearized operators on the left-hand sides of (1.5) and (1.6) have
threshold resonances, i.e. resonances at the bottom of their continuous spectra, and
in the case (1.5) of the (]54 model an internal oscillation mode, i.e. a single, positive,
discrete eigenvalue below the continuous spectrum.

In this paper we initiate the study of decay and asymptotics of small solutions
to Klein-Gordon equations with variable coefficient quadratic nonlinearities of the
form (1.1). We consider this investigation an important step towards obtaining a
better understanding of the long-time behavior of perturbations of the kinks ¢q(x)
and ¥o(x). While the equation (1.1) does not yet include a linear potential, we
contend that (1.1) retains some of the key difficulties of the linearized operators
in (1.5) and in (1.6), because the free Klein-Gordon operator in one space dimension
also has a threshold resonance. We emphasize that the leading order nonlinearities
on the right-hand side of the equation (1.6) for perturbations of the sine-Gordon
kink fall exactly into the class of nonlinearities of (1.1) that are considered in this
paper, see also Remark 1.10. In a future investigation we will consider non-localized
quadratic variable coefficients «(x) that can assume different limits as x — £oo
like the coefficient tanh(x) in (1.5) for perturbations of the kink of the ¢* model.
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To conclude this subsection, we briefly summarize orbital and asymptotic sta-
bility results for kinks. The orbital stability of kinks with respect to small per-
turbations in the energy space was obtained by Henry—Perez—Wreszinski [33] for
general one-dimensional scalar field theories. For a class of scalar field models
with a certain flatness assumption on the potential near the wells and under suit-
able spectral assumptions (no resonances, possible presence of an internal mode),
Komech-Kopylova [50,51] proved the asymptotic stability of kinks with respect to a
weighted energy norm (pointwise in time). In a remarkable work [52], Kowalczyk-
Martel-Mufioz established the asymptotic stability of the kink ¢ (x) of the ¢* model
with respect to a local energy norm in the special case of odd, finite energy pertur-
bations. The asymptotic stability of the kink yo(x) of the sine-Gordon equation is
not possible in the energy space due to the existence of a wobbling kink solution
around o (x), see for instance [52, Remark 1.3]. However, Alejo-Mufioz-Palacios
[2] constructed a smooth infinite co-dimensional manifold of initial data close to
the kink v (x), for which there is asymptotic stability in the energy space. After
completion of this work, Delort-Masmoudi [14] very recently proved long-time
dispersive estimates for odd weighted perturbations of the kink of the ¢* model up
to times 7 ~ e~4t¢_ for arbitrary ¢ > 0, where ¢ measures the size of the initial
data in a weighted Sobolev space. A sufficient condition for the asymptotic sta-
bility locally in the energy space of (moving) kinks in general (1 + 1)-scalar field
models under arbitrary small finite energy perturbations has been introduced by
Kowalczyk-Martel-Mufioz-Van den Bosch [54]. Moreover, Chen-Liu-Lu [6] very
recently showed that the sine-Gordon kink is asymptotically stable under suffi-
ciently strong weighted perturbations, relying on the complete integrability of the
sine-Gordon model and using the nonlinear steepest descent method. For related
asymptotic stability results we refer to the surveys [53,70,73] and to the references
therein.

1.2. Main Results

Let u(z) be the solution to (1.1). In the remainder of this paper we work at the
level of the variable

v(t) = %(u(z‘) — (V)" 3,u)

that satisfies the first-order equation

1

0 —i(V)v = T(V)_l((x(-)uz + Bou’ + B(Hu?) on RIH! (1.7)
i
with initial datum v(0) = vy = %(uo — i(V)_lul). It suffices to derive decay
estimates and asymptotics for v(¢) since we have that
u(t) =v(t) + v(). (1.8)

We emphasize that we will frequently use (1.8) as a convenient short-hand notation.
A key discovery in this work is a delicate resonant interaction that can occur
in the variable coefficient quadratic nonlinearity between the spatial frequencies
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£ = ++/3 of the variable coefficient and the temporal oscillations of the solu-
tion. Correspondingly, we distinguish between the resonant case (@ (++/3) # 0 or
a@(—~/3) # 0) and the non-resonant case (@(4++/3) = 0 and @(—+/3) = 0).

Our first theorem pertains to the resonant case and uncovers a novel modified
scattering behavior of small solutions to (1.7) when Sy = B(x) = 0.

Theorem 1.1. (Resonant Case). Let a(x) be a smooth function satisfying ||(x)8

oz(x)||H§ < 00. Suppose that

G(+V3) #0 or a(—3) £0.

Then there exists a small absolute constant &y > 0 so that for any initial datum v
with

. 2
&= [[(x)"voll g4 =< €o.

there exists a unique global solution v(t) to

(B —i(V)v = i.(V)‘l (¢ (u?) on RM1,

2i (1.9)
v(0) = vo,
satisfying the decay estimate
log(1 4+ (1))
lo@lem < C—o—e, (1.10)
(1)2

Moreover; the solution v(t) admits a decomposition

U(t):Ufree(t)+Umad(t)» t>1, (1.11)

with the following properties:

o There exists V € L™ with ||\7||Loo < & such that

1 .2 . ~ &
Vfree(t, x) = —lel?e’pV(—£>9(£) + (9(5—) r=1, (1.12)
12 p ! 187
where p = (> — x2)7, 6(z) = 1 for|z| < 1, and 6(z) = 0 for |z| > 1.
o There exists ag € C with |ag| < € so that Vieq(t) is given by
2 2is

t
vmwz(t,x)z%"/l (e"<f—-‘><v><v>—1a)(x)es ds. (1.13)

Forany given§ > 0, there exists a constant Cs > 0 such that we have uniformly

2
&
|Umod (1, x)| < Cs—  whenever
2

x| < (“/; —a)z or x| > (‘/; +5)z (1.14)
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and along the rays x = :I:‘/Tgt the asymptotics of Vo4 (t) are given by

V3 a3 xoii log(t) &2
%MQi7Q:;?4wﬁpﬁ)ﬁ-w%g}t>L(u$

In particular, the decay estimate (1.10) is sharp.

A decomposition analogous to (1.11) holds for negative times t < —1.

Remark 1.2. The amplitude ag € C in the statement of Theorem 1.1 is explicitly
given by

ap = 09(0) + %(% /Ra(x)v(Q x)2dx — Aa(x)lv(o,x)|2 dx

1 _ ) )
——/a(x)v(O,x) dx
6 Jr

+ «/LZ_TF(/OYOO e+is/Ra(x)as(e*lﬁ'v(s’x))(efisv(s’x)) dx ds (1.16)
_/ e_iS/ O!(Jc)fis((e_’lsv(s,x))(eJ”'Sl_)(s,x))) dx ds
0 R
1 o0

- —/ 6_3”/ oz(x)ax(e"’”t_}(s,x))(e‘”sl_)(s,x)) dx ds).
3Jo R

Remark 1.3. In the special case where the initial datum vy is odd and the variable
coefficient «(x) is odd, which implies that the solutions are odd, it is evident
from (1.16) that ag = 0. Thus, in that case no resonance occurs. At a more technical
level this follows from the fact that v(z, 0) = O for odd solutions and that therefore
the entire variable coefficient quadratic term

a(x)v(t, x)2 =a(x)v(t, x)2 —a(x)v(t, O)2 ~ xa(x)(dyv)()v(t)

has stronger time decay due to the improved local decay of spatial derivatives of
the solution (see also the discussion of the main ideas of the proof of Theorem 1.1
in Sect. 1.4.1 below).

Remark 1.4. An inspection of the proof of Theorem 1.1 shows that the limit profile
V in (1.12) in fact satisfies V € L® N L2.

Remark 1.5. After completion of this work, the authors in collaboration with
Schlag [57] generalized Theorem 1.1 to the study of the asymptotic behavior of
small global solutions to the following one-dimensional quadratic Klein-Gordon
model with a linear potential

(82 =324+ 14+ V(x)u = Po(a()u?) on R (1.17)

for a spatially localized variable coefficient « (x). The core assumption in [57] is that
the linear potential V (x) is non-generic, in other words that the Schrédinger operator
H = —83 + V (x) has a zero energy resonance, i.e., that there exists a bounded non-
trivial solution ¢(x) to Hp = O suchthatp(x) - lasx — ocoand¢(x) - ¢ #0
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asx — —oo.Itis worth to emphasize that the Laplacian — 8)% in one space dimension
exhibits a zero energy resonance, namely the constant function 1. Denoting by F
the distorted Fourier transform associated with the Schrodinger operator H, [57,
Theorem 1.1] establishes the same type of modified scattering behavior as exhibited
in Theorem 1.1 in this paper for the more general Klein-Gordon model (1.17) under
the corresponding resonance assumption .f’-v'[awz](—i—\/g) # 0or f[agpz](—\/g) #
0. The work [57] further clarifies the role that the threshold resonance of the linear
Klein-Gordon propagator and the local decay properties of the associated Klein-
Gordon waves play for the occurrence of the type of modified scattering behavior
uncovered in Theorem 1.1 for the special flat case V (x) = 0.

Remark 1.6. It is straightforward to extend the proof of Theorem 1.1 to also in-
clude a variable coefficient cubic nonlinearity 8 (x)u> for a smooth and sufficiently
decaying coefficient 8(x). A very interesting next step is to generalize the result of
Theorem 1.1 to include a constant coefficient quadratic or cubic nonlinearity in the
right-hand side of the Klein-Gordon model (1.9). In order to capture the long-range
effects of the constant coefficient quadratic or cubic nonlinearity, one would have
to propagate a slow growth estimate for a quantity like || (& )28;’; f 3] 12 where

) := e "V)u(r) denotes the profile of the solution v(r). This is achieved in the
second result of this paper in Theorem 1.7 below under the additional non-resonance
assumption @(++/3) = 0. However, in the general case a quick computation shows
that such a quantity is, e.g., strongly divergent for the profile of v, (¢). This step
therefore needs significant further ideas.

In this regard we emphasize that after completion of this paper the remarkable
recent work of Germain-Pusateri [23] considered the long-time behavior of small
solutions to the general one-dimensional Klein-Gordon equation

(92 — 9>+ 1+ V()u = a(x)u® on R, (1.18)

where the variable coefficient a(x) is assumed to satisfy a(x) — 1o asx — F00
for arbitrary fixed £1, € R (and is thus not necessarily spatially localized) and
where V (x) is a sufficiently regular and decaying linear potential with no bound
states. Under the key spectral assumption that the distorted Fourier transform
u(t,0) = 0 of the solution vanishes at zero frequency at all times, [23, Theo-
rem 1.1] establishes modified scattering in the sense that small solutions to (1.18)

decay in L$° at the rate 17 of free Klein-Gordon waves and that their asymptotics
involve logarithmic phase corrections (that are “caused by the non-zero limits” €4,
at spatial infinity of the coefficient a(x)). The condition (¢, 0) = 0 holds automat-
ically for generic potentials, but only under additional assumptions for non-generic
potentials, for instance by imposing suitable parity conditions. We note that the flat
potential V(x) = 0 in one space dimension is non-generic and that [23, Theorem
1.1] would in effect only pertain to odd solutions in the flat case. The work [23]
further clarifies that the special frequencies £=+/3 in Theorem 1.1 are the (distorted)
output frequencies of a nonlinear space-time resonance. Such a fully coherent phe-
nomenon is expected to generally occur for quadratic interactions in one space
dimension in the presence of a linear potential V (x) and already in the presence of
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a variable coefficient quadratic nonlinearity a(x)u? in the flat case V (x) = 0, be-
cause the latter cause a decorrelation between the input and the output frequencies.
The previously mentioned difficulties with slow L? growth estimates for a deriva-
tive of the distorted Fourier transform of the profile of the solution are overcome
in [23] by introducing an adapted functional framework, which penalizes around
the special (distorted) frequencies ++/3, and by crucially exploiting the stronger
local decay properties of solutions that are available if one imposes the vanishing
condition (¢, 0) = 0 at zero frequency.

Our second theorem establishes asymptotics for small solutions to (1.7) in the
non-resonant case.

Theorem 1.7. (Non-Resonant Case). Let a(x) and B(x) be smooth and decaying
coefficients satisfying ||(x)4ot(x)||sz < 00, respectively ||(x)3,3(x)||Hg < oo, and
let By € R. Assume that ' '

G(+V3) =0 and a(—+/3)=0.

Then there exists a small absolute constant &g > 0 with the property that for any
initial datum vy with

&= H <x>UO”HX2 = €0,

there exists a unique global solution v(t) to

@ — i (V))v = — (V) Na(u? + pou® + BCHu’) on R,

T2 (1.19)
v(0) = vo,
satisfying the decay estimate
e
vl S —- (1.20)

(r)2
Moreover, there exists a unique final state W € L with ||W| L~ < € such that

1 .z . _i3B0 x\—1{p_xy2 ~ £
v(t,x) = el tefe 2 G IW =)l log(”W(—f)@()—c) +(9( i )
t2 P t 2tV

t>1, (1.21)

where p = (12 —x2)2, 0(z) = 1 for |z] < 1,0(z) = 0for|z| > 1, and0 < v < 1
is a small constant.

Remark 1.8. An inspection of the proof of Theorem 1.7 shows that the limit profile
W in (1.21) in fact satisfies W € L>® N L2.
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Remark 1.9. The method of proof of Theorem 1.7 easily allows to also include a
constant coefficient quadratic nonlinearity agu?, g € R, and to establish asymp-
totics for small solutions to
0 —i(V)v = %(V)_l(aouz +a()u? + pou’ + B(u’) on R

in the non-resonant case @(++/3) = 0. It is a classical observation by Shatah [69]
that the constant coefficient quadratic nonlinearity for the Klein-Gordon equation
has a nice non-resonance property and can be transformed by the normal form
method into non-local constant coefficient cubic nonlinearities. These can then be
treated analogously to the (local) constant coefficient cubic term Sou> on the right-
hand side of (1.19). See for instance [12,32] for asymptotics of small solutions to
1D Klein-Gordon equations with a constant coefficient quadratic nonlinearity and
[63,71] in the presence of an additional variable coefficient cubic nonlinearity.

Remark 1.10. As already discussed in Remark 1.5, after completion of this work
the authors in collaboration with Schlag [57] generalized Theorem 1.1 of this paper
to the more general one-dimensional Klein-Gordon equation

(02 =924+ 14+ V(x)u = Pe(a(-)u?) on R'H!

with a spatially localized variable coefficient « (x) and a non-generic potential V (x).

In particular, [57] identifies the non-resonance condition for this more general set-
ting to be F [oz(pz](:I:«/_ 3) = 0, where F denotes the distorted Fourier transform
associated with the Schrodinger operator H = —8)% + V(x) and where ¢(x) de-
notes the (normalized) zero energy resonance of H. In particular, [57, Remark 1.2]
observes that this non-resonance condition turns out to be satisfied by the sine-
Gordon model! For this reason, the Klein-Gordon equation (1.19) considered in
Theorem 1.7 in this paper is an important model problem for studying perturba-
tions of the sine-Gordon kink since the nonlinearities on the right-hand side of (1.19)
have exactly the same structure as those that occur in the equation (1.6) for pertur-
bations of the sine-Gordon kink and since both the flat potential V (x) = 0 as well
as the potential V(x) = —2 sech?(x) in (1.6) are non-generic.

1.3. Related Works

Over the past decades there has been enormous progress in the study of modified
scattering for dispersive and hyperbolic equations. The rich and vast literature on
this subject cannot be reviewed here in its entirety. We primarily focus on those
papers that are most relevant to our results.

The investigation of the long-time behavior of small solutions to Klein-Gordon
equations with constant coefficient nonlinearities originates in the pioneering works
of Klainerman [48,49] and Shatah [69]. The long-range effects of quadratic and
cubic nonlinearities for the one-dimensional Klein-Gordon equation were unveiled
in the work of Delort [12,13], which established that the asymptotic behavior of
small solutions to such equations differs from that of linear Klein-Gordon waves by a
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logarithmic phase correction. A simpler approach was later developed by Lindblad-
Soffer [60,61] in the cubic case, providing a detailed asymptotic expansion of
the solution for large times. Subsequently, Hayashi-Naumkin [31,32] removed the
compact support assumptions about the initial data required in [12,60,61], see also
Stingo [72] and Candy-Lindblad [5].

In contrast, the study of one-dimensional nonlinear Klein-Gordon equations
with variable coefficient nonlinearities was only recently initiated by Lindblad-
Soffer [63] and by Sterbenz [71]. Specifically, [63,71] prove dispersive decay of
small solutions for smooth, compactly supported initial data in the case of a variable
coefficient cubic nonlinearity coupled to constant coefficient cubic and quadratic
nonlinearities. Recently, a much simpler and robust approach was introduced by
the authors in [58] establishing sharp decay estimates and asymptotics for one-
dimensional Klein-Gordon equations with constant and variable coefficient cubic
nonlinearities. In contrast to [63,71], the approach in [58] avoids the use of any
variable coefficient cubic normal forms and instead uses local decay estimates for
the Klein-Gordon propagator as a key tool to deal with difficulties caused by the
variable coefficient cubic nonlinearity.

After completion of this work, Germain-Pusateri [23] established modified scat-
tering for the general one-dimensional quadratic Klein-Gordon equation (37 — 82 +
14+ V(x)u = a(x)u? with a linear potential V (x), where a(x) is a smooth coef-
ficient satisfying a(x) — €1 as x — =00 for arbitrary fixed {1, € R (and is
thus not necessarily spatially localized) and where H = —83 + V(x) has no bound
states. Under the key spectral assumption that the distorted Fourier transform of
the solution (¢, 0) = O vanishes at zero frequency at all times ¢ € R, [23, Theo-
rem 1.1] shows that such small solutions to that Klein-Gordon equation decay in

L° at the rate =2 of free Klein-Gordon waves and that their asymptotics feature
logarithmic phase corrections (which are related to the “non-zero limits” £+, of
the coefficient a(x)). The condition i (¢, 0) = 0 holds automatically for generic po-
tentials V (x), while for non-generic potentials it is a special case that can often be
enforced by imposing suitably parity conditions. It is worth to record that a peculiar
feature of the flat Klein-Gordon operator in one space dimension is that it exhibits
a zero energy resonance, i.e., that the flat potential V (x) = 0 is non-generic. As
an application, [23, Corollary 1.4] yields the full asymptotic stability of kinks with
respect to odd perturbations for the double sine-Gordon model in an appropriate
range of the deformation parameter.

We emphasize that the occurrence of a logarithmic slow-down of the point-
wise decay rate due to the presence of a space-time resonance was exhibited by
Bernicot-Germain [4] in a simpler setting of proving bilinear dispersive estimates
for quadratic interactions of 1D free dispersive waves. We also refer to [15, 16] for
higher-dimensional instances, where the optimal pointwise decay cannot be prop-
agated by the nonlinear flow (but where it appears that the obtained decay rate is
not asserted to be sharp).

For the one-dimensional Schrodinger equation with a constant coefficient cu-
bic nonlinearity we refer to Hayashi-Naumkin [29], Lindblad-Soffer [62], Kato-
Pusateri [47], and Ifrim-Tataru [36] for closely related results on modfied scattering
of small solutions. Deift-Zhou [10] obtained asymptotics even for large initial data
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in the defocusing case, utilizing the complete integrability of the equation and
studying the problem via inverse scattering techniques.

Asymptotics for small solutions to one-dimensional Schrodinger equations with
a linear potential and with constant as well as variable coefficient cubic nonlin-
earities were obtained by Delort [11], Germain-Pusateri-Rousset [25], and Chen-
Pusateri [7]. In the case of the zero potential, these results only pertain to odd
solutions. We remark that the restriction to odd solutions avoids to deal with the
threshold resonance of the free Schrodinger operator in one space dimension and
therefore constitutes a simplification of the problem.

We conclude by emphasizing that many other nonlinear dispersive and hy-
perbolic equations exhibit modified scattering of small solutions. Without being
exhaustive we mention, for example, the mKdV equation [24,28,30], the boson
star equation [66], fractional Schrédinger equations [40], water waves equations
[1,16,37,41,42], the Maxwell-Dirac equation [17], and the Vlaslov-Poisson system
[3,8,26,39,65]; see also the corresponding problem for the Einstein field equations
of general relativity [9,38,56,59].

1.4. Proof Ideas

1.4.1. Resonant Case We begin with a heuristic discussion of the delicate res-
onant interaction that occurs in the variable coefficient quadratic nonlinearity be-
tween certain spatial frequencies of the variable coefficient and the temporal oscil-
lations of the solution to

0 —i(V)v = %(V)_l(a(-)uz) on R, (1.22)
Due to the strong spatial localization of the coefficient  (x), we expect that the lead-
ing order contribution of the variable coefficient quadratic nonlinearity o (x)u(t, x)?2
is governed by the behavior of u(t) close to the origin x = 0, in fact by the contri-
bution of & (x)u(t, 0)>. At a technical level this intuition can be made rigorous by
observing that the difference o (x)u(z, )2 —a()u, 0)?is by the fundamental the-
orem of calculus schematically of the form xa (x)(9,u)(¢)u(t). Then the stronger
time decay of this term stems from the improved local decay of spatial derivatives
of the solution, which is in effect due to the spatial localization of the coefficient
a(x). Recalling that u (¢, 0) = v(¢, 0) 4+ v(z, 0), we can thus think of (1.22) as

(0 — i (V) = %((V)_la) (v(t, 0)2 4 2v(1, 0)5 (1, 0) + ot 0)2)

+ {better terms}.

(1.23)

Now suppose for the moment that v(z, 0) asymptotically behaves like a linear
Klein-Gordon wave, i.e.

it
0(t,0) ~ S fore > 1. (1.24)
t2
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Inserting this into Duhamel’s formula for the main nonlinear terms on the right-
hand side of (1.23) gives that to leading order the long-time behavior of v(¢, x) is
determined by an expression of the form

1 o ] 2is 2 —2is
_/ (et(lb)(w(V)la)(x)(e + -+ ¢ )ds. (1.25)
1 S

2i s s

Clearly, the asymptotics of (1.25) hinge on the temporal oscillations in s of the
integrand. Filtering by the linear evolution ¢/*¢V) and taking the Fourier transform
gives
1 t PR . . w 1
S T 1a(§)(6m<z (E) 4 2eist®) 4, zs(2+<s>>> Zds. (1.26)
2i 1 N
Then it is evident that the first term in the parentheses in (1.26) causes a resonance
because it is stationary in s when

2—(E)=0 & &==3,

where we use the Japanese bracket notation (£) = (1 + £2) % The other two terms
in the parentheses in (1.26) are non-stationary in s and therefore better behaved.

In view of the dispersion relation for the Klein-Gordon propagator ¢//(V!, the fre-

quencies £ = ++/3 are associated with the rays * = :F‘/Tg. This computation

[
suggests that the corresponding part of the integral (1.25) along the rays + = :F*/Tg
is (partially) monotone, which should in particular cause a logarithmic slow-down
of the decay rate along those rays.

Becoming more rigorously now, the first step in the proof of Theorem 1.1
consists in establishing local decay estimates for the solution v(#) to (1.23) as well
as for its spatial derivatives d,v and for the time derivative of its “phase-filtered”
component 9; (e~ (1)), see Proposition 3.1. Their derivation crucially exploits the
spatial localization provided by the variable coefficient o (x). Next, we conclude in
Proposition 3.2 that the asymptotic behavior of the nonlinear solution v(z) to (1.23)
at the origin x = 0 is indeed that of linear Klein-Gordon waves! The idea is to
just start off from Duhamel’s formula for the nonlinear term and to simply insert
the asymptotics for the retarded Klein-Gordon propagator. Having the powerful
local decay bounds for v(¢) at our disposal along with the spatial localization of
the coefficient a(x), we are able to control all remainder terms and to isolate the
leading order long-time behavior at the origin. Specifically, we obtain that there
exists ag € C, explicitly defined in (3.16) in terms of the solution v(¢), such that

1 . T o & 2
v(1,0) = —eiFeilag + O(F> £ 1.
12
Here, 0 < ¢ < 1 measures the small size of a weighted Sobolev norm of the initial
datum. Finally, in the proof of Theorem 1.1 we first use the local decay bounds for
v(?) to infer the decay estimate

1+ loglir) (1.27)

lo@lle Se
(1)



Asymptotics for 1D KG Equations with Variable Coefficient 1471

Then the majority of the work goes into uncovering more details of the asymptotics
of v(¢), which in particular shows that the decay estimate (1.27) is sharp. Proceeding
along the lines of the reasoning in the heuristic discussion above, we use the local
decay bounds for v(¢) and the knowledge of the asymptotics of v(¢) at x = 0 to
peel off all parts of v(¢) that asymptotically behave like linear Klein-Gordon waves.
This leaves us with the component

2is

az t e
Umod (t, X) :=3°/1 (Vv ) (x) — ds. (1.28)

Then a stationary (and non-stationary) phase analysis of (1.28) reveals the modified
scattering behavior (1.14)—(1.15) with the punch line being the logarithmic slow-

down along the rays 7 = :I:gt with asymptotics given by

V3 ai .z .1 log(t) &2
t,:l:—t) = 0 T 3G(FV3 O(—), > 1.
noa (1. £ Jpe'te a(FV3) T o(g) 1>

1.4.2. Non-Resonant Case We now outline the main ideas of the proof of The-
orem 1.7, which establishes sharp decay estimates and asymptotics for small solu-
tions to

0 —i(V))v = %(V)_l(a()uz + Bou® + B(Hu®) on RIT! (1.29)

under the non-resonance assumption
A(+V3)=0 and @(—+3) =0. (1.30)

Recall that we use the short-hand notation u(¢) = v(¢) + v(¢). In view of the slow

decay rate £=7 of linear Klein-Gordon waves in one space dimension, the constant
coefficient cubic term Bou> has critical dispersive decay. We therefore expect it to
cause a modified scattering behavior of the solution v(#) to (1.29). Oversimplifying
a little bit here, all current techniques to capture asymptotic corrections in the scat-
tering behavior of small solutions to dispersive equations usually combine some
version of an ODE argument with slow growth estimates for energies of weighted
vector fields of the solution. In the context of Klein-Gordon equations, the Lorentz
boost Z = td, + x9; and the closely related operator L = (V)x — itd, play a cru-
cial role. However, in the presence of a variable coefficient nonlinearity, it becomes
problematic to obtain such slow growth bounds, because the vector field Z and
the operator L produce badly divergent factors of  when they fall onto a variable
coefficient. This issue becomes particularly severe in the case of variable coeffi-
cient quadratic nonlinearities as in (1.29) that can only provide little time decay to
compensate. In our previous work [58] we introduced a simple and robust method
based on local decay estimates for the Klein-Gordon propagator to overcome this
problem in the context of variable coefficient cubic nonlinearities.

The first and key step in the proof of Theorem 1.7 is therefore to transform the
variable coefficient quadratic nonlinearity on the right-hand side of (1.29) into a
more favorable form that is of “variable coefficient cubic type”. As already observed
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in the discussion of the proof of Theorem 1.1 above, we expect the difference
a()u(t, x)% —a(x)u(r, 0)2 ~ xa(x)(@yu)(@)u(r) to have stronger time decay due
to the improved local decay of spatial derivatives of the solution, see Lemma 4.3 in
the context of the study of (1.29). Hence, it suffices to recast the part o (x)u(r, 0)2
of the variable coefficient quadratic nonlinearity in (1.29) into a better form. To this
end we insert the decomposition of u(z, 0) into its “phase-filtered components”

u(t,0) = et (e v(t,0)) + e (e (2, 0))

into Duhamel’s formula for the nonlinear term o« (x)u(z, 0)? to find that

t
% () 9y a)u(s, 0)2 ds
01 . | (1.31)
- (ei(t—s)(V)(V>—la)(e+21s(e—isv(s’0))2+“.> ds.
2i 0

Here we only display the most delicate term in the parentheses of the integrand on
the right-hand side of (1.31). Owing to the non-resonance assumption (1.30) the
integral (1.31) has a nice non-resonance property and we can integrate by parts in
time s to get

1
/ (e IV 2 — (V) THV) ) e T B (e u(s, 0)) (e (s, 0)) ds + ...,
0 (1.32)
+ {boundary terms}.

More precisely, we use that @ (&) is assumed to vanish at the frequencies § = +/3
where the symbol (2 — (£))~! has a singularity. Then we make the important
observation that the time derivative of the phase filtered component o; (e_” v(t,0))
has stronger time decay at the origin. Specifically, we obtain in Lemma 4.1 that

&
<t>178’

|3 (e "u(t,0))| <

where 0 < § < 1 is a small absolute constant and 0 < ¢ < 1 measures the small
size of a weighted Sobolev norm of the initial datum. Assuming that the nonlinear
solution v(¢) to (1.29) ends up having the decay rate =7 of linear Klein-Gordon
waves in one space dimension, we can then view the first term on the right-hand side
of (1.32) as Duhamel’s formula for a nonlinear term of “variable coefficient cubic
type” that is of the schematic form K()C)EZ(I)_%-HS for some smooth and decaying
coefficient « (x).

Put differently, in the first part of the proof of Theorem 1.7 we introdue the
variable coefficient quadratic normal form

Q 1= a1 (x)v(t, 0)* + a2 (x)|v(z, 0)[* + a3(x) i (7, 0)*
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with smooth and decaying coefficients o (x), j = 1, 2, 3, defined in terms of their
Fourier transforms by

_ 1 e
@1(8) 1= 52— (£)) Hey'ae),
@) = — (&) 2ae),

_ 1 R
@) = =5 2+ (§) Heya).

Then the new variable v 4+ Q satisfies a Klein-Gordon equation of the form

0 — i (V) (v + Q) = %(vrl () + O(K(x)ezar%“). (1.33)

The right-hand side of (1.33) can be viewed as the sum of the constant coefficient
cubic nonlinearity Bou> and of several nonlinear terms of “variable coefficient
cubic type”. At this point we are in a position to implement a version of the strategy
from our previous work [58] to derive decay estimates and asymptotics for small
solutions to (1.33). More specifically, a standard result on the asymptotics of the
Klein-Gordon propagator (Lemma 2.2) reduces the proof of decay and asymptotics
of the solution v () to establishing the uniform boundedness and asymptotics of the
Fourier transform of the profile £ (¢) := e¢~"*{V)v(t) of the solution v(¢). Following
the approach of the space-time resonances method by Germain—-Masmoudi—Shatah
[20-22] and Gustafson—Nakanishi—Tsai [27], we obtain the latter from the analysis
of the stationary points of the oscillatory integrals that govern the equation satisfied
by the Fourier transform of the profile f (t, &), see Proposition 4.8. Some technical
aspects of this step are inspired by the proof of modified scattering for the mKdV
equation contained in [24]. In order to control various remainder terms arising in
this analysis, we need a slow growth estimate for the energy ||[(V)Lv ()| L2 of the
operator L = (V)x —itd, = €'V (V)xe (V) which yields control of the spatial
localization of the profile. In the derivation of this slow growth estimate, we use
a key idea from our previous work [58] and employ local decay estimates for the
Klein-Gordon propagator. These provide a crucial source of additional time decay in
certain energy estimates to compensate the divergent factor of 7 that occurs when the
operator L falls onto the variable coefficients, see Lemma 2.5 and Proposition 4.7.

2. Preliminaries

2.1. Notation and Conventions

For nonnegative X, Y we write X < Y or X = O(Y) if X < CY for some
absolute constant C > 0. We use the notation X <, Y to indicate that the implicit
constant depends on a parameter v and we write X < Y if the implicit constant
should be regarded as small. Moreover, we use the notation (x) = (1 + xz)%,
(t) = (1 + tz)%, and (¢§) = (1 + 52)%. For any number a € R we denote by a+,
respectively by a—, a number that is larger, respectively smaller, than a, but that
can be chosen arbitrarily close to a.
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Our conventions for the Fourier transform and its inverse are as follows:

A 1 .
FIA1E) = f&) = Nz fR e f(x) dx,
v 1 ,
FUAI) = f) = fR Y £(&) de.

Then we define the operator (V) by F[(V) f1(§) = (&) f (¢) and we define the
action of the Klein-Gordon propagator e*(V) by F[eF!(V) £](&) = eFi1%) f(£).

We denote the Lorentz boost by Z = td, + x9; and we introduce the operator
L = (V)x —itd,. Note that (V)x conjugates to L via V) in the sense that

L= (V)x —itdy = "™V (V)xe V) = F1el! ) (g)igee 1 C) F,
The Lorentz boost Z and the operator L are closely related by the identity
Z=iL+ & —i(V)x =iL+i(V) ', +x( —i(V)).

In the derivation of energy estimates in Sect. 4.2 we repeatedly use the following
commutator identities

[@ —i(V).L]=0,
(@ — i(V)), Z] = i(V) 0.3 — i(V)),
x, (VY] = k(V)*25,, keZ, 2.1)
[L. (V)™= —(V) %0,
[Z. (V)™= —(V) 30,0,

_ ~

Finally, we record a standard energy estimate for the first-order Klein-Gordon
equation.

Lemma 2.1. (Energy estimate) Let w(t) be a solution to
(0, —i{(V)w=F onl[0,T] xR.

Then we have for 0 <t < T that

t —
w7 < TwOI7 +2‘ fo /R F(s) w(s) dx ds (2.2)

and that

lwll L2 0. 71xR) S IOl 2Ry + 1FI L1120, 71xR) - (2.3)
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2.2. Decay estimates
We begin by recalling the asymptotics of the Klein-Gordon propagator ¢’V
in one space dimension, see for instance [32, Section III] for a proof.

Lemma 2.2. The asymptotics of linear Klein-Gordon waves in one space dimension
are given by
l . ; A
(€ )0 = e Fe? ()3 F(=2)0(2) + =01 x) Fl12).
12 t 3

t>1, xeR,

2.4)

where p 1= (12 —xz)% and 0(-) is a sharp cut-off function with0(z) = 1 for|z| < 1
and 0(z) = 0 for |z| = 1. In particular, we have
. 1 3 A 1
1€ fle S 7 1€ 7O 0 + t—%H Ol 121 @5

‘3

[N

We point out that the identity (%) = % gives rise to a slightly different way of
expressing the asymptotics (2.4) of linear Klein-Gordon waves as

34 1
("™ f)x) = €4€’p( )2F(=3)0(7) + 5O(x) fllw2), =1, xeR
% t8 ’
Moreover, we record that the bound (2.5) implies a decay estimate for any time-
dependent function v(z) in terms of its Klein-Gordon profile f(r) := e~V v ()
given by

1 3 1
lo@llze < —[E)2 @8 + —§(||<<V>Lv><r)HL2 + |}(<V>2v><z>||Lz,),
12 £ 18 ! !
t>1. (2.6)

Remark 2.3. For technical reasons, in one part of the proof of Theorem 1.1 we
need a decay estimate for the remainder term in the asymptotics of linear Klein-
Gordon waves that is stronger than the one in (2.4). An inspection of the proof of
[34, Theorem 7.2.1] gives that under stronger assumptions on the initial datum we
have

l . 3 A

(")) = e T (2)2 f(—£)o(¥) + - O(II 2fllgs). 121 @7
On occasion we also use the following standard dispersive decay estimate for

the Klein-Gordon propagator in one space dimension, see for instance Hormander

[34, Corollary 7.2.4] for a proof.

Lemma 2.4. We have uniformly for all t € R that
1

[ f ] e S — I F - (2.8)
HRROL '
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The following pointwise-in-time local decay estimates for the Klein-Gordon
propagator in one space dimension play a key role in our arguments. Such local
decay estimates for much larger classes of unitary operators originate in the works
of Rauch [67], Jensen-Kato [45], and Jensen [43,44], see also [18,19,35,46,55,68]
and references therein.

Lemma 2.5. Leta > 1, b > 0. We have uniformly for all t € R that

_ _ ; _ 1
[ ()= (V) 2eEit V) () a||L)2((R)—>L;2r(R) N o (2.9)
a . 1
H <x>—2_xeilt(v> (x>—2 S -, (2.10)
(V) L2(R)—L2(R) (t)3
oMM =1 4w —2‘ < 1
— 2.11
H(x> v, ¢ W) LR—LR) ™ ()2 @1

Proof. See Lemma 2.1 and Lemma 2.2 in [58] for the proofs of (2.9) and (2.10).
The proof of (2.11) follows along the lines of the proof of Lemma 2.2 in [58] by
exploiting that the symbol of (V) — 1 vanishes to second order at the origin, namely
() — 1 = O(£?%) for 0 < &£ « 1. Thus, one can just integrate by parts twice in the
frequency variable to get the (r) "2 decay. O

2.3. Harmonic analysis tools

The derivation of the differential equation for the profile of the solution in
Lemma 4.9 in the non-resonant case relies on the following stationary phase lemma
in two dimensions.

Lemma 2.6. Let x € CS° be a smooth bump function such that x = 0 in B(0, 2)¢,
and \Vyx| + |V2x| < 1. Let € C*® be such that on the support of x it holds
that |det Hess y| > p for some 0 < u < 1 and that |VNyr| + |V | + V3| < 1.
Consider the oscillatory integral

I = // eI Em o)x(n, o) dndo.

For any o € [0, 1] we have:

(i) If V only vanishes at (ng, 00),

2rel TS oMV (10,00)

I = NS . F (1o, 00) x (no, o9) + O (

where s = sign Hess ¥ (no, 09) and A = |det Hess v (no, 00)|-

(i) FIVY1 2 1,
I:O(H«x,y»“FHU)

M%+(¥)Ll+a

H<<x,y>>2afuu)

u,%'ﬂa)\l"'“
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Proof. The proof is a minor adaptation of the proof of [24, Lemma A.1], taking
into account the possibly small lower bound |det Hess /| > u > 0. O

We also use the following result on bounds for pseudo-product operators from
[24, Lemma A.2] in the course of the proof of Lemma 4.9.

Lemma 2.7. Assume thatm € LY (R x R) satisfies

for some A > 0. Then forall p,q,r € [1, oo] with % + % = %, the pseudoproduct
operator Ty, defined by

<A (2.12)
Ll ,(RxR)

/ m(n, o)e* e dy do
RxR

FTn(f. 9)](E) = fR m(E.n) f € — n)aGn) dn.
satisfies

1T (f. )|

@ S Alflle@ gl (2.13)

Moreover, zf% + % + % =1, we have that

/ m(n, o) f ()8 (@ )h(—n — o) dndo
RxR

S Alfller@liglzey il ®)- (2.14)

3. Resonant Case

In this section we investigate the asymptotic behavior of small solutions to

(0 —i(V)v = %(V)‘l(a(.)bﬂ) on R'*! (3.1)

in the resonant case
G(+V3) £0 or @(—+3) #0.

Global existence of small regular solutions to (3.1) is well-known, see for instance
[34]. In the proof of Theorem 1.1 we therefore focus on deriving global-in-time
a priori bounds for small solutions to (3.1) from which we can infer sharp decay
estimates and asymptotics.



1478 HANs LINDBLAD, JONAS LUHRMANN & AVY SOFFER

3.1. Local Decay Estimates
We first derive a collection of local decay bounds for the solution.

Proposition 3.1. (Local decay estimates). Let «(x) be a smooth function satisfying
Il (x) e (x)|] H3 < 0. Then there exists a small absolute constant ey > 0 so that for
any initial datum vo with

. 2
£ = (x) 200l 44 < <0,

the solution v(t) to (1.9) satisfies

3

sup{<t>%||<x>*2v<r>||Lz an 28’v<r>||Lz+Z<r 2ol (e o)

teR j=1 j=0

<e. (3.2)

Proof. The proof proceeds via a continuity argument. By time-reversal symmetry
it suffices to argue forward in time. For any T > 0 we define the bootstrap quantity

3
M(T) := sup {<z>%||<x>‘2v<t)||L; + Yl 28 vl 2

0<t<T =

1
Y Wl ia e o), )

J=0

(3.3)

We first observe that one-dimensional Sobolev estimates imply the following weighted
L$°-bounds that will be used throughtout this proof

sup (1) 1(x) 200 v(t)llzoe S M(T), 0<j<2, (3.4)
0<t<T
0sup O] 20 (e ) | o S MD). (3.5)
<t<T

In what follows we only consider times 0 <t < T.
Local decay for 9; (e ""v(r)) : We begin with the local decay estimates for the time

derivative of the phase-filtered component 9, (e_” v(t)). To this end we compute
that

d (e Mu(n) =" (z’((V) — e My + %(V)_l(a(~)u(t)2)

t —1 .
+%/0 %y(:—ﬁ(v)(au(s)z)ds).

By the local decay estimate (2.11) for the Klein-Gordon propagator, it follows that

(3.6)

1) 2ol 7

[0 v )] 2 S =

) 22 11060) 20 1
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) (V) —1

- /ot )

[ o) 210 20(s) e ds

<||<x>2vo||H; M(T)? /’ 1 M(T)?
~ ()2 (t) o (t—9)2% (s)

1
S (i vl gy + M(T)?).

The derivation of the local decay bound for 9,9, (e "/ v(t)) proceeds analogously.

(X> ei(tfs)(V)<x>72

L2112

Local decay for 3] v(t) : Next, we turn to the local decay bound for 3, v(¢). Using
the local decay estimate (2.10) for the Klein-Gordon propagator, it is straightfor-
ward to obtain the desired bound

o) 2vollgy pf
1) 202 S #+/O <

0 .
—2_xel(1—5)<v><x)—2

W)

(1)

[0* (@Ou)?) | 2 ds

_ ||<x>2v3||H;
(t)2

1) 2ol 7 N / 1 M(T)?
()2 0 (t—s)2 (8

(1) v0ll g1+ M(T)?).

L2—>12

! 1
+ [ el vl ds
0 (t—s)2 2

ds

N

<1
)

In the same manner we also obtain the desired local decay bounds for higher
derivatives 8 v(z), namely

o) 1 .
1) 0000z S 75 (1) w0l gy + M(T)?) - for j =2.3.
Local decay for v(t) : Finally, the derivation of the local decay estimate for v(r)
requires a more careful argument. It suffices to describe how to treat the nonlinear
part of Duhamel’s formula for v(r). By freely adding and subtracting u(s, 0)2, we
rewrite it as

t
%/0 IV N a(u(s, -)?) ds

1

=5 fot ei(t_s)(v>(V)_l(a(-)(u(s, )2 = us, 0)2)) ds 3.7)

I
+ 5 i (V) (s, 0)* ds.

In the first term on the right-hand side we can pick up a derivative via the funda-
mental theorem of calculus and therefore expect better decay properties in view of
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the stronger local decay bound for 9, v(¢). Indeed, for any x € R we have

u(s, x)2 —u(s, 0)2 = (u(s, x) — u(s, O))(u(s, x) + u(s, 0))

] (3.8)
= x(/o (3xu) (s, nx) dn)(u(s, x) + u(s, 0)).

Using the local decay estimate (2.9) for the Klein-Gordon propagator and a change
of variables, we obtain the desired bound

(x)_2 /t ei(t—S)(V)<V)—1(a(-)(u(s, -)2 —u(s, 0)2)) ds
0

(i t=5)(Y)

<x>_2T<x>_2

L3

L2—>12

1
(/0 )20 (x) (@) (5, nx) (u(s, x) + u(s, 0)) ||L§ dn) ds

! 1
S /O [ @] ol )20 ge

(t—s)2
1
( fo )2 @) 5. )] dn) ds

! 1
S /0 [ @ ool ) o) e 1660) 2 @) ()11 .2

(t —s)2

1 1
([ria)s
0

L1 M(T)?

< / 1 ( 3) ds
0 (1—s5)2 (5)2
M(T)?
(1)?
It remains to estimate the last term on the right-hand side of (3.7), which is the
heart of the matter. To this end we decompose the variable coefficient «(x) into
a component that is frequency localized around & ~ ++/3 and a remainder term.
Specifically, let ¢ € C2°(R) be a smooth bump function with ¢(£) = 1 in a small
neighborhood of 0. Then we define

ar(x) i= F (0 —V3) + 0(& +V/3))@@)](x) (3.9)

<

and set
anr(x) 1= a(x) — ap(x).

Correspondingly, we split the last term on the right-hand side of (3.7) into

| I | I
7/ (ez(rfs)W)(V)fla)u(S’0)2 ds = 7/ (el(tfs)W)(V)flar)u(s’0)2 ds
2i 0 2i 0 (3 10)

1 [t .
E/O (e’(’_‘mv)(V)_lan,)u(s,0)2 ds.
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Since the Fourier transform of the coefficient o, is supported away from zero
frequency & = 0, there exists a smooth and decaying function &; (x) such that

o (x) = 8,0, (x).

Thus, by the local decay estimate (2.10) for the Klein-Gordon propagator we obtain
for the first term on the right-hand side of the decomposition (3.10) that

t
H(x)Z%/ (VN e u(s, 0)* ds
0

L

>—2 8_xe+i(t—s)(V)

ST o

lu(s, 0)]? ds
L}

! 1
S /0 10028 ()12 16) " 20(s) 3 ds

(t —s)2
t 2
5/ 1 3 M(T) ds
0 (t—s)2 (s)
M(T)?

<
T

Finally, we estimate the last term on the right-hand side of (3.10). To this end, we
insert

u(s,0) = et (e_i“v(s, 0)) +e7is (e‘mt_)(s, 0))

to find that
1 [t
21 J, @ a uts 00 ds
1 L v 1 ] [ | is = 2
=5 (e’(’_s)< Ny~ anr) (e+”(e_”v(s, 0)) + e_’s(e‘mv(s, 0))) ds
L Jo
[, o 5
[ (t—s5)(V) \V/ -1 +2is —iSu(s.0))* d
2 Jo (e (V) Olnr)e (e (s, )) S G.11)
1 [t N -
+ (V) ey, )2(e 70 (s, 0) (e (s, 0)) ds
L Jo
1 [t L
o7 [ I e ( (s, ) ds
LJo
=I1+11+111.

Now we describe in detail how to treat the term /. All other terms can be handled
similarly. Since the Fourier transform of the coefficient «,,, is supported away from
the frequencies £ = ++/3 and since the symbol 2 — (£) vanishes if and only if
£ = ++/3, we can integrate by parts in s to find that
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1,/ . 2
A itV)y _ 1
+ 5 (e Qv O‘nr)(v(o’ 0)) (3.12)

[t , , ,
+ 5/ (D@ = (DU )0 (e u(s, 00) (7 u(s, 0)) ds
0
=l + Ly + o).
Then we can easily estimate the term /(4 by
1) 2 Iwllz £ 1@ = (VDU o [ 2 [ O S 110 2@ I

- M(T)z.
~on

The bound on the second term /() just follows from the local decay estimate (2.9)
for the Klein Gordon propagator acting on the smooth and decaying function (2 —
(V)Y a, to wit

160 Tz < |02V @ = @) 7H) L1000, 0P
1
S — @@= (V)T  ar | llvollz, -
(0 SR

Lastly, we obtain that

t .
|35 (e u s, 0))||e—"sv(s 0)|ds

t DY) a1
/OH o a1

[ o) s(e*”v<s))||L;o||<x>* v(s) ]| Le ds
t
5/ 1 IM(T)M(Tl)dS
0 (r—s)2 8) (5)2
M(T)?
UEE

Putting all of the above estimates together, we conclude that
M(T) < &+ M(T)?.

The assertion of Proposition 3.1 now follows by a standard continuity argument.
O
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3.2. Asymptotics at the Origin

Having the local decay bounds from Proposition 3.1 at our disposal, we are
already in a position to determine the asymptotics of the solution v(#) to (1.9) at
the origin x = 0.

Proposition 3.2. (Asymptotics at the origin). Suppose that the assumptions of
Proposition 3.1 are in place. Then there exists a small amplitude ag € C with
lao| < e so that the asymptotics of the solution v(t) to (1.9) at the origin x = 0 are
given by
1 .z .
v(t,0) = —e'4e’ag+r(t) forallt > 1, (3.13)
12

with a remainder term satisfying
£
<
|r(t)| ~ tl_ :
Analogous asymptotics for v(t, 0) hold for negative times.

Proof. By Duhamel’s formula for v(¢) we have that

13
v(t,0)=(e”<v>vo)(0)+%/ (VW) @Ou. ) ) ds. (3.14)
0

The asymptotics for the Klein-Gordon propagator as in Remark 2.3 give

(e""Vv0)(0) = %el%eltﬁo(o) - %O(||<x>2vo||H¢), > 1.
12

We can therefore focus on determining the asymptotics of the nonlinear term on
the right-hand side of (3.14). Let t > 1. The contribution from integration over the
time interval t — 1 < s < ¢ can easily be seen to be of order 0(82l_1) using the
local decay bounds for v(#) from Proposition 3.1. On the time integration interval
0 <s <t — 1 we may insert the asymptotics from Remark 2.3 for the retarded
Klein-Gordon propagator ' =$){V) to find that

1—1
/0 (ei(t—s)(V)(v)—l(a(-)u(s, ~)2))(0) ds

PR

t—1
/ T Fla(us, )?]0) ds + (1) (3.15)
0 (t—s)2

I

1

_leil t—1 t2 . 2 ~
oi% _1/ e Fla(u(s, )2](0) ds + (1),
t2Jo0  (t—s)2

where the remainder term 7 () satisfies the stronger decay estimate

t—1 1
OIS /0 :||<x>2a(x>u<s,x>2||,,3 ds
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t—1 1
S /0 p— )0 )| w3 l (x)_zv(s)HiIg ds

t—1 1 2
5/ £ ds
o t—s{s)

('
It remains to determine the leading order behavior of the first term on the right-hand
side of (3.15). To this end we insert the decomposition

u(S) — e+is(e—isv(s)) +e—is(e+i55(s))

to find that
-1 1
\/E/ L FlaCuls, 20 ds
0 (t—s)2

t—1 t% ‘
= / e " (/ a(x)u(s, x)? dx) ds
0 (t—s)2 R

1

=1 43 i » 5
:/ e ”(/ a(x)(e ”v(s,x)) dx) ds
0 (t —s)2 R

-1 1
+ 2/ - e s <f ot(x)(e_isv(s, x))(e"'”l‘)(s, x)) dx> ds
0 R

(=52
-1 t% _ ) 5
+/ 163”</ a(x)(eJr”ﬁ(s,x)) dx) ds
0 (t—s)2 R
=1+11+111.

Then we exploit the oscillations in each term and integrate by parts in time. For the
term / we find that

I = —it%e'H(t_l)/ oz(x)(e_i(t_l)v(t — l,x))zdx
R

+1i / a(x)v(0, x)%dx
R

1

. t71 kS
+i/ - 3e+'.s</ a(x)(e_isv(s,x))zdx) ds
2Jo (-3 R

—1 1
12 . . .
+ 2i / —eth </ a(x)d (ef”v(s, x))(ef”v(s, x)) dx) ds
0 (r—s)2 R
=l + 1) + 1) + L.
It is clear that the term /() contributes to the leading order behavior of /. Using
the local decay estimates for v(¢) from Proposition 3.1 we obtain

2
1 _ 2 3
| S 21 a@)lzge | (0) 0@ = D2 € —
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and

t—1 1
o)) < z%/ ) @@ | oo () 200, 0) [ 72 ds
0 (t—s)2 ! *

t—1 1 2

/ 3 g—ds
0 (r— s)i (s)

82

s
(r)2

Then we rewrite the last term /4y as

=

<t

1

t—1 >
Iy = Zi/ t—zle“S (/ a(x)ds (e v(s, x)) (e P u(s, x)) dx) ds
0 (t—s)2 R
= 2i/ e'm/ ot(x)&s(e_”v(s,x))(e_”v(s,x)) dx ds
0 R

—Zif e'm/ ot(x)BS(e_”v(s,x))(e_isv(s,x)) dx ds
; R

i—1 i
+ Zi/ t—zleﬂx/ a(x)0s (e*”v(s,x))(efisv(s,x)) dx ds
;7 (t—s)2 R

t 1
2 t2 . . ,
+2i/ < - — l)e‘m/ a(x)as(e_”v(s,x))(e_”v(s,x)) dx ds
0 \(t—ys)2 R

— 7 2 3) €]

=ligy gy + g + 1y
Using the local decay estimates from Proposition 3.1 it is easy to see that the
improper integral / ((dl)) converges and contributes to the leading order behavior of

the term 7, while the other terms I(%), I ((5)) ,and [ ((:})) can be seen to be of order

(9(52<t)_%). Indeed, we have

14| < fo 1) @)z [ ()20 (7 v () | 2 [ (6) v | ds

0082
gf ~ds < é?
; ;

and

13| < / It [ ()28 (7 v () | 2 | (6) v | ds

2

00 2 2
5/ L ods <.
3 (s)2 ()2

2

Similarly, we find that
: 2 &2

t—1 5

12 e
|I((j))| 5/ 1 3 ds §
5 (t—9)2(s)? (1)

Bl—
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and

(4) % N 82 52
’I(d)’rsf 1 1 7ds S —.
0 (t—=s)2(24+ (1 —s5)2)(s)2 ()2
Hence, we have found that the leading order behavior of the term [ is given by

I=i / a(X)v(0, x)>dx + 2i -/00 etis (/ a(x)d (e_”v(s, x))(e_isv(s, x)) dx) ds
R 0 R

2
+(’)<8—1>.
(t)2

In an analogous manner, we compute that the leading order behaviors of the terms
I1 and 11 are given by

11 = —Zi/ a(x)[v(0, x)|* dx
R
—2i /00 el (/ a(x)E)S((e_iSv(s, x))(e+isl_)(s, x))) dx) ds
0 R

2
~o(r)
0}

111 = —’—/ a(x)5(0, x)2 dx
3Jr

and

S5 [T e (fawatertis et o) ar) o
3 0 R

2
+0< ¢ 1).
()2

Putting things together, we conclude that the asymptotic behavior of v(z, 0) is

1 .x .
v(t,()):—le'4e”a0+(9< 8] ) t>1,
12 ('~

where the amplitude ay is given by

. 1
ap = 09(0) + —

V2r
(l/ a(x)v(O,x)zdx—/oz(x)lv(O,x)|2dx — l/ a(x)v(0, x)2dx)
2 R R 6 R

-+ ;(\/OO e+iS / a('x)aY(e_isv(S,x))(e_isv(s’_x)) dx ds (316)
V27 \Jo R ;

- /OO e_"S/ o (x) 0y ((e_”v(s,x))(e"’”ﬁ(s,x))) dx ds
0 R

1

— —/ 6_3”/ oz(x)ax(e"'”ﬁ(s,x))(e‘mﬁ(s,x)) dx ds).
3Jo R

This finishes the proof of Proposition 3.2. O
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3.3. Proof of Theorem 1.1

In this subsection we give the proof of Theorem 1.1. We begin by deriving the
decay estimate (1.10) for the solution v(¢) to (1.9). Using the standard dispersive
decay estimate (2.8) for the Klein-Gordon propagator as well as the local decay
estimates for v(¢) established in Proposition 3.1, we obtain from the Duhamel
representation of v(¢) that

(V)20 ll .1 ! 1
lo@)lre < 10 Ly +/ (V) (@Ou)?) |, ds
(t)2 0 (t—s)2 !

< Ivollg / L
(0)? 0 (1—s)}

(I 7 + 020006 | 500 5 ) ds

t 1 2
S
0z Jo (1 —s)2 (s)
log(1 + (¢
< g( +1 S
()2
Next we study the long-time behavior of the solution v(¢) in more detail. We

note that by time-reversal symmetry it suffices to consider times ¢ > 0. By Propo-
sition 3.2 the asymptotics of v(¢) at the origin x = 0 are given by

1
v(t,0) = —le’?e”ao +r@), t>1,
t2

where ag € C with |ag| < e and |r(f)| < er~17). Hence, we may write

1.z o 2 1 oz .
u(t,0)* = (v(t,0) + 0(t, 0))2 = ;e’fez”ag + ?|ao|2 + ?e*lfefz”ao +7()

. ~ e s (3 . . .
for some remainder term 7 (¢) satisfying |7(r)| < £2t~(27). Inserting this expansion
into the Duhamel formula for v(¢), we obtain for times ¢ > 1 that

. 1 [t
o) = ¢ Vv + / IV o (u(s)?) ds
LJo

. 1 [t
=¢"Vyy + Zf ¢V a(uls)?) ds
0
[,
+ o f IV (@) () - uts,0%)) ds
LJ1

az o e2is o 1

+7°/ (e OIVNv) ) ds—i|ao|2/ (V) le) - ds
1 N 1 s

&2 [ e*2is 1 o
- —0/ (V)T la) ds + —,/ (e IV Tl a)F (s) ds.
2 Nh s 2i Ji
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We find below that the modified scattering behavior of v(¢) is caused by the com-
ponent

2

a ro
Umod (1) = 70/ (ez(tfs)w)(vr]a)

1 S

2is
e
ds.

All other components of v(#) turn out to behave asymptotically like linear Klein-
Gordon waves. Correspondingly, we set

Ufree(t) = V() — Umod (1).

Decay and asymptotics of v free(t) : We denote the profile of vy,..(¢) by g(t) =

e~ ")y 4,0(1). In what follows, we establish that
3
sup [ (6)28(1, )| 0 (3.17)
t>0

and that there exists V € L such that

1V —&)380.8)] 0 S ——. 1= 1. (3.18)

Moreover, we show that

sup O~ x| 42 Se (3.19)
> *

Then the asymptotics (1.12) of v f.e.(t) asserted in Theorem 1.1 are a standard
consequence of (3.17)—(3.19) and Lemma 2.2. Before we turn to the proofs of
(3.17)—(3.19) we record that the Fourier transform g(z, &) of the profile g(z) is
given by

A N Lot —is(E) ;g\ —1 2

20,6 =io® + 5 [ 0@ FaOuw? b

t
+5 e—"f<f><é>‘1f[a(->(u(s)2 —us,0?) @) ds

1 ‘_’3 t—is(é) PN _2”
—lIaOI/ a(é);ds—;/le & e

+2 e_” NEY @ @)F(s) ds
iJ1

=00&)+ 81,8+ ...+ 85, 8).

The phases in g3(¢, £) and in g4(¢, &) are non-stationary in s so that we can recast
these terms into a better form by integrating by parts

831, &) = lagl?e ") (&) 2 (E)——Iao|2 8 E)2aE)

t
+ lao|? /1 e*"*‘<$><é>*2a‘(5)s—2 ds, (3.20)
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-2 ) 1
24(t.8) = %e—”@ﬂf”(z +En O e

=2

- DT+ g~ A
l

@

t
— 2 / e*”‘<2+<f>>(2+<§>)*1<s>*1a<s)%ds. (3.21)
2i 1 N

Proofs of (3.17) and (3.18). The bound (3.17) follows by direct computation for
each component g(z, &). It is clear for 0g(&). Then to estimate the components
81(t, &) and g1(t, &) we rely on the local decay bounds from Proposition 3.1. In
particular, we note that the integrand in g, (7, &) is integrable since we have

)2 Flo) () = u(s. 02)] )]
<€) Fla0) () = 1. 01)] )]
< [0)e (0 (us)? = uts. 02) | 4,

S 102 gy [ 200 [ 6020y

The bounds for g3(z, &) and g4(z, &) follow directly using (3.20) and (3.21), while
the bound for gs(, &) is straightforward since 7 (s) is integrable. In fact, we obtain
for any #; > t, > 1 that

82

[&)3 8016 = )28, 0] 1 S
ty

Thus, {(5 )% g(t, & )} ,~1 is a Cauchy sequence in L, which implies the existence
of a limit profile Vel® satisfying (3.18). O

Proof of (3.19). We establish the estimate separately for each component of the
profile g(¢). It is clear for vy. Noting that ||(x)gj(t)||H3 < ||<5)2§j(t)||H§‘ and
using (3.20)—(3.21), it is a straightforward computation to obtain for j = 1, 3,4
that [[{x)g; (Ol H2 < &2 uniformly for all # > 0. The growth estimates for g>(r)

and g5 (t)_have to be done more carefully. We present the details for g, (). Let
v2(1) = €'V g5 (¢). Then it holds that

1) g2l 2 S N2l g2 + (V) Lva ()]l 2.

It is easy to see that ||va(7)]| H2 < &2 uniformly for all # > 0. To bound the growth
of the second term on the right-hand side we show below the auxiliary estimate

sup (1)2 [ (x)_Z(V)va(t)”L% < g2, (3.22)

t>0
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Then, using the energy estimate (2.2), the auxiliary estimate (3.22), and the local
decay bounds from Proposition 3.1, we obtain

t —
||<V>Lv2(,)||iz_ 5/ (VYL@ — i (V))va(s) <V>va(8>||L;, ds
/ “ L(at - l )UZ(S) HLZ “ LUZ(S)HLZ ds
< [l e en? -us. 0) |y 02 L,

t
S / ([ ) P | 2 [0 200 | 2 [ ) P0) |

[¢x)~2(V) Lva(s) ||L2 ds

t 2

< —ds
(s)

<e log(t).
Hence, we arrive at the desired growth bound

sup (1) "V (x) g2l g2 S €. (3.23)

>0

It remains to prove (3.22). Using the local decay estimates for the Klein-Gordon
propagator from Lemma 2.5 and the local decay bounds for v(¢) from Proposi-
tion 3.1, we obtain from the Duhamel formula for v; () that

[ 2 L] 2 S [0 TH? 0@ 2 + @2 (V)o@ ]

t
< [ e

| e (0) (u(s)? = (s, 0)%)] 5 ds

t
3
+t/ —
1

() 2l OV ) 2|
[ ()% (u(s)* = u(s. 0°) |, ds

)
t 2 t 2
g/ ! ]8—3ds+t/ ! 38—3(15
Lt —s5)2 (s)2 Lt —s5)2 (s)2

2

L2—12

&

S

(r)z

Finally, we remark that the growth bound (3.23) can be derived for gs5(¢) in an

analogous manner. It is at this point that the strong decay of the remainder term
()] < e2~G7) is needed. O

Decay and asymptotics of vy,04(t) : The modified scattering behavior of v,,04(?) is

only caused by the frequencies of the variable coefficient «(x) near & = /3. We
therefore decompose @(£) into
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Q(E) = Ty (§) + T (&) + Ty (B)
with
Gi(E) = o FV3)a().

Here, ¢ (&) is a smooth bump function such that ¢(¢) = 1 in a small neighborhood
around & = 0 and such that

@) =0 for|&] >4 (3.24)

for some small § = §(8) > 0, whose size will be specified further below. Corre-
spondingly, we define

a% t v | e2is
Umod.+ (1) = 7/ (VN T ay) - ds, (3.25)
1
a% t . v | e2is
Unod,nr (1) = = f (Vv a,,) —ds. (3.26)
1

Decay of Vimod.nr(1): Since oy, (:t\/g) = 0, we can integrate by parts in time s
in the Duhamel integral for vy,eq .- (¢). Then using the standard dispersive decay
estimate (2.8), we obtain uniformly for all # > 1 that

mmwwwsﬁw ) e | + H@ V)NV e

+e{/1 [@ = ()~ (Ve | 4 = ds
. <t_s>% nriipt 2

2
&
So T

t

(S]]

Decay of vinoa,+(t) away from a small conic neighborhood of x = :i:“/Tgt: We can
infer time decay of vj;04,+(#) away from a small conic neighborhood of the rays
x = :l:‘/Tgt just by integrating by parts in the frequency variable. Indeed, writing
Umod,+(t) as the (non-standard) double oscillatory integral

2 t
a : 1
Umod, £(t, X) = —2 / /e’<xf+<f—s><f>+2” Ay (8)-dgds, (327
mo W) (&) §)- d§
we note that the phase

U(s,&t,x) :=xE 4+ (t —s)(&) +2s
satisfies

& t—s

e (s, &;t,x) :x+(t—s)@, 8§w(s & t,x) = )
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Then for any given small § > 0, we may choose the constant § = §(8) > 0 in the
definition (3.24) of the cut-off funtion ¢ above so small such that
V3

)é__) - (=) < % whenever @1(§) = (€ T VAR(E) # 0.

Moreover, we have |8$21p(s, &:t,x)| = (t — s) on the support of @+ (§). Now we

distinguish two cases. If x| > (*/75 + 8)t, then on the support of @ (§) the phase
satisfies

1] V3 NEE 8

0] = x| =t = 9) 5 = (7 +8)i— (5 +5)a—9 =5

Integrating by parts N times in &, we obtain that

2 82

t
&
|Vmod.+ (1, )| Sa,Nf vy ds Ss.v P
1

Instead, if 0 < |x| < (*/73 — 8)t, we divide the time integration interval into two

subintervals
[1,¢]=[1, 11U [, 1],

where
2348
On the support of @+ (&) the phase satisfies for 1 < s < that
ISI €1
0| = 1= — x| =5 =
V=1 (€)
(B (L) (B
V22 2 2(V3 +9) 2
1)
= -1
4

and integration by parts in & pays off. When s > #; we can just use the usual
(t —s5)"2 dispersive decay (2.8) of /‘=(V) and crudely bound 1 < % Ss b

Overall, we obtain in the case 0 < |x| < (‘/T§ — &)1 that

1
’ =)z 1 (3.28)
2 82 82 ’
s T Ss T
t2 t2

Asymptotics of Umod, +(t, x) along the rays x = + ft We provide the details for
Umod,—(t, x) noting that the treatment of v;,oq, +(t, x) proceeds analogously. First,
we may restrict the time integration in the definition (3.25) of vj,04,— (¢, X) to times
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1 < s <t — 1 at the expense of picking up a remainder term of order (’)(ezt_l).
Moreover, by Lemma 2.2 on the asymptotics of the Klein-Gordon propagator we
have for 1 <s <t — 1 that

(¢t ) (+57)

V3 NE)
1 ez4etp(t s :tft)/\ (_ :l:Tt >6<i7t)

ol —s. £ 80} plt—s, £ L) \1=s
+ Ol (x)a—lly2), (3.29)
(t —s)8 ’

where 0(z) = 1 for |z] < 1,60(z) =0 for|z| > 1, and
1 1
plt—s, £50) = ((t —9)> = 31%)2 = §(1 -85 +4%)2.

Inserting the asymptotics (3.29) into (3.25) gives

2 _3
sona (1 £570) = B [T Lt
mod,— 1
2 2 i pt —s, £L1)2
43, 2is 2
a_<_—2f>e ds +0(=-).
p(t —s, 50/ $ 15~
Sincebl(é):OforS>O,wehavealongtherayx=—“/7§t that
3 2
omoa— (1. =21 = 0(£2).

Moreover, due to the sharp localization of the frequency support of @_ (&) around
& = —4/3, for t > 1 the time integration in the last identity for vy,eq, —(, +‘/7§t)
is in fact only over an interval 1 < s < ct for some small constant 0 < ¢ < 1.
Thus, along the ray x = +JT§[ it holds that

ct
Vmod, — ( +£t> aO/ SE— G )
2 2 p(t Ly

21S 2
a_< > ds + O ) (3.30)
p(t —s, L) 15

’

In view of the approximate identities

ﬁt s 1 V2 S
- =—V3+0(]) =T +0(5)
p(t —s, 5°1) p(t—s, 5°1)2 12 12
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it follows that

V3 ag i 1 [ /3 1
(s, +—t> —_ 0,75 _ﬁ _/ z(p(l—s,Tt)+23)_d
Umod, ( > ﬁe o( )t% : e " s
82
+O(—1). (3.31)
12

At this point we observe that the phase

P(s;t) = p(t -, %gt) + 2s

is stationary at s = 0 and that its Taylor expansion about s = 0 is of the form

2

$(si1) = % +o(%),

Thus, for 1 < s K t% the phase ¢ (s; t) is essentially constant and the integrand
in (3.31) is effectively monotone, which causes the buildup of a log(#) factor. In
order to arrive at a sharp formula for the asymptotics, we split the time integration

. . . 1 31

interval into the two subintervals 1 < s < 1073¢2 and 107372 < s < ct. For the
. 1

interval 1 <s < 107372 we compute that

10732 ) 1 L 1032 1 10732 s eis
f P~ ds = ¢z / —ds + / (9(,) ds = —log(1) + O(1).
1 N 1 K 1 t 2

Instead, on the interval 107312 < s < ct we integrate by parts. Using that there
dp(s:1) = O(%) and 92 (s; 1) = O(1), we find

ct . ) ] ct t
/ 1 PSRN §/ , 5 ds+
10-3¢2 s 1073¢2 S

Putting things together, we obtain the asymptotics

V3 a(% AT IPN log(t) &2
) d,_<t, +—t) = 01T el15(—/3) + 0(—) > 1.
mot )= 7 4 TN

This finishes the proof of Theorem 1.1.

s=ct

t

52

< 1.

1
s=10"3¢2

4. Non-resonant Case

This section is devoted to the proof of Theorem 1.7, which establishes sharp
decay estimates and asymptotics for small global solutions v(¢) to

0 —i(V)v = %(V)_l(a(-)uz + Bou® + B(-)u) on RI! 4.1)

in the non-resonant case

G(+V3) =0 and @(—+3) =0. (4.2)
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Global existence of small regular solutions to (4.1) is well-known, see for instance
[34]. Our goal is therefore to derive global-in-time a priori bounds for small solu-
tions to (4.1) that yield sharp decay estimates and asymptotics. By time-reversal
symmetry it suffices to only consider positive times. The main new difficulty here
is to deal with the variable coefficient quadratic nonlinearity on the right-hand side
of (4.1). As explained in Sect. 1.4, the potentially problematic contributions can
only come from the part o (x)u(z, 0)2 of the variable coefficient quadratic nonlin-
earity. To isolate that component, we rewrite (4.1) as

1 1
(@ = ((V)v = (V)" ) Out. 07 + (V)™ (¢ (. )2~ u(t,0)?))
i 2 (4.3)

Bo 1
+ 2—?<V> ') + 50 (BOW).

Relying on the non-resonance assumption (4.2) we introduce a novel variable co-
efficient quadratic normal form to transform this problematic component into more
favorable terms that turn out to behave like “variable coefficient cubic nonlineari-
ties”. Then we can control their contributions using local decay estimates, following
the strategy from our previous work [58]. The constant coefficient cubic term on
the right-hand side of (4.1) causes a logarithmic phase correction in the asymptotics
of the solution v(¢) to (4.1), which we capture by deriving an ODE for the profile
f@) = e~ My (t) in the spirit of the space-time resonances method [20-22,27].

The main part of the proof of Theorem 1.7 consists in closing a bootstrap
argument for sufficiently small data for the quantity

N(T) := sup {(r)inv(r)nLgoHr)5|}<V>2v(r>||Lz,+<r>5||<V>Lv<r)}|L2
O=e=T ' (4.4)

i 34
+ (O vl + ||<€>2f(t,€)||L§o},
where 7 > 0 and 0 < § < 1 is a sufficiently small absolute constant. Throughout

this section we can therefore work under the assumption that N(7) < 1, which
simplifies the bookkeeping for some of the nonlinear estimates.

4.1. Normal form Transformation

Our first task is to transform the problematic first term on the right-hand side
of (4.3) into a better form. To this end we consider the equation satisfied by the
Fourier transform of the profile f(¢, £). From (4.3) it follows that

N 1 .
W f(1,6) = Ze—’“%rla(sm(r, 0)*

2 1) T F O (it 0 — ur,0%) @) *

2i
; 1 .
+ ’;—?e—”@@rlf[u(tf]@) + z—ie—”@<s>—1f[ﬂ(->u<t)3](s>.
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Then we insert the decomposition of u(z, 0) into its “phase-filtered components”
u(t,0) = v(t,0) + v(t, 0) = e (e v(t, 0)) + e (eT"0(2, 0)),

into the first term on the right-hand side of (4.5) to find that

%e—”@ @7 '@E)u, 0)?

= 5" a@) (e v, 0)’

L _ _ (4.6)
+ lfe—”@<s>—la(g)(e—”v(z, 0)(e'u(r,0))

n %e""(”@”(E)‘la(g)(e”’ﬁ(t, 0)>.

Now we observe that thanks to the non-resonance assumption A(£+4/3) = 0, the
symbol (2 — (£))~'@(&) does not have a singularity, although 2 — (&) vanishes for
&= ++/3. We can therefore pull out a time derivative and rewrite (4.6) as

L mine) &) 'aE)u, 0)?

2i
=0 (—%e—”@(z —ENTHE @ (e o, 0>)2>
L 182 — (g))~! (g)”&(g)ez”a,(e”"v(t, 0))(e v, 0))
+ 9 ( i <g>—za(§)(e—”v(z,0))(e+”a(z,0))) 4.7)

—2e7 () 2a(&) Re (3 (" v(1,0)) (7151, 0)) )
+a,(; —i) (2 4 <s>>—1<s>—la(s)e—2”(e+“ﬁ<r,0))2)
©o+En e e e o (e v, 0)) (e T 0(r, 0)).

Next, we introduce short-hand notations for the smooth and decaying coefficients
that emerge on the right-hand side of (4.7)

1
a(x) i= Ef-l[a —En e a]w),
o (x) = —F (&) (x), (4.8)
a3(x) == —=F @+ EN 1 E) @) ).
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Inserting (4.7) and (4.8) back into (4.5) we arrive at
0 (f.8) + 7O @ @07 + @I, 0P + )i, 0)?))

=2¢7"18)G (E)e* ! 3, (e u(t, 0)) (e 0 (2, 0))
1207110, (8) Re(a, (e v(r, 0) (e i (t, 0)))

420 105 (E)e 21, (e-Htl—}(t, 0) (e-Htl—}(t, 0) 4.9)
+ e F a0, 0 - 1, 0)] @)

. 1 .
+ ’j—‘l.’e*‘“@@rlf[u(tﬁ](s) + 2—l.e*”<€><s>*1f[ﬁ<~>u(r>3]<s>.

Hence, upon introducing the variable coefficient quadratic normal form
Q = a1 () (1, 0> + 2(0) v (1, 0> + a3(x)8 (1, 0)%,
it follows that the equation (4.1) for v(¢) takes on the form
@ — i (V) (v + Q) = 2a1(x)e*" (e " v(t, 0)) (e v(t, 0))
+ 2a2(0) Re (8 (01, 0) (€751, 0)))
+ 2a3(x)e 213, (e 51, 0)) (e 5 (1, 0)) 4.10)

L one
+ 57 (@O (. )? = u(t.0?))

1
+ 5V (BOW) + ﬁ°<> ).

Integrating (4.10) in time, we also obtain that Duhamel’s formula for v(¢) can be
rewritten as

o(t) = e'V) (vo + a1v(0, 0) + a2 |v(0, 0))* + a39(0, 0)2)
— a1 (D)v(t,0)* — () v(t, 0)* — a3(x)v(z, 0)

‘
+ 2/ (e"(t_x)(wal)ez” 0y (e_isv(s, 0)) (e_”v(s, 0)) ds
0

t
—i—Z/ (ei(H)( ozz)Re< ( IS u(s, O))( +”l’)(S,O)))ds
0

t ; ; ; (4.11)
+ 2/ (e’(t_s)(wog)e_z’sas (e'“‘vf)(s, O))(e"'”ﬁ(s, O)) ds )
0
1

t
) e+i(’_5)(v>(V)_l(a(-)(u(s, 32— us, 0)2)) ds

1
+27-/ = vy =N (BOu(s, %) ds

,;30/ z(zfs‘)(V)(V)*l(u(S, ')3) ds
i
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The equation (4.11) will be convenient for deriving energy estimates in the next
subsection. For ease of notation in the remainder of this section, we denote the
constant coefficient cubic term in Duhamel’s formula (4.11) for v(¢) by

t
C(t) := %/O IV T (u(s, %) ds.

Moreover, we introduce the following short-hand notations for the variable co-
efficient nonlinear terms in (4.11), which should all be thought of as “variable
coefficient cubic terms”,

t
Vi(@t) = 2/ (V) e § (e S u(s, 0)) (e Fu(s, 0)) ds,
0
t
Wa(t) := 2/ (e"(t_s)mozz) Re(as (e_isv(s, O))(e“sﬁ(s, 0))) ds,
0
t
V(1) =2 / (V) a3) =259, (e 755 (s, 0)) (e T2 0 (s, 0) s,
0
Vat) 1= o /teJ“i(’s)(V)(V)1(a(~)(u(s 32— u(s 0)2)) ds
4 T 2[ O ’ ’ £

t
Vs(t) = % fo SO V) (B u(s, ) ds.

4.2. Energy Estimates

In this subsection we establish the main energy estimates for the proof of Theo-
rem 1.7. Without explicitly mentioning this, we will frequently use the commutator
identities (2.1).

4.2.1. Preparatory Lemmas We begin with a crucial improved decay estimate
for 8, (e "' v(t, 0)) thanks to which the nonlinear terms V; (¢), V»(t), V3(t) produced
by the variable coefficient quadratic normal form Q can be considered as “variable
coefficient cubic terms”.

Lemma 4.1. (Key improved decay). Let v(t) be the solution to (1.19). Then we
have uniformly for all 0 <t < T that

N(T)
(r1=

}8; (e_itv(t, O))’ < (4.12)

Proof. First, we compute that

d (e Mu(t,0)) = —ie "v(t, 0) + e (Bv)(1, 0)
=ie " ((=1+ (V)v)(t,0) + e " ((& — i(V)v)(t, 0).

Correspondingly, we have

| (e v, 0))] < [((=1+ (VDo) 0] + (3 — i(V)v)(t,0)|. (4.13)
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The first term on the right-hand side of (4.13) can be written on the Fourier side as
1
=1+ {(V)v)(#,0) = — / =1+ EN0@E, &) d
( ) V2r Jr : e

_ J#_ﬂ /R (=1 4 ()€ @151, £) de.

Using that (—1 + (£)) = O(&?) for || < 1, we can integrate by parts in & to find
for any ¢ > O that

V2r (=1 +(V ))v)(t 0)
/( 1+ (& ﬁa i (e e "8 5(r, £) dg

(g
oy (14 ENE) _
_ X e (CLHEDE)N ) e
_ it/Re (ag( : ) 5t €)
O(l)
+<ﬂ><s>za(—” 8(r, s>)) de.
£E)
N ——
oy

Thus, upon recalling that e~ (V) (Lv) (1) = F1[(£)idg (e ") (2, £))], we obtain
by Cauchy-Schwarz for any time 0 < ¢t < T that

[((=1+ (V)v)(, 0)]

1 _ N _ —it(E) ~

Sl e l@sa o)l + 167" |2 l€r D00, 0)] )
1

(1o + 19Lv0] )

N

A

~

< }N(T)W‘S

For short times 0 < ¢ < 1 we have |((—1 4+ (V))v)(#,0)| < @)l 2 just by
Sobolev embedding so that overall we get uniformly for all times 0 < ¢ < T that

N(T
(=1 + (V)@ 0| S ( ).

For the second term on the right-hand side of (4.13) we easily obtain from the
equation (1.19) for v(¢) that

(@ = i(VD0) @, 0] S [V eOu?) | oo + [0 | L
+ O THBOUD) |
S M@ o + lu @)1
- N(T)?

~on)
This finishes the proof of Lemma 4.1. O
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In the next lemma we establish some auxiliary energy estimates that are needed
for the proof of one of the main energy estimates in Proposition 4.7 further below.

Lemma 4.2. (Auxiliary bounds). Let v(t) be the solution to (1.19). Then we have
uniformly for all0 <t < T that

lav®] 2 £ NTHOT, (4.14)
||Zv(t)||L% < N(T)(r) ™. (4.15)
Proof. The estimate (4.14) follows readily from the original first-order equa-
tion (1.19) satisfied by v(¢)
@Oz S TEVOOI L2 + |e@u@?| 2 + |Bou?] 2 + [ BCOu@?] 2
SIAVODO 2 + lle@ll2 v 170 + 10O 2 [v@]17
+ 1B 2 llv@)17
SN ™.
To establish the bound (4.15), we first use the identity Z = i L +i(V) 19, +x(8 —
i{V)) to find that
IZv)Ollz2 S NE)YOllzz + @2 + 2@ = (V)@ | 2
SN+ |x@ = i (V)@ 2

From the equation (1.19) for v(z) we then obtain that

|x@ =i (Vv ] 2 < |2 (V) @Ou? + pou)* + BOu®?) [ 2
< [ (@u®? + fou)* + peoou?) | 2
S @2 Oz + (Ol + xv@llz2) 1) 17
+IHOB@ Iz @7
_ N@)? s N2 N
O] (t) (t)z
SN

+ N(T) ()

Hence,
IZv) @Dz S NI
O

We repeatedly exploit that spatial derivatives of the solution to (1.19) have
stronger local decay that is quantified in the following lemma.
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Lemma 4.3. (Improved local decay of spatial derivatives). Let k (x) be a smooth
and sufficiently decaying variable coefficient and let v(t) be the solution to (1.19).
Then we have uniformly for all 0 <t < T that

N(T)
(t)1-=o’
N( )2

[k @@ @O 2 < [ (4.16)

”K(x)(u(t, 02— ut, 0)2)

< e >||Lw (4.17)

Proof. We start with the proof of (4.16). For times 0 < ¢ < 1 we just bound
[c@ @O 12 S k@ e 80Oz S k@) e N (T (1)

For t > 1 we first observe that

1
K@@ )@ = k) (D)0
1

= Tin<W (=(V)x + L)v()

= (_ll-,)'f(x) (—x(V) + (V)"0 + L)v() (4.18)

=—(_1it)x/<(x)(( >v)(t)+( : )K(X)(( )y la,u) (1)

1
+ (_”)K(x)(Lv)(t)

and thus

1 1
[l () @) (1) “LE S T IV Oz + Zlle Dl v 22

1
+ 2@l L)@l 22

1
S T Ik@) | L (IEVD D2z + IOl 2)-

Hence, for t > 1 we have

1
[« @ ®]; S k@D 2 S~ [ N T *
Putting things together, we obtain uniformly for all # > 0 that

(T)
T

Next, we give the proof of (4.17). For times 0 < ¢ < 1 we just bound

N(T)?
(ty -

e (o) @) (@) | 2 S e ) llzge

e (et ) = u@, 02)] 2 S el 2 D7 S (4.19)
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For t > 1 we first observe that by the fundamental theorem of calculus we have

1) (u(t, )* — u(t, 0)%) = k() (u(t, x) — u(t,0)) (u(t, x) + ut, 0))

1
_ x;c(x)(/o (D,10) (2, ) dn) (u(t, x) + ut, 0)).

Then in view of (4.18) we may write

1 1 1
XK(X)(/ (3xv) (2, nx) d77> =———x%k(x) </ n((V)v)(#, nx) d’?)
0 (—it) 0

1
xx(x)( f (V)" acv)(t, nx) dn)
0

1
TS

1
(_ll.t)xx(w( IR dn)

+

and therefore bound

1
xx(x)( / (@xv) (1. 1) dn) H
0 L2

<

(

1
S 1Pk ]
( 1
1
S 2102 @] o (WOl 2 + 102 + 1L 2)-

Hence, for r > 1 we find

Hk(x)(u(t, 02 = u(t,0)?)

~ | =

)2 L

1 1 1
(Vo) @, )l 2 dn+/(‘) v, n)ll 2 dn+/0 (L), 1)1l 2 dn)

S~

1 1
21UV Ol 2 dn+/o 12 )2 dn+/0 1L 2 dn)

S~

L3

1
< x;c(x)(/ @xu)(t, 17x) dn> (u(t, x) + u(t, 0))
0 L)ZC
1
S xx(x)( / (axv><r,n~>dn) 0@l
0 L_%
I
< @] (9Ol + 0@ 22 + 1ol 2 ) Ol
1 N(T
< ] N @ T,

Putting things together we arrive at the desired estimate

N(T)?
L= [ )2k @) . —< )(3 _)5. (4.20)
X x )2

ch(x)(u(t, x)? — u(r, 0)2)

O



Asymptotics for 1D KG Equations with Variable Coefficient 1503

Finally, the derivation of a slow growth estimate for the energy of (V)Lv(t) in
Proposition 4.7 below relies on the following local decay bounds for (V)LV,(t),
t=1,...,5.

Lemma 4.4. (Local decay bounds). Let v(t) be the solution to (1.19). Then we have
uniformly for all 0 <t < T that

N(T)?

[x) 2 (VLVe®)| ;2 S —1— fort=1,....4,
X (tﬁ—a
N(T)3
)" (V)LYs (D)2 S ( 1) :
! ()2
Proof. We start off by observing that for £ = 1, ..., 5 we have
[ 2VILVeD ] 2 < [TV 2 + 102 (V)0 Ve )| 2.

Then we obtain for the terms Vi (¢), £ = 1, 2, 3, by the local decay estimates from
Lemma 2.5 and the improved decay estimates from Lemma 4.1 that

2 w2 weveo]

1<€<3

=3 f [ 71 @) L o e 2 [0 (€705, ) [lu(s, 0)1 ds

1<¢<3

O B [
1<6<3 o
[ ¢x)2ae | 02 a5 (e v(s, 0)|Jv(s, 0)] ds

t 2 2
S . LYY G . 4
0 (1 —s)7 (s)27° 0 (r—s)7 (s)27°

< MO
(t)2=?

Similarly, for the term V4(¢) the local decay estimates from Lemma 2.5 in combi-
nation with the improved decay estimates from Lemma 4.3 yield that

I (x>72(V)LV4(t)||L§ < /0t|| ()1 =) )1 ”L%Li
“ (x oz(x)(u(s, x)2 —u(s, 0)2) || H) ds
+t/ [ )=2(v) 1 g,el =17
) a(x)(u(s, 0% —us, 0)2) || i1 4

S/t 1 N(T)det/f 1 Mds
0 0

(t =5 (s)37° (t—s)3 ()37

2
x_)Lx
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2
< NT)”
~ l 76 -
(t)2

Finally, for the term Vs(¢) we have that

t .
[ 2VILYs)] 2 < /0 [ I T L B ds

t

41 / [0~ 2 ()10l T 2,

0 X X

[ B00u(s) | 1 ds.
By Lemma 4.3 we obtain the bound
[ )2BCou)] 1 < [ B@ ] 1 lv)7
+ ()28 @x) ()| 2 V()17 e
- N(T)3

Y2

’

and hence, using the local decay estimates from Lemma 2.5, we arrive at the desired
estimate

1 N(T)? L1 N(T)?
)" 2(VILVs )], 5[ i ( 3) ds+t/ 5 ( 3) ds
< 0 (t—s)2 (s)2 0 (t—s)2 (s)2
N(T)?

(r)2
O

4.2.2. Main Energy Growth Estimates We are now in the position to derive
growth bounds for all energy norms that are part of the bootstrap quantity N (7).

Proposition 4.5. Let v(t) be the solution to (1.19). Then uniformly forall0 <t < T
it holds that

(V)20 ] 2 < ol gz + lvollF + N(T)e) ™. @21
Proof. From the Duhamel formula (4.11) for v(¢) we obtain that

[0 ]2 Slvollgz + D [V 2aj] 2 llvollze + Y (V)] 2 lv@ 17
! 1<j<3 ! 1<j<3 !

t t
+ /0 [ o)’ 51 ds + /0 [BCus)? 1 ds
t
+/ Ha(x)(u(s,x)z—u(s,O)z)HHlds
0 X

+ ) /0H(V)ZajHLi\ax(e*”v(s,0))y|u(s,0)|ds.

I<j=3
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Then we have

N(T)?
[y S WO IvOILe 7575
and by Lemma 4.3 we also have

[BCou?* 1 < [B@u) | + [ @us)’]
+ B @) $)us)| 12
S B v 720 + B @) )] 12 10 1720
3 3
< Na@Y | NP
()2 ()27
ey (s, 307 = (s, 0%) | g S [ (1 + e GO (s, )7 = (s, 00%) | 12
+ @) @) )| 2 ) L
- NT?
AR

Using the previous bounds and Lemma 4.1, we conclude that

N(T)? L N(T)3
92003 5 ool + ooy + 0+ [ 5 as
t 3 t 2
—l—/ N(T3) ds + N(3T) ds
0 (5)2 0 (s)27
< lvoll g2 + ol + N (T 1) ™.

O

Proposition 4.6. Let v(t) be the solution to (1.19). Then uniformly forall0 <t < T
it holds that

leo®lizz < (Ixvoll .2 + llvollZ ) (1) + N(T)* 1)+, (4.22)
Proof. Starting from the Duhamel formula (4.11) for v(¢) and using that
xe"™V) ="V (x it (V)7 1a,),
we find

2
ooz < lxvollzz + ) llxej@)llz2 llvoll7y
1<j<3

+ (ol + Y Tyl livl?,)

1<j<3

+ Y @l vOlie + 2¢O 2 + Y 2 Ve®] 2

1<j<3 1<e<5
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Then we crudely bound
t
el s 5 [ 16+ =970 09)7 )3 0
t t
5/0 (lxvs)llz2 + IIU(S)IILg)IIU(S)II%;o ds -H/O lv()liz2 IIU(S)II%;o ds
t N(T 2 t N(T 2
< / N(T)(s)”‘sL ds + z/ N(T)(s)*‘Sg ds
0 (s) 0 (s)
SN '™
and in a similar manner, we obtain for 1 < £ < 5 that
[ Ve |2 < NI ).
Putting all of the previous estimates together, we arrive at the desired bound
leo®llzz < (Ixvoll 2 + llvoll ) (1) + N (1)) .
]

Proposition 4.7. Let v(t) be the solution to (1.19). Then uniformly forall0 <t < T
it holds that

(VLo 2 < lxvollaz + llvollZy + N(T)e) ™. (4.23)

Proof. Fromthe Duhamel formula (4.11) and the identity (V) Le/' (V) = ¢/(V) (V)2
we obtain that

2
[(VILo)] 2 S Ixvollgz + Y- e )l z ol
1<j=<3

+ 3 (lxe )z + e )l g2) 10013
1<j<3

LD |2+ D [(VMLVe® ] 2
1<t<5
N(T)?
(1)

< lxvoll gz + llwoll 7y + {0) +[(VLC®| 2
+ > L] -

1<t<5

‘We now have to control the growth of the energies of (V)L acting on the constant
coefficient cubic term C(¢) and on the variable coefficientterms Vy (1), £ =1, ..., 5.
Since the action of the operator L on the constant coefficient cubic nonlinearity is
difficult to compute, we first derive a bound on the growth of the energy of a Lorentz
boost (V)Z acting on C(¢) and then use that

(V)L =(V)Z — ity — x(V)(@ — (V) + (V) '0:(8 —i(V)). (4.24)
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To this end, we compute that

(@ — i (V)((V)ZC) = ﬂ“ Z(u®) + 5°[<V> Z]V) W) + [0, — i(V)), (V) Z]C

’;0 Z(u?) - %wrzaxa,(f) +ide (3 — i(V))C
_ 30 gy 30 Fo

— (Zuyu? 5 (V) 720, () + 5 (V) o, (u?).

Using the energy estimate (2.3) and the auxiliary bounds from Lemma 4.2, we then
obtain that

1 t
[v1zoyn ]2 < /0 1Zvs)lI 2 v(s) 17 ds + /0 19:v(s) 22 [0 () 10 ds

t
+ / ()l 2 llv(s) 700 ds
0

t 2
< f N(T)(s)“w ds
0 (s)

SN (),
and thus by (4.24) that
[«MLO® | 2 S [EVZOO 2 + 8.0 1
+ (9@ = HVNCO | 2 + (V)18 @ — i (VDCD) 2

t
S N@ + /0 1)l 2 106 |2 ds

+ IOl 2 @17 + @O 2 VD117 0

t 2

SN0+ [Nt
0 N

2 2
s VDT iy oy YD

N(T
+ N(T) () m 0

SN (1)

Next, we estimate the growth of the energies of (V)L acting on the variable
coefficient terms V,(¢), £ = 1,...,5. Using the energy estimate (2.2), the local
decay bounds from Lemma 4.4, and the improved decay bound from Lemma 4.1,
we obtain for £ = 1, 2, 3 that

[V ],
f @ = 9D (VLYY O[TV G, ds
f [ L@: = 1INV | 2 | @0 2(VILV) )] 2 ds

/ ) €Y ()] 2[5 (705, 0) 105, 0)1[ () 2((VILV) (9)] . ds
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T N(T)2 N(T)?
S|
0 ()27 (s)27°
SN@? ).
Similarly, for the term V4(¢) we use the energy estimate (2.2), the weighted energy

bounds from Lemma 4.4 and the improved decay bounds from Lemma 4.3, to infer
that

[ViLviol},
13 R
S /0 | @ = 1 (VD (DLY) ) (VILVA) () 1 ds
1
< /0 [ VIL@ = HVDVa6) | 2 [0 2(VILVA) )] 2 ds

t
S /0 ()] ()20 (s, 0% = (5. 02) | 1 [ () ((VILV3) ()| 2 s

N(T)2 N(T)?
(5)270 (5)27

t
S /0 ()] () e |

< N(T)4<l‘>+28.

~

Analogously, we also find that || (V) LVs5(¢) 12, < N(T)O(r) 128, Combining all of

L2~
the above estimates, we arrive at the desired bound

(VL@ 2 < lxvoll gz + lvollG) + N ™.

4.3. Lgo Control of the Profile

In this subsection we obtain an a priori bound on a weighted Lgo norm of the
profile of the solution to (1.19).

Proposition 4.8. Let f (1) = e~ *V)v(1) be the profile of the solution v(t) to (1.19).
Then we have uniformly forall 1 <t < T that

|7 f, Ol 5| )7 f, Oy + N (4.25)

The proof of Proposition 4.8 consists of an ODE argument. The main work in
fact goes into deriving the following differential equation for the profile.

Lemma 4.9. Let f(t) = e~ "V)u(t) be the profile of the solution v(t) to (1.19).
Then there exists a small absolute constant 0 < v < 1 such that forall1 <t <T
it holds that
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3 A
o(€)3 fa.H+Rw9)

138
=S

1 B 1 ; E\y oA
+;—2}<e> (§)3 OGN £, §)3

138 (4.26)

E) —21t
+;2—i<s 9| f@,—o) fa. -6

_ L Ao £13,—it((E)+3(5) £\3
t2ﬁ<s> (3)e f(t %)

2
co(M7)

tl-‘rl)

3a 2,3 2
V2 &) F.8)

where

N(T)?
T

1<t<T.

IR E)lrge <

We first give the short proof of Proposition 4.8 before we turn to the lengthier
derivation of the differential equation for the profile.

Proof of Proposition 4.8. We define

3 1 o
B() := %(&)‘1/1 @i feofas 1=, (4.27)

Then we multiply the differential equation (4.26) by the integrating factor e/ to
obtain that

o ()3 F .00 + R, £)eFO) =T00) + T2 (0) + TV 0)

2
+O<M>, (4.28)

t 1+v
where

I(l)(t) = lﬂ(g) 3 (%)3 it(—(§)+3(5) )f(t §)3 lB(t)

t 23
®) 13B0 .1 oy 7 22 iB(1)
00 =~ (8) e |f@t, =) f (2, =§)e' P,
I Bo . .1 _ (&)
1(3)(1‘) — _;2\/§<§>2<§>3 it((§)+3(3 )f(t 5)3 iB(1)
Upon showing that
t
sup / IZOs)ds| < N(T)? forl <€ <3, (4.29)
1<t<T /1 Lg°

3

the asserted estimate (4.25) follows from integrating (4.28) in time and taking the
Lgo norm. The latter bound (4.29) is a consequence of the oscillations of the phases
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in the terms ZO (1), £ = 1, 2, 3. Indeed, starting with the term Z' M (1), we rewrite
it as

() = atG%(s) $P (=) +3(5) OB fg, _%)%"B“))

B—=
Gl

1 . =1 ir(—(€)+3(5) 7 i
7358 E EN(E +363) D f(r, §) e PO

—
)

=

=)

o _<E>+3<%>)f(t, %)3@)—1“5)%];07 é)|2eue<t)_

Then noting that (—(£) + 3(%))_1 = O((£)) and that (4.5) yields by direct com-
putation the crude estimate

[©2af@o)],0 SNT2OHP, 0=,

the bound (4.29) for M (¢) follows readily

f 7MW (s) ds
1

sup
1<t<T

<

34 3 L 3 A 3
2 ) o] 5 2 ) ood
5, [t i ol +/1 St e ol a

T q 3 A 32
+ [ @b fe ol 0! ool
T 3 5
+/1 S7|‘<§)2f(s’$)||L§°ds
T 1 T
§N(T)3+/ SN ds+f
1 1

T
5
+/ —2N(T) ds
1 )

< N(T)>.

—— N(T)*ds

§3-28

For the terms Z®) () and Z®)(¢) the bound (4.29) can be derived analogously. O

Now we turn to the derivation of the ODE (4.26) for the profile asserted in
Lemma 4.9.
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Proof of Lemma 4.9. Multiplying the differential equation (4.9) for 71, &) by
(§)> gives

8t<(§‘)%f([, 6 4 o106y @1 (E)v(t, 002 + @ (&) (t, 0)]* + a3 (E)it, 0)2))
_ /;_?e—ms)@)%f[u(t, SN[

+2¢710) (£)3@ §)eX By (71 v(r, 0)) (¢ (1, 0)

+2¢719)(6) 33, €) Re (3 (¢ 01, 0) (€751, 0))) (430

+ 2671 (£) 3@ §)e 210, (7151, 0)) (152, 0)

+ 5O Fla0) (u, 9 — ur,07) ] @

1
+ 3¢ e 1 (<§>2f[/3()u(t 9*]®).

We already note that the term
R(t, &) 1= e ") (£)2 @1 E)v(t, 02 + (&) |v(t, ) + @3 ()i, 0)?)

on the left-hand side of (4.30) satisfies the claimed bound

2
N(T) , 0<r<T.
(t)

1RGOl S Y €@ IOl <

1<t<3

Moreover, we observe that all terms apart from the contribution of the constant
coefficient cubic term, i.e. the first term on the right-hand side of (4.30), have
integrable time decay. Indeed, for 1 < ¢ < 3 we can use Lemma 4.1 to crudely
bound

@ @@ v 0)ll v 0]

N 153) 2ae(s)||Loo|at( (e, 0))|lv(t, 0)]

2

< MO

(t)2=%

Further, by Lemma 4.3 it holds that

0<tr<T.

1
E)2F[a()(ut, ) —u(t, 0)%) [(€)
|12 F a0 e,
< [ @a) (u, x)? = u, 0%)
1
Z||af () () (u(t, x)* — ut, 0) )||L2+|| a(x)(Bxu)(t)u(t)HL%
j=0

N(T)?
(t>"‘S

, 0<tr<T,
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as well as
|62 F[BOu 1@ o < 12 FBOUE )6y
< [ B@u@’|
N(T)?
(1)?

Thus, we have uniformly for all times 0 < ¢ < T that

, 0<tr<T.

:80 —tt

N(T)2>

o ()70, 6+ R.6) = Te ") Futr. @) + o( v

and it remains to analyze the contribution of the constant coefficient cubic term

Bo i

- 1&gy Flute, )] @),

Inserting u(r) = v(r) + v(t) = et V) (1) + e V) £ (1), we find that
(&) Fluw, )@
- / / FNEND (1 &y — o) f(t.m) f (1. o) dndo

1
3(8)2 //eittbz(éynﬂ)f(t,g—n—G)];(t, n)f(t,a)dndd

2711 43D
+ 3(2571)2 // 1END) fp gy — g)f(t, n)f(l, o)dndo
+ % // eit¢4(§,n,0)f(;’g -—n— a)f(t, n)f(t, o)dndo

=14+11+11141V,

where we introduced the phase functions

¢, n,0):=—(E)+(E—n—0)+ 1)+ (o),
$2.n,0) :=—(E)+(E —n—0)— 1)+ {0),
#3(5.n,0) :=—(§) +(§ —n—o0)—(n) — (o),
¢4(§.n,0) :=—(§) —(§ —n—0o)—(n) — (o).

The long-time behavior of the oscillatory integrals on the right-hand side of (4.31)
is governed by the stationary points of the phases (in 1 and o, and in ¢ after time
integration). A short computation reveals that the stationary points (in n and o) of
the phase functions are given by

hoi =00 =0 & (,0)=m,00), 1<i=<4,
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where
aon=(5.5).
(m2.02) = (. ),
(13, 03) = (£, ),

o=

Moreover, we calculate that

P1E, M, 01) = —(€) +3(5) = 0((6) 1),
P2 (&, m2,02) =0,
@3(&, 13, 03) = —2(§),

Pa(E., 14, 04) = — () — 3(5),

and that

det Hess, .o ¢1(€.n1.01) = 3(5)7°  signHess,.o ¢1(£, 01, 01) =2,
det Hess, o ¢2(£, m2, 02) = —(£)7°,  signHess, » ¢2(&, 12, 02) = 0,
det Hess, o ¢3(5, 13, 03) = —(§)®,  signHess, o ¢3(&. 13, 03) =0,
det Hess,. o ¢a(€, 04, 04) = 3(5)7°,  signHess, .o ¢a(€, 04, 04) = —

(
(

The stationary phase analysis of the oscillatory integrals /—I/'V on the right-hand
side of (4.31) proceeds in exactly the same manner for each term. We therefore
only provide below the details for the crucial term 7/, which governs the long-time
behavior of the solution v(¢) since it does not exhibit additional time oscillations.
The treatment of the other terms is left to the reader. The final outcome is that there
exists a small constant 0 < v < 1 such that uniformly for all 1 <¢ < T we have

1P 1 36 N(T)?
1=;m<s>z<%>‘e (3G £, S>3+0( o )
3, (T)?
I1=—( 83| fa. o) fa. %‘)+(9< 5 )
3 N(T)?
111 =232 fo,—o) f. —s>+o< UACh )
Li e ) N(T)?
IV == Z@HE e @ +33)f(t,§)3+0(1—+v>'

Stationary phase analysis of the oscillatory integral I1: We consider the case where
|€| ~ 2/ for some j >> 1, noting that the analysis for || < 1 is analogous, but does
not require a refined treatment of the smaller frequencies. Let {},>0 be a smooth
partition of unity so that ), ¥¢(n) = 1 for all € R and with the property that
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V¢ is supported on {|n| ~ 2¢} for £ > 1 and on {|n| < 1} for £ = 0. Then we
decompose

&) / f F10E0) F1 ey — o) it f(t. o) dndo

=Y ® / / FREND) [ &~y —0) [t ) f 1. Y e(o) dydo

k>0
Jke
= 2 D et 2 Dkt ) )kt )
k>j+100<l<k-5 €>j+100<k<t-5 k>j+10 [6—k| <5 0<k,t<j
JM T T T@

The only stationary point (1, o) = (=&, &) of the phase ¢, (&, n, o) is contained
in the region ||, |o| < 27, Correspondingly, the terms J W 7@ and 7P can
just be estimated by integrating by parts either in 7 or in o, while the term 7
requires a stationary phase analysis. Below we use the short-hand notationﬂ(r, n)
to indicate localization of f (t, n) to frequencies || ~ 2* for k > 1 and to || <1

for k = 0.
Contribution of the term J: On the supports of the integrands of the terms Jj;

in the sum 7, we have || ~ 2K > 2/ ~ |&| and |o| ~ 2¢ < 2% ~ |]|. Thus,
there holds |&€ — n — o| ~ 2% and we may write

Jgh= ¥ @
k>j4+100<t<k-5

/ / FPENOTT 1 €~y — o) fr(t ) ot o)W () (@) dn do

Moreover, observe that in view of the identity

I _o)—n—o)clf—n—-0)+E—-n—-0)o)
5 P2 02— (—n—o0)?

we have on the supports of the integrands of Ji, that

1 _
8,')"18:,"2 5 2+2l2 (my1+ma)t
28,1, 0)
forO0<f<k—-5k>j+10, (4.32)

for all integers 0 < m1, my < 10. We therefore integrate by parts in o to obtain
that

1) _ #) (n (D
TV =Ty +Iay + Ty

k>j+100<t<k—5

/ / ) T = 0 = ) ot D T ) () di o
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1
T == 2 > @
k>j+100<t<k—5

ff ”"’2@”””8 % Tt & — 0 — ) fort, )3 Fot (1 )W) (@) dn do,

T== 3 3 @

k>j+100<t<k—5

// PN g, [ LG G £ — 11— 0) k1, ) T (t, @) dy do.

In view of (4.32) we have

< 2kot
L! (RxR)

H / / e””efy"%@wk(nm(o)dn do

for0 <€ <k—5,k>j+10.

Hence, by Lemma 2.7 we may bound

1.

2%

T [+ 17015 5= >0 30 2
k> j+100<f=<k—5

(2*2" [(VLo)] 227 (900 ] 2 lv~e @12

+2—2"|| 200 2 s Ol 2 (VLo )

LYY okt LV [ (920 2 o) 120

k>j+100<t<k—5

3 3
S ND Ly N
~ ﬁ—za ~ 325

‘l\)
~ | o=

Analogously, we obtain that

N(T)?
l§728

)
|‘7(c) i ~

Contribution of the term J 2): On the supports of the integrands of Ji¢ in 7@, we
have |o'| ~ 2¢ > 2/ and || ~ 2% « 2¢ ~ |o|. Hence, there holds |§ — n — o] ~
|o| ~ 2¢ and on the supports of the integrands we have

3,7113;"2; S ko =tmAm)k for0 <k <0 —5, £ > j+ 10,
2§, m,0)
for all integers 0 < m, mp < 10. We integrate by parts in 1 and then proceed in
the same manner as for the sum J4 to get |j(2)| < N(T)3t_(%_2‘s).
Contribution of the term [J 3): On the supports of the integrands of Jig in J 3, we
have || ~ |o| ~ 2K >> 27, which means that |¢ — n — 0| can possibly become
small. For this reason we additionally decompose

fee—n—0o)= > Fult.e —n-o).

0=<n<k
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In this case 0,¢, cannot vanish and satisfies suitable bounds. Indeed, if 1 and
& — n — o have the same sign, we find that

VRPN R Sl Rl UL B B | Y
[natE. o) = |~ s T 2 R

Instead, if n and £ — 1 — o have opposite signs, we have
1= G —n—o) =l ~2"
Since [& — o] ~ 2%, it follows from

1L M —n—o)m§ —n—0)—(E—n—0)n)

I E—-a0)n—=(E—-n—-0))

that overall we have

8””1 ;nz 1 < o F2ny—(mi+mo)n
0y92(&,1m,0)
forO<n<k+5k>j+10, |£ —k| <5, (4.33)

for all integers 0 < m, my < 10. We may therefore integrate by parts in 7 to find
that

3) _ ~03) 3) 3)
T7 =Ty + Iy + ey
where
79 1
Ty == 2, 2 & )2

k>j+10 0<n <k
[0—k|<5

/ / elt92En0) — ¢ Oy fron(t, & =0 — &) fur (b, 1) Foe (1, )Y (M) We (o) dip do,
n

(3)

Ty == 2. 2.
k>j+10 0<n<k
[e—k|<5

/ / 210 FG & oy — )9y fr(t ) Jot (1 ) Y () (@) dn do,
Lt8n¢

Io == X @1

k>j+100<n<k
[e—k|<5

f / el Emaly [ nn V(@) [t & — 11— 0) for (1. ) ot (¢ 0) d do,
In view of (4.33) we have

< 2kot
Ll (RxR)

H // e _‘/fk(n)l/fz (0)dndo

forO<n<k+5,k>j+10, £ —k| <5.
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Hence, by Lemma 2.7 we may bound

23]

TSR s Y 3 2
k>j+100<n<k

[6—k|<5
2 Lo 272 (9200 | 2 o~

+ 27 (V)20 | 227 (D) Lo 12 I~ Ol ).

1 1
Finally, using that [[v~¢(t)[|z < 27 4@|| Y2 v(@) | 2, v}~ forany £ > 0, we
X X
arrive at the estimate

) (1) 21/ knlm—2nn—2kn—30
TS +1T6)] S ST D A i R
k>]+100<n<k
[0—k|<5

3 1
(V) Lv(r) ||L2 [(v)?v(r) ”zi @)1
N(T)32 j < N(T)3
5 ~
ta—28 1338

N

5_5
In the same manner, we derive that |(7((Cl))| S N(T)3 G2,

Contribution of the term J®: Here the strategy is to cut out a sufficiently small
neighborhood around the stationary point (n,0) = (—§&, &), where we have a
suitable lower bound on the determinant of the Hessian of the phase ¢, to apply the
stationary phase Lemma 2.6. Outside that neighborhood we can again just integrate
by parts in 1 or o. To this end we introduce smooth bump functions ., xg. € C*
for some sufficiently small absolute constant 0 < ¢ <« 1 such that x.(¢) = 1 for
| — 1] < cand x.(¢) = 0 for |¢ — 1| > 2c, respectively such that xg.(¢) = 1 for
|¢ — 1| < 8c and x3.(¢) = 0 for |¢ — 1| > 16¢. Then we decompose

T = (8} f / FRENOTT G ey~ o) () gt ) e

() oo

+ Z 7// tt¢z(én0>f(tg_n—g)f(t n)f(t o)

0<k <

(1- Xc(g))‘ﬂk(ﬂ)%ﬁz(a)dﬂ do

+ Y @ f / 1REN f(1 8 =) [t ) [t 0) 5

0<k,£<j

(%)(1 —tse( 2 ‘g))lﬁk(ﬂ)l/fe(a)dn do
w Ty + T
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Contribution of the term \7((;)): On the support of Xc(%) ch(_i%_) we have a suitable
lower bound on the determinant of the Hessian of the phase function given by

|det Hess g2 (8, n,0)| 2 (6)7° 2 27%,  for|o —&| < cl€], In+&| < 8clgl, |&] ~2/.

Changing variables to (¢, n/, o) :== 27/ (£, n, o), we may write

4 " h3) ’ o o’ n
J(a)) — 22 (£)2 // e E o )F(t, 7, U/)Xc(§>X86(_€,

) dn’ do’
with
VE o) =2 278 270 200,
Fitn o) =T 2 € — ' — o) oyt 270 g (1,20,
Correspondingly, on the support of Xc(g—//) ch(f—;,) we have the lower bound
|det Hess (¢, 0/, 0)| = 27%/ |det Hess ¢ (£, n, 0)| 2275/,

Applying Lemma 2.6 with A = 272/ (£)7%, » = 2%/¢, and u = 278/, we obtain
forany 0 < o < 1 that

[« Fl,

(278j)%+20£ (23 1)1+«

I8 =T’ fe o fup + 29 @10
Now observe that
Ft,x =27 f e f (1,27 D) fuy (1,27 (2 = ) £ (1,27 (2 = ) e,
which implies
[FO],; < 1/~@13,  and
G, WIFE@) lo, S2NF O I ey Oy @34)

From Proposition 4.5 and Proposition 4.7 we obtain the following bounds on the
profiles:

I~ Ol 27 (V2 F® ] S 272 [V PO 7 |92 f o] 72

S ([P0 + (9@ ) $39)
S2HINDOT

and for0 < o < }T,

[P fj @l 1 S [0 i O] 2 S W~ Ol + lfj Ol 2
SIFOl2 + Ixf Oll2 + 27 1LF @) 2
<[P0 ] + (VLo
SN |

(4.36)
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Combining (4.34)—(4.36) yields, for 0 < o < 1, that
(G N F@, $2742DINT) ()T,
X,y

For sufficiently small 0 < o « 1, it follows that

2 A A ; S N(T)3 _ N@T)?
|7 - 7”<s>%<s>3yf<r,s>|2f<t,s>HL§C S 2@“3‘””2*“*2‘““tlfa_)” S ,1+(a_)35-

Contribution of the term [J, (;): In this case, 9, ¢, cannot vanish and satisfies suitable
bounds. We additionally decompose

fag—n—o)="Y Fult.t—n-o).

0=n<j

If n and £ — n — o have the same sign, we find that

0 5§ —n—o] n}
a , , — S — = —ﬂ_ >1.
|962(&, 1, 0)| ‘ E—n—0) ) >max{<é—n—0) |~

Instead, if n and £ —  — o have opposite signs, we have

§—n—o

n— (& —n—0)| =max{Inl, |§ —n —ol} Z max {2,2"}.
Since |£€ — 0| > ¢|&] > 2/ in view of the cut-off (1 — Xc(%)), it follows from

1 (ME—n—o)mE —n—0)—E—-—n—-0)m)

by E—o)n—(E—n—0))

that overall we have in this case

9mgm2 ; < 22k22n2—j2— max{k,n}z—(m1+m2) min{k,n} (437)
T g, 0)

for all integers 0 < m1, my < 10. We may therefore integrate by parts in 7 to obtain
that

@ _ @ b @
Ty = Ty + Ty T T

where
Ton = > ()2
0<k,t,n<j
f/ i1$2(6.1.0) it3i¢2 Oy fon (1,6 — 1 — a)ﬂ(t, ) fme(t, o)
(1= x()Jprevecor dndo,
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f/ eit¢2(€,n,0)ltan¢2 Son(t, &6 —m — C’)%ﬂ(r, m fee(t, o)
(1= xe(3))prmveo) dndo,

S
5=
=
Il
|
|
l
: —_
NS
~
=

[ eirm(&,n»a)an[itai’m (1= x(3))wrmve)]

Fonlt & — 1 — 0) fr (b, ) Fit, o) dn do

In view of (4.37) we have for 0 < k, ¢, n < j that

H.// eixﬂeiyaﬁ(l - XC(E))Wk(U)l/fe(O) dndo

g 23/(2@22;12*]27 max{k,n}272 min{k,n} )

Ll ,(RxR)

Hence, by Lemma 2.7 we may bound

lA
o) o) 22/ 3knln2nn—jA— max{k,n)~—2 min{k,n}
—_— 2°K2t0enp=I) ) ’
[Ton | + [Ty | < p >

0<k,t,n<j

x 272 (V) Lo 12 [P0 )| 2 llo~e e

1 1
Finally, using that [lu~¢ (1) <277 2o(@) | 7, v(@)]{~ forany € > 0, we

arrive at the estimate

v

Y
“) @272 ko h o= max{k,n}H—2 min{k,n}
[ Tan| + [ Ta) | S ; >
0<k,£,n<j

[ Lo 2 [0 20O vl

3
< N( ) 2—§J24/2(0+)/ < N(T)a

14 ; t3

Analogously, we obtain that

@ | o NT)
T3] S =555
14

5>
-35

Contribution of the term j((g): In this regime d,¢» cannot vanish and satisfies
suitable bounds. As before we additionally decompose

fee—n—o)=Y Fult.&—n-o).

0<n<j
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If o and & — n — o have opposite signs, we easily obtain that

|80'¢2($7 7]’0')| P [ — + i Z max{g_n—_O"’ i} > 1
(§—n—0) (o) (§—n—0a) (o)

Consider now the case where o and & — 1 — o have the same sign. Without loss of

generality assume that £ > 0, and thus o > 0 in view of the cut-off Xc(%)- Then

§—n—o

~

we must have £ — —o > 0, and since |o'| ~ 2/ due to the cut-off Xc(%), it follows
that

E—n>02>2.

Moreover, the cut-offs xc(%) and (1 — xsc(Z5)) enforce that |0 — &| < 2c|&| and
In 4+ &| = 8c|&|, which gives

lo—(E—n—0)l=In+&+20 —&)| = In+E —2l0 —&| = 4cl§| 2 2.

Hence, in the case where o and & — n — o have the same sign, we can conclude
from the identity

I _(o)§—n—o)colf—n—0)+E—-n—-0)o)
95 P2 E—-—m@—-(E-n-0)

that overall in this regime we have

gmigm L < 22np(mitma)n (4.38)
7 e¢a(§,n,0)

for all integers 0 < m1, my < 10. Then we integrate by parts in o to obtain that
@ _ & & @
‘7(6) "7(c1) + ‘-7(c2) + ‘7(c3)’
where
Tw . 1
G=- ¥ e
0<k, "S] l~j
// eiz¢2($,n,o) 8 an(t f n— O’)f_‘,\,k([’ ﬂ)ﬁ\e(t, U)
ta(,¢
o
* XC(E) (1 - XSC( E))’ﬁk(ﬁ)W(U) dn do,
(4)
G=- Y Yol
Ofk,nsl/ {~j

/ / e"’d’z@’"’”)”ag e Fon(t, £ =0 — 0) for (6, M)y fot(t, 0)

< xe(3) (1= X&( =) i) ando,

Teyi== 2 208

0<k,n<jl~j
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/ / eirm@»wa(,[ital (D) (1= e ( ) Jpromveo]

X Jonlt & — 11— ) for(t, 1) Foa (1. o) dy dor.

In view of (4.38) we have for 0 < k,n < j and £ ~ j that

[ e i £) (1= 1o ) e ando

Hence, by Lemma 2.7 we may bound

< 2kod.
L;.’y(RXR)

l
(4) (4) k —2nH=2j
|‘7(cl)|+|‘7((:2) NT Z 2o/
0<k,n<j

[V Lo@ | 2 [(920 O] L2 o~ O 2.

Using again that [[v (1)l < 27 4"”

1 1
Yo}, lv(®)|7 for any k > 0, we
arrive at the desired estimate

3 1
[T+ 7S] < Z 25272 (V) Lo )| 12 [ (V20| F v @)1
0<k,n<j )

Analogously, we derive that |(7((:;))| < N(T)3t_(%—%5)_

Putting all of the above estimates together, we find that
N(T)*
1= fa.of fo, é)+(9< B )

for v = mln{— — 28, 1 %8, a — 38} with 0 < § <€ @ < 1 sufficiently small.
This finishes the statlonary phase analysis of the oscillatory integral /7 and thus
concludes the proof of Lemma 4.9. O

4.4. Proof of Theorem 1.7

After the preparations in the previous subsections it is now an easy task to infer
the asymptotic behavior of the solution v(z) to (1.19) and complete the proof of
Theorem 1.7.

Proof of Theorem 1.7. By time reversal symmetry it suffices to consider positive
times. For sufficiently small initial data we can propagate the bounds on the norms
of the solution v(#) in the bootstrap quantity N (T') for short times. We may therefore
assume that N (1) < e, and turn to proving global-in-time a priori bounds for the
solution v(¢) to (1.19).
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Let T > 1. Then we conclude from the asymptotics of the Klein-Gordon
propagator stated in Lemma 2.2 as well as from the a priori bounds established in
Propositions 4.5, 4.7, and 4.8 that

sup 12 o)z S sup H f(t,s)nLgc

1<t<T

+ Sug ;(||(<V>Lv)(z>||L§ + [P0 o],;) 439

<@ fa, s)||Loo +llvoll gz + lxvoll g2 + ol + N (T)?
< e+ N(T)%.

Combining the estimate (4.39) with the a priori bounds from Propositions 4.5,4.6,4.7,
and 4.8, we conclude that

N(T) < e+ N(T)>.

A standard continuity argument now yields that there exists an absolute constant
g0 > 0 such thatif 0 < & < &g, then we obtain the global a priori bound

sup 10O + 09200 | + 0 )20

t>0
+ (0 @l + 63 F . s>nL§o} Se

The latter includes the sharp decay estimate (1.20) asserted in Theorem 1.7. More-
over, we observe that a standard by-product of the proof of the a priori bound (4.25)
for the profile in Proposition 4.8 is the existence of a limit profile WelL® £ such
that

&2
| f.o - W me O | g T,
for the small constant 0 < v <« 1 from the statement of Lemma 4.9. Then the
asserted asymptotics (1.21) of the solution v(¢) to (1.19) follow from Lemma 2.2.
O
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