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The importance of coherent structures in turbulent boundary layers has been extensively
explored in the large corpora of available literature. Although their impact on heat, mass
and passive/active scalar transport has been extensively documented, their dependency on
the Mach number has not been widely explored. In the present work, we identify coherent
structures based on two-point correlations of the fluctuating components of the quantities of
interest. To efficiently compute these two-point correlations (TPC), we apply a low-memory,
high-performance TPC implementation. The results for the streamwise velocity and tempera-
ture fluctuations are presented for an adiabatic flat plate at supersonic conditions at moderately
high Reynolds numbers with friction Reynolds numbers, 6, in the order of 950. In the in-
compressible counterpart, the temperature is regarded as a passive scalar with isothermal wall
condition. The results suggest weak compressibility effects at Mach 2.5 on both two-point cor-
relations and their corresponding energy spectra. However, a slight breakdown of the Reynolds
analogy is seen at Mach 2.5.

I. Nomenclature

U = Mean Velocity
P = Mean Pressure
T
k

= Mean Temperature
= Thermal conductivity

c¢p = Specific heat at constant pressure

q = Heat generation

M, = Freestream Mach Number

N; = Number of Temporal Samples

Ny = Number of Additional Smoothing Samples

N, = Number of Nodes Along the Streamwise Direction
N, = Number of Nodes Along the Wall Normal Direction
N, = Number of Nodes Along the Spanwise Direction
U = Molecular Viscosity

Jol = Density

0 = Boundary layer thickness

6* = 6bu. /v, Friction Reynolds number

urs = Friction velocity

vy = Wall kinematic viscosity

T = Shear stress

K = thermal conductivity

! = Superscript denotes fluctuating components

oo = Subscript denotes freestream quantities
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II. Introduction

Unsteady spatially-developing turbulent boundary layers (SDTBL) are of utmost importance to a wide range of
disciplines and engineering applications, showing non-homogeneous conditions along the flow direction. Supersonic
SDTBLSs are ubiquitous and of crucial aspect to high speed flight conditions with applications ranging from space
planes, to future commercial planes, military technologies, space exploration technologies, among many others. A
key aspect of the understanding of SDTBLs is the description of coherent structures which play a crucial role in heat,
momentum and passive/active scalar transport. Nonetheless, an inherent complexity in these coherent structures can
be linked to the chaotic nature of turbulent flows. It has been argued that these complex patterns follow coherent
dynamics where the level of coherence should be quantifiable [1]. Identifying these large (LSM) and very-large scales
of motion (VLSM) can be done in a myriad of possible ways depending on how the problem is stated. One such avenue
is to employ two-point correlations (TPC) [2] which can be efficiently computed with low memory requirements via
high-performance inner products [3|].

The nature and existence of these organized struc-
tures was explored early by Spina and Smits [4].
Rempfer and Fasel []] also explored the nature of
these coherent structures in a volumetric space.
They employ proper orthogonal decomposition
(POD) which translates the problem of comput-
ing these structures into an Eigenvalue problem.
Closely related work by Aubry et al. [6l], further
reinforced the existence of a link between low-
dimensional chaotic dynamics and properties of
realistic turbulence. Smits et al. [[7] also explored
the structure of the turbulent boundary layer with a
special focus on comparing the subsonic and super-
sonic SDTBLs. They concluded that albeit many
similarities that were found, especially along the spanwise direction, there were drastic differences such as variations in
length scales. The work by Ringuette et al.[8] explored volumetric coherent structures for a Mach 3 boundary layer
and contrasted it with a subsonic boundary layer. Although they used several methods for visualizing said VLSMs,
the two-point correlation was among the selected methodologies. Later work by Elsinga et al.[9] sought to explore
the organization of vortex for high Reynolds supersonic SDTBLs. They also employed the autocorrelation function
and provided conclusions related to the periodic nature of these coherent structures, their lengths and inclinations.
More recently, TPC’s have been employed to assess wall-temperature effects at hypersonic conditions [10] at low
Reynolds numbers. Interestingly, wall cooling induced a transport direction change in the near wall region due to
the local overheating of the boundary layer, which in turn caused intensification of ejections. Moreover, this ejection
enhancement seemed to be the reason of the extremely long structures found in the buffer zone (at y* ~ 15, as seen in
fig. [T) of hypersonic boundary layer subject to wall cooling. Although a large portion of work previously outlined has
been computational in nature, work by He ez al. [[11] visualized these coherent structures for an experimental supersonic
boundary layer over a flat plate. Another seminal contribution in incompressible flow was done by Sillero et al. [12]]
which was further elaborated by Jimenez [[1] explored in detail the 3D nature of turbulent coherent structures by the
two-point correlation. Sillero et al. [12] reports peak lengths for structures in the logarithmic and outer regions of 7
and 18 ¢. Furthermore, they highlight that structures at and below the buffer region are similar between channel and
wall-bounded flow. Dharmarathne et al. provided a more applied view of the impact of turbulent coherent structures in
passive scalar transport [13]] via DNS of incompressible channel flows and TPC. It was stated that the LSMs which
transport streamwise component of the turbulence kinetic energy, passive scalar variance, and streamwise heat flux are
evidently different to each other beyond the buffer region.

Fig.1 Wall cooling effect on momentum turbulent structures
at y* = 15 via TPC of streamwise velocity fluctuations.

In the present work, we conduct a study of the compressibility effects on TPCs for an SDTBL subject to Zero Pressure
Gradient (ZPG) (i.e., flat plate) via DNS. The results will shed light on the impact of supersonic conditions on the
homogeneity of the flow and the momentum/thermal transport characteristics. We compare a ZPG, adiabatic flat plate at
Mach 2.5 at moderately high Reynolds numbers with an “incompressible companion”. In the incompressible regime,
temperature is regarded as a passive scalar and isothermal wall conditions. In summary, the only variable parameter is
the Mach number.



ITI. Governing Equations
Assuming continuum mechanics and neglecting non-equilibrium effects yields the usual system of non-linear
partial differential equations known as the compressible Navier-Stokes equations [14]. Conservation of mass becomes
non-trivial for compressible flow with strong pressure gradients, compression and expansion waves where density varies
abruptly. The classical conservation equations are presented in eqns. [T} [2]and 3]

ap 0
E-Fa—xl(puj) =0 (1)
dpu; 0
o1 +§j(puiuj+p6ij—0'ij):0 (2)
dpe 0
W+E((P€)Mj—ui0'ij+61j)=0 3)

where p is the density; u; is the velocity in the i direction; p is the pressure; o7; is the stress tensor which we model as a
linear stress-strain relationship,
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where S;; = 3 % + 22 is the strain rate tensor, u is the kinematic viscosity; and g; is the hear flux due to thermal
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gradients in the i direction and is modelled in the present work by Fourier’s law, ¢g; = K% where « is the thermal
conductivity; e is total energy per unit mass which we assume to follow:

1
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where ¢, is the specific heat at constant volume. Finally, we also assume the fluid viscosity to vary following a Power
Law (see Equation [6)).
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The equations are all presented in their strong form whereas the weak form is used in the finite element solver. The
present work leverages the PHASTA flow solver [[15]. The finite element scheme is based on the streamline upwind
Petrov-Galerkin (SUPG) finite element discretization in space with a second order accuracy [16,|17]. The non-linear
system of equations are solved using an iterative Krylov solver in space while being fully implicit in time (2"¢ order
accurate). Further details regarding the finite element method employed are beyond the scope of this work, readers are
referred to [18]].

IV. Numerical Details

A. DNS Details

Modeling effort of the physics of turbulent spatially-developing boundary layers by using DNS must tackle the
following aspects: (a) the mesh resolution must be adequate in order to capture the smallest turbulence momentum/thermal
scales (Kolmogorov and Batchelor scales), (b) the computational box must be sufficiently large to “gather” the influence
of the turbulent large scale motions (LSM) or “superstructures” (Hutchins & Marusic [[19]), (c) realistic time-dependent
inflow turbulent fluctuations must be injected, Araya et al., [20] [21]. A key aspect on the simulations of unsteady
turbulent boundary layers that evolve in space is the prescription of accurate turbulent inflow information. In the present
article, the inlet generation methodology proposed by Araya et al. [20] is utilized, called Dynamic Multiscale Approach
(DMA). It is a modified version of the rescaling-recycling technique by Lund et al. [22]. Extensions to compressible
boundary layers have also been proposed by Urbin & Knight [23], Stolz & Adams [24] and Xu & Martin [25]. A block
diagram is shown in fig. 2} The seminal idea of the rescaling-recycling method is to extract the flow solution (mean and
fluctuating components of the velocity, thermal and pressure fields for compressible flows) from a downstream plane
(called “recycle") and after performing a transformation by means of scaling functions, the transformed profiles are
re-injected at the inlet plane, as seen in figure 2] In fact, it has been observed in compressible boundary layers that just



fixing the mean pressure at the inlet produced more stable and accurate numerical cases that adding pressure fluctuations.
According to [26] and [23]], “the static pressure can be assumed constant at the inlet plane since the pressure fluctuations
are small compared to the static temperature fluctuations”. Instantaneous density profiles (mean plus fluctuations)
are indirectly imposed due to the equation of state for a perfect gas via instantaneous temperature profiles. The main
purpose of implementing scaling laws to the flow solution is to convert the streamwise in-homogeneity of the flow
into quasi-homogeneous conditions. The Reynolds decomposition is implemented for instantaneous parameters, i.e. a
time-averaged plus a fluctuating component:

Mi(x’ t) = Ui(x’ y) + I/tl/-(X, t) (7)

t(x,1) =T(x,y) +t'(x,1) (8)

The turbulent boundary layer is divided into inner and outer zones, where different scaling laws are applied [20] in a
multiscale fashion. The projection of flow parameters from the recycle plane to the inlet is performed along constant
values of y* (inner region) and y/6 (outer region). Figure[2]depicts the schematic of the computational domain in the
incompressible regime and at high Reynolds numbers. In the re-scaling process of the flow parameters [20], the ratio of
the inlet friction velocity to the recycle friction velocity (i.e., A = U1 jn;/Uz rec) is required. The friction velocity is
defined as u; = /7y, /p, where 7,, is the wall shear stress and p is the fluid density. Since the inlet boundary layer
thickness must be prescribed according to the predicted inlet Reynolds number, prescribing also the inlet friction
velocity would be redundant. To overcome this problem, Lund ez al. [22], Urbin & Knight [23] and Stolz & Adams [24]]
employed the well-known 1/8-power law that relates the friction velocity to the momentum thickness in zero-pressure
gradient flows; thus, u jn /U7 rec = (62,,~n1/627,ec)’1/8. The empirical power (-1/8) is strongly affected by the Reynolds
number dependency plus some compressibility effects; therefore, we “dynamically" calculate this power exponent, ¥ s2,
by relating the mean flow solution from a new plane (so-called the “Test" plane, as seen in figure[2) to the solution from
the recycle plane as follows:
_ ln(u‘r,test/u‘r,rec)
ln(62,test/62,rec) )

Figure 3] (a) exhibits a representative time series of the computed friction velocities at the Inlet, Test and Recycle planes
in the supersonic flat plate at high Reynolds numbers. Friction velocity has been normalized by the local freestream
velocity. This supersonic case was initialized via the incompressible DNS case. It is observed a clear transient stage
(t* ~ 4000) where friction velocities fluctuate wildly. Beyond t* ~ 4000, all friction velocities tend asymptotically
towards specific values. Friction velocities at the test and recycle plane (as well as momentum thicknesses) are computed
“on the fly" based on the time-averaged parameters from the flow solution. Once the exponent s, is obtained from Eq.
E]based on test and recycle plane statistics, the values of u+ ;,,; and A can be calculated. As can be observed in fig. E] (b),
the A = ur ini/Ur.rec parameter approaches a value of 1.022 in the statistically steady stage.
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In order to perform the proposed DNS at high Reynolds numbers, a highly accurate, very efficient, and highly
scalable CFD solver is required. The flow solver PHASTA is an open-source, parallel, hierarchic (2"¢ to 5" order
accurate), adaptive, stabilized (finite-element) transient analysis tool for the solution of compressible [18]] or incompress-
ible flows [16]. PHASTA has been extensively validated in a suite of DNS under different external conditions [[10}[27, 28]



q;: Instantaneous flow parameter Seminal idea: a) flow solution extraction (mean and fluctuating flow

q:(x,t) = @.(x, ¥) +q{(x,t) components) from the “recycle” plane, b) transformation via scaling

functions, and c) re-injection of the converted solution at the inlet plane.

Fluctuation qi’,inlet xt) = F}luc (x)q{,recycle x,0)
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Fig.2 The Dynamic Multiscale Approach (DMA).
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Fig. 3 (a) Time-series of the friction velocity normalized by the local freestream velocity and (b) friction
velocity ratio variation for supersonic flow and adiabatic wall condition.

Boundary Conditions: At the wall, the classical no-slip condition is imposed for all velocity components. Quasi-adiabatic
wall condition is assumed for the thermal field in the compressible flow case, the ratio T, /T is 2.25, where T, is
the wall temperature and T, is the freestream temperature. The 7} /T ratio is 2.12 for M, equals to 2.5; therefore,
T,, /T, ~ 1.06. T, is the recovery or adiabatic temperature. In the incompressible case, temperature is regarded as a
passive scalar, in both cases the Prandtl number is 0.72. The lateral boundary conditions are handled via periodicity;
whereas, freestream values are prescribed on the top surface.

Table [T summarizes the characteristics of the analyzed two cases: the incompressible case (Mo, = 0) and compressible
case (M« = 2.5). The Reynolds number range, computational domain dimensions in terms of the inlet boundary layer
thickness 0;,; (where L, Ly and L, represent the streamwise, wall-normal and spanwise domain length, respectively)
and mesh resolution in wall units (Ax™, Ay? . . Ayj ., Az") are also given. The DNS cases have the following grid
point number: 990 x 250 x 210 (roughly a 52-million point mesh). The cases were run in 1200 processors at the Blue
Waters supercomputer (NCSA) and Onyx (DoD).

Figure ] (a) shows the streamwise development of the skin friction coefficient of present DNS supersonic data at high



[ r——— Present DNS - Re,, = 655- M, = 2.5
| 30 T Guarini et al. (2000) - DNS - Re, = 5‘49 M = 2 5
coroal ——— Presant DNS - Re,, = 465-539 < M_= 2.5 — Preson DTS BR" = mfiﬂ}i _z;\;" R = 3557 11— 2
1 ~ es - s - iro=oli and Bernardini e, = =
- A P'm’"D\S’RZ 2867-3406-M_ =25 ., 250 w  MabeyandSaner (1976) - EXP -Re = 5970 M_= 220 T
L Zhangetal. (2018) -DN5 -Re, = 1657 -0 =25 F———- U = 10.38 Infy J+4.1 (Osterlund et al. 2000)
L [m] Piroczoli and Bernardini (2011) - DNS - Re,,= 1327-3878-M_=2 [ — — — U7 = 1041 )+5 (White 1974)
N * Elena and Lacharme (1988) - EXP - Re,, = 3800- M =232 . . Linear -
40E03 [ 3 Pipowniau ef al. (2009) - EXP - Re; = 3100- M =228 20 (3
| v Statmach (1958) - EXP - Re = 050444150 - M =273275 o
~ [n g [
S |SEEIS
3.0E-03 -,'r\_ B
F©own ] F .
i A 0 10 z,
I a fu B 7
20803 - frp— O r
= vy 5
- v n
1_OE03III\II\I\\I\\\\I\\\\I\II\IIIIIIIIIIIIIIII & : T | R | |
500 1000 1500 2000 2500 3000 3500 4000 4500 107 107 10 10
+
Re, y
(@ (b)

Fig.4 (a) Skin friction coefficient and (b) mean streamwise velocity in wall units.

Reynolds numbers. In addition, Cy values are included at low Reynolds numbers from our group [21]]. It is important
to note the excellent agreement of present DNS with experiments at similar conditions, i.e. experimental data from [29]
and [30]. For the time-averaged streamwise velocity in wall units and compressible flow, the van Driest transform is
applied. In Figure [ (b), it is seen a good agreement of present DNS data at Mach 2.5 and experimental data from
Mabey and Sawyer [31] at slightly higher Reynolds numbers and Mach 2.29. Furthermore, our DNS data exhibits an
excellent collapse with DNS from Pirozzoli and Bernardini [32] at very similar Reynolds numbers and Mach 2. This
may indicate that compressibility effect is weak under these supersonic conditions, and the van Driest transform is able
to absorb it. The log region is very large in our DNS profile at Re 5o = 3298, extending roughly 280 wall units. Log
coefficients proposed by Osterlund et al. [33] and White [34] describe quite well the logarithmic behavior.

Table 1 DNS Cases.

Case M Res LyxLyXL, AXTAYE Ay AZT
Incompressible 0 2000-2400 16601 X 38in1 X 361 11.5,0.4/10, 10
Supersonic 2.5 | 2867-3406 | 15161 X 361 X30int 11.9,0.4/11, 11

B. High-Performance, Low-Memory Two-Point Correlation

The two-point correlations presented in this work were calculated leveraging the in-house, out-of-core, distributed
library Aquila [3]. Aquila operates on larger-than-memory datasets efficiently via a high-performance data pre-fetcher
capable of providing the illusion of an in-memory dataset. This is crucial given the limited amount of memory in modern
supercomputing node architectures. Full domain two-point correlation has O(N; * Ny * Ny * Ny, * Nf) operations per
correlation. Although operating in the Fourier domain via the Convolution Theorem [35H37]] would reduce the spanwise
quadratic dependency to a logarithmic dependency, it doubles the memory requirement which, as was previously alluded,
is a limiting factor. Thus, Aquila implements a highly efficient TPC atop dot products. For x86-64, Aquila leverages
AVX instructions for a small vector dot product which provides higher performance than Intel’s Math Kernel Library;
nonetheless, Aquila is portable across architectures with general backends due to its use of Kokkos [38]].
We formulate the two-point correlation as,

Ni Ns

Rix(x;1) = ZZ(k (1, X +Xs), k' (£, X +Xs +T)) (10)
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where k is representative of a flow variable and r is the offset (or lag) from a given reference point, x. Thus, O(N; * N;)
dot products are executed per domain node. We sample all spanwise nodes due to the homogeneity along the spanwise
direction due to the periodic boundary conditions imposed, and we also considered a total of 80 stations (xs) along the
streamwise location. This provides additional information and smooths out noise inherent in the statistical samples
made. Further details about the design and implementation of Aquila can be found in [3] and are outside the scope of
this paper. However, we present evidence of Aquila’s strong scaling in fig. [5|for a Cray XC40/50 using Intel Broadwell
CPUs, Onyx. As seen from the figure, Aquila is capable of scaling out to over 100,000 CPU cores with a parallel
efficiency above 80% and with >95% parallel efficiency to just over 50,000 cores. The loss of parallel efficiency is likely
due to a saturation of network resources once 50% of the available compute nodes are being used. A more recent version
of Aquila was used for the calculation of the energy spectra. This recent version of Aquila leverages FFTs in multiple
calculations including TPCs and energy spectra. The energy spectra use MKL's FFTW in single precision mode.
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Fig. 5 Aquila’s Post-Processing Strong Scaling Performance [3]

V. Results and Discussion

A. Two-Point Correlations

The present study focuses on compressibility effects on velocity and thermal two-point correlations in the buffer
region. The buffer region was chosen due to the presence of high mean velocity gradients and strong turbulence nature.
This region is characterized by highly energetic small, length-scales and peak transfer rates of energy from the mean-flow
to the turbulent kinetic energy. Furthermore, the supersonic effects on the Reynolds analogy are inferred by comparing
velocity and thermal structures.
The time-averaged two-point correlations are compared along the streamwise and wall-normal axis in fig[p] Incompressible
and supersonic streamwise velocity fluctuations depict a strong correlation with downstream parcels of fluid, showing
upstream “tails” in the order of 16. Notice that a slightly thicker structure is observed in the incompressible regime. The
contrary is true for the thermal structures that experience a significant vertical thickening at Mach 2.5. The Reynolds
analogy approximately holds for incompressible flow in the buffer region (y* = 15); however some differences between
momentum and thermal structures are noticeable in the supersonic case. In fig. [7]isometric views of R;, can be observed.
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Fig. 6 3D Two-Point Correlation of streamwise velocity fluctuations (R,,;,) at y* = 15. Both structures measure
roughly 0.33 § in the spanwise direction.

In this case, a threshold of 15% of the maximum value of R,, was extracted. Again, thermal fluctuations exhibit a
clear tendency to vertically “grow" in the supersonic regime. The Reynolds analogy is evaluated by analyzing the
cross-correlation between streamwise velocity fluctuations #” and thermal fluctuations #/, i.e. R,;. Both parameters
depict a high level of correlation, with streamwise lengths in the order of 2.59, being ¢ the local momentum boundary
layer thickness. Interestingly, the similarity between iso-surfaces of R,,; in the incompressible and supersonic regime is
impressive, indicating that the Reynolds analogy possesses a weak effect of the Mach number (compressibility), at least
for the conditions (Reynolds number and wall adiabatic conditions) considered in our DNS approach. Let’s recall that
the temperature in the incompressible case was assumed a passive scalar with isothermal conditions.
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Fig.7 3D Two-Point Correlation of thermal fluctuations (R,,;) at y* = 15.
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Fig. 8 3D Two-Point Cross-correlations of u't’ (R,,;) at y* = 15.

B. Energy Spectra

The energy spectra was computed as the magnitude of the Fourier transform of the spanwise TPC. The normalized
energy spectra are presented in Figure 0] The normalization was chosen to facilitate a comparison between the
incompressible and supersonic conditions. The inertial subrange’s slope (i.e., -5/3) agrees with the expected theoretical
one. What is more notable is the extension of the dissipation range and its high degree of agreement with the theoretical
value of —3 associated to enstrophy transfer. In fact, a power law can be fitted to the dissipation range in all cases with
an R? > 0.97. Furthermore, the inflection point towards the end of the dissipation range serves as an indication that the
Kolmogorov scales are being accurately captured.
What is more, compressibility effects in the energy cascade are relatively weak. Perhaps the most notable effect is
the slightly more compressed spectra under supersonic conditions which is consistent across both the velocity and
temperature spectra. Particularly, the energetic level of turbulent eddies is slightly lower in the inertial subrange (and for
lower waivenumbers) for the supersonic regime. However, both are qualitatively similar.
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Fig. 9 Normalized spanwise energy spectra at y* = 15; the dashed line ( ------- ) corresponds to a power
law with exponent —5/3; the dash-dot line ( —-—----- ) corresponds to a power law with exponent —3.

VI. Future Work
The present work currently shows results in the buffer region. In the future, we plan to include results in the
viscous sublayer and the outer layer. As a starting point, we aimed at the buffer layer due to the key phenomena
occurring in this region. Furthermore, we are conducting larger sampling studies to account for larger portions that are
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quasi-homogeneous in the streamwise direction. This should result in smoother, more defined structures and a reduction
in the amount of noise present in the energy spectra.

VII. Conclusion

Compressibility effects on turbulent boundary layers subject to zero-pressure gradients at moderately high Reynolds
numbers were explored via two-point correlations. The two-point correlations were computed in the physical domain
using a low-memory, high-performance implementation in Aquila, an in-house post-processing library. The presented
structures suggest weak compressibility effects with a slight weakening of the Reynolds analogy observed at supersonic
conditions; nonetheless, the variations are slight. The energy spectra also suffers weak compressibility effects. What is
more, both the velocity and temperature fluctuation spectra agree to a significant degree with the classical theoretical
slopes.
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