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Autonomous chemical science and engineering enabled 
by self-driving laboratories 
Jeffrey A Bennett and Milad Abolhasani*   

Recent advances in machine learning (ML) and artificial 
intelligence have provided an exciting opportunity to 
computerize the fundamental and applied studies of complex 
reaction systems via self-driving laboratories. Autonomous 
robotic experimentation can enable time-, material-, and 
resource-efficient exploration and/or optimization of high- 
dimensional space reaction systems. Furthermore, 
interpretation of the ML models trained on the experimental 
data can unveil the underlying reaction mechanisms. In this 
article, we discuss different elements of a self-driving lab, and 
present recent efforts in autonomous reaction modeling and 
optimization. Further development and adoption of ML-guided 
closed-loop experimentation strategies can realize the full 
potential of autonomous chemical science and engineering to 
accelerate the discovery and development of advanced 
materials and molecules. 
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Introduction 
With the recent advancements of data science and ra
pidly growing power of machine learning (ML) and ar
tificial intelligence (AI), there has been an increasing 
interest to create autonomous experimentation plat
forms by combining ML and AI modeling with auto
mated experimentation and reaction-control systems as 
a time-efficient and material-efficient approach to aug
ment reaction engineering and process optimization 
campaigns. Automated experimentation strictly follows 
a sequence of physical/chemical processes identified 

by the scientist; however, autonomous experimenta
tion leverages autonomy (defined by the scientist) to 
make decisions about the sequence of physical/chemical 
processes in an iterative manner. Many strategies in 
chemical engineering utilize the ML component as a 
strict n-dimensional black-box optimization problem  
[1–5], with n corresponding to the number of controlled 
process parameters. While the technique can be pow
erful, the black-box approach is generally highly system 
specific, while neglecting mechanistic information that 
could be more widely applied. Black-box optimization 
methods normally have underlying assumptions about 
the behavior of the reaction surface being smooth, 
continuous, not chaotic, and not stiff on the order of the 
variation in input parameters. 

While ML can be applied to a manually sampled system  
[6,7], it becomes much more powerful when combined 
with a fully automated system in a closed-loop fashion to 
autonomously perform the experiments selected based on 
the ML model and decision-making algorithm. Coupled 
with in situ or online reaction-characterization techniques, 
it becomes feasible to have a truly autonomous reaction 
system, where the ML algorithm can explore the acces
sible reaction universe, only limited by the physical 
parameters of the reaction system, collect data, and utilize 
the newly performed experiment(s) to inform future ex
periments. As long as the experimental conditions can be 
automatically varied and the data collection and processing 
can be automated, the closed-loop autonomous experi
mentation strategy can be realized for batch [6,8–12], 
flow [1–4,13–16], and hybrid systems [17]. 

ML strategies in chemical science and engineering can 
be divided into two categories: (i) data mining from lit
erature and reaction databases and (ii) closed-loop in
telligent experimentation. If a given reaction or class of 
reactions have abundant data present in the literature 
(e.g. organic synthesis), ML can be used to form pre
dictions of reaction outcomes or perform retrosynthesis 
of target compounds. However, when targeting a specific 
class of reactions with a lack of experimental data with 
high batch-to-batch, reactor-to-reactor, and lab-to-lab 
variation, ML prediction becomes challenging. As access 
to data from literature becomes scarce, autonomous ex
perimentation strategies become important to rapidly 
generate the minimum set of experimental data required 
to accurately model the synthesis-process-property 
relationship. 
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Apart from black-box optimization campaigns, there has 
been significant effort in using ML and physics-based 
approaches [18] to form a surrogate model (i.e. digital 
twin) of the reaction system; essentially, the ML 
model [19,20] (e.g. neural networks, NNs) or physics- 
based model [21–24] simulates the complete system be
havior and then can be subsequently used for performing 
rapid mechanistic studies, without the need to run addi
tional experiments. Once an accurate surrogate model is 
developed, the model is able to be probed for system 
behavior more rapidly and more cost effectively than 
physical experimentation. Then, any unique or inter
esting behaviors identified in the ML model can be va
lidated with automated experimentation. Building the 
surrogate model of a reaction system involves a learning 
step where the ML model familiarizes itself with the 
reaction space (known as active learning) followed by 
cross-validation (dividing the data into training, testing, 
and validation sets). The active learning step searches the 
reaction space through techniques such as maximum 
variance or an initial experimental space-filling set (e.g. 
Latin hypercube). The ML model can additionally 
identify the Pareto front for a multiobjective optimization 
during closed-loop reaction-space exploration [25,26]. 

Other than individual reaction optimization and mod
eling, ML techniques have been utilized to perform 
predictions of reaction conditions for novel organic 
synthesis reactions, for example, by training with data 
from the Reaxys database [27]. The more generalized 
the ML predictions of reactions and process conditions 
are desired, the more experimental data for ML model 
training it requires, as the scope of possible parameters 
(i.e. design space of intrinsic and extrinsic parameters) 
becomes much larger when introducing discrete vari
ables such as chemical species. Various data mining 
and in silico techniques (physics-based modeling and 
data augmentation [28]) can be used to supply the in
creased demand for data. It should be noted that in 
contrast to organic synthesis, the process-sensitive 
nature of nanomaterial syntheses limits the general
izability of the ML predictions beyond a specific class 
of materials. 

Here, we present an overview of recent autonomous 
experimentation efforts in chemical science and en
gineering enabled by self-driving laboratories, and dis
cuss different models and algorithms that have been 
implemented in the design of such systems. A self- 
driving laboratory in chemical science and engineering 
consists of four main components, which can be in
dividually adjusted to suit the specific goals of the re
action campaign, either process exploitation or probing 
the reaction system for more fundamental understanding 
(Figure 1). The first component is reagent preparation 
and chemical reaction execution: the physical equip
ment for performing a given experimental condition and 

extracting the information of interest from the result. 
This would commonly be an automated system being 
robust enough to perform experiments without any 
human supervision after being given a set of initial 
parameters. The second piece of the system is inter
pretation or data processing, the ability to extract and 
distill relevant information from the raw data supplied 
by the execution step. Accurate and precise data acqui
sition is essential to minimize system sampling variance 
to reduce the uncertainty in the model prediction, re
sulting in reducing time and cost for optimization cam
paigns. The third element of the system is building or 
updating the ML model (i.e. current belief of the reac
tion model). The specific model and architecture chosen 
can have a dramatic impact on the performance and 
training behavior of the ML model, depending on the 
types of input parameters. Commonly used ML models 
are Gaussian process regression (GPR) as well as deep 
NNs for relatively small dimensional spaces such as 
process conditions, and convolutional NNs for larger and 
more complex dimensional spaces such as chemical 
structure information [29–31]. Additionally, the NNs can 
be grouped to form an ensemble model to enable sta
tistical and probabilistic evaluation of the reaction out
puts [32•,33••]. The last component required for a 
complete autonomous experimentation system is the 
intelligent experiment-selection algorithm, or how the 
system will choose the next experiment in a closed-loop 
campaign. Selection can be exploitative, such as a strict 
parameter optimization, exploratory, as is the case for 
minimizing maximum model variance, or some combi
nation of the two. The first two aspects of an autono
mous experimentation system are highly dependent on 
the individual reaction system being studied, and as 
such, this review will be primarily focused on the mod
eling and decision policies. 

Autonomous chemical science and 
engineering enabled by self-driving 
laboratories 
Fully realized self-driving laboratories enable several 
different use cases ranging from reaction optimization to 
process-space mapping and investigation into more 
fundamental understanding of system mechanisms and 
kinetics. While systems with rapid sampling rates — fast 
reaction kinetics O (0.1–100 s) and rapid characterization 
(e.g. in-line analysis) — can move through the experi
mental selection process to more quickly find an op
timum or explore reaction space, systems with slower 
reaction timescales, ~O(1 h), or characterization (offline 
analysis), can still benefit in acceleration from both the 
automation and the intelligent experimentation (ML- 
guided experimental planning). Relatively slow che
mical processes can additionally be conducted in a 
single-droplet oscillatory flow format [34–36] to de
couple reaction time from reactor volume to minimize 
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reactor footprint for screening conditions. One way to 
help accelerate the automated reaction campaigns is to 
use in silico surrogate models (ML or physics-based) to 
simulate and supplement the system for more rapidly 
selecting optimization hyperparameters for systems with 
slow or costly sampling [37]. Bateni et al. [20] harnessed 
the power of this directed intelligent experimentation to 
construct a digital twin of a complex multistage material 
synthesis (Mn doping of CsPbCl3 nanocrystals). A 
maximum variance decision policy for experiment se
lection returned a model with prediction accuracy >  80% 
after only 60 autonomously conducted experiments. 

Closed-loop autonomous reaction optimization 
Closed-loop autonomous reaction optimization is in
tended to effectively search a high-dimensional reaction 
parameter space to provide a prediction that gets as close 
to a user-specified objective as possible. Common ob
jective parameters include maximum reaction yield, 
minimum experimental cost, desired product selectivity, 
and relevant material properties in the case of materials 
development. ML and AI strategies for closed-loop op
timization generally involve predicting the response of 
the system and selecting an improved set of reaction 
conditions sequentially, until reaching a predefined 
target. Reaction optimization can also be performed with 
no model of the system as is the case for a strictly 

evolutionary method (i.e. a population-based meta
heuristic optimization algorithm); however, forming an 
ML model of the system (e.g. response surface based or 
NN), can help to reduce the number of experiments 
(cost) that must be performed in closed loop to identify 
an optimum. As the dimensionality of the input space 
increases, linear models do not work as well and NN 
approaches begin to shine. In this section, we present a 
few recent examples of closed-loop autonomous reaction 
optimization. 

In one example of an autonomous robotic experi
mentation technique, Li et al. [38] identified and opti
mized for chirality in inorganic perovskite nanocrystals 
using an automated microfluidic reactor and robotic 
sampling system coupled with a cloud-based stable noisy 
optimization by branch-and-fit (SNOBFIT) [39] 
strategy, combining random global search and steepest- 
descent gradient methods. Circular dichroism of in
organic perovskite nanocrystals was optimized by 
varying reaction temperature and precursor concentra
tion, and perovskites with screw dislocations were ob
tained. The optimum in the two-dimensional input 
space was identified after ~120 experiments and was not 
improved upon after 250 experiments. The SNOBFIT 
algorithm allows the optimization of an arbitrary function 
through local gradient quadratic fitting, without a need 
to have access to the full underlying model. 

Evolutionary approaches can also be utilized with little 
to no information about the underlying system at the 
cost of potentially requiring additional experiments to 
identify an optimum. The evolutionary algorithms use 
the parameters from the best candidates of the previous 
generation of experimental conditions before applying 
crossover between candidates and random mutation to 
create the conditions for the next set of experiments to 
be conducted autonomously. In one example, Salley 
et al. [8] utilized a sequential evolutionary algorithm 
campaign to synthesize gold (Au) nanoparticles on de
mand with different morphologies (spheres, rods, and 
octahedral), as shown in Figure 2a. The initial popula
tion generation was produced by random sampling of the 
initial parameter space. Once optimized conditions of a 
morphology were identified, those conditions were used 
as seed material for the subsequent material optimiza
tion campaigns. Each optimization campaign required 10 
generations of 15 experiments (90 min of sampling time) 
for 150 total experiments per optimization. Evolutionary 
approaches are primarily feasible in systems with a high 
degree of parallelization or rapid sampling due to the 
potentially large number of required experiments. 

Reinforcement learning (RL) has not been yet widely 
adapted in autonomous chemical science and en
gineering. RL aims to maximize a user-supplied reward 
function using the state of the system in addition to the 

Figure 1  
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Process flow of a self-driving lab in chemical science and engineering.   
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Figure 2  
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reaction conditions, results, and previous history to pre
dict reaction outcomes. RL uses deep NNs to fit the 
policy function of the RL algorithm for condition pre
diction, as shown in Figure 2b. In one of the few ex
amples of RL in reaction engineering, Zhou et al. [40••] 
utilized a deep RL for the yield optimization of the Po
meranz–Fritsch synthesis of isoquinoline, Friedlaender 
synthesis of substituted quinoline, synthesis of ribose 
phosphate, the reaction of 2,6-dichlorophenolindophenol 
and ascorbic acid, and silver nanoparticle synthesis. The 
performance of the RL optimization strategy was 
benchmarked against common black-box optimization 
methods, such as covariance matrix adaptation– evolution 
strategy (CMA–ES) [41], Nelder–Mead simplex [42], and 
SNOBFIT. The RL strategy succeeded in reducing the 
optimization cost (i.e. total number of experiments re
quired for each optimization) by 71% (32 experiments vs. 
111, 187 and no convergence for CMA–ES, SNOBFIT, 
and Nelder–Mead, respectively). It was also demon
strated that applying a probability distribution for ex
periment selection around the predicted values results in 
an improved final function value at the cost of a slightly 
longer optimization campaign. Additionally, the RL 
strategy showed improved performance after training on 
prior reactions, regardless of similar or different reaction 
mechanisms. 

Bayesian optimization (BO) uses prior belief about a 
system coupled with experimental conditions to predict 
an updated ground-truth model and associated un
certainty. The belief about the system is commonly 
modeled by a GPR, but NNs can also be utilized as long 
as they can provide an estimate of uncertainty either 
directly or through an ensemble of NNs. One example 
of a self-driving laboratory using BO-based approach 
with ensemble NNs by Epps et al. [33••], compared the 
BO approach to SNOBFIT and CMA–ES for the 
bandgap tuning of inorganic lead halide perovskite na
nocrystals. Decision policies that were either explora
tion-heavy (SNOBFIT, NN — maximum variance) or 
exploitation-heavy (NN — exploitation) optimized more 
slowly and to worse final values than the balanced po
licies (NN— upper confidence bound, NN — expected 
improvement, and CMA–ES). Pretraining of the NN 
ensemble with prior experimental conditions (knowl
edge transfer) dramatically improved the optimization 

time for reaching the bandgap within 1 meV under five 
experiments. The benefits of pretraining diminished 
near the edges of the trained output space. A second 
example by Abdel-Latif et al. [32•] used a pretraining 
stage (NN — maximum variance) of 200 experiments on 
the halide-exchange reaction of lead halide perovskite 
nanocrystals, which allowed the ML model to quickly 
optimize to a selected peak emission energy in five 
further exploitation experiments (NN — exploitation) 
per material target from 1.9 to 2.9 eV, shown in 
Figure 2c. The pretraining becomes more time and re
source efficient as multiple optimization campaigns are 
required. This study further highlights the power of ML 
models coupled with a closed-loop experimentation 
strategy to tackle the batch-to-batch variation problem, 
commonly observed in colloidal synthesis of nanoma
terials. In another example of autonomous experi
mentation using BO, Tao et al. [36•] utilized a Bayesian 
NN to direct the optimization of a gold nanoparticle 
synthesis by balancing selection of an experiment for 
maximum reaction-space exploration followed by an 
experiment selected for maximum exploitation based on 
the current belief of the reaction system. The optimi
zation algorithm used in this study, Chimera, allowed for 
optimizing multiple desired properties, moving down 
the list in order of importance, without sacrificing 
higher-ranked properties. In another example of BO in 
autonomous reaction optimization, Mekki-Berrada 
et al. [43•] combined a Gaussian process-based BO with 
a deep NN to optimize a droplet-based microfluidic 
synthesis of silver nanoparticles. The BO algorithm was 
provided with a loss function by comparing the nano
particle UV–Vis absorption spectra with a target spectra, 
while the deep NN was directly fed the full spectra, as 
shown in Figure 2d. This approach allowed the deep 
NN to produce simulated UV–Vis absorption spectra for 
the BO-suggested sampling conditions, allowing for 
ranking the predicted conditions. After full training of 
the ML model, the effect of the reaction conditions on 
the features of the UV–Vis absorption spectra could be 
investigated. The optimization campaign required 8 sets 
of 15 experimental reaction conditions and the para
meter-space boundary was allowed to be flexible, en
abling the expansion of the available reaction space if 
the predicted optimum was located too close to the edge 
of the parameter space to be fully explored. 

Example algorithms for chemical reaction optimization. (a) Optimization flow of an evolutionary algorithm for producing Au nanoparticles by 
Salley et al. [8]. (b) Training of a reinforcement-learning model for reaction optimization by Zhou et al. [40••]. (c) Schematic of the modular 
experimentation platform integrated with an ensemble NN-guided ML algorithm for two-stage reaction optimization by Abdel-Latif et al. [32•]. (d) Two- 
step Bayesian optimization and deep NN absorbance spectra prediction model by Mekki-Berrada et al. [43•]. 
Images reproduced with permissions from Springer Nature, 2020 (a), American Chemical Society, 2017 (b), Creative Commons License, 2021 (c), and 
Springer Nature, 2021 (d).   
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While a variety of different ML modeling and AI-assisted 
experiment-selection strategies can be utilized for a self- 
driving lab, the resource-efficient and time-efficient nature 
of the closed-loop experimental campaigns mainly relies 
on the characteristics of the system (e.g. reaction time, 
sampling time, and computing cost). A quickly sampled or 
low experimental cost system may opt for an approach that 
requires more experimental data points such as black-box 
or genetic algorithms, while systems with slow or costly 
sampling may tend to utilize methods that can handle 
more sparse datasets. We direct the reader to recent 
comprehensive reviews further detailing the multitude 
types of ML algorithms for organic [44,45], and nanoma
terial [46] synthesis. 

Autonomous reaction modeling 
Although ML models have significant power for per
forming optimizations on chemical reactions, their true 
benefit lies in the development of the surrogate model of 
the system. After the training and cross-validation of the 
ML model with the initial learning dataset, it becomes 
possible to use the surrogate model to explore the un
derlying behavior of the system and extract fundamental 
insight into reaction kinetics and mechanism. Parameter 
analysis can identify the most critical parameter(s) af
fecting reaction performance. For example, careful se
lection of the NN model architecture can also enable 
extraction of relevant reaction information from the 
weights and biases of the final trained NN model. 
Design of experiment models can also be trained and fit 
to the data if some mechanistic information is known. 

In one example of data-driven reaction modeling, Ji et al.  
[47•] developed a chemical reaction neural network 
(CRNN) with node architecture based on fundamental 
rate equations and the Arrhenius law for temperature 
dependence, as shown in Figure 3a. Through training 
the CRNN model with time-resolved concentration 
data, it became possible to extract fundamental reaction 
pathways and rate constants from the weights and biases 
of the trained model. Overall, the CRNN modeling ap
proach is very powerful for identifying elementary re
action steps, assuming time-resolved concentration 
profiles for reagents, intermediates, and products are 
available. The large amount of data required for this 
autonomous reaction modeling approach may limit full 
applicability for reactions with catalytic cycles and re
active intermediate species. 

In another example of ML-guided reaction engineering, 
Vikram et al. [48] developed an ML model for colloidal 
synthesis of indium phosphide (InP) nanocrystals, using 
a 25-member ensemble NN with randomized internal 
architecture of hidden layers and nodes. The ensemble 
NN was trained and cross-validated starting with an in
itial 16 random experiments until it could successfully 
predict a set of additional InP synthesis experiments 

with high accuracy (>  90%), as shown in Figure 3b. The 
model then predicted a parameter-space map and eval
uated the feasibility of the target parameters. If the 
model believed the desired target was feasible, it would 
then run the experiment at the optimized condition 
selected based on the ensemble NN model to achieve 
the desired properties. Once the ensemble NN produces 
the parameter-space map, it can be used as a surrogate 
model to effectively examine the effect of the input 
parameters on the system. 

Epps et al. [26••] utilized a GPR-based surrogate model 
(or system ground truth) for a complex reaction system 
(halide-exchange reactions of all-inorganic metal halide 
perovskite nanocrystals) to investigate the role of ML 
modeling and decision-making under uncertainty on the 
closed-loop reaction optimization. With the trained sur
rogate model, simulated experiments can be performed 
rapidly, enabling the full exploration of the parameter 
space predicted by the model and the discovery of the 
Pareto front of the multiobjective optimization. The 
digital twin of the nanocrystal synthesizer was then uti
lized to identify and improve metaparameters, such 
as objective function, NN architecture, and decision 
policies that resulted in improved autonomous optimi
zation performance (Figure 3c). The optimized en
semble NN model outperformed the previous work and 
several commonly selected optimization algorithms 
(SNOBFIT, CMA–ES, NSGA-II [49], and exploration). 
Benchmarking various choices of metaparameters can 
have a significant impact on both the speed and the final 
value achieved for the closed-loop reaction optimization 
campaigns. 

Interpreting machine learning-guided reaction modeling 
ML models and performance can be difficult to inter
pret, and thus, there has been a significant amount of 
work around visualizing the outputs and interpreting a 
trained ML model. In the case of the CRNN in Ji 
et al. [47•], the NN architecture was designed to pro
duce rate constants and power-law coefficients as the 
weights and biases of the fully trained NN model, 
however, for many NN models, it is difficult to extract 
physical meaning from the weights and biases of the 
hidden layers of the model. For some NN models, such 
as the one presented in Gao et al. for the prediction of 
organic synthesis reaction conditions [27,29,31], simila
rities in the weight matrices can be interpreted as simi
larities in the output-activation nodes for solvent 
similarity and reagent similarity. The high-dimensional 
matrices can also be projected to a two-dimensional vi
sualization by t-distributed stochastic neighbor embed
ding, to show clustering of similar species, as shown in  
Figure 4a. 

ML-guided optimization campaigns are typically as
sessed by the speed at which the model can converge to 
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an optimum in the fitness function (i.e. total experi
mental cost), as well as the final value that can be ob
tained. This metric shows an estimate of how many 
experimental conditions are required for performing an 
optimization campaign using a specific ML model on a 
similar system (i.e. benchmarking), as shown by Zhou 

et al. [40••] (Figure 4b). Similarly, the fitness function or 
individual outputs can be plotted as a function of sets of 
input parameters to visualize lower-dimensional slices of 
the reaction space as response surfaces to better under
stand the role of different reaction parameters on the 
reaction outcome (Figure 4c, Li et al. [38]). The 

Figure 3  

Current Opinion in Chemical Engineering

Example surrogate model architectures. (a) Chemical reaction NN with weights and biases corresponding to mass action and Arrhenius behavior of 
elementary reactions in the reaction network by Ji et al. [47•]. (b) Ensemble NN and fivefold cross-validation for modeling InP nanocrystal synthesis in 
a flow reactor by Vikram et al. [48]. (c) Surrogate model development for model and decision-policy optimization by Epps et al. [26••]. 
Images reproduced with permissions from American Chemical Society, 2021 (a), Royal Society of Chemistry, 2021 (b), and Royal Society of 
Chemistry, 2021 (c).   
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importance of individual input parameters can be de
termined by a relative contribution or Shapley feature 
analysis to either highlight important input parameters 
or remove inputs with little to no effect on the output 
(dimensionality reduction), as shown in the work by Tao 
et al. [36•] (Figure 4d). After dimensional reduction, the 
NN can be retrained with the smaller input space or the 

physics-based model [28] can be refactored to remove 
dependence to improve the time needed for optimiza
tion. Similarly, a decision tree-based approach can be 
utilized as demonstrated by Li et al. [50] to identify key 
changes that have a dramatic effect in the model output 
(Figure 4e). Decision trees are primarily used when 
classifying outputs into discrete bins (atomically precise 

Figure 4  

Current Opinion in Chemical Engineering

Fundamental knowledge extraction from machine learning models. (a) Two-dimensional visualization by t-distributed stochastic neighbor embedding, 
to visualize clustering of similar chemical species by Gao et al. [27]. (b) Model fitness benchmarking by Zhou et al. [40••]. (c) Concentration and 
temperature-response surface for circular dichroism of chiral perovskite nanocrystals by Li et al. [38]. (d) Shapely feature analysis of reaction input 
parameters for Au nanoparticle synthesis by Tao et al. [36•]. (e) Atomically specific Au nanoparticle decision tree by Li et al. [50]. 
Images reproduced with permissions from American Chemical Society, 2018 (a), American Chemical Society, 2017 (b), Creative Commons License, 
2020 (c), Wiley, 2021 (d), and Wiley, 2019 (e).   
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AuNP vs. nonprecise AuNP in this case) and not con
tinuous variables. 

Outlook 
Autonomous chemical science and engineering strate
gies for optimization and reaction engineering are fast 
becoming powerful tools for performing time-efficient 
and material-efficient reaction universe exploration of 
emerging advanced materials and molecules. Selection 
of the correct ML model and the experiment-selection 
algorithm can have dramatic effects on the overall per
formance of the closed-loop experimentation systems. In 
this regard, access to data and different ML algorithms 
for benchmarking becomes increasingly important to 
identify the most cost-effective ML modeling and de
cision-making framework before integration within an 
experimentation platform. Work is being done to extend 
ML-guided reaction exploration and optimization 
methods from a single reaction system with a well-de
fined input space, to input spaces containing discrete 
variables and flexible boundaries, and even further to 
predict novel reactions, including chemical species a 
priori. As surrogate modeling approaches gain wide
spread adoption, these higher-order prediction and op
timization problems will have an increasingly robust well 
of data to pull from in order to improve and refine the 
more general models. With this wealth of data, it will 
become possible to benchmark the performance of the 
different modeling and optimization methods with re
levant hyperparameters for a given class of reaction 
systems [51]. 
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