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Abstract: Despite the increased interest in automation and the expanded deployment of robots in the construction industry, using robots in a
dynamic and unstructured working environment has caused safety concerns in operating construction robots. Improving human–robot
interaction (HRI) can increase the adoption of robots on construction sites; for example, increasing trust in robots could help construction
workers to accept new technologies. Confidence in operation (or self-efficacy), mental workload, and situational awareness are among other
key factors that help such workers to remote operate robots safely. However, construction workers have very few opportunities to practice
with robots to build trust, self-efficacy, and situational awareness, as well as resistance against increasing mental workload, before interacting
with them on job sites. Virtual reality (VR) could afford a safer place to practice with the robot; thus, we tested if VR-based training could
improve these four outcomes during the remote operation of construction robots. We measured trust in the robot, self-efficacy, mental work-
load, and situational awareness in an experimental study where construction workers remote-operated a demolition robot. Fifty workers were
randomly assigned to either VR-based training or traditional in-person training led by an expert trainer. Results show that VR-based training
significantly increased trust in the robot, self-efficacy, and situational awareness, compared to traditional in-person training. Our findings suggest
that VR-based training can allow for significant increases in beneficial cognitive factors over more traditional methods and has substantial
implications for improving HRI using VR, especially in the construction industry. DOI: 10.1061/(ASCE)CP.1943-5487.0001016. © 2022
American Society of Civil Engineers.
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Introduction

Over the past two decades, both the construction industry and the
scientific community have developed an increased interest in con-
struction robotics. This interest has resulted in an increased produc-
tion of scientific research and expanded deployment of robots on

construction sites (Carra et al. 2018). Automation and robotics have
the potential to revolutionize and address the shortcomings of the
construction industry, such as stagnant productivity and safety con-
cerns. On-site robotic systems can enhance productivity by perform-
ing highly repetitive and tedious tasks (e.g., masonry, finishing,
rebar-tying); thus, construction workers can focus on more complex
tasks that humans can do better than robots (Davila Delgado et al.
2019). Automation and robotics can also lower project costs by
allowing construction in adverse weather conditions (e.g., various
temperatures and humidity levels) (Kumar et al. 2008). Robots
can also mitigate labor shortages and allow for broader workforce
access by enabling underrepresented groups of workers to join
the workforce, for example, enable women (who comprise only
10.3 percent of the construction workers population (US Bureau
of Labor Statistics 2019) or disabled workers who cannot work
on heavy tasks to engage in construction tasks. Besides, construction
robots can execute hazardous and labor-intensive tasks (e.g., demo-
lition) as well as prevent injuries and fatalities in an industry noto-
rious for having a dangerous work climate (Castro-Lacouture 2009).

Human–robot interaction (HRI) is one of the key areas that must
be explored for successful construction robotics adoption. Con-
struction workers might not accept new automation since they
might view these technologies as a way to replace them (Yahya
et al. 2019). Additionally, workers might prefer traditional methods
over technological solutions due to the unpredictable and dynamic
nature of construction sites (Yahya et al. 2019). They often feel
unsafe working around robots (Bartneck et al. 2009). Construction
workers need to gain trust in the new robotic systems because
building this trust among human operators or collaborators produ-
ces an increased sense of safety, a willingness to accept robot-
provided information or decisions, and an inclination to work with
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robots in the future (Freedy et al. 2007; You et al. 2018). However,
there are very few opportunities for construction workers to build
trust before remote operating construction robots on job sites.

Even though automation and robotic systems have the potential
to improve workers’ safety, they can also bring about new safety
concerns to construction sites. While workers and robots are sep-
arated in other industries such as automotive and manufacturing
industries, robots work alongside construction workers in a con-
stantly changing and unpredictable working environment. Hence,
the safety of humans working alongside robots is a goal to achieve
successful construction robotics adoption. In this regard, workers’
mental workload (MWL) and situational awareness (SA) are two
critical factors impacting the safe remote operation of construction
robots. MWL and SA are objects of interest in cognitive engineering.
They refer to the cognitive loads imposed on operators during task
execution when robots and other intelligent systems are involved.
MWL relates to the portion of an operator’s cognitive capacity nec-
essary to complete a given task (O’Donnell and Eggemeier 1986).
SA indicates how the operator perceives the environments in which
the tasks take place, comprehends its meaning, and predicts future
states of the environment and the task (Endsley 1988). Despite being
crucial factors of learning for construction workers to remote operate
the robots safely, workers have very few opportunities to optimize
their MWL and build SA before remote operating construction ro-
bots on-site.

Current training opportunities for construction workers pri-
marily rely on passive pedagogical models (including lectures,
pamphlets, and videos), with only a few examples of active training
techniques being used (learner-centered instruction, apprenticeship
models, and hands-on demonstrations) (Burke et al. 2006; Moon
et al. 2019; Wang and Dunston 2007). Given that in-person training
may not be feasible in many situations due to the safety risks it may
impose on the trainees, cost and equipment requirements, and dis-
turbance of the work on-site, virtual reality (VR)-based training is
proposed as a method to provide construction workers with in-
person training experiences in hazardous situations without impos-
ing actual safety risks. In recent years, the use of VR-based training
has drawn attention from construction researchers, especially in as-
pects related to safety and hazard identification (Albert et al. 2014;
Jeelani et al. 2020; Le et al. 2015; Moore et al. 2019; Nykänen et al.
2020; Sacks et al. 2013; Xu and Zheng 2021), construction equip-
ment operation (Bhalerao et al. 2017; So et al. 2013, 2016; Song
et al. 2021; Su et al. 2013; Vahdatikhaki et al. 2019), ergonomic
behavior (Akanmu et al. 2020; Diego-Mas et al. 2020), and con-
struction task execution (Barkokebas et al. 2019; Cheng and Teizer
2013; Hafsia et al. 2018; Osti et al. 2021).

VR-based training and other extended reality (XR)-based train-
ing [i.e., augmented reality (AR) and mixed reality (MR)] have
gained increasing attention in the past decade as a result of tech-
nology development and reduced implementation costs. Examples
of VR-based training can be found in a variety of domains, includ-
ing manufacturing (Kalkan et al. 2021), aerospace and aviation
(Chandra Sekaran et al. 2018; Luong et al. 2020), healthcare (Mao
et al. 2021; Mehrfard et al. 2020), military (Gluck et al. 2020), retail
(Boletsis and Karahasanovic 2020), sports (Lee and Kim 2018),
construction (Jeelani et al. 2020; Nykänen et al. 2020; Pooladvand
et al. 2021; Song et al. 2021), among others. Existing research has
identified a series of requirements that can improve the effective-
ness of VR-based training. For example, one of the most impor-
tant requirements refers to the levels of virtual presence that is
associated with any proposed training, as existing research has
shown that more feeling of presence increases the effectiveness
of the training and the overall performance of the operators
(Heyao and Tetsuro 2022; Song et al. 2021). Also, the realism

of the virtual training environment plays an important role in
the effectiveness of VR-based training and the overall user expe-
rience (Chalmers and Debattista 2009; Grant et al. 2020). Another
key factor in VR-based training refers to the consideration of ex-
periential learning [i.e., “learning through reflection on doing”
(Pappa et al. 2011, p. 1003)] during the development of the train-
ing (Goulding et al. 2012). This is because including considera-
tions about learning objectives, metrics, and outcomes during the
development of the VR-based training can provide a more effec-
tive training experience.

Moreover, VR-based training has the potential to provide an op-
portunity for workers to build trust in automation and construction
robots more specifically and trust in their ability so that workers are
ready to remote operate the robot safely and efficiently on an actual
construction site. VR-based training can also promote a safer inter-
action between humans and robots by decreasing the overall mental
workload experienced by the worker while also increasing his/her
SA. However, the impact of VR-based training on construction
workers’ trust in the robot, robot-used self-efficacy, SA, and
MWL is underexplored in the construction robotics context. Thus,
the present study explores the effectiveness of VR-based training
on construction workers’ MWL and SA, as well as their develop-
ment of trust in robots and ability to use the robot (robot-use self-
efficacy), compared to a more traditional, comparable in-person
pedagogical model. We begin this paper with a literature review
of existing studies of VR-based training from a range of trust in
automation, MWL, and SA literature. Next, we present the study’s
methodology, which includes the VR-based training environment
and the experimental design, and the study’s findings. A discussion
is followed by the conclusions and future directions.

Literature Review

Trust in the Robot and Robot Operation Self-Efficacy

Advancements in automation have allowed workers to collaborate
with robots on various job sites; however, the dynamic, unstruc-
tured nature of construction sites has caused challenges in imple-
menting robots on job sites (Yahya et al. 2019). Not only are
construction sites inherently unpredictable, but construction work-
ers and robots also work alongside each other rather than separately
as they do in other industries (i.e., manufacturing). In addition,
since robots are often designed to execute more dangerous tasks
than humans in collaborative teams of humans and robots, trust
in the robot plays a more pivotal role in high-risk environments,
such as construction sites, than it does in more structured and rel-
atively less risky environments (Frank et al. 2019). Therefore, con-
struction workers must trust in the automation or robotic system
they are working with and in their skills in remote operating the
robots.

Lee and See (2004, p. 51) define trust as “the attitude that an
agent (e.g., automation, a robot, or a human) will help achieve an
individual’s goals in a situation characterized by uncertainty and vul-
nerability.” The level of humans’ trust depends on the characteristics
of the trustee (e.g., culture, age, gender, personality), the trustor
(e.g., features of the automation, capabilities of the automation),
and the context of the interaction between them (e.g., team collabo-
ration, tasks) (Chen et al. 2011; Lee and See 2004; Parasuraman et al.
2008; Sheridan 2002). Trust in human interaction with automation
can be challenged by disuse and misuse. Disuse relates to the situa-
tion when humans do not accept technology and reject using it, while
misuse refers to overtrusting automation excessively and inappropri-
ately (Lee and See 2004). While trust in automation and trust in
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robots have similar fundamental characteristics, the human–robot
trust may differ from the human-automation trust since robots have
different characteristics than other forms of automation (Hancock
et al. 2011). In this regard, researchers have been investigating fac-
tors that influence the trust in a robot (Parker and Grote 2020).

Existing studies indicate that trust in a robot can be influenced
by the characteristics of humans, robots, and surrounding environ-
ment (Park et al. 2008), with the characteristics of the robot being
regarded as more significant than the characteristics of humans and
the environment on the development of trust (Hancock et al. 2011).
On many occasions, however, there are mismatches between the
perceptions of humans on the robot’s characteristics and capabil-
ities and the robot’s actual characteristics and capabilities, which
can lead to trust failures. For that, training the humans involved
in interactions with robots has been presented as a key strategy
to promote trust by reducing the differences between the expect-
ations of humans toward the robot’s capabilities and the actual ro-
bot’s capabilities (Hancock et al. 2011) and to recover trust after
trust failures resulting from incorrect user expectations toward the
robot or user unintentional failures during the interaction (Tolmeijer
et al. 2020).

Most commonly, trust is assessed subjectively with the help of
questionnaires based on Likert-scales in which the subjects indicate
their levels of trust in their ability to properly interact with the robot
(self-efficacy) and/or the ability of the robot to achieve the task
goals. Examples include proposed trust scales that account for vari-
ous factors that influence HRI such as team configuration, team
process, context, task, and system (Yagoda and Gillan 2012) and
trust scales that assess the overall perception of the subjects on ro-
bot’s capabilities using repeated measures analysis (Schaefer 2016).
In one of the few attempts to measure trust in a robot objectively,
Freedy et al. (2007) proposed a model that determines an overall
trust score based on the human task allocation decision behavior,
risk, and robot behavior and found that as robot competency de-
creases, the mission time and the user interventions increase. Based
on the proposed formulation, the authors also proposed an analytical
methodology that allows the comparison of the trust behavior of the
operators to the expected behaviors of an expert, providing direct
feedback on the operator’s training needs relative to trust behavior.

The model proposed in Freedy et al. (2007) is based on the cor-
relation between trust in automation and self-confidence, or self-
efficacy. Robot-use self-efficacy is a human-related characteristic
correlated with trust in a robot (Evers et al. 2008; Lee and Moray
1994). Self-efficacy refers to an individual’s belief about his/her
performance skills in a given situation (Bandura 2006). Specifi-
cally, robot-use self-efficacy refers to the workers’ beliefs about
their ability to use robots (Turja et al. 2019). However, self-efficacy
does not equal efficacy; a person may possess the ability to perform
a task successfully, but he/she may not believe that they have the
power to produce the desired effect (Rosenthal-Von Der Pütten and
Bock 2018).

VR has been used to study and enhance trust in automation in
different fields, including drivers’ and pedestrians’ trust in autono-
mous vehicles (Jayaraman et al. 2019; Miller et al. 2016; Morra
et al. 2019; Sportillo et al. 2019). In construction applications,
the study of trust in HRI is rare and has been limited to the study
of perceived safety in HRI teams because of physical separation
between workers and robots and its impacts on promoting team
identification and trust (You et al. 2018). As of this date, to the
best of our knowledge, there is no study in the construction industry
that has focused on understanding the impact of immersive VR-
based training on construction workers’ trust in the robot and robot
operation self-efficacy. Since the development of trust in the robot
and robot operation self-efficacy is crucial for the adoption of

construction robotics, this study investigates VR-based training’s
impact in enhancing the aforementioned factors in construction
workers compared to traditional in-person training.

Mental Workload

Since more than 70% of all accidents in the construction industry
are related to workers’ activities, it is crucial to mitigate human-
related factors affecting the safety conditions in this industry
(Chen et al. 2016). Construction workers’ ability to perceive haz-
ards can help them to avoid dangerous conditions. Among the hu-
man factors that relate to hazard perception is mental workload
(MWL) (Gao and Wang 2020; Di Stasi et al. 2009; Tevell and
Burns 2000). One of the most accepted definitions of the MWL
associated with a task is “the level of attentional resources required
to meet both objective and subjective performance criteria, which
may be mediated by task demands, external support and past ex-
perience” (Young and Stanton 2001, p. 507).

The study of MWL has become a topic of interest due to the
increasing cognitive demand requirements resulting from the de-
ployment of more complex human-machine and human–robot sys-
tems in diverse fields, including aviation, surgery, manufacturing,
and construction. In many studies, MWL has been recognized as a
key factor that affects operator’s performance during human-
machine and human–robot interactions (Dybvik et al. 2021; Memar
and Esfahani 2018; Moore et al. 2015; O’Donnell and Eggemeier
1986; Tao et al. 2019). Most commonly, these studies have shown
that decreasing the cognitive loads imposed on the operator during
task execution usually results in improved performance. Although
most of the studies focus on mental overload, when task require-
ments overcome operator capabilities, mental underload is another
situation that leads to reduced performance. As presented by Young
and Stanton (2001), instead of trying to remove the operator from
as many tasks as possible when deploying automated systems, the
designer should try to optimize the design of the tasks to take ad-
vantage of both the technology and the operator’s skills, which can
be accomplished through the use of adaptive interfaces and
dynamic task allocation. In such cases, human factors such as
operator’s workload and levels of fatigue, and physiological data
such as heart rate variability, can be used to dynamically allocate
tasks to the humans and robots involved in the interaction to alle-
viate the negative effects of workload, fatigue, and stress (Landi
et al. 2018; Pini et al. 2016).

Various techniques can be used to assess MWL during task
execution, including subjective measures [e.g., NASA-Task Load
Index (TLX) and the subjective workload assessment technique
(SWAT)], physiological measures (e.g., heart rate, eye-gazing, elec-
trodermal response), and objective measures based on task perfor-
mance (primary and/or secondary tasks) (Young and Stanton 2004).
Developed by the Ames Research Center (Biferno 1985), the
NASA-TLX is a standard, questionnaire-based, subjective measure
of the overall workload experienced by a human working in a
human-machine or human–robot system. It is one of the most used
measures of task load and considers six subscales: mental demand,
physical demand, temporal demand, level of performance, effort,
and frustration. Even though a variety of physiological measures
has been used to predict MWL in many domains (Grimmer et al.
2021; Sakib et al. 2021; Singh et al. 2021; Yauri et al. 2021), the use
of subjective assessments alone has been preferred in many studies
(Sugiono et al. 2017; Yurko et al. 2010), especially due to their
simplicity of application and nonintrusive nature. Also, for MWL
specifically, existing studies show that while most of the physio-
logical measures used in MWL research can detect changes in
MWL levels, the validity of these measures is dependent on the
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application at hand, requiring a proper selection of the physiologi-
cal measures for each task scenario (Charles and Nixon 2019; Tao
et al. 2019).

In construction applications, some of these techniques have
been used, sometimes combined, to assess the levels of MWL that
workers experience when working alongside machines and robots
(Akyeampong et al. 2014), assess the reliability of using physio-
logical data to predict MWL (Sakib et al. 2021), or to adjust robot
behavior during the interaction (Liu et al. 2021). Current efforts to
understand the implications of VR-based training on MWL have
shown that there are significant differences between the levels
of MWL experienced by the subjects when operating simulated
drones and real drones, being the MWL higher in the simulated
condition (Sakib et al. 2021). Yet, it is still not clear whether the
same results can be obtained when using VR-based training to train
construction workers on the operation of more complex construc-
tion machines and robots given the requirements of longer train-
ing sessions, more unstructured environments, and the relatively
more complex control interfaces and mechanisms found in these
machines/robots.

Despite the increasing body of research on the cognitive impacts
of the deployment of intelligent systems and robotics on-site and in
the use of immersive environments for construction workers’ train-
ing, the impacts of VR-based training on the cognitive loads expe-
rienced by construction workers during the actual remote operation
of a construction robot has not yet been fully explored. In this pa-
per, the cognitive loads experienced by two groups of construction
workers with VR-based versus in-person training are measured
using NASA-TLX and compared to assess the effectiveness of
VR-based training to reduce MWL during the remote operation
of a construction robot.

Situational Awareness

Another crucial human factor in applications involving human–
robot systems is SA, which, according to Endsley (1995a), forms
the basis for decision making and performance in the operation of
complex systems. As is the case with the MWL, current studies
have increasingly focused on SA to investigate new systems design
and training programs in various fields (Endsley 2021). The most
accepted definition of SA centers on the operator’s “perception of
the elements of the environment within a volume of time and space,
the comprehension of their meaning and the projection of their
status in the near future” (Endsley 1988, p. 792). This definition
clearly presents three phases in the process of an operator acquiring
SA: perception, comprehension, and projection. These three phases
are defined in the hierarchical model of SA in decision making
proposed by Endsley (1995b), which defines the Level 1 SA
(lowest level) as the perception of the environment and its elements,
Level 2 SA as the holistic comprehension of these elements and
their implications for the task goals, and Level 3 SA (highest level)
as the projection of the future states of these elements in the
environment.

Various tools and metrics have been proposed to assess workers’
SA, which include process measures, performance measures, and
direct SA measures, which are further differentiated among situa-
tion awareness rating technique (SART), situation awareness global
assessment technique (SAGAT), and situation present assessment
technique (SPAM) (Endsley 2021). Among these, SAGAT is one of
the most used techniques for measuring SA and involves ran-
domly freezing the task simulation and asking the subject ques-
tions about the current situation as a means to determine his/her
knowledge about the situation considering the three levels of SA
(perception, comprehension, and prediction) (Endsley 1988, 2021).

After multiple queries taking place at various moments during the
simulation, a composite SAGAT score is calculated, and it represents
an objective measure of SA because the perceptions of the operator
(as represented by his/her answers to the queries) are compared to the
actual conditions of the simulation (Endsley 1988).

In construction applications, SA has commonly been studied
from the perspectives of hazard identification and/or operating per-
formance of complex machines and equipment, especially cranes
and excavators (Cheng and Teizer 2014; Fang et al. 2018; Hong
et al. 2020; Wallmyr et al. 2019). Existing results show that increas-
ing an operator’s SAwith the help of an assistance system based on
visual cues, for example, can improve the overall operator’s safety
performance and task performance (Fang et al. 2018; Fang and Cho
2017). Relative to the use of VR-based training to increase con-
struction workers’ SA, Vahdatikhaki et al. (2019) claimed that
current VR-based simulators for construction operation training
put too much emphasis on the development of photo- and physics-
realistic scenarios and less emphasis on the development of
context-realistic scenarios, limiting the ability of the trainees to in-
crease their SA and skills. As is the case with the operation of actual
construction equipment, increasing the worker’s SA during training
in a simulated environment can also improve the worker’s safety
behavior and help workers to visualize potential risks associated
with their actions after the training sections (Cheng and Teizer
2013).

Many studies show that physical and mental loads and environ-
mental and task requirements also affect the worker’s SA and, con-
sequently, the ability of these workers to identify safety hazards
during task execution. Task complexity, for example, has been as-
sociated with reduced performance and SA and increased mental
workload (Fang et al. 2018), which may require specific training
scenarios to mitigate the reduction of the operator’s SA levels dur-
ing more complex tasks (Choi et al. 2020). Finally, for similar lev-
els of task complexity, construction workers’ SA is significantly
affected by different levels of MWL, with SA decreasing for higher
levels of MWL (Kim et al. 2021).

Although construction sites represent one of the most hazardous
working environments (US Bureau of Labor Statistics 2020) and
there have been an increased number of robots deployed on con-
struction sites [International Data Corporation (IDC 2020)], there is
still a lack of research into the potential of VR-based training on
enhancing the workers’ self-efficacy, SA, and mental workload dur-
ing the remote operation of real construction robots. Thus, this
study investigates the impact of VR-based training on construction
workers’ self-efficacy, mental workload, and SA as compared to
traditional in-person training.

Methods

Construction Robot Test-Case

A remote-operated demolition robot is selected based on the indus-
try acceptance trends, level of technology development, frequency
of use in construction projects, and potential impact on enhancing
construction productivity and safety. Remote-operated demolition
robots constitute about 90% of the total market for all construction
robots (Association for Advancing Automation 2020). One reason
for the fast adoption of remote-operated robots by the construction
industry is the unhealthy and dangerous nature of demolition tasks
(Corucci and Ruffaldi 2016). The use of handheld demolition tools
is associated with an average of 32 missed days for workers due to
fractures, injuries, and the effects of excessive vibration and strain
(Brokk Inc. 2020). Moreover, using remote-operated demolition
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allows operators to conduct demolition from a safer distance,
resulting in increased safety for the operators (Corucci and Ruffaldi
2016).

While there are different models and shapes of demolition ro-
bots, in this study, Brokk110 with a 19.5 kW smart power electrical
system and a 360-degree working radius is used [Figs. 1(a and b)]
(Brokk Inc. 2020). Since a human worker controls the robot di-
rectly, the human role in this interaction is to be the operator. Since
one operator interacts with one demolition robot, the team compo-
sition is one human to one robot. The communication between the
human and the robot is based on digital codes through the robot’s
controller (buttons and joysticks). Hence, the interaction type is
physical and synchronous since the operator and the robot work
simultaneously.

VR-Based Training (Experimental Condition)

VR System Setup
The VR-based training used in this study is developed on the
Unity3D game engine platform. VR-based training occurs in a
four-floor building and a simulated construction site [Fig. 2(a)],
which are modeled in Revit 2019. The construction site model
and the digital 3D model of the robot are exported in FBX format
and imported to the Unity3D game engine using the PiXYZ plugin.
We have simulated the robot’s model through physics simulation in
the Unity3D game engine. Brokk110’s technical specifications,
such as mass, drag, angular drag, and mesh colliders of various

components, are used to model the rigid body properties of the
robot in the VR environment. Additionally, multiple joints of
the 5-degrees-of-freedom (DOF) robot (e.g., fixed, hinge, and con-
figurable joints) have been modeled to provide an accurate move-
ment similar to the actual robot. Connected bodies, anchors, break
force, and break torque are assigned based on specifications ac-
quired from the robot’s manufacturing company. Additionally, we
have written scripts in the C# programming language to simulate
various robot components’ movement and rotation (considering
relative axis and speed). The virtual model of the robot has been
tested and verified by an expert from the robot’s manufacturing
company. In addition, a set of construction equipment is added
to the virtual environment (VE) from the Unity3D asset store.

The system [Fig. 2(b)] consists of VR-based training on a PC
with an NVIDIA GeForce GTX 1080 graphics card. The trainee
needs to wear a head mounted display (HMD) as the immersive VE
visualization tool. The trainee uses a VR controller to experience the
VR-based training (e.g., going to the next/previous step in the learn-
ing scenario, replaying the narrative voice, and interacting with ob-
jects in the VE).While the HMD gives the trainee a first-person view,
the headphone connected to the HMD provides sound effects. Two
base stations track the HMD and VR controller. In addition to the VR
equipment, the trainee uses the demolition robot’s actual controller
unit to remote operate the simulated robot in the VR-based training
environment. The robot’s controller is connected to the computer
using Arduino Pro micro serial connection.

Since the trainee needs to use the robot’s controller during the
training, it is essential to use a controller-free navigation method in

Fig. 1. (a) Brokk110 (image by Burcin Becerik-Gerber); and (b) Brokk110 in VR environment.

Fig. 2. (a) Construction site in VR environment; and (b) VR-based training system setup (images by Pooya Adami).
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the VE so that the trainee does not need a controller to walk within
the VE. Therefore, the locomotion technique used in this VR-based
training is a walk-in-place treadmill. Virtuix Omni is used as
the VR treadmill, designed to allow participants to walk within the
VR-based training environment without boundary since they are
walking on a treadmill, as opposed to a room-scale VR environ-
ment that would limit the participants to the boundary of the room
that the experiment takes place. The treadmill has a bowl-shaped
surface that requires the user to wear low friction shoes for move-
ment. The simulator can track the trainee’s position, speed, and
length of stride using inertial sensors.

Learning Modules
The VR-based training designed for this study, which consists of
seven learning modules (in both English and Spanish languages),
aims to enhance construction workers’ trust in the robot (remotely
operated demolition robot) and robot operation self-efficacy and to
decrease their MWL with a higher level of SA in remote operating
the robot. The content of the VR-based training and its delivery
(i.e., activities and engagement features with the content) was
developed based on adult learning theory (andragogy) and con-
tent experts’ feedback through several iterations. The content of
VR-based training followed the typical in-person training. Before
conducting the experiment, we ran a pilot study to identify and
fix technical problems. A detailed description of the develop-
ment process of learning modules can be found in Adami et al.
(2020).

The final version of the VR-based training consisted of seven
modules, each of which ended with a diagnostic assessment to en-
sure that workers learned the content covered in each module be-
fore moving on to the next one. The training aimed to help
workers learn the robot’s purpose and applications (module 1)

[Fig. 3(a)], safety features by interacting with the robot in the
VR environment (module 2), how to use the controller to remote
operate the robot (module 3), how to start the robot (Module 4)
[Fig. 3(b)], and how to position the robot to remote operate safely
(Module 5) [Fig. 3(c)], how to move the robot, and use the out-
riggers and arms (Module 6) [Fig. 3(d)], and how to demolish
(Module 7).

Trainees acquired the necessary learning material to remotely
operate the robot by completing the guided activities. Module 1
aimed to begin building trust in the robot in workers by introducing
the robot, its purpose, and its components using visualization and
active learning techniques since workers’ unfamiliarity with robots
is one of the obstacles in the adoption of construction robotics
(Yahya et al. 2019). Highlighting and animating different compo-
nents of the robot presented the movement range of each compo-
nent to the trainee, helping them to trust in the robot in construction
sites that can be dynamic and unpredictable.

Module 2 aimed to help workers increase their SA in the remote
operation of the robot by providing safety instructions (cable safety
management (e.g., the cable should not be on a wet surface), def-
inition and boundary conditions of the risk zone, and workplace
inspection (e.g., keep robot out of dust and flying rocks, turn
off the robot in the event people enter the operating zone) through
an interactive learning method. By programming various objects
in the virtual construction sites, trainees were able to interact
with them to deliver the assigned tasks in the learning module
(e.g., change the place of the power cable, pick up the loose objects
lying on the robot, emergency stop of the robot to prevent collision
with other construction workers violating the danger zone). There-
fore, trainees were prepared for the potential hazards that they
might face during the remote operation of the robot.

Fig. 3. (a) Highlights and animations illustrating the range of each component’s movement (Module 1); (b) Illustration of prestartup check-ups
(Module 4); (c) Trainee learns correct positioning of the robot (Module 5); and (d) Trainee practices using the control unit by kicking a soccer
ball (Module 6).
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Moreover, module 3 provided opportunities to test different
functions of the robot’s controller to help workers improve their
confidence and self-efficacy in remote operating the robot. Differ-
ent functions of the actual controller (buttons and joysticks) were
programmed in the VR-based training, and the movement of
the robot with 5 DOF was simulated to provide the trainee a real-
istic experience of robot remote operation. Module 3 was the only
nonimmersive learning module since the learner would need to see
the controller and movement of the robot.

After a chance to build self-efficacy, learners wear HMD for
the remaining learning modules to remote operate the robot in an
immersive VE using the actual controller in real life (not visible
in VR). The VR modules provided the opportunity to implement
different strategies for moving the robot and for demolition to expe-
rience the consequences of dangerous or wrong strategies. Addition-
ally, the last three modules (modules 5, 6, and 7) give the trainee
opportunities to increase his/her SA (e.g., managing the power cable
while moving the robot), trust in the robot, robot operation self-
efficacy (e.g., practicing moving the robot and demolishing a con-
crete block), and manage MWL by getting additional practice with
the robot in the VR environment. By modeling the destruction of
different structural elements in the VE, trainees were able to remote
operate the robot using various strategies to demolish different
objects in the VR-based training. On average, the workers in the
VR-based training spent 120 min completing all the modules.

In-Person Training (Control Condition)

The in-person training provided to the workers in the control group
was designed based on an existing workshop provided by an expert
trainer who trains workers on how to remote operate the demolition
robot. The contents of in-person training and VR-based training
were the same and done in a parallel manner. Unlike the VR-based
training, there was no assessment during the in-person training ses-
sions. Each phase of the in-person training ended with learners ask-
ing questions from the trainer. Moreover, each trainee had the
opportunity to practice the instructions of remote operating the ro-
bot under the trainer’s supervision at the end of the training after the
trainer finished presenting the instructions.

The in-person training began with the trainer giving an overview
of the demolition robot and its intended usage (same content as
VR-based training, Module 1), the basic make-up of the demolition
robot (e.g., essential parts and what they do) (VR-based training,
module 1), followed by the trainer presenting safety management
(e.g., electrical hazards, workplace inspection, operator position-
ing, and risk zone) (VR-based training, Module 2), and a pre-start
checklist (e.g., inspecting the power cable and hydraulic oil level,
and looking for oil leaks).

In the second phase of the in-person training, the trainer showed
how to start the robot (VR-based training, Module 4) and used the
demolition robot to demonstrate the pre-start checklist and how to
use the robot’s controller (VR-based training, Module 3), correct
the operator’s positioning, show how to position the robot to remote
operate safely (VR-based training, Module 5), what to do in an
emergency, how to use the robot’s different components (e.g., arms,
hammer, outriggers) (VR-based training, Module 6) and how to
use the robot to demolish a concrete block (VR-based training,
Module 7).

Participants in this condition attended one of four in-person
training sessions. Accordingly, each session was attended by about
six workers, and the same professional trainer conducted all in-
person training sessions (Fig. 4). Specifically, the training was de-
livered by an experienced trainer who had been delivering this
training for many years and spoke English and Spanish. Workers

spent 120 min in the in-person training. As in the actual training
provided to construction workers by the robotics company, each
participant had some time during the training to remote operate
the robot under the supervision of the professional trainer.

Procedures and Measures

Participants were randomly assigned to one of the two conditions:
25 participants were asked to complete the VR-based training,
while the other 25 were asked to complete the in-person training.
First, participants’ backgrounds and demographics were measured
by a set of survey items. Specifically, participants were asked to
report their gender, age group, race, and the language they were
comfortable speaking. Moreover, the survey measured participants’
education level, employment status, and experience in the construc-
tion industry. Participants also reported if they have any experience
in using VR or demolition robots.

Before starting either type of training, participants were required
to complete two surveys that measure trust in the robot and robot
operation self-efficacy. The measure of trust in the robot was modi-
fied from the automated trust scale (Jian et al. 2000) to measure
participants’ attitudes toward interaction with the robot, specifi-
cally. The modified survey used in this study has used items and
words proposed in the automated system scale. Modifications were
made to adapt the survey to the demolition robot. The modified
survey consists of 21 sentences about participants’ trust in the reli-
ability, integrity, safety of the robot, and participants’ beliefs about
the robot’s influence on their careers. Participants rated the senten-
ces on a 5-point Likert scale that ranges from completely disagree
to completely agree. For example, participants were asked to rate
the sentences such as “I can trust the robot,” “The robot is reliable,”
and “The robot provides safety/security” with a number from 1 to 5
indicating their disagreement (1) or agreement (5) with each sen-
tence. The robot operation self-efficacy survey was modified from
the validated robot-use self-efficacy scale (Turja et al. 2019). It con-
sisted of two sentences (“I am confident in the robot,” and “I feel
confident around the robot”) measuring participants’ self-efficacy

Fig. 4. In-person training session.
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and confidence in their ability to remote operate the robot. As with
the trust in the robot survey, participants rated the sentences on a
5-point Likert scale ranging from completely disagree to com-
pletely agree.

Once the surveys were completed, participants began their as-
signed training. After both groups completed their training, they
were asked to retake the trust in the robot and robot operation
self-efficacy surveys. Then, participants were asked to complete
a performance assessment, remote operating the actual robot, in
which each worker’s SA and MWL were assessed (Fig. 5). First,
they had to start the robot, running the sequence of prestartup safety
checks (e.g., hydraulic oil level, oil leakage, cable position). After
starting the controller and the robot, participants moved the robot in
the direction indicated on the ground. They had to use the control-
ler’s function and follow the safety guidelines to move the robot
efficiently and safely. Participants then demonstrated the demoli-
tion position of the robot’s arm system on a simulated concrete
block. After showing the demolition process, participants were
asked to move the robot in reverse to the starting position and
go through the complete shutdown procedure.

To measure situational awareness, we employed a modified
version of the SAGAT. While moving the actual robot to the simu-
lated concrete block in the performance assessment session, partic-
ipants were asked to pause the remote operation and answer the SA
survey. This survey consisted of eight questions evaluating the
trainee’s perception, comprehension, and projection. In the percep-
tion section, participants answered questions related to the percep-
tion of the cable’s location relative to the robot, the outriggers, and
sharp edges (e.g., “Is the cable behind the robot?”, “Is the cable
close to the outriggers?”, and “Is the cable close to sharp objects?”).
In the comprehension section, the trainer asked participants if the
robot had sufficient distance from various objects and if the angles
between the arms were in the correct range (e.g., “Is the distance
between the robot and the element to be demolished sufficient for a

proper operation?”, “Are the angles between the arms of the
machine in the correct position?”). Finally, in the projection
section, participants discussed whether the robot proceeded to the
correct position and the trainer observed whether the arm trajectory
hit the operator or any objects (e.g., “Is the robot proceeding to
the right position?”, “Will the arm trajectory hit the operator?”,
“Will the arm trajectory hit any objects?”). Participants’ answers
were rated by the expert trainer. Finally, to measure participants’
MWL, we employed the NASA-TLX. After the remote operation
of the actual robot, participants were asked to complete the MWL
survey. In this survey, participants reported their mental demand,
physical demand, temporal demand, performance, effort, and frus-
tration level while remote operating the robot based on a Likert
scale that ranges from very low to very high (e.g., “Howmuch men-
tal activity was required to perform your job (thinking, deciding,
calculating, remembering, looking, searching, etc.)?”). The NASA-
TLX asks the subject to use a rating between 0 and 100 for a group
of questions in each of these subscales, and these ratings are used
to determine the weights during the comparisons of the level of
importance the subject assigned to each subscale (Vidulich and
Tsang 2012).

Participants

Fifty participants were recruited to complete the experiment at the
University of Southern California. All participants were construc-
tion workers aged 18 or older working on a construction job at the
university campus. 25 construction workers were randomly as-
signed to VR-based training, while the other 25 workers completed
the traditional in-person training. One of the VR-based training
workers resigned in the middle of the training since he was not
comfortable using VR equipment (controllers and VR treadmill);
hence, we used the data of 24 VR-based training participants in
our analysis. Table 1 presents the demographics of participants in
these two conditions.

No statistically significant relationships were found between
worker’s gender and race and the training to which they were as-
signed, χ2ð1;N¼49Þ¼0.31, p ¼ 0.576 for gender, and χ2ð1;N ¼
49Þ ¼ 1.06, p ¼ 0.302 for race. Participants in these two condi-
tions were also not statistically different in terms of their age group
χ2ð1;N ¼ 49Þ ¼ 0.98, p ¼ 0.808, experience in the construction
χ2ð1;N ¼ 48Þ ¼ 0.47, p ¼ 0.792, and experience with using a
demolition robot χ2ð1;N ¼ 49Þ ¼ 0.98, p ¼ 0.322. In addition,
workers in each training condition had similar levels of prior ex-
perience with VR χ2ð1;N ¼ 49Þ ¼ 1.18, p ¼ 0.277. Both groups
also had similar levels of initial trust in the robot (Mdiff ¼ −0.22,
SD ¼ 0.17, p ¼ 0.20), and self-efficacy (Mdiff ¼ −0.14, SD ¼
0.29, p ¼ 0.628). Hence, we can confidently state that, taken
altogether, randomization was successful and workers in both train-
ing programs were similar in terms of their demographics, as well
as baseline trust and beliefs.

Analysis

The data collected, both pretraining and posttraining, were used to
understand the impact of VR-based training compared to in-person
training on four dependent variables: trust in the robot, robot oper-
ation self-efficacy, SA, and mental workload. For each of the first
two outcomes, we conducted 2 × 2 mixed factorial ANOVAs with
time (pretraining versus posttraining) as the within-subject factor
and training type (VR-based training versus in-person training)
as the between-subject factor. Additionally, we conducted indepen-
dent sample t-tests with training type (VR-based training versus in-
person) as the independent variables for each of the latter two

Fig. 5. Performance assessment.

© ASCE 04022006-8 J. Comput. Civ. Eng.

 J. Comput. Civ. Eng., 2022, 36(3): 04022006 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Po
oy

a 
A

da
m

i o
n 

02
/2

8/
22

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



outcomes. We then ran additional tests to check for moderation by
demographic factors: in separate mixed ANOVAs, we tested for
moderation by (1) language (Spanish versus English), (2) age,
(3) level of education, and (4) experience in the construction
industry.

Results

Analyses for the trust ratings (range: 0–5) are presented in Table 2.
Using the Kolmogorov–Smirnov method, we verified that there
were no significant violations of normality (p ¼ 0.200). The time
(pretraining versus posttraining) by training type interaction is

statistically significant for trust in the robot [Fð1; 47Þ ¼ 25.94,
p < 0.001, Cohen’s d > 1.0], with the VR-based training increas-
ing trust more (1.38) than the in-person training (0.52). The reli-
ability of this scale (Cronbach’s alpha) was 0.91. None of the
demographic variables significantly moderated this effect (all
Fs < 1.15, ps > 0.29).

The analyses for the robot operation self-efficacy ratings (range:
0–5) are presented in Table 3. Using the Kolmogorov–Smirnov
method, we verified that there were no significant violations of nor-
mality (p ¼ 0.183). The time (pretraining versus posttraining) by
training type interaction is statistically significant for self-efficacy
[Fð1; 47Þ ¼ 10.43, p < 0.002, Cohen’s d > 1.0], with VR-based
training increasing self-efficacy more (1.62) than the in-person
training (0.74). The reliability of this scale (Cronbach’s alpha)
was 0.69. Again, none of the demographic variables significantly
moderated this effect (all Fs < 3.22, ps > 0.14).

Analyses for SA measurement (range: 0–1) are presented in
Table 4. Using the Kolmogorov–Smirnov method, we verified that
there were no significant violations of normality (p ¼ 0.291). The
results reveal that VR-based training participants (mean SA rating ¼
0.98) have significantly greater situational awareness compared to
participants who completed in-person training (mean SA rating ¼
0.86) [tð47Þ ¼ 3.449, p < 0.001, Cohen’s d > 1.0]. None of the
demographic variables significantly moderated this effect (all Fs <
1.15, ps > 0.29).

Finally, the analyses for the MWL during the remote operation
of the robot are presented in Table 5. Using the Kolmogorov–
Smirnov method, we verified that there were no significant vio-
lations of normality (p ¼ 0.053). Although VR-based training
participants [meanMWL rating (range: 0–100) = 45.20] have shown
lower MWL than in-person training participants (mean MWL
rating ¼ 53.73), we could not find a significant difference between
VR-based and in-person training [tð1; 47Þ ¼ 1.77, p ¼ 0.915,
Cohen’s d > 1.0]. Cronbach’s alpha for this scale was 0.77, indicat-
ing good reliability. Again, none of the demographic variables sig-
nificantly moderated this effect (all Fs < 3.22, ps > 0.14).

Discussion

This study aimed to understand the impact of VR-based training
on construction workers’ trust in the robot, robot operation

Table 1. Demographics of workers in the two conditions

Indicator

In-person
training
(N ¼ 25)

Virtual
reality-based

training
(N ¼ 24)

Worker characteristic — —
Male 23 23
Hispanic/Latinx 24 23
Speaks English comfortably 12 12
Highest level of education — —
Less than a high school diploma 10 8
High school 12 12
College degree 3 4
Age — —
18–29 7 8
30–39 7 7
40–49 4 2
50 or older 7 7
Experience in the construction industrya — —
Less than 5 years 10 12
5–10 years 8 5
11–20 years 3 5
More than 20 years 3 2
No experience with a demolition robot 24 24
No experience with the Brokk machines 25 24
No experience with virtual reality 24 21
No experience with virtual reality training 25 23
aOne of the trainees did not answer this item in the demographic survey.

Table 2. Means and standard deviations (SD) of trust in the robot based on individual differences

Measures

VR-based training mean (SD) In-person training mean (SD)

Before After Before After

Overall 2.81 (0.36) 4.19 (0.50) 2.88 (0.33) 3.40 (0.37)
Language — — — —
English 2.79 (0.37) 4.33 (0.39) 2.95 (0.27) 3.45 (0.34)
Spanish 2.83 (0.31) 4.06 (0.49) 2.80 (0.39) 3.35 (0.39)
Age groups — — — —
18–29 2.78 (0.32) 4.27 (0.40) 3.04 (0.32) 3.39 (0.24)
30–39 2.83 (0.35) 4.23 (0.44) 2.77 (0.24) 3.50 (0.25)
40–49 2.83 (0.25) 4.20 (0.83) 2.75 (0.58) 3.58 (0.61)
50–69 2.83 (0.45) 4.04 (0.63) 2.88 (0.26) 3.20 (0.36)
Education levels — — — —
Less than a high school diploma degree 2.82 (0.37) 4.05 (0.50) 2.75 (0.44) 3.47 (0.43)
High school diploma degree 2.91 (0.28) 4.25 (0.54) 2.99 (0.23) 3.32 (0.32)
College degree 2.49 (0.32) 4.32 (0.48) 2.86 (0.25) 3.49 (0.29)
Experience groups — — — —
Less than 5 years 2.76 (0.38) 4.11 (0.46) 2.96 (0.40) 3.49 (0.49)
5–10 years 2.95 (0.25) 4.31 (0.76) 2.86 (0.28) 3.40 (0.26)
More than 10 years 2.78 (0.35) 4.25 (0.34) 2.84 (0.31) 3.44 (0.28)
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self-efficacy, SA, and mental workload as compared to a traditional
in-person training approach. Based on our analyses, VR-based
training had significantly impacted the first three measures when
compared with traditional in-person training. This section provides
a discussion on the significance of these findings.

Trust in the Robot and Robot Operation Self-Efficacy

This study demonstrates that VR-based training is capable of
increasing construction workers’ trust in the robot and robot oper-
ation self-efficacy while remote operating a demolition robot sig-
nificantly more than in-person training. One of the key factors
contributing to this success is the nature of the VR environment.
The VR environment provides an immersive experience for the
trainees to work with the robot and familiarize themselves with the
robot’s functions. Our results confirm that a VE can help trainees to
focus their attention on the information relevant to the training to
gain confidence in using new technology (Sportillo et al. 2019).

Besides, our VR-based training allowed the trainee to work with
the robot in different scenarios to get a clearer understanding of
the robot’s behavior in different tasks. This helped humans to gain
trust in the robot by managing humans’ expectations of the robot’s
actions. Moreover, the reliable representation of each strategy’s
consequences boosted workers’ self-efficacy in working with the
robot, as seen in Koppula et al. (2016). A vital drawback of
VR-based training is that developing a VR-based training, includ-
ing accurate robot and various scenarios simulation, may need sig-
nificant effort, time, computing power, and cost. However, with the
increase of VR-based applications and technology improvement,
the aforementioned negative factors can be mitigated considerably.
Moreover, developing VR-based training is a one-time effort com-
pared to the traditional in-person training that requires an actual
robot and a professional trainer for each training session.

Autor (2015) claimed that, while many middle-skill jobs are
susceptible to being fully automated, others will demand workers
acquire a mixture of tasks to adapt to new technologies. Our results

Table 3. Means and standard deviations of robot operation self-efficacy based on individual differences

Measures

VR-based training mean (SD) In-person training mean (SD)

Before After Before After

Overall 2.79 (0.69) 4.42 (0.65) 2.82 (0.74) 3.56 (0.60)
Language — — — —
English 2.96 (0.66) 4.50 (0.56) 3.08 (0.42) 3.50 (0.60)
Spanish 2.63 (0.71) 4.33 (0.75) 2.58 (0.91) 3.61 (0.62)
Age groups — — — —
18–29 3.05 (0.63) 4.55 (0.40) 2.86 (0.85) 3.42 (0.45)
30–39 2.71 (0.56) 4.59 (0.44) 2.64 (0.85) 3.79 (0.39)
40–49 3.00 (0.10) 4.50 (0.83) 2.63 (0.83) 3.88 (0.85)
50–69 2.42 (0.92) 4.33 (0.63) 3.07 (0.19) 3.79 (0.69)
Education levels — — — —
Less than a high school diploma degree 2.56 (0.50) 4.31 (0.50) 2.45 (0.44) 3.65 (0.67)
High school diploma degree 2.88 (0.77) 4.41 (0.82) 3.08 (0.23) 3.50 (0.60)
College degree 3.00 (0.82) 4.62 (0.48) 3.00 (0.25) 3.50 (0.50)
Experience groups — — — —
Less than 5 years 2.79 (0.58) 4.45 (0.49) 2.90 (0.70) 3.45 (0.68)
5–10 years 3.08 (0.66) 4.25 (0.98) 2.93 (0.42) 3.43 (0.41)
More than 10 years 2.50 (0.89) 4.50 (0.63) 2.83 (0.93) 4.00 (0.54)

Table 4. Means and standard deviations (SD) of SA assessment based on
individual differences

Measures

VR-based
training

mean (SD)

In-person
training

mean (SD)

Overall 0.98 (0.04) 0.86 (0.16)
Language — —
English 0.99 (0.04) 0.85 (0.22)
Spanish 0.97 (0.06) 0.87 (0.09)
Age groups — —
18–29 0.98 (0.04) 0.89 (0.09)
30–39 0.98 (0.05) 0.91 (0.06)
40–49 1.00 (0.00) 0.91 (0.06)
50–69 0.96 (0.06) 0.75 (0.27)
Education levels — —
Less than a high school diploma degree 0.95 (0.06) 0.86 (0.09)
High school diploma degree 0.99 (0.03) 0.85 (0.22)
College degree 1.00 (0.00) 0.88 (0.13)
Experience groups — —
Less than 5 years 0.97 (0.05) 0.80 (0.22)
5–10 years 0.97 (0.05) 0.92 (0.06)
More than 10 years 0.97 (0.05) 0.88 (0.13)

Table 5. Means and standard deviations (SD) of MWL assessment based
on individual differences

Measures

VR-based
training

mean (SD)

In-person
training

mean (SD)

Overall 45.20 (16.48) 53.74 (17.18)
Language — —
English 41.04 (21.49) 46.39 (10.76)
Spanish 49.38 (8.28) 60.51 (19.51)
Age groups — —
18–29 47.13 (10.76) 41.07 (10.39)
30–39 40.83 (27.83) 54.99 (5.79)
40–49 39.17 (2.36) 55.83 (18.27)
50–69 49.45 (8.00) 63.93 (23.65)
Education levels — —
Less than a high school diploma degree 48.33 (13.51) 58.25 (22.46)
High school diploma degree 44.44 (19.01) 51.94 (12.70)
College degree 41.25 (16.42) 45.83 (13.09)
Experience groups — —
Less than 5 years 47.78 (8.36) 51.25 (10.30)
5–10 years 38.33 (21.63) 55.83 (19.31)
More than 10 years 46.96 (23.50) 58.89 (23.40)
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indicate that VR-based training could help workers overcome the
fear of robotics use in the construction industry. Construction work-
ers worry that new robotic systems will take their jobs; thus, they
remain reluctant to accept new technologies. This is especially true
about demolition robots that will directly replace humans who
manually demolish the site. VR-based training demonstrated the
potential to increase workers’ trust in the robot and robot operation
self-efficacy, leading to the acceptance of the new robots (e.g., dem-
olition robots) in the construction industry. This produces signifi-
cant implications for improving HRI using VR.

VR-based training can be used as a platform to motivate and
attract construction workers to increase their vocational skills
and adaptability for the future of work in the construction industry.
Different scenarios in our VR environment present the abilities a
demolition robot provides to a construction worker. The efficacy
of implementing robots in dangerous tasks while covering the same
learning contents as in-person training impacts workers’ attitudes
toward trust in the robot. This is one of the limitations of in-person
training in which workers are limited in practicing dangerous tasks
with the robot during the training due to ethical, financial, and
safety concerns. Also, since construction robots are not common
yet, training to use these new robots safely and effectively is a niche
and varies widely between different instructors (G. Lucas, unpub-
lished data, 2019). However, VR-based training provides consis-
tency, efficiency, and scalability in training in the construction
industry.

As suggested by Lee and See (2004), our results confirm that
when training provides crucial information concerning the purpose
and methods of implementing new technology in interactive con-
texts, trust in the new technology increases. In contrast to the in-
person training in which trainees are limited in interacting with the
real robot, VR-based training enables learning the robot’s imple-
mentation in an interactive context. Workers can observe the
robot’s behavior and accumulate knowledge of underlying proc-
esses during interaction with the robot. This feature increases
the human mental model of the robot and establishes more trust
in automation (Holmes 1991). Hence, the worker’s trust in the robot
and robot operation self-efficacy increases significantly more in
VR-based training than in in-person training.

Situational Awareness and Mental Workload

The SAGAT scores between VR-based training conditions and in-
person training conditions show that VR-based training participants
had significantly more SA than in-person training participants
while remote operating the demolition robot. Similar to our find-
ings related to trust in the robot and robot operation self-efficacy,
we suspect that the higher SAGAT score for the VR-based training
condition relates to the opportunities that the VR environment pro-
vides to trainees. While in-person training participants did not have
significant freedom in remote operating the robot mainly due to
safety concerns, VR-based training participants could remote operate
the robot in different scenarios and implement different strategies.
This advantage provided an opportunity of experiencing differ-
ent situations and consequences of wrong decisions while remote
operating the robot. For example, participants experienced the con-
sequences of ignoring power cable management during robot oper-
ation and losing the cable by putting it under outriggers or on sharp
objects. In addition, they experienced the consequence of not paying
attention to the correct position of the demolition robot’s arm system
while moving the robot and tilting the robot resulting in its failure.
Thus, VR-based training participants had a higher perception of the
power cable position, comprehension of the robot’s distance from
surrounding objects and workers, and projection of the demolition

robot’s trajectory during remote operation. Our findings confirm the
statement that applying immersive visualization techniques in a train-
ing environment can increase workers’ SA in complex and dynamic
environments (Cheng and Teizer 2014). Although VR-based training
can increase workers’ SA, it can have physical side effects such as
dizziness, eyestrain, or nausea on its users. However, by giving break
times to trainees to take off HMD, the probability of experiencing
adverse side effects can be decreased.

Although the NASA-TLX MWL survey scores indicate that
VR-based training participants experienced a lower average MWL
than in-person training participants, it failed to show a significant
difference between these two conditions. Therefore, in this study,
we cannot claim that VR-based training reduces construction work-
ers’MWL significantly compared to the traditional in-person train-
ing method. One of the factors impacting the lower average level of
MWL in VR-based training participants is that trainees had the op-
portunity to remote operate the robot in different scenarios in the VR
environment, while in-person training participants were limited in
remote operating the robot. So, part of how VR can help reduce
the MWL is by allowing more time to practice with the robot. How-
ever, again the collected data from the NASA-TLX measurement
method did not show a significant difference between the two
groups. Since VR-based training participants were on VR treadmill
(walk-in-place treadmill), they had not experienced the actual physi-
cal demand and effort in remote operating the demolition robot;
therefore, they experienced the physical demand and effort for the
first time during the assessment, which may have impacted their
MWL. One of the reasons we did not produce a significant difference
may have stemmed from the sample size. We suggest that future
studies investigate the impact of VR-based training on construction
workers’ mental workload on larger sample sizes.

Limitations

While this study presents VR-based training implications for
human-related factors (i.e., trust in the robot, robot operation
self-efficacy, SA, and MWL) in robotic remote operation in the
construction industry, some limitations exist. There are differences
in VR-based and in-person training mechanisms, while some re-
present an important limitation of in-person training. In traditional
training, each worker only gets a limited amount of time to work
with the robot since the overall time is limited due to the cost of
traditional training, and there are multiple workers in a session to be
efficient with time and money. On the other hand, VR-based train-
ing is not subject to these kinds of practical constraints. By provid-
ing VR equipment and computing devices, trainees have the
opportunity to experience the training individually and work with
the robot for a more extended period than the traditional training.
Additionally, during in-person training, workers cannot explore
different strategies in remote operating the robot on their own
because it represents a risk to safety and the equipment. In contrast,
VR-based training not only provides more opportunities for
workers to practice with the robot, but they can also safely explore
different aspects of operation without risk to safety or equipment.
These are natural differences between the two kinds of training
and indeed represent several of the reasons why VR-based train-
ing was suggested as a new training method to study in the
first place.

The goal of the current study was not to tease apart the differ-
ent mechanisms by which VR-based training has its effect but
rather investigate the impact of VR-based training as a whole
compared to the traditional in-person training. Therefore, the limi-
tation is that the study does not have experimental control to test
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“why” [i.e., the mechanism(s) by which] VR training has better
outcomes than in-person training. Indeed, VR-based training
presents possibilities for overcoming these kinds of limitations
of standard in-person training sessions, and we wanted to harness
the power of all these natural differences between the two condi-
tions. Hence, instead of having various VR conditions that each
differ from in-person training on only one variable (thus would
have better experimental control), we opted for only two condi-
tions that differed in all of the ways VR training and in-person
training would naturally differ. Future research should investigate
the mechanisms by which VR-based training improves outcomes
over in-person training and therefore would need to isolate those
mechanisms experimentally. In these kinds of follow-up studies,
the experimental conditions would be better controlled (i.e., vari-
ous VR conditions that each differ from in-person training on only
one variable).

Conclusion

The research reported in this paper investigated the impact of
VR-based training on four human-related factors (i.e., trust in
the robot, robot operation self-efficacy, SA, and MWL) in the re-
mote operation of a robot compared to traditional in-person train-
ing. While the advancement of construction robotics can enhance
productivity and safety in the construction industry, it also has
brought about new challenges. The unstructured and unpredictable
nature of construction sites has hindered the adoption of construction
robotics. Moreover, sharing workspace between workers and robots
in dynamic and hazardous construction sites has introduced new
safety concerns. Therefore, it is crucial to enhance human-related
factors such as trust in the robot, robot operation self-efficacy, SA,
and MWL while remote operating robots on construction sites to
address new safety concerns and facilitate the implementation of ro-
botics in the construction industry. Despite the vast body of research
on the effectiveness of VR-based training in the construction indus-
try, the impact of VR-based training in building trust, self-efficacy,
SA, and optimizing MWL in the remote operation of construction
robotics is not well studied.

Thus, to study the impact of VR-based training on these factors,
immersive VR-based training was developed. Fifty construction
workers were assigned randomly to complete either the VR-based
training or in-person training. Construction workers were asked to
complete trust in the robot and robot operation self-efficacy surveys
before and after completing their assigned training. In addition,
their SA was evaluated during the remote operation of the actual
robot by a professional trainer. Finally, they completed a MWL sur-
vey using the NASA-TLX measurement method immediately after
the remote operation of the actual robot.

The quantitative results show that VR-based training can sig-
nificantly increase workers’ trust in the robot and robot operation
self-efficacy compared to a traditional training method such as in-
person training. Moreover, VR-based training participants have
significantly more SA while remote operating the construction
robot. Although VR-based training participants had lower mean
ratings of MWL than in-person training participants, we did not
find any significant difference in participants’ MWL between the
two conditions in this study.

One of the key factors contributing to this success is the nature
of the VR environment. The accurate simulation and visualization
of the robot and the construction site allowed the trainee to work
with the robot in various scenarios to get a clear understanding of
the robot’s behavior in different tasks. VR-based training partici-
pants could find the opportunity to remote operate the robot in

different scenarios, implementing different strategies to experience
the consequences without exposure to danger. These findings pro-
duce multiple implications for improving HRI using VR, especially
in the construction field.

Admittedly, there are also limitations in this study that need to
be addressed in future studies. For example, as we had a limited
sample size to test for moderation by demographics, we were
underpowered to find any differences among different demographic
groups such as different age groups, experience levels, and educa-
tion levels. These factors could be more thoroughly tested in future
studies with larger samples.
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