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Measurement Matrix Design for Sample-Efficient
Binary Compressed Sensing

Pulak Sarangi

Abstract—This letter investigates the problem of recovering a
binary-valued signal from compressed measurements of its convo-
lution with a known finite impulse response filter. We show that it
is possible to attain optimum sample complexity for exact recovery
(in absence of noise) with a computationally efficient algorithm.
We achieve this by adopting an algorithm-measurement co-design
strategy where the measurement matrix is designed as a function
of the filter, such that the recovery of binary signals with arbitrary
sparsity is possible by using a sequential decoding algorithm. Such
a filter-dependent sampler design can overcome the computational
challenges associated with enforcing binary constraints, and enable
us to operate in ‘“‘extreme compression” regimes, where the number
of measurements can be much smaller than the sparsity level.

Index Terms—Binary signals, compressed sensing, extreme
compression, measurement matrix design, sequential decoding.

1. INTRODUCTION

HE objective of binary compressed sensing is to recover

a binary-valued signal from compressed linear measure-
ments [1]-[9]. In this letter, we focus on a special class of
the binary compressed sensing problem, where we observe
compressive measurements of the convolution of a binary signal
with a known finite impulse response (FIR) filter. Recovering
binary signals from such compressive convolutional measure-
ments is of interest to several applications such as neural spike
detection from fluorescence measurements [10], medical imag-
ing [11], binary shape recovery from blurred images [12], [13],
image segmentation [14], and discrete tomography [15], [16].
A concrete application is in millimeter-wave communication,
where the goal is to decode binary (or finite alphabet) symbols
from low-dimensional measurements obtained by a compressive
spatial filtering/beamforming.

As discussed in [17], [18], there exist measurement matrices
such that the linear mapping between the unknown binary vec-
tors and the real valued compressive measurement is injective
even with a single (scalar) measurement. In this case, the desired
binary vector can be recovered via exhaustive search, however,
it is computationally prohibitive to do so. Therefore, a major
focus of binary compressed sensing has been on algorithmic
developments (often via relaxations) that are computationally
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efficient, and at the same time, exploit additional structure
such as sparsity of the binary signal [1]-[3], [5], [19], [20]. A
common approach is to relax the (non-convex) binary constraints
with box-constraints, and formulate various continuous valued
optimization problems for recovering the binary vectors. These
include l /l,-norm minimization [1], [2], [21], and semidefinite
relaxation [5]. Theoretical guarantees for /; /I, minimization
have been established in [1], [2], [21], but the results are
mostly applicable to random measurement matrices (drawn from
suitable centered distributions). Recently, the benefit of using
a biased measurement matrix was established in [22], which
allows recovery of binary signals simply by solving a least
squares problem with box-constraints, and thereby eliminating
the need for Iy /I, minimization. Alternative lines of work that
modify classical sparse recovery algorithms to exploit finite-
valued structure include greedy orthogonal matching pursuit
(OMP) algorithm [20], [23], Bayesian formulations [19], [24],
graph-based decoding techniques [3], and iterative reweighting
techniques [25]. A common feature of all the aforementioned
approaches is that their theoretical guarantees (whenever they
exist) are applicable when the number of measurements (M)
is larger than the sparsity (s), similar to standard results in
compressed sensing. To the best of our knowledge, exact re-
covery guarantees for these techniques are unavailable when
M < s < N/2 (where N is the signal dimension).

In a recent work [26], we moved away from relaxation-based
techniques and showed that it is possible to exactly recover
binary signals from uniformly downsampled measurements of
the filter output, without imposing any sparsity constraints.
Specifically, we developed a new computationally efficient de-
coding algorithm that was inspired by successive cancellation
(SC) or decision feedback decoding [24], [27] used in multiuser
detection, and decoding of polar codes [28], [29]. We showed
that M > N/L (L being the filter length) measurements are
necessary for exact recovery of any binary vector from uniformly
downsampled convolutional measurements, and the algorithm
was able to attain this under a certain decay condition on the
filter.

Our contributions: We establish that by appropriately de-
signing the measurement matrix (beyond uniform downsam-
plers), it is possible to achieve a sample complexity of M > 1
for the exact recovery of binary signals.! We achieve this by
(i) developing a modified version of the sequential decoding
algorithm from [26], and (ii) proposing compressive measure-
ment design techniques that are dependent on the filter. This
algorithm-measurement co-design strategy achieves the optimal

'In [5], it was noted that M = 1 may be achievable provided the SDP
returned a rank 1 solution. However, conditions under which the SDP solution is
guaranteed to be rank one with M/ = 1 measurement, are currently unavailable.
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sample complexity of M > 1 (for any sparsity level), without
requiring any strong decay assumptions on the filter. The mea-
surement matrix itself can be designed in a computationally
efficient manner, by solving a linear program.

Notations: For a matrix A, N'(A) denotes its null-space,
and Iy is the V x N identity matrix. For an integer n, define
[n] :={1,2,...,n}.

II. EXTREME COMPRESSION WITH DENSE SAMPLERS AND
COMPUTATIONALLY EFFICIENT RECOVERY

Consider the problem of recovering a binary valued sig-
nal xy € {0,1}" from compressed measurements of its con-
volution with a known finite impulse response filter h =

[ho, hi,..., hL,ﬂT e RE:

ho 0 0 0 0

hi ho O 0 0

z=®Hx),, H= . .
0 0 0 hp—1 hp-o
o 0o o0 - 0 hr
ey

Here H = [hy,...,hy] € RP*Y is a Toeplitz matrix with

P=N+L—-1,®cRM*P M < Pis a compressive mea-
surement matrix and Hzx is the output of the filter.

It has been shown that a linear map A : {0, 1} — R can
be injective (over {0, 1}*V) even when M = 1 [17], [18].2 The
linear map of interest to us has a specific structure A = ®H.
We begin by showing that for any filter h, there exist infinite
choices of real-valued sensing matrices ® € R™*” such that
the map A is injective for every M > 1.

Theorem 1: Assume rank(H) = N. Let ® € RM*¥ be a
random matrix whose rows {¢,,, }»_, are drawn independently
from a distribution which is absolutely continuous with respect
to the Lebesgue measure over R, With probability 1, x is the
unique binary vector that satisfies z = ®Hx for every M > 1,
where z is given by (1).

Proof: Suppose there exist z, y € {0, 1} (z # y) such that
®Hx = PHy = $PH(x — y) = 0. This means that there is
a non-zero ternary vector x — y € SV, S := {—1,0, 1}, that
belongs to the null space of ®H. We will show that this will
happen with zero probability. Notice that the cardinality of SV is

. N _ .
. ywe denote eacn vector i aS\Vgrr._n > W1 € conven-
3N. We denote each vector in S™ 2_o ', withth

tion vy = 0 for notational ease. Let £ = {® | N (®H) SV #
{0}}. Then,

P(®€&) =P (IvesV\{0}, s... PHv = 0)

N

3N -1
=P | |J {®Hv, =0}
k=1

3N_1 M

U N {é: e NwiHT)}

k=1 =1

=P
(a)

3VN_1 M

< > IIP (¢ e NwfHT)) 2)
) =1 =1

%In [18], it is shown that A can be linearly dependent over R, but linearly
independent over {0, 1}, and [17] shows the existence of such a rational A.
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Algorithm 1: Sequential Block-wise Decoding Algorithm.

1: Input: Measurement z, Sensing matrix ® € RMxP
Filter H, Tolerance ¢ > 0.

2: Output: £ € {0, 1}" //Estimate of =
33 A+ PH, b+ [N/M],m+ 1, &+ 0
/Mnitialization
4: Repeat
5 [ < 1, r < z,,//Reset Residual
6: Repeat
7: if /Ay, (m-1)p+1 > 1 — € //Detection threshold
8: E(m-1)p+1 < 1
9 end
10: r4—Tr— i‘(m,l)bJrlAm)(m,l)bJrl, l+1+1
//Update residual

11: until < bor (m—1)b+1< N
12: m<+—m+1
13: untilm < M

where (a) follows from the fact that ®Huvy, = 0 if and only
if ¢, € N(vIHT) for all i € [M]. The inequality (b) follows
from union bound, and the independence assumption on the rows
of ®. Rank(H) = N implies that v} H” = 0 for non-zero vy,
and therefore N/ (vIHT) is a P — 1 dimensional subspace of
R” whose Lebesgue measure is zero. Since ¢, is generated from
a distribution that is absolutely continuous with respect to the
Lebesgue measure over R”, we have P(¢p, € N (vIHT)) = 0.
Using (2), we can conclude that P(® € £) = 0. |

Theorem 1 suggests that for almost all choices of ®, one
can uniquely identify a binary x from z, with only M = Q(1)
measurements (independent of the sparsity-level), possibly via
exhaustive search. Relaxation-based techniques succeed in a
regime where M is larger than the sparsity of x(, and exact re-
covery may not be possible with M = (1) measurements. We
now present a simple and computationally efficient algorithm
that sequentially decodes the binary entries of xy. We further
show that by using the idea of filter-dependent sampler design,
it is possible to achieve M = (1) with this algorithm.

A. Sequential Block-Wise Decoding and Performance
Guarantees

The proposed Sequential Block-wise Decoding Algorithm is
summarized in Table 1. The main idea is to partition the entries of
x( into b = [ N/M] disjoint blocks, one corresponding to each
scalar measurement z,,, and decode the entries of a block se-
quentially. For the m™ block, suppose that the first k < bindices
within the block, denoted by the set J,,, 1, = {(m — 1)b+i}r_,
have already been decoded. The sequential decoding algorithm
computes a residual r = z,,, — Ziejm’k A, i, and compares
it against a suitable threshold determined by ¢(> 0), in order
to estimate the (k + 1) element. The estimate is given as
L(m-1)bth+1 = ﬂ{7'/Am,(m71)b+k+12(1—6)} where 1>y 0 R —
{0,1} denotes an indicator function defined as Ty;>. =
{é fli =7 Itis important to note that the residual computation
subtracts only the elements that have been decoded within
the current block. The previous blocks that have already been
decoded, are not subtracted out. This algorithmic choice has
been made to avoid error propagation between blocks. Such
disjoint decoding can be especially beneficial in presence of
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noise. Decoding each block requires O(b) operations, resulting
in a total computational complexity of O(Mb) = O(N) for
decoding all M blocks. Given integers m € [M], and [ € [b]
we define 7(m, 1) := (m — 1)b + l. For ease of exposition, we
assume that N/M is an integer. The following theorem specifies
sufficient conditions on A = ®H under which Algorithm 1
exactly recovers xo from noiseless measurements (1).
Theorem 2: Let A := ®H and ¢ = 0. Forany M > 1, Algo-
rithm 1 recovers g, if for each m € [M ], the following holds

AmJ > 07VZ € [N]7 Am ,n(m,l) > Z AmMVZ € [bi 1]

3)
k¢\7m,l
Proof: Condition (3) implies that for any binary = € {0, 1}V
and! € [b—1],

(m,l) < Z xk

kETm 1

+ Zyy(m,1) < 1+ T(m,l) 4)
m n(m,l)

We now show that for every m, we can decode the indices of x
given by {n(m,1)}’_,. Fix m. Our proof proceeds via induc-
tion on [. For [ = 1, we have r = z,,, = ka . TpAm g+
Ty (m,1)Am,n(m,1) (Line 5 of Algorithm 1). Hence from (4) we
have Ty(m,1) < T/Am,n(m,l) < Ly(m,1) + 1. Since Zn(m,l)
H{T‘/Am,n(m,l)Zl}’ it follows that i'n(m,l) =1 ifl'n(m,l) =1,and
0 otherwise, implying &, (1) = Ty (m,1)- Nextassume that after
-1 < b iterati.ons we have correctly decoded {;)(y,, k)}frc;lr
The residual satisfies:

T/Am,n(m,l) = | A — Z -rff'kAm,k: /Am,n(m,l)
k€T m, 11
m k
Z ) )
A n(m,1)

k&Tm 1

where (a) holds due to the induction hypothesis. Using a
similar argument as [ = 1, from (4), (5§) we can again show
that Zyy(m,1) = Lir/A,, .y >1} = Tn(m,1)» Which concludes the
proof. ]

The success of Algorithm 1 therefore depends on condition
(3), which reveals the dependence of the sampler ® on the filter
h, and implicitly governs the sample complexity. If the entries of
® are drawn randomly, agnostic to h, the condition (3) may not
be satisfied with high probability. Therefore, it becomes essential
to explicitly tune the design of sampler ® to the structure of the
filter h.

B. Filter-Dependent Sampler Design Via Linear Program

It can be verified that condition in (3) is satisfied if and only
if for every m € [M], ¢,, belongs to the following set

Fm ={$eRP|¢Th; >0, i=1,2,... N,
N
" | hmoprs— Y. | >0,1<j<b-1
kzlkgjm,.j

Notice that F, ,(1m) is a polyhedral set, whose geometry depends
on the choice of the filter h. Hence the sampling operators ¢,,,
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can be designed to satisfy (3), by solving the following linear
program for every m:

find ¢,, subjectto ¢, € Fo"  (LPH)

For any ¢ € .F,(Lm), the scaled vector avg for any o > 0 is also

a valid solution, i.e., a¢p € F, ,(lm). Therefore, the sensing matrix
can always be scaled to avoid solutions close to 0, as well as
meet any desired power constraint. The following lemma, whose

proof is in the Appendix, ensures that F, ,(lm) is non-empty under
mild conditions on h.
Lemma 1: For any h € R¥ satisfying rank(H) = N and

M > 1, the set }",(:") is non-empty for every m € [M].

We obtain the following exact recovery guarantee for Algo-
rithm 1 by combining Theorem 2 and Lemma 1.

Theorem 3: Let ®* be a sensing matrix whose mth row is
a solution to (LPH), m € [M]. Consider noiseless measure-
ments z € RM acquired using ®* as z = ®*Hzx, where x €
{0, 1}N . Forevery M > 1, Algorithm 1 recovers x, regardless
of its sparsity.

C. Remarks on Noise Resilience and Sampler Design

The main objective of this letter was to achieve optimum sam-
ple complexity for exact recovery of binary signals in absence of
noise with a computationally efficient algorithm. In presence of
noise, the threshold € in Algorithm 1 should be optimized based
on the noise level. Increasing M increases the number of blocks
which is also important to promote noise resilience, since Algo-
rithm 1 prevents error propagation from one block to another.
Another important, but perhaps less obvious consideration is
the effect of block length on the dynamic range of the sampler.
By decreasing b (increasing M), measurement matrices with
smaller dynamic range can be designed, which leads to better
numerical stability and more reliable decoding. Determining the
optimal choices of b and ¢ based on the noise level and dynamic
range considerations will be of future interest. Other directions
will be to design ® by using a suitable optimization criterion

over the set ]-" (1nstead of a 51mple feasibility search), and
explore adaptlve filter-dependent sensing strategies.

III. SIMULATIONS

We consider binary signals of dimension N = 100, and FIR
filters of length L = 5. The filter coefficients are generated
independently as product of two independent random variables
h; = s;d; where d; ~ U[1,2], and s, is a Rademacher random
variable, and these coefficients are kept fixed throughout the
experiments. We compare the performance of Algorithm 1 and
the filter-dependent sampler design strategy (LPH) against two
recent binary compressed sensing algorithms (i) SDP relax-
ation [5] and (ii) box-constrained least squares with biased mea-
surement (LS-Bias) [22]. We generate noiseless measurements
of the form z = Ax. For our approach, A = ®H where ® is
obtained by solving (LPH). For SDP relaxation, the entries of
A are generated i.i.d as A; ; ~ N(0,1). For LS-Bias, follow-
ing [22], the entries of A are generated i.i.d as 4; ; ~ N (1,1),
where the non-zero mean of 1 acts as the bias. In the first exper-
iment, we study the noiseless performance of each technique as
a function of sparsity s. The probability of exact recovery, i.e.,
number of times & = x¢ over 100 Monte Carlo runs, is used as
the performance metric. Fig. 1 shows that the proposed strategy
exactly recovers x( regardless of the sparsity level (even when
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M < s), whereas SDP relaxation and LS-Bias, the probability
of exact recovery falls below 0.5 when s exceed M /2.

In the next experiment, we study the performance of SDP
relaxation and LS-Bias as a function of M, keeping the sparsity
fixed at s = 5 and 15. For the proposed strategy, we keep M
fixed at M = 10 (b = 10). Fig. 1(b) shows SDP and LS-Bias
require M = 25 (for s = 5) and M = 45 (for s = 15) to exactly
recover o whereas the proposed strategy is able to do so with
only M = 10 filter-dependent measurements.

Next, we evaluate the performance of the proposed strategy
in presence of noise. We generate noisy measurements of the
form z = Axy + n, where the additive noise n is distributed
as n ~ N(0, O’%IJW)- The signal-to-noise ratio (SNR) for each

x 2
H?j 00%‘2
consistent SNR across different approaches, we normalize the
measurement matrices (in our case, we normalize ®) such that
|lA ]2 is the same for each method, and o, is chosen according
to the desired SNR. In Fig. 2(a), we plot the /5 error averaged
over 100 Monte Carlo runs for each sparsity level. The proposed
algorithm achieves a significantly smaller error especially when
the sparsity increases. We operate in the regime s < M to ensure
sufficient measurements for all algorithms.

Finally, in Fig. 2(b) we compare the average run-time (aver-
aged over 10 runs) of all three algorithms as a function of N. We
choose s = 5, and M = [0.2N]. The run-time of Algorithm 1
is significantly smaller than the others, which were implemented
using off-the-shelf convex solver (CVX) [30].

sensing strategy is defined as 10 log; ( ) To ensure a

IV. CONCLUSION

We proposed a measurement matrix design framework for
recovery of binary-valued signals from compressed convolu-
tional measurements. The filter-dependent sensing matrix design
guarantees exact recovery in absence of noise, using a compu-
tationally efficient sequential block-wise decoding algorithm.
The overall strategy achieves an optimal sample complexity of
M > 1. The proposed framework also paves way for several
interesting future directions such as optimizing the algorithm
and measurement design parameters using the knowledge of

IEEE SIGNAL PROCESSING LETTERS, VOL. 29, 2022

noise level, and extending the strategy to more general alphabets
and different classes of filters.

APPENDIX
PROOF OF LEMMA 1

Proof: We will first establish that if F, ;(Ll) is non-empty then
]-",(lm) is also non-empty for every m € [M]. For each m, we

define a permutation matrix IT,, € RV as follows:
T(m—1)b+j> 1<j< b
Mx]; = Zj(m-1)p, (M —1)b+1<j<mb
xj;, otherwise

This permutation swaps the first and m*" block (of size b) of
the vector x. The set F, ,(Lm) is described by N + b — 1 inequal-
ities, which can be compactly represented as BIL,,H” ¢ >~
0. Here, > denotes element-wise inequality constraints, and
B=[Iy,B7|" is a (N +b—1) x N matrix, with B; ; =
lifi=j, B;j = —1if i <j, and O otherwise. If ]-",(11) is
non-empty, then 3 ¢, such that BH” ¢; = 0 (since II; =
Iy). Since rank(H) = N, we can always find ¢ € RP sat-
isfying H'¢ =TI H” ¢p,. Such a vector ¢ also satisfies
BIL,,H”$ = BIL, IZ H ¢, Y BH” ¢, > 0, since IL,, is
apermutation matrix with Hmﬂﬁ = Iy.Therefore, (ﬁ S ]-',(Lm),
whenever ]_-’(11) is non-empty.

We now establish that F, ,(11) is indeed non-empty, i.e., 3 ¢ €

RP, such that:
N

¢"h; >0Vi, ¢" [hj— > hy| >0,j€b-1] (6)
k=j+1

Define  wj:=h; -3 ," . hyjelb—1. Let &=
{hi,hy--- ;hy,uj,uz -+ ,up_1}, and consider its convex
hull Ay := conv(S) which is a (closed) polyhedral set.
Observe that there exists a ¢ € RY satisfying (6) if there exists
a hyperplane ¢’ x = ¢ (¢ > 0), which strictly separates the
point O from Ay, i.e., ¢Tx > 0forall x € Ay. Since Ay is a
closed convex set, the strict hyperplane separation theorem will
guarantee existence of the desired ¢ provided 0 ¢ Ay [31, Prop
1.5.3]. We show 0 ¢ Ay by contradiction. Suppose 0 € Ayj.
Then 3 o;,0; >0 satisfying ZZJ\; o + Z?;ll By =1,
and SN | ash, + Zg;ll fju; =0 which can rearranged

as (o1 + B + 500 (i + B = 0573 B ) i+
SN (ai - Z?;ll j) h; =0. Since rank(H)= N, we
must have

i—1
a1+ =0, (ai+Bi—> Bi| =0,

2<i<b-1,
j=1
b—1
%‘Z@ =0, b<i<N. (7
j=1

Since «;, §; are also non-negative, it can be easily verified that
(7) holds only if a; = 0, 5; = 0 for all 7, j. This contradicts the
fact that SN | a; + Z;’;ll B; = 1. Hence 0 € Ay, completing
the proof. |
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