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ABSTRACT

This paper considers the problem of recovering the joint sup-
port (of size K) of a set of unknown sparse vectors in R,
each of which can be sensed using a different measurement
matrix. Such models have wide applicability ranging from
communication to multi-task learning. We develop an adap-
tive strategy called Adaptive Joint Support Recovery (Ada-
JSR) that enables exact support recovery in the extreme com-
pression regime with only m = 1 measurement per unknown
vector while requiring a total complexity of no more than
K[log,(d)] measurements. Unlike existing support recovery
techniques which require suitable assumptions on the correla-
tion structure or distribution of the unknown signals in order
to operate in the regime m < K, we show that the flexibility
of adaptive measurement design alone allows us to operate in
this extreme compression regime, without the need for impos-
ing any correlation or sub-Gaussian priors. !

Index Terms— Joint Support Recovery, Multiple Mea-
surement Vector, Adaptive Sensing, mmWave Channel Sub-
space Estimation, Multi-Task Learning.

1. INTRODUCTION

The problem of joint support recovery in Multiple Mea-
surement Vector (MMV) models is extensively studied with a
variety of applications from source localization, sparse linear
regression, sparse spectrum sensing, to multi-task learning,
group testing [1, 2]. The goal is to identify the common sup-
port of unknown sparse vectors from compressed measure-
ments.

The most general setup of the problem concerns with re-
covering signals {x;}7_, € C¢ that share a common support
S < [d], |S] = K, from their compressed linear sketches
yvi = ®;x;, i € [n], acquired using sensing matrices ®; €
C™*4d When n = 1, the model reduces to the so-called Sin-
gle Measurement Vector (SMV) model, where information-
theoretic results show that m = O(K log(d/K)) measure-
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ments are necessary and sufficient to recover a determinis-
tic vector x [3-5]. In the MMV setting, recovering the x;’s
requires m > K measurements, since when m < K, the
non-zero values of x; cannot be uniquely identified even with
the knowledge of the true support S [6, 7]. Notice that in
the MMV setting, we allow x;’s to vary with ¢, as a result of
which two kinds of sample complexities emerge: (i) the di-
mension of the compressed sketch (m), which is henceforth
referred to as Measurements Per Vector (MPV), and (ii) the
number of measurement vectors (n). In practical settings,
these two types of sample complexities may denote different
physical quantities (such as space and time). The total number
of measurements mn is called the Total Sample Complexity
(TSC). Understanding various trade-offs between MPV and
TSC in the MMV model becomes an important consideration,
which does not arise in SMV models.

In a large number of applications, it is the common sup-
port S of x;’s that is of interest, not the recovery of individual
signals x,. Some examples include channel subspace esti-
mation/channel path estimation in mmWave communication,
source localization, spectrum sensing, group testing, and so
forth [1, 2, 8-10]. For SMV, m > K measurements are also
known to be necessary for support recovery [5, 11-13]. How-
ever, for MMV models, somewhat surprisingly, the MPV can
be reduced to m < K, under suitable assumptions on Xx;’s
and yet support recovery can be guaranteed (although the re-
covery of x;’s is no longer possible).

In a series of past works, we have shown that for the
standard MMV model when the measurement matrix is fixed
for all 7, (i.e. ®; = ®,Vi) certain correlation priors on
X;’s can be exploited to attain a significant reduction in
MPV (m « K). In such correlation-aware scenarios intro-
duced in our earlier works [14—17], the x;’s are modeled as
random sparse vectors whose non-zero elements are statis-
tically uncorrelated. Using suitably-designed deterministic
measurement matrix ®, the support can be identified with
m = Q(v/K) measurements, provided that n is larger than
a threshold that depends on the specific choice of ®. In
a recent work [18], it has been shown that when the mea-
surement matrices are allowed to change for every i € [n],
then an MPV of m > log? K is achievable with a TSC
of mn = O((K?/m)log(K(d — K))), provided non-zero
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elements of {x;}?_, are drawn i.i.d from a sub-Gaussian dis-
tribution and ®;’s are also i.i.d sub-Gaussian measurement
matrices.

Our Contributions: In this paper, we study if the flexibil-
ity of changing ®; alone can enable us to achieve an extreme
reduction/compression per measurement vector, (in particular
an MPV of m = 1) with a TSC of mn = K[log,(d)], with-
out the need for imposing any correlation or sub-Gaussian
priors on x;’s. In Sec. 3, we propose an adaptive strategy for
joint support recovery, called Ada-JSR, that sequentially and
adaptively designs ®;’s. In our setting x;’s can be sparse over
any basis A, which is very relevant for applications such as
mmWave channel sensing, and optical imaging, where A typ-
ically has a Fourier structure. Our simulations show that Ada-
JSR outperforms state-of-the-art non-adaptive techniques in
this extreme compressive regime.

2. PROBLEM SETUP AND BACKGROUND

Consider n unknown vectors x; € C% 1 < i < n, each
of which admits a sparse representation over a known basis
A e C¥%4 satistying x; = Az;, i =1,2---,n. The co-
efficients z;’s share a common support S < [d], |S| = K,
(K < d). We acquire n compressive linear sketches (or mea-
surement vectors) y; € C™, i € [n] of the unknown signals,
using sensing matrices ®; € C™*? as follows,

yi = ®;x;, i€ [n] (H
The goal is to determine the support set S given {y;}" ;.
Notice that since rank(As/) = K for any &' < [d] with
|S’| = K, the problem of joint support recovery is equivalent
to recovering the true subspace R(Ags) from (%) possible
choices, each of dimension K.

In our past and recent works [14-16], we have shown
that it is possible to recover S with a MPV of m = Q(\/f)
provided we utilize certain correlation priors on x;’s, and
® is suitably chosen (non-random designs). Very recently,
the idea of operating with a MPV of m < K has been ex-
tended to the case where ®;’s can be independently varied
across measurement vectors (leading to the so-called Gener-
alized version of the MMV model). In this setting, an MPV
of m > log?(K) was shown to be achievable with a TSC
of ©(K?/mlog(K(d — K))), provided certain sub-Gaussian
priors on the unknown x;’s are exploited, and ®;’s are chosen
independently.

In this work, we ask the question “Does the flexibility of
changing ®; per measurement vector enable us to achieve an
extreme compression in MPV with m = 1, without impos-
ing any correlation and/or sub-Gaussian priors on x;’s?” We
provide an affirmative answer to this question by proposing
an adaptive method called Ada-JSR, which achieves an MPV
of m = 1 and TSC of mn = K|[log,(d)| (under some mild
conditions on x;’s) via a sequential (and adaptive) design of
structured measurement matrices ®,, that are cognizant of the
structure of the basis A.

3. ADAPTIVE JOINT SUPPORT RECOVERY
(Ada-JSR)

The proposed Adaptive Joint Support Recovery (Ada-
JSR) strategy is inspired by techniques employed in adaptive
compressed sensing [19-21], which were previously devel-
oped for the SMV model (n = 1). For the generalized MMV
problem that is of interest to us, we show that adaptive tech-
niques can also yield significant improvements in the MPV
(enabling m = 1), and outperform non adaptive i.i.d designs
of sensing matrices used in [18].

3.1. Adaptive measurement design

The Ada-JSR strategy is summarized in Table 1. Here
we briefly explain the main idea. Each sensing vector ¢;
is associated with an ordered set of indices D; < [d] (here
each i corresponds to a tuple (j,k) in Table 1). Let D =
{u1,u2,- - ,up} < [d] be an ordered set such that u; <
ug < --- < u,. We define a function G(.) as follows,

G(D) = {uy,uz, - ,upe1}

2

Note that the output G(D) is also an ordered subset of [d].

Given a vector « € R? (which is provided as an input to
the strategy), for each i, we generate ¢; € C? via generating
a structured vector w; as follows,

¢i = (A"")w;, where [Wiliayc,) =0, )
wile,) = (e,

Using this ¢;, a measurement y; is acquired as y; = ¢7x;.
If y; # 0, we assign D; 11 = G(D;). Else, we assign D; ;1 =
D,;/G(D;), and repeat.

Our design of w; is motivated by the goal to determine if
G(D;)(NS = . Under some mild conditions on x;’s (as
stated in Theorem 1), the measurement y; acquired using the
designed w;, serves as an answer to this query:

then G(D;)(\S # &
then G(D;))S = 3)

if y; =0,

Theorem 1. Let S < [d], |S| = K, and {x;}_, be n un-
known vectors with x; = Az;, supp(z;) = S, Vi € [n]. Then
Ada-JSR satisfies the followings:

i) Ada-JSR terminates in no more than K d iterations, where

d = [log, d]
ii) If [2;]; > O foralll € S, i € [n], and a € RY is a positive
vector, then the output Si; of Ada-JSR satisfies

Sk =38

Sketch of proof. We provide a sketch of proof for (i) and (ii).
i) Note that at any stage k < K, |S;| < K, therefore the set
D} is non-empty. Also note that for j > 1,

. If DF =Dk,

|, If D¥ =Dk _ /Dk @
’ J Jj—1/"j5-1
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Table 1: Adaptive Joint Support Recovery (Ada-

JSR)?

1 Input: A o, d, K

2 k<0,

3 while |S;| < K do

# Beginning of Stage k:

4 7 <0

# Removing the detected indices
from the set of candidates

5 D’g <« [d]/Sk

6 | while |D| > 1do

So— &

1«1,

# Beginning of Iteration j:
# Measurement design
7 DY — G(D})
8 [Wﬂ[d]/ﬁf <0, [Wﬂﬁj - [a]ﬁjﬁ
5 B — (A~ H)wh
10 yi — (#5)"x;
# Decision—-making step
1 if |y;| > O then
12 D , < D}
13 else
14 | Dk, — DY/DE
15 | t—i+l,j<j+1

16 §k+1‘_§kUID§
17 | k<k+1

18 return S

Hence for some jj, (j, < d), we will have IDF | = 1 and
inner iterations for kth stage will end after jj, iterations. Fur-
thermore, it can be verified that D;-“ c D;{l, forall j >
1, k< K. Since Dy NS, = & = D NS = . and
therefore each stage finds a new index from [d],

She1] = Sk| +1, forallk < K 5)

Hence, the outer loop will terminates after /K stages, and
Ada-JSR terminates after a total of ZkK=_01 jr < Kd itera-
tions.

(i1) This statement can be proved via induction by show-
ing that |[S(\D}| > 0 forall j > 0, k < K by using
the fact that [z;]s,c are positive. In particular, it holds that
SN D;“k| > 0 and we have already shown that |D§€k| = 1.
This would imply that ka c Sand D}“k is a singleton with an

element of S. Therefore, <§k c Sforall k < K. This together
with (5) and the fact that |S| = K, implies that Sy = S. O

Remark. The positivity assumptions on [z;]s and « in
Theorem 1 are due to technical considerations, and in princi-
ple can be relaxed. We will tackle the more general case in

2The implementation of AdaJSR is available here

a future work. As illustrated in our simulations, Ada-JSR is
able to recover the support even when [z;]s and « violates
the positivity assumptions.

Remark. The focus of this paper was to establish a TSC of
order O(K log d) for exact support recovery. In the future, it
will be interesting to extend the problem to the case of noisy
measurements,

yi = or'x; + e, i€ n] (6)

where e; denotes the additive measurement noise. If the noise
statistics are unknown and only an upper bound on the noise
magnitude is available, our method can be suitably modified
to recover the support from such noisy measurements. In par-
ticular, a simple modification involves altering the decision-
making step by comparing the |y;| against a threshold 7 in-
stead of 0.

4. APPLICATION OF Ada-JSR IN mmWAVE
COMMUNICATION

In this section, we briefly demonstrate how Ada-JSR can
be applied to the important problem of Channel Subspace Es-
timation in Hybrid mmWave communication systems [8, 9].
According to the geometrical channel model, the SIMO up-
link channel between a single-antenna mobile station and the
multi-antenna base station is given by [8, 9]:

ht:Agt7 t:1727"'7n

Here g; € C¢ represents the channel gain, and

A = [a(6y), - ,a(04)] € C¥*? is a matrix of array steer-
ing vectors associated with quantized Angles of Arrivals
(AoAs), [a()]; = /™) [ = 1,... d. Notice that we
assumed the grid size to be same as the number of antennas.
Since in mmWave communication, it is common to deploy
a large number of antennas in a massive MIMO configu-
ration, this assumption does not significantly limit the grid
size/resolution. Due to the sparse nature of the mmWave
channel, the gains g;’s are typically assumed to be K-sparse
where K represents the total number of channel paths. In
low mobility scenarios, although the gains are changing,
their support S remains unchanged [9]. Therefore, the low-
dimensional channel subspace can be estimated by estimating
the support set S. We consider a practical scenario where the
hardware architecture is equipped with only a single Radio
Frequency (RF) chain. The signal at the output of the RF
chain is given by:

z = thAgt, t € [n] @)

Here w; denotes the beamforming vector used at the ¢-th time
slot. The proposed Ada-JSR strategy can be applied to (7)
where the beamforming vectors w; are designed adaptively
to aid channel subspace estimation with low training overhead
of at most K [log,(d)] training time slots. Note that Ada-JSR
departs from the adaptive strategy proposed in [22], where the
beamformers are selected from a pre-designed hierarchical
codebook requiring a total O(K?) training time slots with 1
RF chain. Furthermore, the resulting beamformers generated
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by Ada-JSR are computed “on-the-fly” which can lead to non-
hierarchical multi-lobe beamformers. The implementation of
such multi-lobe beamformers under RF hardware constraints
would be an interesting direction for future work.

5. NUMERICAL RESULTS
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Fig. 1: Probability of exact support recovery of Ada-JSR and the non-adaptive method
in [18] when (top) signals z;’s are drawn from i.i.d Gaussian distributions, and (bot-
tom) signals z;’s obey correlation priors [Corr: Correlated signals, AR: Autoregressive

model]. In both figures, ov; “ <% N(0,1),i = 1,2, ,d’.

In the first set of simulations, in order to compare the
performance of Ada-JSR with the joint support recovery
technique in [18], we assume A = I;. In Fig. 1 (top) we
show the probability of exact support recovery of Ada-JSR
for K = 10, and d = 100, as a function of the n when
[z:]s "% N(0,Ix). We compare Ada-JSR against the
non-adaptive method proposed in [18] with plots for dif-
ferent values of m (m > 1) overlaid. As can be seen, the
Ada-JSR only requires at most K[log,(d)] total measure-
ments, whereas the non-adaptive method needs a TSC of
order O((K?/m)log(d(K — d))). to achieve exact support
recovery, even with m > 1. Next, we assume the unknown
signal x;’s possess an additional correlation structure besides
the sparsity. In particular, we consider two types of sig-
nals which are encountered in many real-world applications:
1){z;}?_, are generated according to a vector Autoregressive

3 Although the Theorem 1 assumes « to be a positive vector, in simula-
tions, a random choice of « (in this case, from standard normal distribution)
also leads to successful recovery with high probability.

process, 2) Spatially correlated signals (non-zero correlation
between the entries of [z;]s). In Fig. 1 (bottom), we show
that such additional assumptions do not affect the sample
complexity of Ada-JSR. However, the performance of the
non-adaptive methods from [18] significantly degrades, since
z;’s generated as above violate the assumptions in [18].

Group-LASSO (n=300) Group-LASSO (n=70)

10 20 30 40 50 60 70 80 90 100

AdaJSR (n=70)
L

10 20 30 a0 50 60 70 80 90 100

Fig. 2: Left) Measurement vectors/Beamformers generated by Ada-JSR, visualized in
frequency domain. Here, d = 100, top: k = 1 < K = 5, bottom: k = K = 5.
Right) Channel path estimation performance (K = 10, m = 1,d = 100): Group
LASSO (n = 70, 300) vs Ada-JSR (n = 70). Here red shows true channel paths,

whereas blue shows the recovery results.

Finally, we employ Ada-JSR to solve a channel subspace
estimation problem as discussed in Section 4. Measurements

follow the model (7), where [g:]s RoY (0,Ix)and 6;’s are
chosen on a grid of size 100 from 0 to 27. In Fig. 2 (right)
we show that Ada-JSR can effectively resolve the channel
paths with 1 RF-chain and very limited temporal snapshots
(n = 70). However, Group LASSO [23], which is a well-
known non-adaptive method for joint support recovery, fails
to detect the AoA’s using m = 1 even with a TSC of 300
measurements.

In Fig. 2 (left), we also provide a frequency domain rep-
resentation of the measurement vectors (b?’s which are de-
signed by the Ada-JSR process. It is interesting to observe
that they mimic the beam patterns of multi-lobe beamformers,
and they look very different from the hierarchical beamform-
ers designed by Alkhateeb et al, in [22].

6. CONCLUSION

We showed that it is possible to recover the joint support
in a generalized MMV problem in the extreme compression
regime of m = 1 measurement per vector, while maintaining
a TSC of at most K[log, d] measurements, without the need
for imposing any correlation priors on the unknown signals.
In particular, we achieve this by proposing an adaptive sens-
ing strategy (Ada-JSR) which designs the sensing operators
sequentially and adaptively. Numerical simulations demon-
strate the effectiveness of our approach, and its potential ap-
plication in mmWave channel sensing with low training over-
head, which can be an exciting direction for future research.
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