ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) | 978-1-6654-0540-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICASSP43922.2022.9746772

Initialization-Free Implicit-Focusing (IF?) for
Wideband Direction-of-Arrival Estimation

Jake Millhiser, Pulak Sarangi, Piya Pal
Department of Electrical and Computer Engineering, University of California, San Diego

Abstract—This paper proposes a novel method to focus or align
array manifolds at different frequencies to a single reference
frequency in wideband direction of arrival (DOA) estimation.
Unlike existing methods, our focusing can be performed without
explicitly constructing focusing matrices, or requiring any pre-
liminary DOA estimates. Instead the focusing is done implicitly
by obtaining focused measurements as the solution to a rank
minimization procedure. This paper also provides theoretical
guarantees for exact focusing via rank minimization. We call this
procedure Initialization-Free Implicit-Focusing (IF?). Numerical
simulations are provided to demonstrate the resilience of IF? in
various SNR regimes compared to past and recent wideband
DOA recovery methods, and its lack of error saturation in high
SNR regimes'.

Index Terms—Wideband, direction-of-arrival (DOA) Estima-
tion, Focusing, rank minimization

1. INTRODUCTION

The problem of direction-of-arrival (DOA) estimation has
long been an important topic with decades of active research
due to its extensive range of applications in radar, sonar, array
processing, radio astronomy, communications [1-3], among
others. Narrowband DOA estimation has been the subject
of study for a long time, with many popular methods like
MUSIC and ESPRIT seeing wide use [4, 5]. However, in many
cases the narrowband assumption is often not valid due to the
signal bandwidth being comparable to the carrier frequency
[6], and thus wideband DOA estimation becomes unavoidable.
A simple way to extend narrowband methods to wideband is
to follow incoherent signal subspace techniques (ICSS) [7], in
which the wideband signal is split into multiple narrowband
signals, allowing narrowband DOA estimation algorithms to be
applied individually, and the results averaged. While providing
a simple solution in high SNR, ICSS methods are extremely
sensitive in low SNR, and easily ruined by a single outlier [8].

In their seminal work, Wang & Kaveh [9] proposed an
alternative wideband DOA method called coherent signal sub-
space (CSS) methods. They demonstrate the existence of (non-
unique) focusing matrices which allow for array manifolds at
different frequencies to be aligned (or focused) to a single
frequency. This allows the use of well-studied narrowband
approaches for DOA recovery in a wise manner that exploits
the shared DOA’s of each of the narrowband signals, while
exhibiting better performance at lower SNR’s due to coherent
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combining. However, focusing relies on the availability of
preliminary coarse DOA estimates. Additionally, poor choice
of focusing matrices can yield loss of SNR due to noise
amplification or possible alignment of the noise subspace
with the coherent signal subspace [10]. To remedy this, it is
common to find focusing matrices from the class of unitary
matrices, in a method known as rotational signal subspace
(RSS) focusing [10]. While this does address problems with
SNR loss, it can cause saturation of error as SNR increases
(imperfect even when noiseless).

In recent times, compressed sensing (CS) based meth-
ods have been developed for Wideband DOA estimation by
formulating it as a group sparsity (GS) recovery problem.
Unfortunately, GS methods are known to be computationally
expensive, which methods like TS-OG [11] attempt to over-
come. Focusing matrices can be still helpful in CS problems
as a means to reduce the complexity of the GS problem
by bringing all measurements to a single common manifold.
Motivated by this, DD-F-OG [12] is proposed as a more
computationally efficient wideband CS-based method due to
its utilization of focusing. However, DD-F-OG still requires
coarse DOA estimates, and is not guaranteed to achieve perfect
focusing even in the absence of noise.

Our Contributions: We propose a novel approach to fo-
cusing that overcomes the above limitations of using focusing
matrices. We bypass the need to construct focusing matrices,
and instead perform focusing “implicitly” by casting it as
a rank minimization problem. We denote this method as
Initialization-Free Implicit-Focusing (IF%). We avoid the need
to have any initial DOA estimates, nor do we require the use
of any grid of DOA’s. We also provide theoretical guarantees
for exact focusing using this rank minimization procedure.
Our procedure additionally remedies any error saturation that
occurs in higher SNR which may result from the use of coarse
DOA estimates. Numerical simulations show the benefit of
our implicit focusing, by demonstrating resilience in low SNR
similar to RSS initialized with the knowledge of true DOAs,
and the lack of any error saturation in high SNR. We follow
the standard convention that for any vector x € CV and a set
Q = {i1,i2, -+ ,ip} S [N], the notation xq € CP denotes a
subvector of x given by [xq]; = [x]i;,1 <j <p.

II. PROBLEM FORMULATION AND BACKGROUND

Consider the problem of identifying the direction of arrival
(DOA) of K wideband signals, {s)(t)}X , with frequency
bands supported over [ fiow, fhigh]- Let @ = [01, 02, -+, 0x]"
where 6;, denotes the DOA of the kth source. We consider
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an M-sensor uniform linear array (ULA) where the distance
between the mth sensor and the reference sensor is given by
(m—1)d, d = Amin/2 (corresponding to the largest frequency
fhign). The received signal at the mth sensor at time ¢ can
be represented as z,,(t) = Z,iil Sk(t — T (0k)) + Wi (2)
where 7,,(0r) is a sensor and DOA-dependent time de-
lay (with the first sensor chosen as the reference) obeying
T (Og) = M and w,, (t) is the additive noise. Suppose
the measurements {x,, (t)}*_, are observed over a sufficiently
long time window, and sampled at a frequency fs which
is larger than their bandwidths, producing discrete samples
Tm[n],m = 0,1,2,...,7. Most wideband array process-
ing techniques divide the signal z,,[n] into non-overlapping
blocks of D samples each, and apply D—point DFT per block
[9, 11, 13]. The ith DFT coefficients for the pth block is
modeled as:

xﬁ)M) (fi) = A(M)(fha)sp(fi) + nP(fi) M

where A(M) (f’u 6) = [a(fi7 01)’ a(fia 92)7 ) a(.fia QK)] €
CM*XK is the array manifold at frequency f; corresponding to
ith DFT bin and

m

[a(fi, O0)]n = € o O @
Further, n,(f;) denotes the measurement noise, as well as
any modeling errors due to finite observation window and/or
violation of bandlimited assumptions. For rest of the paper,
we will consider only one block (p = 1), and suppress the
dependence of x(™)(f;) on p.

A. Review of Focusing

Historically, the problem of recovering DOA’s from wide-
band signals was addressed by following the coherent signal-
subspace method (CSM) [9]. In this procedure, the signal
subspaces of each narrowband frequency bin, ¢ = 1,--- | D,
are aligned to a single reference frequency, f.r. It was demon-
strated in [9] that there are infinite such choices of focusing
matrix T(f;) which are capable of exact focusing, i.e.

A (frr, 0) = T(f;) AP (f,,0) )

Once these focusing matrices are found, the measurement
x(f;) could be focused to the reference frequency by applying

Koo fis fret) = T(f)x D () 4)
= AN (fir, 0)s(f;) + T(fi)n(fi)
In [10], the Rotational Signal Subspace (RSS) focusing ma-

trix was described as a solution to the constrained optimization
problem, where 0 is an initial DOA estimate:
min

(M) Ay A 4
T(f:) IA (frer, 0) — T(fi) A (fi, O)lp - (5)

st. TH(fH)T(f;) =1
A solution to (5) is given by T*(f;) = V(f;) U (f;), where
U(f:), V(f;) are the left and right singular vectors of the
. \H
matrix ACD(f;, 0) (AP0 (fr, 9))
measurements are obtained, they can be coherently combined

to allow for the use of traditional narrow-band techniques like
MUSIC or ESPRIT to get a refined estimate of the DOA’s.

. Once a set of focused

With recent advances in sparsity-based methods, further
innovations to the Wideband DOA problem have been devel-
oped and studied [11, 13]. A new approach called DD-F-OG
(Dynamic-Dictionary Focused Off-Grid) that combines focus-
ing with sparsity-based DOA estimation was proposed in [12].
However, DD-F-OG still relies on the explicit construction of
focusing matrices, whose quality is dependent on the initial
DOA estimates.

III. INITIALIZATION-FREE IMPLICIT FOCUSING

In this section, we present a novel focusing method which
overcomes the following restrictions present in the previously
discussed methods: 1) our method is initialization-free, not
requiring any potentially inaccurate DOA estimates 2) our
method is implicitly formed, not requiring the construction
of any focusing matrices. This is achieved by casting focusing
as a rank minimization problem. We begin by providing theo-
retical guarantees for the extrapolation of low-frequency fiow
to higher-frequency j fiow for some integer j > 1. This will
lend itself to a procedure we call Initialization-Free Implicit
Focusing (IFZ) for the general focusing of measurements i fioy

to j.flow'
A. Theoretical Guarantees

Given an integer [, define

xD(f;) == AD(f;,0)s(f;) (6)

Using this notation, the noiseless measurements from M
sensors at frequency f; can be written

xM(f) = A (f;,0)s(f;) (7

For an integer 1 < P < M, measurements x™)(f;) can be
arranged to form a P x (M — P + 1) Hankel matrix

T T2 TM—-P+1

X9 T3 v TM—P42
Hp(xPD(f) = : : . : (8

rp Tp+1 T M

where z; is the jth entry of x(M)(f;). It can be shown that
H p(X(M ) (fi)) will admit a Vandermonde decomposition [14]

He(x M (1)) = APY(f,0)8 (ACP(5,0)) " ©)

where S = diag(s(f;)), and (-)7 denotes the transpose. Let
[M]:={1,---, M} for some integer M.

Lemma 1. If K < min(P,M — P + 1), then
rank(Hp(xM)(£:))) = K, and any column of Hp(xM)(f;))
can be uniquely represented as a linear combination of its first
K columns.

Proof. From the decomposition in (9), both A(")(f;,0) and
AM=P+1)( £, @) are Vandermonde with distinct DOA’s, and
K <min(P,M — P +1)

rank(A7)(f;,0)) = rank(AF)(f;,0)) = K

The first K columns of Hp(xM)(f:))

have the
form  HpxM(fi). 1.6 = HP(XEflKﬂ](fi)) =

AP)(f,0)8 (A)(£,,0))" which can be verified to

(10)
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be rank K due to the Vandermonde structure. Thus, the
first K columns form a linearly independent set. Note
that rank(Hp(x™)(f;))) < K, due to (9). Therefore,
rank(Hp(xM)(f;))) = K and the first K columns serve as
a basis for R(Hp(xM)(£:))). O

We now move on to prove the main theorem of this paper.

Theorem 1. Consider measurements x™)( f;) of the form (7)
with K < % Then for any integer N > M, P = [%], and
Q = [M], the solution to the rank minimization problem

v = arg min rank(Hp(y™N)), s.t. ys()N) x M0 (f:)
y(N)G(CN (11)

satisfies §N) = xN) (), where x(N)(£;) is given by (6) (with
I = N) and it represents the extrapolated measurements.

Proof. From the constraint yf}(ﬂ = xM(f;), Hp(™)
contains a rank K top left sub-matrix

Moy = MO )

X X 12

where C = [4], and from (9) HoxM) =
A (f:,0)8 (A(M_C“)(fi,O))T. Since there is a rank-
K block Hc(x™)) contained in Hp(F™) we have
rank(Hp(§™)) > K. Recall that, from (9), Hp(x™)(f;))

will admit Vandermonde decomposition
T
HeM(£)) = AP (£, 0)S (AN (£,0) (13)

Since K < % and N > M, (13) satisfies Lemma 1,
rank(Hp(xNV)(f;))) = K. Thus xV)(f;) is a feasible point
and attains the minimum rank K. Any optimal solution §¥)
of (11) must satisfy rank(Hp(3N))) = K.
We will now provide a proof that (V) = x(V)(f;) through
induction. Suppose the first M + j — 1 entries of §(™) and
N(f;) are equal
~(N
yEM)ﬂ 1] =
ie.for D; = [M” 1] the following top left D; x (M +j—D;)
sub-matrices of Hp(y(N)) and Hp(xN) (fl)) satisfy

e

[M+J 1](fi) (14)

(N)
X(M+j-1] (f))
The base case for induction (j = 1) is given by the constraint
of (11).

Now for j > 1, consider the case where M + j — 1 is odd.

) . ~(N

The D; x (M + j — D;j + 1) sub-matrix Hp, (yEM)Jrj]) of
Hp(FN)) is one which contains an extra column to the right

of Hp, (yfljb\g:»jfl])

Mo, (F{are 1) = M, (x (15)

Hp, (30,
ol - Mo Sl v | ao
IDjs- s TM+j—1 YM+j
where v = [xN1+j_Dj+1,---,xM+j_1]T. Note that

rank (HD (yfﬁlj])) < K since it is a sub-matrix of

Hp(3™)), whose rank is K. Further from Lemma 1, the

above matrix contains a rank-K block Hp, (yfﬁlj 1) with

first K columns being linearly independent. Therefore we can

conclude that rank (’H D; (yfﬁlj]))

can be represented as a linear combination of first & columns:

= K, and its last column

v
17
yM+j] {17)
last

(N
Hp, (yED3+K71])C = [A

Similarly, by representing the column  of

Hp,(x [M)+ ](fz-)) we have:

(N) v
Mo, (X[p, 4 1) (fi))d = [$M+j] (18)
As a result of the induction assumption (14):
~(N N
HD,-q(nyLj,l]) = Hp, 1 (X3t (f)  (19)

Since K < &

(N
Hp,-1(x [D3+K_2] (fi))) of HD_jfl(y[Mﬂ_l]) are linearly
independent. By removing the last row from (17),(18) we have:

< (N) (N)
v="Hp;1 (y[D_,-+K—2]) c=™MHp;1 (X[D_1+K—2](fi)) d
Ho, 1 (X o ic (/i) (c=d) =0=c=d

< Dj, we apply Lemma 1, the first & columns

Finally, since ¢ = d, from (15),(17) we have yfﬁlﬂ =

EJJ\VA_] (fi). Similar arguments as above (starting from (16))

can be repeated when M +j—1 is even by adding a row instead
of a column in (16). Thus by induction over 1 < j < N — M,
we have §(V) = x(V)(f;). 0

B. Proposed Approach

We propose an alternative focusing method that does not
involve finding focusing matrices T(f;), for the relevant
frequency bins. Signals of the form (1) can be implicitly
focused to different frequencies by exploiting the structure of
the measurement matrix A (f;, @) in a procedure motivated by
the result of Theorem 1.

Given the measurement x(*)(f) at frequency f ¢
[fiow, fnign] as defined in (1), then corresponding measure-
ments focused to a frequency f’ will then have the form

M ,

Koo (> [') = ACD(f,6)s(f)

Let o = eI (fiow/ fuien) 5i0(0x)  Then it can be readily
verified that elements of the manifold at fi,, are given by
[A(M ) (fiow>0)],, & = o' Any other frequency f; for integer

> 1 will have the form fi = ifiow. We can write manifolds
as sub sampling of A(“”)(flow7 0)

(A0, = [A G 0],

foril<m<M,1<k<K

1) Focusing from fi,, to ify,: Informed by (21), the
focused measurements will have elements which are sub-
sampled from extrapolated measurements x“M)( fioy,)

(20)

2n

[ lfiowsifin)] =[x (fin)| @)
for 1 < m < M. We propose to determine x“*) ( fi,,,) € C*M
by solving the following rank minimization problem
M — arg r](rnkrl) rank(H p, (y “))) (23)
i

s.t. HyE% - XM(.flow)HZ <€
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Fig. 1: (a) Average NRMSE VS Noise Power for measurements from all frequency bins
focused to bin 10 using various methods. (b) NRMSE vs. Frequency for bins 5 to 9 when
focused to bin 10 using different methods in presence of noise with 2 = 2.15x 10~ 2.

where P; = [iM/2]. As shown Theorem 1, solving (23)
with noiseless measurements (¢ = 0) will indeed recover
XM (fiow), ie. §OM) = xEM) (£ ) We obtain an estimate
for focused measurements ifﬁi( fiow, ©flow) by sub-sampling
y<iM> according to (22).

[&t(i{l)s(flowa fi)] = [S’(ZM)],

m m

24)

2) Focusing from i fi,, to j fion: In this case, we start with
measurements x() (i fiow)- We propose to focus from i fioy to
Jfiow(§ > 1) in two steps.

First, perform an interpolation procedure to obtain interme-
diate measurements x(**) (fi,,,) by solving the following rank
minimization problem

M) — arg min  rank(H p, (y“*)))

y (M)

st [y = xM (fiow)l2 < €

(25)

where Q; = {pi | 0 < p < M —1}.2 Second, the extrapolation
procedure from Section III-B1 may now be performed to
focus M) = KM () to jfiow and yield an estimate
iﬁ(ﬁ)s( fi, f3)- If (25) succeeds, then this step will also succeed
through Theorem 1. In practice, solving (23) and (25) is
difficult, and known to be NP-Hard. For this reason, we will

use nuclear norm (| - ||«), which is a convex surrogate for rank.

IV. SIMULATIONS

In our first set of simulations, we consider X = 2 and
M = 12 sensors. We only consider the scenario with p = 1
in our simulations. We assume the DOA’s lie on a Ny = 100
uniformly spaced grid between 0° and 60°. On this grid, the 2
DOA’s correspond to grid indices 30 and 60. We consider D =
32 DFT bins, with the wideband signals occupying frequency
bins 5 to 10. In simulations, complex Gaussian noise is added
to the measurements. Signal amplitudes for each DOA and
DFT bin are drawn from a uniform distribution between 1 and
2. Our method is compared to DD-F (DD-F-OG) which is pre-
sented in [12] after 4 iterations of re-focusing. For initial DOA
estimates in DD-F, a coarser grid of 50 points between 0° and
60° was used, with initial step-size r = 3°. Only the first step
of DD-F is performed to predict DOA’s for refocusing, since

2In Section IV, we provide simulations which demonstrate that the inter-
polation step succeeds.

I f 1.00 1.00 P
-&= DD - B !
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o115 025 025 : .
] 00 .0
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Fig. 2: (a) Relative error per entry of example measurement from bin 5 focused to bin 10,
o“ = 0.01. (b) Example of DOA recovery. MUSIC is applied to focused measurements
from various focusing methods with additive noise of o2 = 0.01. True DOA’s indicated
with dashed black line.

the grid bias vector ax = 0 for our on-grid setting. We also
compare against the classic RSS using a simple beamformer
for initial DOA estimates. RSS focusing using the true DOA’s
is also provided as a baseline for comparison. Our error metric
is the Normalized Root Mean Squared Error (NRMSE) given
by NRMSE(fcfocumeocus) = H*rocus(Hf,;f{;iz;c?iu)’“(;’f/)H2 where
Xiocus(f> f') and Kpoeus(f, f/) denote the true and predicted
focused measurements respectively. Fig. 1a shows the resulting
average RNMSE errors for focusing bins 5-9 to bin 10 vs.
noise power, averaged over 100 Monte Carlo runs. Unlike
other methods, IF? focusing is initialization-free, and doesn’t
show bias to initial DOA estimates. Hence its error does not
saturate as SNR increases. IF? also demonstrates resiliency
in lower SNR regimes, both outperforming DD-F and beam-
forming techniques, and obtaining performance closer to RSS
with knowledge of true DOA’s. Fig. 1b shows the NRMSE
errors that result in focusing measurements with noise power
02 = 2.15 x 1072 to frequency bin 10. For all the bins,
IF? focusing consistently yields the best performance, even
outperforming RSS with knowledge of the true DOA’s.

Another experiment was performed with K = 3 DOA grid
indices 60, 80,95 and o2 = 0.01. Fig. 2a shows the relative
error for each measurement entry when focusing a bin 5 signal
to bin 10 with 02 = 0.01 noise. IF* clearly demonstrates
the ability to focus with lower error even in the presence of
noise. Finally, an experiment to evaluate DOA recovery was
performed with K = 2 DOA grid indices 30, 70. Fig. 2b shows
recovered DOA’s using the same DOA estimation method,
namely narrowband MUSIC, on the focused measurements
provided from various algorithms. RSS with Beamformer
DOA estimates does not exhibit good performance. DD-F
also does not demonstrate reliable results. Both RSS with
knowledge of True DOA’s, and IF? are able to sufficiently
resolve the DOA’s.

V. CONCLUSION

We proposed a novel method for implicitly focusing array
manifolds at different frequencies to a reference frequency,
which can be used for wideband DOA estimation. Unlike exist-
ing methods, our technique requires no initial DOA estimates
and theoretical guarantees for exact focusing are also estab-
lished. Numerical simulations demonstrate the superiority of
our methods compared to past and recent focusing techniques.
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