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ABSTRACT

The laminar boundary layer of a viscous incompressible fluid subject to a two-dimensional wall curvature
is evaluated. It is well known that a curved surface induces streamwise pressure gradient as well as wall-
curvature driven pressure gradient. Under certain assumptions, a family of similarity solutions can be ob-
tained under the influence of flow acceleration/deceleration, which is known as the Falkner-Skan similarity
solutions. In this study, the effect of the wall normal pressure gradient is taken into consideration, and the
freestream flow parameters are adjusted for flow over a curved surface. Present results are obtained by nu-
merical solution of a generalized Falkner-Skan equation governing similar solutions for flows over curved
surfaces. The Falkner-Skan equations are solved by an RK4 shooting algorithm. Additionally, the transport
of a passive scalar is incorporated in the present analysis at different Prandtl numbers. The objective of this
paper is to use the curvilinear or axisymmetric boundary layer and energy equations to assess the effect of
Favorable, Adverse and Zero pressure gradient on the laminar momentum and thermal boundary layer devel-
opment. Major conclusions are summarized as follows: (i) as the pressure gradient β increases from negative
values (APG) towards positive (FPG) values, the displacement (∆∗) and momentum (θ∗) thickness tend to
decrease no matter the curvature type, and, (ii) the normalized wall shear stress (i.e., f ′′) exhibits a linear
decreasing behavior as the wall curvature switches from concave (negative) to convex (positive) at a constant
pressure gradient.

KEY WORDS: Falkner-Skan, wall curvature, concave/convex surface, adverse/favorable pressure gradient, passive
scalar.

1. SOME BACKGROUND

it is well-known that the Navier-Stokes (NS) equations are the foundation of the modern fluid dynamic theory
[7]. These equations are used to describe the transport phenomena of momentum and its velocity-pressure
field. In junction with the energy equation, these equations can be used to describe the flow with the effects
wall heating and cooling. The situations where analytical solutions of the NS equations are rather limited due
to its complexity and high non-linearity. However, there are several analytical (or quasi-analytical) solutions
to these equations by using different assumption or simplifications for some special cases such as the Couette,
Poiseuille and boundary layer problems (based on the Prandlt’s theory) in laminar flows. These assumptions
significantly reduces the level of complexity of the NS equations. This paper focuses on the solution of NS for
laminar boundary layers over curved surfaces.
The boundary layer theory assumes that the velocity component parallel to the wall possesses a much larger
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magnitude that that of the wall-normal fluid velocity component. In addition, it is assumed that the pres-
sure perpendicular to the wall remains constant and wall-normal flow gradients are dominant with respect to
streamwise flow gradients [9]. Applying these assumptions as stated before reduces the NS equations to the
boundary layer equations which can be solved via a similarity analysis procedure. Generally speaking, in this
methodology the x (streamwise) and y (wall-normal) coordinates are normalized via a coordinate η which in
turn is considered the similarity variable. The variable η absorbs the x−dependency of the flow parameters,
transforming the boundary layer equations to a one-dimensional problem. In this way, a high-order ordinary
differential equation (ODE) is obtained that can be solved by means of a shooting method and the Runge-
Kutta fourth Order (RK4) algorithm.

In boundary layer theory, a more general solution is that of a curved surface, which at the end can be approxi-
mated to a flat plate surface by prescribing an infinite curvature radius. As seen in Figure 1, the x coordinate is
parallel to the surface and the y coordinate is perpendicular to the local surface. The Λ parameter is defined as
1/R and is called the surface curvature. Finally, the corresponding boundary layer equations can be reduced
to a one dimensional problem with a fourth order ODE via a similarity analysis. It is important to mention that
the boundary layer equations for curved surfaces are only applicable if the boundary layer thickness is much
smaller than the local radius (i.e., δ(x) << r0). Also, it can be seen in figure 1 the velocity component parallel
to the wall, u, and the wall-normal component v [7]. For the thermal transport equation (energy equation),
the dissipation term must be taken in to account in high-speed flows and very high viscous fluids as well as
the variation of fluid viscosity and density (via the state equation). For moderate and low viscous flows the
dissipation term can be neglected. In the case of incompressible flow, the energy equation is decoupled from
the momentum equation if buoyancy is neglected. Therefore, a similar procedure can be applied to the energy
equation to obtain the passive scalar transport equation, and eventually, a similarity solution can be obtained
for laminar boundary layers. As stated before, this similarity solution is a linear second order ODE which is
solved after knowing the velocity field distribution [10].

Fig. 1 Curved surface coordinates setup.

The main difficulty when solving curvature surfaces is the fact that in the boundary layer the geometry of the
curvature needs to be taken in to account. Thus, the curvature indeed affect the boundary layer in contrast
to the flat plate. Several research works have been done in this area. Murphy [5] investigated the effects of
surface curvature on the laminar boundary layer flow for large and moderate wall curvatures for zero pressure
gradient (ZPG) flows. Murphy [5] concluded that for equal Reynolds numbers the shear stresses on convex
surfaces are lower than those of the concave and flat surfaces, in that order of strength hierarchy. He also stated
that the smooth transition from the viscous flow to the outer flow causes the velocity profile to have a negative
slope near the outer edge for the convex case, whereas, a positive slope for the concave case. Mahmood et
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al. [4] studied the similarity solutions of axisymmetric mixed convection boundary layer flow involving a
buoyancy parameter α and a curvature parameter β and found that for large values of α and β of O(1) an
asymptotic solution is reached; and that for large β of O(α1/4) the problem becomes independent of the main-
stream, obtaining a free convection limit. Saikrishman et al. [6] investigated non-similar axisymmetric water
boundary layers with variable Prandtl numbers and fluid viscosity for forced convection flow over a rotating
sphere up to the point of flow separation. They observed that the viscosity and Prandtl number effects caused a
displacement of the separation point downstream, while the rotation parameter had a reverse effect. Saikrish-
man et al. also concluded that the heat transfer rate depended strongly on the viscous dissipation, but the skin
friction coefficient was unaffected by it. Maddox [3] studied the application of the Mangler transformations
to a special class of power law bodies and stated that the Mangler transformations could be used to study the
laminar shear stresses and heat transfer. Ko [2] calculated the local heat-transfer coefficient of slender sur-
faces of revolution by the Mangler transformation. He stated that for laminar boundary layers the velocity and
temperature profiles, momentum and displacement thickness, and wall shear stress can be evaluated using the
Mangler transformations. Furthermore, in his paper Ko [2] extended the Mangler transformations to evaluate
the heat transfer coefficient to three-dimensional faces of revolution in axisymmetric flow.

The principal objective of this paper is to study the effect of the pressure gradient (i.e., streamwise and wall-
curvature-driven pressure gradients) on laminar boundary layers as well as the passive scalar transport by
considering several Prandlt numbers via a similarity flow solution.

2. MATHEMATICAL EQUATIONS

2.1 Governing Equations

According to Goldstein [1] the NS governing equations for curved surfaces are as follows:
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Applying the boundary layer assumptions to equations 1, 2 and 3:

Continuity:
∂u
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+

∂v

∂y
= 0 (4)
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X-Momentum:
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2.2 Similarity Equations

According to Murphy [5] applying a similarity analysis to equations 1, 2 and 3 yields the following fourth
order similarity equation:

f IV + ff III +Ω[f III + ff II ]− γ[f If II +Ωf If I ] = 0 (7)

Boundary Conditions:
η = 0; f = f I = 0 (8)

η → ∞; f I = e−Ωη; f II = −Ωe−Ωη (9)

Its important to highlight that in this analysis f is associated to the stream function, f I is related to the
streamwise velocity (parallel to the surface) and f II is connected to the local shear stress inside the boundary
layer.

The similarity variable used to normalize x and y is given as:

η = y

√
[(m+ 1)/2]U0

νx
, (10)

the power parameter is defined as:

m =
γ+ 1

3− γ
, (11)

the curvature parameters is:
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√
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, (12)

the potential velocity U0 is:
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2

[
2
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x

L

]m
, (13)

the pressure gradient is defined as:
γ = 2β− 1. (14)

The integral boundary layer parameters are:
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0
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]
dx, (15)

θ∗ =

∫ ∞

0

[
f I

e−Ωη

][
1− f I

e−Ωη

]
dx, (16)
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H =
∆∗

θ∗
, (17)

i.e., displacement thickness, momentum thickness and shape factor, respectively

2.3 Numerical Details

Figure 2 shows an schematic of the algorithm used to solved equation 7. This method is called the point and
shoot algorithm. This algorithm works as follows: first the f II and f III are guessed; next a Runge Kutta
fourth order solver is applied to numerically compute equation 7; finally, the resulting outcomes of f I and
f II are compared to the boundary conditions 9 in an iterative procedure.

According to the differential equations with boundary value problems book [8], the Runge-Kutta fourth order
methodology is applied for a general case as:
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∆n

6
[K1 + 2K2 + 2K3 +K4] (18)

K1 = f(Xn, Yn) (19)
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(
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2
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2
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2
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2

)
(21)

K4 = f

(
Xn +∆n, Yn +K3∆n

)
(22)

The Runge Kutta algorithm is called a single step method. Equation 18 is used to update the values of f ,
f I , f II and f III by taking the average of the K1, K2, K3 and K4 points. The displacement and momentum

Fig. 2 Numerical algorithm setup.
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thickness can be obtained via a Simpson algorithm where for a closed integral is known that:∫ b

a

f(x)dx =
∆x

3

[
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)
+ 2

(∑
Yeven

)
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]
(23)

In this case the a and b values are the limits of the integral and the term ∆x is the spacing of the points
between a and b. The following linear approximations were used to estimate the f II(0) based on Murphy’s
paper Figure 4 [5] for a β equal to 1, 0.2, 0 and -0.1:

f II(0) = −1.6426Ω + 1.2302 (24)

f II(0) = −1.3003Ω + 0.6861 (25)

f II(0) = −1.0189Ω + 0.4693 (26)

f II(0) = −0.7359Ω + 0.319 (27)

In this work a total length Lη of 10 was chosen with 1000 points to accurately solve equation 7.

3. PRELIMINARY RESULTS

Figure 3 shows the variation of f I vs. η for a pressure gradient, β, of 1 and Ω’s values of -0.1, 0 and 0.1.
It can be seen in the figure that for as η increases the f I increases from zero and tends to the potential flow
profile described by equation 9 where the flow velocity matches the outer potential flow velocity. As the
curvature decreases from a positive (convex) to a negative (concave) value, the curves tends to move to the
left, indicating a shrinking process of the boundary layer thickness. As expected, since the streamwise pressure
gradient β is positive, the infringed outer pressure gradient on the flow is favorable (FPG) or flow acceleration.
Additionally, the concave curvature causes (i.e., Ω < 0) flow acceleration, as well, and the combined effects
clearly induce a local increase of the streamwise velocity u (given by the normalized parameter f ′) inside
the boundary layer, more obvious by the edge (η ≈ 2). In particular, when the wall curvature Ω is zero, the
solution is that of the Falkner-Skan flow for a flat plate in a purely accelerated flow by the outer region at β =
1.

Figure 4 shows the variation of f II vs. η for a pressure gradient of 1 and Ω value of -0.1, 0 and 0.1. The
second derivative of the stream function f is proportional to the local shear stress by friction in the boundary
layer. It can be seen in the figure that as η increases the f II sharply decreases until matching the potential
flow values of f II , as described by equation 9. As the curvature parameter decreases from a positive (convex)
to a negative (concave) value, the shear stress at the wall increases and the final value of the f II increases,
as expected for highly accelerated flows. Also when the curvature parameter Ω is zero, the solution is that of
the Falkner-Skan flow for a flat plate and tends to zero in the outer flow section. Figure 5 depicts the variation
of f I vs. η for β = 1, 0.2, 0, -0.1 and Ω = 0.1 (convex). It can be seen in the figure that as the pressure
gradient β increases the f I tends to move leftward or reaches the potential flow condition faster (boundary
layer thickness shrinks). It can also be observed that all f I curves for all the pressure gradients match the
potential flow curve beyond the boundary layer thickness since the potential flow velocity is only function of
the wall curvature Ω. Figure 6 exhibits the variation of f II vs η for a pressure gradient of 1, 0.2, 0, -0.1 and
Ω value of 0.1 (convex). It can be seen in the figure that as the pressure gradient β increases the f II at the
wall increases and the wall shear stress, as well. It can also be observed that all f II curves for all the pressure
gradients match the potential flow curve.
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Figure 7 shows the variation of f II vs. Ω for pressure gradients of 1, 0.2, 0, -0.1. As stated before, it can be
seen in the figure that as the pressure gradient β increases the f II (and wall shear stress) at the wall increases,
as well. For a β-constant profile, it can also be observed that as the Ω increases from negative to positive the
f II(0) decreases. This means that as the curvature parameter increases or becomes more positive the f II(0)
or shear stress at the wall decreases. As a consequence, for an imposed outer pressure gradient β, by increasing
the wall curvature towards positive (convex) values the skin friction coefficient is decreased. Table 1 shows
the variation of the displacement, momentum thickness and shape factor for different wall curvatures (Ω =
-0.1, 0 and 0.1) and pressure gradients (β = 1, 0.2, 0 and -0.1). A fairly good agreement was achieved with
numerical results of Murphy [5]. Major conclusions are summarized as follows for ∆∗, θ∗, and H: (i) at a fixed
wall curvature, these boundary layer parameters increase as the pressure gradient decreases from favorable

Fig. 3 f I vs. η for β = 1 and Ω = -0.1, 0 and 0.1

Fig. 4 f II vs. η for a pressure gradient of 1 and Ω of -0.1, 0 and 0.1
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(positive) to adverse (negative) values of β, and, (ii) at a fixed pressure gradient, the three parameters increase
as the wall curvature switches from concave (negative) to convex (positive) values.

4. CONCLUSIONS

A similarity solution is introduced for laminar boundary layers subject to wall curvature and pressure gradients
based on works by [5] and [1]. In conclusion, the curve-linear similarity solution differs from the flat plate in
the sense that the geometry of the wall has to be taken into account. This can be seen in equation 6 where the
wall-normal pressure is not constant nor negligible in general, as in the flat plate case but rather depends on the

Fig. 5 f I vs η for a pressure gradient of 1, 0.2, 0, -0.1 and Ω of 0.1

Fig. 6 f II vs. η for a pressure gradient of 1, 0.2, 0, -0.1 and Ω of 0.1
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Table 1 Boundary layer parameters

β Ω ∆∗ θ∗ H
1 -0.1 0.56599 0.25289 2.238087706
1 0 0.6537 0.30045 2.175736395
1 0.1 0.74299 0.33885 2.192681127

0.2 -0.1 0.84974 0.35612 2.386105807
0.2 0 0.98298 0.40982 2.398565224
0.2 0.1 1.1572 0.47365 2.443154228
0 -0.1 1.0489 0.41254 2.542541329
0 0 1.2142 0.47001 2.58334929
0 0.1 1.4468 0.54651 2.647344056

-0.1 -0.1 1.2426 0.45249 2.746138036
-0.1 0 1.4400 0.51520 2.795031056
-0.1 0.1 1.7270 0.60302 2.863918278

curvature and the local fluid speed. It was observed that as the Ω decreases or becomes negative the boundary
layer thickness decreases and the shear stress of the wall increases. As the pressure gradient β increases from
negative (APG) towards positive (FPG) values, the displacement and momentum thickness tends to decrease
no matter the curvature type. The normalized wall shear stress (i.e., f ′′) exhibits a linear decreasing behavior
as the wall curvature switches from concave (negative) to convex (positive) at a constant pressure gradient.
Also, it was seen that for the special case of Ω equals zero in equation 7 is that of the flat plate. This shows
that the curve-linear similarity solution (equation 7) is a more general solution for the Falkner-Skan equation.

5. FUTURE WORK

Next steps are summarized below:

• The temperature is going to be taken into account as a passive scalar.

Fig. 7 f II(0) vs. Ω for β = 1, 0.2, 0, -0.1.
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• The effect of different Prandlt numbers on the boundary layer are going to be studied.
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NOMENCLATURE

X rectangular coordinate
parallel to the wall (m)

Y rectangular coordinate
perpendicular to the wall (m)

x curvature coordinate
parallel to the wall (m)

y curvature coordinate
perpendicular to the wall (m)

r0 distance form the axisymetric axis
to the curve wall (m)

u velocity component parallel
to the curve wall surface (m/s)

v velocity component perpendicular
to the curve wall surface (m/s)

δ boundary layer thickness (m)
Λ wall curvature (m−1)
R wall curvature radius (m)
ν kinematic viscosity (m2/s)
P pressure (Pa)
ρ density (kg/m3)

η similarity variable (-)
Ω curvature parameter (-)
m power parameter (-)
U0 boundary layer edge velocity (m/s)
Uinf free stream velocity (m/s)
γ pressure gradient parameter (-)
β pressure gradient (-)
∆∗ displacement thickness (-)
θ∗ momentum thickness (-)
H shape factor (-)
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