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Large databases of Direct Numerical Simulation (DNS) of spatially-developing turbulent
boundary layers (SDTBL) are scrutinized. The major purpose is to evaluate compressibility
effects on power spectra of velocity fluctuations at the supersonic ("∞ = 2.86) and hypersonic
("∞ = 5.0) regime. An incompressible SDTBL is also examined. In all cases, the Reynolds
numbers are sufficiently high in order to obtain a noticeable separation of turbulent scales.
Adiabatic wall conditions are assumed for the compressible cases; whereas, an isothermal wall
condition is prescribed for the incompressible flow (temperature regarded as a passive scalar)
over Zero-Pressure Gradient (ZPG) flat plates. Turbulent inflow information is generated via
a dynamic rescaling-recycling approach [1], which avoids the use of empirical correlations
in the computation of inlet turbulent scales. This approach has been recently extended to
compressible wall-bounded flows [2]. In general and based on power spectrum analysis, we
observe a reduction in the dimensions of the coherent structures as Mach number increases.
Further, as the Mach number grows, the structures become narrower and their downstream
influence is notably diminished. The inner peak of the streamwise component of the Reynolds
normal stresses, (D′D′)+, coincides with the major peak in the pre-multiplied spectra at roughly
H+ = 10 − 15. A less energetic but obvious secondary peak is found in the region H+ ≈ 100-
150 of the pre-multiplied spectra of D′. Further, the proposed inflow condition generation
method proposed by Araya et al. [1, 2] was demonstrated to be highly robust with a minimal
development region (in the order of 2.5X′B at most) and an energy spectra resembling that of
a fully developed flow. Interestingly, the outflow condition selection was found to have a more
detrimental impact on the quality of the energy spectra.

I. Nomenclature

'X2 = Momentum thickness Reynolds number
"∞ = Freestream Mach number
*∞ = Freestream velocity
*+
+�

= Van Driest transform velocity in wall units
)∞ = Freestream temperature
)A = Recovery temperature
)F = Wall temperature
aF = Wall kinematic viscosity
Dg = Friction velocity
% = Mean Pressure
) = Mean Temperature
: = Thermal conductivity
2? = Specific heat at constant pressure
#C = Number of Temporal Samples
#B = Number of Additional Smoothing Samples
#G = Number of Nodes Along the Streamwise Direction
#H = Number of Nodes Along the Wall Normal Direction
#I = Number of Nodes Along the Spanwise Direction
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` = Molecular Viscosity
d = Density
X = Boundary layer thickness
g = Shear stress
Subscript =
8=; = inlet
A42 = recycle
A<B = Root-Mean Squared
′ = Superscript denotes fluctuating components
∞ = Subscript denotes freestream quantities

II. Introduction
Unsteady spatially-developing turbulent boundary layers (SDTBL) are the rule rather than the exception in a wide

range of disciplines and engineering applications, showing non-homogeneous conditions along the flow direction.
Furthermore, compressible SDTBL’s are ubiquitous and play a key role in the transport phenomena of high speed flight
conditions with applications ranging from space planes, to future commercial planes, military technologies, space
exploration technologies, among many others. A key aspect of the understanding and modelling of SDTBLs is the
distribution of energy among the length and time scales. Also, to reduce the cost of high spatial/temporal resolution
Direct Numerical Simulation (DNS) and to circumvent starting the simulations from the laminar stage (as well as
to spot high Reynolds numbers), physically accurate turbulent inflow conditions must be prescribed with a realistic
energy spectrum. Additionally, investigation performed during the past decades has conclusively proven the presence of
organized motions in turbulent boundary layers, so called coherent structures (CS). A coherent structure may be defined
as a region or parcel of fluid where the flow fluctuations are highly correlated among them. These structures can be
considered the core of turbulent boundary layers, and significant effort has been invested to describe their development.
Further, these large scales of motion follow highly complex, non-linear dynamics where the level of coherence should
be quantifiable [3]. Identifying these very-large scales of motion (VLSMs) can be done in a myriad of possible ways
depending on how the problem is stated. One such avenue is to employ energy spectra [4] and two-point correlations [5]
which can be efficiently computed with low memory requirements via high-performance inner products [6] or a more
memory-intensive (but higher fidelity) FFT-based convolution [7, 8].
The nature and existence of these organized structures was explored early by Spina and Smits[9]. Rempfer and Fasel
[10] also explored the nature of these coherent structures in a volumetric space. They employ proper orthogonal
decomposition which translates the problem of computing these structures into an Eigenvalue problem. Closely related
work by Aubry et al. [11], further reinforced the existence of a link between low-dimensional chaotic dynamics and
properties of realistic turbulence. Smits et al. [12] also explored the structure of the turbulent boundary layer with
a special focus on comparing the subsonic and supersonic SDTBLs. They concluded that albeit many similarities
(especially along the spanwise direction) are indeed present there exists drastic differences such as variations in length
scales. Work by Ringuette et al.[13], explored volumetric coherent structures for a Mach 3 boundary layer and
contrasted it with a subsonic boundary layer. Although they used several methods for visualizing the above mentioned
VLSMs, and the two-point correlation technique was among the selected methodologies. Later work by Elsinga et
al.[14] sought to explore the organization of vortex for high Reynolds supersonic SDTBLs. They also employed the
autocorrelation function and provided conclusions related to the periodic nature of these coherent structures, their
lengths and inclinations. Although a large portion of work previously outlined has been computational in nature, work
by He et al. [15] visualized these coherent structures for an experimental supersonic boundary layer over a flat plate.
Another seminal contribution by Sillero et al. [16], which was further elaborated by Jimenez [3], explored in detail
the 3D nature of turbulent coherent structures by the two-point correlation in incompressible flow. Dharmarathne et
al. provided a more applied view of the impact of turbulent coherent structures in passive scalar transport [17] via
DNS of incompressible channel flows. More recently, TPC’s have been employed to assess wall-temperature effects at
hypersonic conditions [18] at low Reynolds numbers.
As previously mentioned, the assessment of VLSMs can also be achieved by exploring the energy spectra. The work by
Hutchins and Marusic studied the influence of VLSMs in near-wall turbulence through the exploration of the energy
content at different scales [4]. Another work by Hutchins and Marusic [19] explored the use of the pre-multiplied energy
spectra, among other techniques, for the identification of coherent structures in the log region of a turbulent boundary
layer. Álamo et al. explored the intensity and contributions of Reynolds shear stresses by studying the pre-multiplied
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DE-cospectra [20] which highlights the versatility of the approach. This approach has also been used to discriminate and
assess the effects of freestream turbulence from structures within the boundary layer by Sharp et al. [21]. Sciacovelli et
al. also explored near wall structures of supersonic boundary layers for dense gases in a channel flow via DNS by using
multiple techniques including pre-multiplied spectra. More recently, Huang et al. leveraged pre-multiplied pressure
energy spectra to identify peak intensity in the near-wall and freestream at hypersonic conditions [22].
In the present work, we conduct a study of the compressibility effects in the normalized and pre-multiplied energy
spectra at both supersonic and hypersonic conditions. Further, we also assess the strength of the turbulent inflow
condition generation method proposed by Araya et al. [1] [2]. This latter objective will be assessed by studying the
distribution of the energy spectrum near the inlet and comparing it with the energy spectrum halfway through the
computational domain. Also, we compare the characterization of coherent structures obtained by pre-multiplied spectra
with full domain two-point correlations.

III. Governing Equations
Assuming continuum mechanics and neglecting non-equilibrium effects yields the usual system of non-linear

partial differential equations known as the compressible Navier-Stokes equations [23]. Conservation of mass becomes
non-trivial for compressible flow with strong pressure gradients, compression and expansion waves where density varies
abruptly. The classical conservation equations are presented in eqns. 1, 2 and 3.
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where d is the density; D8 is the velocity in the 8 direction; ? is the pressure; f8 9 is the stress tensor which we model as a
linear stress-strain relationship,
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is the strain rate tensor, ` is the kinematic viscosity; and @8 is the hear flux due to thermal

gradients in the 8 direction and is modelled in the present work by Fourier’s law, @8 = ^ m)mG8 where ^ is the thermal
conductivity; 4 is total energy per unit mass which we assume to follow:

4 = 2E) +
1
2
D8D 9 (5)

where 2E is the specific heat at constant volume. Finally, we also assume the fluid viscosity to vary following a Power
Law (see Equation 6).
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The equations are all presented in their strong form whereas the weak form is used in the finite element solver. The
present work leverages the PHASTA flow solver [24]. The finite element scheme is based on the streamline upwind
Petrov-Galerkin (SUPG) finite element discretization in space with a second order accuracy [25, 26]. The non-linear
system of equations are solved using an iterative Krylov solver in space while being fully implicit in time (2=3 order
accurate). Further details regarding the finite element method employed are beyond the scope of this work, readers are
referred to [27].

IV. Numerical Details

A. Turbulent Inflow Conditions, DNS Details and Validation
Modeling aspects of the physics of SDTBL via DNS must account for the following aspects: i) the mesh resolution

must be adequate in order to capture the smallest turbulence momentum/thermal scales (Kolmogorov and Batchelor
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scales), ii) the computational domain should be large enough to contain even the largest scale motions (LSM) or
“superstructures" (Hutchins & Marusic [19] [4]), iii) as previously articulated, realistic time-dependent inflow turbulent
fluctuations must be injected, Araya et al., [1] [2], and, iv) connected to the previous point, the turbulent inflow
fluctuations must possess the proper power spectrum to minimize the “inlet developing section” (ideally, this section
should be in the order of 2-3 X8=;’s). In a nutshell; first, adequate turbulent inlet conditions permit simulating even larger
Reynolds numbers (i.e., large scale systems) since resolving the laminar-transition stage is not required anymore; and,
second, the streamwise domain length is optimized insomuch as the “non-physical” developing section is curtailed. In
the present article, the inlet generation methodology proposed by Araya et al. [1] is used, called Dynamic Multiscale
Approach (DMA), which was recently extended to compressible SDTBL in [2] and [28]. It is a modified version of the
rescaling-recycling technique by Lund et al. [29]. Extensions to compressible boundary layers have also been proposed
by Urbin & Knight [30], Stolz & Adams [31] and Xu & Martin [32]. The present inflow generation technique avoids
using empirical correlations to connect the inlet friction velocity to the recycle friction velocity, as will be described
later in the manuscript. A schematic of the hypersonic computational domain is shown in fig. 1 where iso-contours
of instantaneous density can be observed. The fundamental idea of the rescaling-recycling method is to extract the
flow solution (mean and fluctuating components of the velocity, thermal and pressure fields for compressible flows)
from a downstream plane (called “recycle") and after performing a transformation by means of scaling functions, the
transformed profiles are re-injected at the inlet plane, as seen in figure 1. Actually, it has been observed that just fixing the
mean pressure at the inlet plane produced more stable and accurate numerical cases than adding pressure fluctuations.
According to [33] and [30], “the static pressure can be assumed constant at the inlet plane since the pressure fluctuations
are small compared to the static temperature fluctuations". Instantaneous density profiles (mean plus fluctuations) are
indirectly imposed due to the equation of state for a perfect gas. This can be visually verified from fig. 1. The principal
idea of implementing scaling laws to the flow solution is to convert the streamwise in-homogeneity of the flow into
quasi-homogeneous conditions. The Reynolds decomposition is implemented for instantaneous parameters, i.e. a
time-averaged plus a fluctuating component:

D8 (x, C) = *8 (G, H) + D′8 (x, C) (7)

C (x, C) = ) (G, H) + C ′(x, C) (8)

The SDTBL is divided into inner and outer zones, where different scaling laws are applied [1] in a multiscale fashion. A
blending or weight function is used to create composite instantaneous flow profiles for smoothly merging inner and outer
zone contributions. The projection of flow parameters from the recycle plane to the inlet is performed along constant
values of H+ (inner region) and H/X (outer region). Figure 1 depicts the schematic of the computational domain in the
hypersonic regime at high Reynolds numbers. In the re-scaling process of the flow parameters [1], the ratio of the inlet
friction velocity to the recycle friction velocity (i.e., _ = Dg,8=;/Dg,A42) is required. The friction velocity is defined
as Dg =

√
gF/d, where gF is the wall shear stress and d is the fluid density. Since the inlet boundary layer thickness

must be prescribed according to the predicted inlet Reynolds number, prescribing also the inlet friction velocity would
be redundant. To solve this problem, Lund et al. [29], Urbin & Knight [30] and Stolz & Adams [31] employed the
well-known one-eighth power law that connects the friction velocity to the momentum thickness in zero-pressure
gradient flows; thus, Dg,8=;/Dg,A42 = (X2,8=;/X2,A42)−1/8. The empirical power (-1/8) might be strongly affected by the
Reynolds number dependency plus some compressibility effects; therefore, we “dynamically" calculated this power
exponent, WX2, by relating the mean flow solution from a new plane (so-called the “Test" plane, as seen in figure 1) to
the solution from the recycle plane as follows:

WX2 =
;=(Dg,C4BC/Dg,A42)
;=(X2,C4BC/X2,A42)

. (9)

Figure 2 (a) exhibits a representative time series of the local computed friction velocities at the Inlet, Test and Recycle
planes in the hypersonic flat plate at high Reynolds numbers. Notice that friction velocities have been normalized by the
local freestream velocity. In particular, this hypersonic case ("∞ = 5) was initialized via a previously run supersonic
DNS case ("∞ = 2.5), as in [2], to shorten the transient. A similar strategy was carried out for the supersonic case
("∞ = 2.86) in this study. It is observed a clear transient stage (C+ ≈ 14, 000) where friction velocities fluctuate wildly.
Beyond C+ ≈ 14, 000, all friction velocities tend asymptotically towards specific values. Flow statistics was sampled
in the last 1,400 inner time. Friction velocities at the test and recycle plane (as well as momentum thicknesses) are
computed “on the fly" based on the time-averaged parameters from the flow solution. Once the exponent WX2 is obtained
from Eq. 9 based on test and recycle plane statistics, the values of Dg,8=; and _ can be dynamically computed. The
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asymptotic value of _ (= Dg,8=;/Dg,A42) was approximately 1.014 in the statistically steady stage. Figure 2 (b) exhibits
the time variation of the boundary layer thickness at the different reference planes in wall units, X+, representing the
von Karman or friction Reynolds number. It seems that the hypersonic flow depicts a moderate temporal transient at
the boundary layer edge. This hypersonic DNS case possesses X+ values around 1,000 (and, similarly, the rest of the
DNS cases presented in this manuscript) with a defined separation of turbulent scales, as is shown and discussed in the
manuscript.

The present DNS cases at high Reynolds numbers are run by using a highly accurate, very efficient, and highly
scalable CFD solver called PHASTA. The flow solver PHASTA is an open-source, parallel, hierarchic (2=3 to 5Cℎ order
accurate), adaptive, stabilized (finite-element) transient analysis tool for the solution of compressible [27] or incompress-
ible flows [25]. PHASTA has been extensively validated in a suite of DNS under different external conditions [18, 34, 35].

Fig. 1 Boundary layer schematic for the hypersonic case. Contours of instantaneous density.

Boundary Conditions: At the wall, the classical no-slip condition is imposed for all velocity components. Adiabatic
wall conditions were applied for both compressible cases. For the supersonic flow case at Mach 2.86, the ratio )F/)∞ is
2.74 (in fact, quasi-adiabatic), where )F is the wall temperature and )∞ is the freestream temperature. While the )F/)∞
ratio is 5.45 for "∞ equals to 5. In the incompressible case, temperature is regarded as a passive scalar with isothermal
wall condition. In all cases the Prandtl number is 0.72. The lateral boundary conditions are handled via periodicity;
whereas, freestream values are prescribed on the top surface.

Table 1 summarizes the characteristics of the analyzed two cases: the incompressible case ("∞ = 0) and compressible
cases ("∞ = 2.86 and 5). The Reynolds number range, computational domain dimensions in terms of the inlet
boundary layer thickness X8=; (where !G , !H and !I represent the streamwise, wall-normal and spanwise domain
length, respectively) and mesh resolution in wall units (ΔG+, ΔH+

<8=
, ΔH+<0G , ΔI+) are also given. The DNS cases have

the following grid point numbers: 990 × 250 × 210 (roughly a 52-million point mesh). The cases were run in 1200
processors at the Onyx supercomputer (ERDC, DoD).
Figure 3 (a) shows the streamwise development of the skin friction coefficient of present DNS supersonic data at Mach
2.86. In addition, � 5 values at Mach 2.5 are included from DNS of Araya et al. [2]. It is worth noting the excellent
agreement of present DNS with experiments at similar Reynolds and Mach numbers from Stalmach [36]. Furthermore,
DNS and experimental data from [37, 38] and [39], respectively, are also included at supersonic Mach numbers between
2 and 3. Figure 3 (b) depicts the streamwise development of the compressible momentum tickness Reynolds number,
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(a) (b)

Fig. 2 (a) Time-series of the friction velocity normalized by the local freestream velocity and (b) the local
boundary layer thickness in wall units at the Inlet, Test and Recycle planes, respectively, for hypersonic flow
with adiabatic wall condition.

'4X2 at "∞ = 2.86. Clearly, the inlet developing section expands for just 2.5-X8=; , indicating the good performance of
the turbulent inflow generation method employed.

Figure 4 (a) shows the mean streamwise velocity normalized by the freestream velocity*∞ at "∞ = 2.86. A very good
agreement is observed with experimental values by [40] and [41] at similar Mach numbers but at significantly higher
Reynolds numbers. Some scattering on experimental data by [41] is observed. In addition, DNS data by Bernardini and
Pirozzoli [38] is also included at a lower Reynolds number. The streamwise component of the normal Reynolds stresses
D′2, normalized by*2

∞, are depicted by fig. 4 (b) in outer units. Present DNS agrees quite well with experiments by [40],
particularly in the outer part of the boundary layer, i.e. for H/X > 0.2. The Reynolds number effect on peak values of the
streamwise component of the Reynolds normal stresses can be defined as a displacement towards the near wall region
as the former increases (see present DNS at '4X2 = 3528 vs. [38] at '4X2 = 1815.7). Furthermore, the streamwise
and wall-normal components of the turbulence intensities are exhibited in fig. 4 (c) and normalized by the freestream
velocity,*∞. Major discrepancies with experiments of [41] are observed in the inner region for E′A<B, which may be
attributed to some Reynolds number dependency; however, further analysis must be performed. Again, peaks of D′A<B
and E′A<B are shifted towards the wall in our DNS case (at slightly larger Reynolds numbers) as compared to DNS by
Bernardini and Pirozzoli [38]. The quality of the generated turbulent data at Mach 5 has been assessed, as well. Figure
5 (a) shows the mean streamwise velocity in outer units. Clearly, there is a very good agreement with experiments
by Tichenor [42] in adiabatic flat plates at a freestream Mach number of 5. It is worth highlighting the effect of the
Reynolds number in the inner region of the boundary layer (i.e., for H/X < 0.1): the profiles move toward the wall region
as the Reynolds number increases. Notice DNS data from Duan et al. [43] and experiments by Neeb et al. [44] at much
lower Reynolds numbers and Mach numbers around 5. Figure 5 (b) shows the mean streamwise velocity by means of
the van Driest transformation. Overall, a very good agreement can be observed between our DNS with experiments
by Mabey and Sawyer [45] at "∞ = 2.49, in the log and wake region. Additionally, three different logarithmic laws,
as used in [31], have been included. For high values of '4X2, the log region extends significantly (about 300 wall
units in length). Obviously, the log region tends to “shrink” as the Reynolds number decreases, as seen in DNS data
by [43] at "∞ = 5. It seems our predicted values of *+

+�
are slightly better represented by the logarithmic function

1/0.41;=(H+) + 5 as proposed by White [46] by the end of the log region (and beginning of the wake region). On the
other hand, the log law as proposed by [47] (with a ^ value of 0.38 and an integration constant, �, of 4.1) exhibits an
excellent match with our DNS results in the buffer region (i.e., around H+ ≈ 30).
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(a) (b)

Fig. 3 (a) Skin friction coefficient and (b) momentum thickness Reynolds number at "∞ = 2.86.

Table 1 DNS Cases.

Case Flow fields "∞ )F/)∞ '4X2 X+ !G × !H × !I ΔG+,ΔH+
<8=

/ΔH+<0G , ΔI+

Incompressible 2001 0 0 2000-2400 752-928 16X8=; × 3X8=; × 3X8=; 11.5, 0.4/10, 10
Supersonic 1001 2.86 2.74 3174-3744 847-995 14.9X8=; × 3X8=; × 3X8=; 12.7, 0.4/11, 12
Hypersonic 1001 5 5.45 4358-5050 899-1080 15.2X8=; × 3X8=; ×3X8=; 12, 0.4/12, 11
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(a) (b)

(c)

Fig. 4 (a) Mean streamwise velocity in outer units, (b) streamwise component of normal Reynolds stresses, and
(c) turbulence intensities.
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(a) (b)
Fig. 5 (a) Mean streamwise velocity in outer units, (b) mean streamwise velocity in inner units and the van
Driest transformation.
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B. High-Performance, FFT-based Energy Spectra Calculations
The energy spectra presented in this work were calculated leveraging the Python implementation of our in-house,

out-of-core distributed library Aquila [6]. Aquila operates on larger-than-memory datasets efficiently via a high-
performance data pre-fetcher capable of providing the illusion of an in-memory dataset. This is crucial given the limited
amount of memory in modern supercomputing node architectures. The most recent implementation of Aquila leverages
NumPy [48], SciPy [49], TBB [50, 51], Numba [52], MPI [53–56] and FFTW [57–63] to express the computations
asynchronously and allowing for maximal parallelism with automatic out-of-core pre-fetch via a TBB-backed thread
pool. To avoid over replication of arrays, Aquila instantiates one MPI rank per socket if sufficient RAM is available (one
if the node is memory limited). Each rank coordinates a TBB thread pool assigning two threads per CPU core (i.e., SMT
is enabled). Furthermore, TBB does not incorporate a central dealer as is the case with many multithreading schedulers;
TBB implements private double-ended queues per worker and a sophisticated work stealing mechanism [50]. This again,
makes our implementation highly scalable (see fig. 6) and decentralized at each level. Given the application has access
to a fixed thread pool of workers, we decompose operations when possible into multiple independent, asynchronous
tasks which enables latency hiding, high memory bandwidth and reasonable core utilization even when operating on
out-of-core data. This implementation of Aquila enables the utilization of fast Fourier transforms for the calculation of
both two point correlations and energy spectra in Fourier space [7, 8, 64] via the Convolution Theorem which yields high
quality results at the expense of memory and lower arithmetic intensity compared to a matrix multiply implementation.
Nonetheless, the results are far superior in terms of quality. We present a preliminary scaling study conducted at the
Narwhal supercomputer out to 100 nodes with dual AMD Epyc Rome 7H12 CPUs. The nodes are interconnected with
the HPE Cray Slingshot network at 200 Gb/s.

Fig. 6 Preliminary strong scaling analysis for Aquila conducted at the Narwhal supercomputer for the incom-
pressible case presented in the present work.

V. Results and Discussion

A. Compressibility Effects on 1D Spectra
From figures 7, 8 and 9, we note that the compressibility effects on the normalized energy spectra are weak. This

being said, the compressibility effects are more notable closer to the wall and in the streamwise spectra. A slight peak is
observed and grows proportional to Mach number in the near-wall region. Furthermore, there appears to be a general
trend in the reduction of the inertial subrange’s thickness as Mach number increases. To more accurately assess the
compressibility effects on the energy spectra, the spectra is multiplied by the wavenumber to highlight the energy
content by unit length. This is often employed to filter the spectrum and it enables the identification of interesting
energy concentrations at specific wavelengths. The pre-multiplied spectra is the focus of section V.B. The adequacy of
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the mesh’s resolution at the three flow conditions is reinforced by the slight energy buildup in the viscous dissipative
subrange.

(a) Streamwise - Incompressible (b) Spanwise - Incompressible

(c) Streamwise - "∞ = 2.86 (d) Spanwise - "∞ = 2.86

(e) Streamwise - "∞ = 5 (f) Spanwise - "∞ = 5

Fig. 7 Normalized streamwise �D′D′ at H+ = 1; the dashed line (- -) corresponds to a power law with exponent
−5/3
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(a) Streamwise - Incompressible (b) Spanwise - Incompressible

(c) Streamwise - "∞ = 2.86 (d) Spanwise - "∞ = 2.86

(e) Streamwise - "∞ = 5 (f) Spanwise - "∞ = 5

Fig. 8 Normalized �D′D′ at H+ = 15; the dashed line (- -) corresponds to a power law with exponent −5/3
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(a) Streamwise - Incompressible (b) Spanwise - Incompressible

(c) Streamwise - "∞ = 2.86 (d) Spanwise - "∞ = 2.86

(e) Streamwise - "∞ = 5 (f) Spanwise - "∞ = 5

Fig. 9 Normalized �D′D′ at H+ = 50; the dashed line (- -) corresponds to a power law with exponent −5/3
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(a) Streamwise - Incompressible (b) Spanwise - Incompressible

(c) Streamwise - "∞ = 2.86 (d) Spanwise - "∞ = 2.86

(e) Streamwise - "∞ = 5 (f) Spanwise - "∞ = 5

Fig. 10 Normalized �D′D′ at H+ = 150; the dashed line (- -) corresponds to a power law with exponent −5/3
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B. Coherent Structure Characterization
Turbulent coherent structures and its wavelengths can be identified by visualizing the pre-multiplied spectra. Figures

11, 12 and 13 show the pre-multiplied energy spectra along the streamwise (a) and spanwise (b) as well as the streamwise
component of the Reynolds normal stresses (D′D′)+ (c) in inner units at incompressible conditions and at Mach numbers
of 2.86 and 5, respectively. In each set of images, the top two figures can be used to assess the streamwise and spanwise
wavelengths of the dominant coherent structures at the different boundary layer regions. It is worth highlighting that the
pre-multiplied spectra over D′ has been performed without considering any density weighted time/space averaging in the
present study. At all flow regimes, primary energy peaks are evident in the buffer region around 12 < H+ < 15, which
are associated with spanwise wavelengths of the order of 100 wall units (or 0.1X) and streamwise wavelengths of the
order of 500 to 1000 wall units (much longer for the incompressible regime). This inner peak _+G ≈ 500-1000 (or 0.6 to
1 X) is the energetic signature due to the viscous-scaled near-wall structure of elongated high- and low-speed regions,
according to Hutchins and Marusic [4].
Additionally, one can see a weak (but still evident) secondary peak at spanwise wavelengths of the order of _+I ≈ 700
(or 0.8X) and streamwise wavelengths with _+G ≈ 3000 (or 3X’s). These outer peaks of energy are somehow ”hidden”
by a strong energy “vestige” because of the near-wall structure (_+G ≈ 500-1000) and the moderate Reynolds numbers
considered here, as well. The peak of (D′D′)+ occurs at approximately H+ = 15 and a secondary peak can be detected for
the incompressible and compressible (supersonic and hypersonic) cases at roughly H+ = 100 − 150. This secondary
peak is less obvious at the hypersonic regime. The coherent structures have a streamwise length of approximately 1X,
0.7X and 0.6X for the incompressible, supersonic and hypersonic case at H+ = 15. As expected, the turbulent structures
associated with streamwise velocity fluctuations are significantly longer in the streamwise direction, showing an oblong
shape. Interestingly, our pre-multiplied power spectra of D′ along the spanwise direction for the supersonic case (fig. 12
(b)) exhibits a strong consistency with numerical results from Bernardini and Pirozzoli [38] (see their fig. 2b). They
also performed DNS os a spatially-developing turbulent boundary layer at the supersonic regime (Mach 2) and with a
friction Reynolds number of '4g = 1116 (also known as X+), being our local X+ = 909. It was also reported in [38] a
secondary peak located at H+ ≈ 180 (and associated with spanwise wavelengths of _I ≈ 0.8X) in agreement with the
predicted locations of outer peaks by [65], i.e. H+ = 3.9

√
'4g . According to [38], the outer secondary peaks are the

manifestation of the large scale motions in the logarithmic region of the boundary layer, whose signature on the inner
region is noticeable under the form of low wavenumber energy “drainage” towards the wall.
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(a) Streamwise (b) Spanwise

(c) (D′D′)+

Fig. 11 (a-b) Normalized, pre-multiplied spectra, :�D′D′/D2
g , at incompressible flow conditions; (c) Streamwise

component of the Reynolds normal stresses

One notable finding in both figures 12b and 13b is a significant spanwise narrowing of the structures for the supersonic
and hypersonic cases. A general trend shows a reduction in the dimensions as the Mach number grows as an evident
compressibility effect. This can be confirmed by visualizing two point correlations in figures 14 in the buffer region at
H+ = 15. Furthermore, figure 14 suggests the range of influence of the coherent structure extends significantly along the
downstream direction for the incompressible case (∼ 1X) and the shortening of the structures is mostly a diminution
of its downstream influence (or tails). The length from the point of reference upstream is mostly unchanged from the
incompressible to hypersonic (the change is < 0.1X) when compared to the downstream diminution (≈ 0.35X).

16



(a) Streamwise (b) Spanwise

(c) (D′D′)+

Fig. 12 (a-b) Normalized, pre-multiplied spectra, :�D′D′/D2
g , at Mach 2.86; (c) Streamwise component of the

Reynolds normal stresses.

This being said, the streamwise and spanwise dimensions of turbulent coherent structures via two-point correlations
(TPC) in figure 14 are slightly consistent with the corresponding streamwise and spanwise wavelengths obtained in the
pre-multiplied power spectra analysis, i.e. _G ≈ 0.6-1X and _I ≈ 0.1X. The locations and magnitudes predicted from
figures 11, 12 and 13 coincide with those reported in by Hutchins and Marusic [4] and in Bernardini and Pirozzoli [38].
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(a) Streamwise (b) Spanwise

(c) (D′D′)+

Fig. 13 (a-b) Normalized, pre-multiplied spectra, :�D′D′/D2
g , at Mach 5; (c) Streamwise component of the

Reynolds normal stresses.

As we previously mentioned, we present two point correlations near the peak of (D′D′)+ inside the boundary layer in
figure 14. We computed the two point correlation via the convolution theorem which yields high resolution surfaces at
low thresholds thus capturing more of the coherent structure without introducing spurious artifacts. In general, we
observe a reduction in the size of the coherent structures as the Mach number increases.
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(a) Incompressible

(b) Mach 2.86

(c) Mach 5

Fig. 14 Two point correlations at H+ = 15 at (a) incompressible, (b) Mach 2.86 and (c) Mach 5.
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C. Inflow Quality Assessment
To assess the quality of the inflow condition generation method proposed by Araya et al. [1, 2], we visualize the

energy spectra at multiple streamwise locations including the inlet and outlet planes to compare the structure of the
energy spectra. The inflow plane’s spectra is essentially indistinguishable from the middle plane in the near-wall region.
In the outer region, the spectra is closer to that of the developed flow after 50 planes or roughly 1-X.

(a) Incompressible (b) "∞ = 2.86

(c) "∞ = 5

Fig. 15 Normalized spanwise �D′D′ at H+ = 1 at multiple planes along the streamwise direction; the dashed line
(- -) corresponds to a power law with exponent −5/3

What’s more, the sponge outflow condition employed for the hypersonic case has a far more detrimental impact to
the nature of the energy spectra in the near wall region than the inflow condition generated by the dynamic multiscale
method as clearly seen from figures 15c and 16c. This is ameliorated as we probe farther from the wall as seen in fig.
17c.
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(a) Incompressible (b) "∞ = 2.86

(c) "∞ = 5

Fig. 16 Normalized spanwise �D′D′ at H+ = 15 at multiple planes along the streamwise direction; the dashed
line (- -) corresponds to a power law with exponent −5/3
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(a) Incompressible (b) "∞ = 2.86

(c) "∞ = 5

Fig. 17 Normalized spanwise �D′D′ at H+ = 150 at multiple planes along the streamwise direction; the dashed
line (- -) corresponds to a power law with exponent −5/3

VI. Future Work
We have computed additional spectra for E′2, F′2, C ′2 and ?′2, but we have not presented them in the interest of

conciseness. Nonetheless, we plan to explore this additional correlations and incorporate cospectra to our future studies.
Also, we plan to explore the potential of coherent structure identification based on wall thermal conditions.

VII. Conclusion
In this work, we performed a power spectra analysis to identify compressibility effects in the energy spectrum

and assess the potential of coherent structure characterization via energy spectra analysis. The energy spectra were
computed in the frequency domain employing a high-performance in house library for out-of-core computation. We
compared three DNS cases at incompressible, Mach 2.86 and Mach 5 conditions. The compressibility effects in the
normalized spectra are very weak. Nonetheless, they are more notable closer to the near wall region. Also, a reduction
in the thickness of the inertial subrange (characterized as the region that follows the −5/3 slope) is seen as Mach
number increases. In general, we observe a reduction in the dimensions of the coherent structures as Mach number
increases. Further, as the Mach number grows, the structures become narrower and their downstream influence is notably
diminished. The peak of (D′D′)+ coincides with the major peak in the pre-multiplied spectra at roughly H+ = 10 − 15.
Furthermore, we found an evident secondary peak at spanwise wavelengths of the order of _+I ≈ 700 (or 0.8X) and
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streamwise wavelengths with _+G ≈ 3000 (or 3X’s), which is in agreement with previous studies [4] [38]. We compared
the dimensions predicted by pre-multiplied energy spectra analysis with those obtained via full domain 3D two-point
correlations and found a strong agreement in the general trend. Additionally, the proposed inflow condition generation
method proposed by Araya et al. [1, 2] was demonstrated to be highly robust with a minimal development region and an
energy spectra resembling that of a fully developed flow. Interestingly, the outflow condition selection was found to
have a more detrimental impact on the quality of the energy spectra at that plane.
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