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ABSTRACT: Optimization algorithms play a central role in chemistry since
optimization is the computational keystone of most molecular and electronic
structure calculations. Herein, we introduce the iterative power algorithm (IPA)
for global optimization and a formal proof of convergence for both discrete and
continuous global search problems, which is essential for applications in
chemistry such as molecular geometry optimization. IPA implements the power
iteration method in quantics tensor train (QTT) representations. Analogous to
the imaginary time propagation method with infinite mass, IPA starts with an
initial probability distribution ρ0(x) and iteratively applies the recurrence
relation ρk+1(x) = U(x) ρk(x)/∥Uρk∥L1, where U(x) = e−V(x) is defined in terms
of the potential energy surface (PES) V(x) with global minimum at x = x*. Upon
convergence, the probability distribution becomes a delta function δ(x − x*), so
the global minimum can be obtained as the position expectation value x* = Tr[x
δ(x − x*)]. QTT representations of V(x) and ρ(x) are generated by fast adaptive interpolation of multidimensional arrays to bypass
the curse of dimensionality and the need to evaluate V(x) for all possible values of x. We illustrate the capabilities of IPA for global
search optimization of two multidimensional PESs, including a differentiable model PES of a DNA chain with D = 50 adenine−
thymine base pairs, and a discrete non-differentiable potential energy surface, V(p) = mod(N,p), that resolves the prime factors of an
integer N, with p in the space of prime numbers {2, 3,..., pmax} folded as a d-dimensional 21 × 22 × ··· × 2d tensor. We find that IPA
resolves multiple degenerate global minima even when separated by large energy barriers in the highly rugged landscape of the
potentials. Therefore, IPA should be of great interest for a wide range of other optimization problems ubiquitous in molecular and
electronic structure calculations.

1. INTRODUCTION

The development of efficient optimization algorithms remains a
subject of great research interest in chemistry and beyond since
optimization is essential for most molecular and electronic
structure calculations. In control of chemical processes, for
example, global optimization algorithms are essential to
determine the drives that steer a system into a desired final
state.1−12 Another prototypical example is the problem of
finding the minimum energy structure of a complex molecule,
usually the first step in studies of molecular properties, molecular
reactivity, and drug design.13−16 The simplest approach for
finding the global optima in a discrete set is to sift through all
possibilities. However, that approach becomes intractable for
high-dimensional systems since the number of possible states
typically scales exponentially with the number of degrees of
freedomi.e., the so-called “curse of dimensionality” problem.1

Analogously, simple approaches for continuous optimization
involve sampling stochastically17−27 or deterministi-
cally.10,12,28−48 Yet, these procedures typically lead to “trapping”
in local minima. Therefore, the development of efficient global
search algorithms remains an open problem of great interest.

In this paper, we build upon the strategy of the diffeomorphic
modulation under observable-response-preserving homotopy
(DMORPH) method,12 and we introduce the iterative power
algorithm (IPA) for global optimization. DMORPH evolves a
distribution function ρ(x) in the search space of configurations,
so that the distribution becomes localized at the global optima
and the global minimum position can be revealed by computing
the position expectation value.12 Analogously, IPA implements
the same strategy of evolving a probability distribution function
although with a very different approach. Instead of implement-
ing the DMORPH approach of iteratively optimizing control
parameters of an externally applied field that localizes ρ(x) at the
global optima, IPA applies a simple amplitude amplification
scheme based on the power method known from numerical
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linear algebra.49−53 The resulting algorithm is essentially an
imaginary time propagation54−58 although with infinite mass.
The relation between the power method49−52 and the imaginary
time propagation method54−58 has been previously dis-
cussed,59−63 although it remains to be formally analyzed.
The power method is based on the recurrence relation ρk+1(x)

= U(x) ρk(x)/∥Uρk∥L1. In the IPA implementation, U(x) =
e−V(x) is defined by the scaled potential energy surface (PES)
V(x), and ρk(x) is the density distribution after the kth
optimization step. Such an iterative procedure transforms any
initial distribution with nonzero amplitude at the global
minimum into a delta function ρ(x) = δ(x − x*) (i.e., the
eigenvector of U(x) with maximum eigenvalue in the basis of
Dirac delta functions). The global minimum can then be
revealed, as in the DMORPH method, by computing the
position expectation value x* = Tr[x δ(x − x*)].
IPA can efficiently find the global minimum of low-rank high-

dimensional potential energy surfaces with possible position
states x by approximating ρ(x) and V(x) in D≥1 physical
dimensions in the form of quantics tensor trains (QTTs) in n≥1
reshaped dimensions.64−66 QTTs are a specific form of tensor
trains (TTs),67,68 which are of great interest and themselves a
specific form of matrix product states (MPS).69 For the QTT
format, 2d-element arrays, each representing a length 2d grid in a
single physical dimension, are reshaped into 21 × 22 × ···× 2d
tensors Q(i1, ..., id), where quantics refers to q-adic folding in
which each folding dimension of the reshaped tensor is
represented by q = 2 elements.64 Since they depend on d ≥ 1
folding variables ik, each of them with two possible values, they
are decomposed into the outer product of tensor cores in the
form of a matrix product state/tensor train as67,68

∑ ∑ ∑ α α α

α

≈ ···

···

α α α= = =

−

−

−

Q i i A i A i

A i

( ,..., ) (1, , ) ( , , )

( , , 1)

d

r r r

d d d

1
1 1 1

1 1 1 2 1 2 2

1

d

d

1

1

2

2

1

1

(1)

where i1,...,id ∈{1,2} and Aj are individual order-three, rank rj
tensor cores contracted over the auxiliary indices αj for j = 1,...,d.
Results for each of the physical dimensions D are incorporated
via outer products to form a quantics tensor train with a total of n
= d × D dimensions. The QTT format, introduced by eq 1,
reduces the cost of evaluating Q over the search space of 2d

possibilities to not more than 2dr2 evaluations for the maximal
rank r = max(r1,...,rd−1).

64 This scaling is advantageous in
chemistry, as many molecular processes can be modeled by low-
rank sums of double-well potentials, including hydrogen
bonding in DNA, protonation of water molecules, and
arrangement of Zundel ions. We demonstrate the capabilities
of IPA as applied to determination of the optimal configuration
of protons in a DNA chain of D = 50 adenine−thymine (A−T)
base pairs with 250 local minima corresponding to all possible
protonation states.
In addition, quantics tensor trains feature the same

exponential improvement in data sparsity given by quantum
computers,70 which offers the possibility of developing methods
like IPA that can be thought of as classical computing analogues
of quantum computing algorithms.
Quantum search algorithms (e.g., the Groverʼs search

method71) typically initialize a uniform superposition and
evolve it multiple times until a measurement of the resulting
state can identify one out of 2d possibilities with sufficiently high
probability. Analogously, we initialize ρ0(x) as a uniform

distribution in the QTT format to enable sampling of the entire
search space simultaneously. Iterative application of the
recurrence relation amplifies the amplitude at the global minima,
which yields a final density ρfinal(x) localized at the global
minima. We prove that the number of steps required by IPA to
amplify the amplitude in the presence of a single global
minimum to a probability higher than 50% scales logarithmically
with the size of the search space, which provides a valuable
global search methodology alternative to well-established
optimization methods.72−74

The paper is organized as follows. The IPA method is
introduced in Section 2, followed by the analysis of the
convergence rate in Section 3 and a discussion in the perspective
of existing approaches in Section 4. Computational results are
presented in Section 5 and conclusions in Section 6. Appendix A
presents a formal proof of IPA convergence. Appendix B
analyzes the convergence rate of the power method. Python
codes to reproduce the reported calculations are provided in
Appendices C, D, and E.

2. ITERATIVE POWER ALGORITHM METHOD
IPA solves the optimization problem of finding the global
minima of a given potential →V : n . For simplicity, in this
section, we discuss the one-dimensional case ∈x . However,
we demonstrate the capabilities of IPA for global optimization of
model PESs with up to n = 400 dimensions.
To guarantee the existence of a global minimum,74 we assume

V(x) is continuous and coercive (i.e., V(x)→ +∞ as |x|→ +∞).
Our goal is to compute the set of all minima locations of V(x)

= { * ∈ | ≥ * ∈ }
∈

V x x V x V x xarg min ( ) ( ) ( ) for all
x

 


(2)

Therefore, we employ a non-negative probability density
function ρ → [ ∞: 0, )0  that is bounded and with unit norm

∫ρ ρ∥ ∥ = =x xd ( ) 1L0 01

 (3)

The initial density ρ0(x) is supported (nonzero) around all
minima locations x* of the potential V(x), so for all r > 0, the
initial density satisfies the following condition

∫ ρ >
*−

*+
x xd ( ) 0

x r

x r

0 (4)

In each IPA iteration, a transformation function U(x) is applied
from the left to ρ0(x) to increase the density amplitude at the
global minimum positions relative to amplitudes at the
remainder of the search space (in discrete space, U(x) is
represented as a matrix, ρ0(x) as a vector, and U(x) ρ0(x) is a
matrix−vector product). The resulting product U(x) ρ0(x) is
then normalized to obtain a new density ρ1(x), which is the
input for the next IPA iteration. AnyU(x) can be used, provided
it satisfies the following two conditions: (i) U(x) must be a
continuous and strictly positive function that is maximized at the
global minima of V(x), i.e.,

=
∈ ∈

U x V xarg max ( ) arg min ( )
x x  (5)

and (ii) U(x) must be integrable (we denote this by ∈U L ( )1 
).
A simple example is U(x) = e−β V(x) for a fixed scaling

parameter β > 0.We note that eq 5 holds since the exponential is
a strictly increasing function. Furthermore, the coercivity
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condition of the potential implies that U(x) is integrable for a
sufficiently fast growing potentialV(x) in the asymptotic region |
x| → +∞.
2.1. Evolution: Amplitude Amplification. IPA generates

a sequence of density distributions ρ1, ρ2, ..., starting from a
uniform distribution ρ0(x), as follows

∫η ρ ρ

ρ
ρ
η

ρ

ρ

=

= ∥ ∥ =

= =
∥ ∥

− −

−

k

U x U x x

x
U x x U x x

U

for 1, 2 ,...

d ( ) ( )

( )
( ) ( ) ( ) ( )

k k L k

k
k

k

k

k
L

1 1

1 0

0

1

1



Although this expression could be implemented with a
polynomial expansion (for example, a Chebyshev or Fourier
series expansion), we only employ the tensor-train cross
approximation as described in Section 2.3. Since U(x) is
assumed to be continuous and integrable, we conclude it is
bounded and L1-normalizable (i.e., ∈ ∩∞U L L( ) ( )1  ). In
particular, this guarantees the normalization factors ηk > 0 are
well defined, since repeated applications of U(x) remain L1-
normalizable (i.e., ∈U L ( )k 1  for all iterations k ≥ 1).75

The Appendix proves that the sequence ρ1, ρ2, ... of densities
produced by IPA converges to a kind of “Dirac comb”
distribution (i.e., a sum of Dirac delta functions), located at
the global minima positions x1* < x2* < ...< xs* of the potential

∑ρ ρ δ= = − *
→∞ =

x x x x( ) lim ( ) ( )
k k

j

s

jfinal
1 (6)

where s≥1 is the number of minima positions. As mentioned in
the Appendix, the final density ρfinal(x) can be viewed as the limit
of so-called Dirac sequences.
2.2. Resolution of Global Minima: Measurement. The

global minima are obtained after obtaining ρfinal(x) as follows:

(i) When V(x) has a single global minimum at x = x*, the
minimum is obtained by computing the position
expectation value with the final density ρfinal(x)

∫ ρ* = ⟨ ⟩ =ρx x x x xd ( )finalfinal  (7)

(ii) When V(x) has only two degenerate global minima (e.g.,
as for the factorization of biprimes discussed below), we
first compute the position expectation value of ρfinal(x) to
obtain the average position x̅ of the two global minima.
Then, we multiply the final density by a shifted Heaviside
step function

Θ − ̅ =
≤ ̅
> ̅

x x
x x

x x
( )

0, if

1, if

l
moo
noo (8)

to obtain the distributions ρfinal(x) Θ(x − x̅) and ρfinal(x)
(1−Θ(x− x̅)), which are single delta functions resolving
the two distinct minima.

(iii) WhenV(x) has an unknown number of global minima, we
first obtain ρfinal(x) using IPA. Then, we reinitialize ρ0 ∝
ρfinal, such that the initial density is a Dirac comb with
amplitude only at the global minima positions. The first
component of the Dirac comb is isolated with a second
use of IPA using a “ramp potential” rather than the
potential V(x) of the problem of interest. The ramp is

usually a simple monotonically increasing function (e.g.,
ramp(x) = x) that breaks the degeneracy of the Dirac
comb ρ0(x) by amplifying the amplitude of the minimum
of all minima (i.e., x1*). Since the amplitude of the density
ρ0(x) is only nonzero at global minima positions, only the
Dirac delta component localized at the global minimum
with the lowest position remains, and the expectation
value of the position then yields the location of the first
global minimum of the original potential energy surface
V(x). After computing x1*, we multiply ρfinal(x) by the
Heaviside functionΘ(x − x1*) introduced by eq 8 and we
repeat the IPA ramp process to identify the second
minima (i.e., x2*). The scheme is then repeated until all
global minima are resolved.

2.3. QTT Representation. IPA is not limited to a specific
choice of basis set representation for ρ(x), V(x), and U(x).
However, we employ the quantics tensor train (QTT)
representation,64−66 generated by fast adaptive interpolation of
multidimensional arrays as implemented in Oseledets’ TT-
Toolbox.76 The search space of size 2d in each physical
dimension is reshaped into a d-dimensional 21 × 22 × ···× 2d
tensor in a row-major order prior to tensor-train decomposition.
In D ≥ 1 physical dimensions, the full d × D-dimensional search
space is represented as a list of D tensors, each of which is a
Kronecker product of the aforementioned search space tensor
with D-1 one tensors of the same shape. IPA is implemented
here to optimize potential energy surfaces in up to n = d ×D =
400 dimensions, as optimization is performed for a quantics
tensor train with d≥1 folding dimensions of the original search
space grid and D physical dimensions. Operations of functions
on the resulting QTTs are then calculated according to the cross
approximation,67 which determines a low-rank representation of
the tensor through evaluation of a limited number of tensor
entries. Functions of QTTs such as the exponentialU(x) = e−V(x)

are thereby determined without resorting to additional
approximations such as Taylor series expansions or Pade ́
approximants. We represent both operators and densities as
tensor trains such that quantities need never be evaluated
everywhere on the search space. For example, the Heaviside
function Θ(x − x ̅) (eq 8) is represented as a 21 × 22 × ··· × 2d
tensor that acts directly on an analogous tensor for the density
ρfinal(x). This reproduces the action of theHeaviside operator on
the density without determination of the result at all 2d points,
which reduces computational expense. Integrals over position
space are also performed without leaving the tensor train
representation. For example, the expectation value that gives the
position of the global minimum is calculated as the inner
product of the tensor trains for the position and the final density.
The resulting implementation bypasses the curse of dimension-
ality and allows for applications to high-dimensional potentials
(Python scripts provided in Appendices C, D, and E).

3. CONVERGENCE RATE ANALYSIS

The Appendix provides a formal proof of convergence for IPA
continuous global optimization. Here, we focus on discrete
optimization for a problem with a single global minimum. We
show that the number of IPA steps necessary to amplify the
amplitude of the global minimum to a value higher than 1/2 =
50% scales logarithmically with the number n ≥ 1 of possible
states. The analysis is analogous to the estimation of the number
of queries required for amplitude amplification by Groverʼs
algorithm.71 First, we show that IPA converges to the global
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minimum for the specific case whereU is identified with an n× n
diagonal matrix U with n positive entries λj>0, j = 1,...,n
(eigenvalues) with a uniquemaximum λ1. For simplicity, we take
all other eigenvalues to be λ2, with

λ λ<2 1 (9)

Hence, the “oracle” U can be expressed as follows

λ λ λ λ λ= ∈ ×U diag( , ..., , , , ..., ) n n
2 2 1 2 2  (10)

where themaximum λ1 is the kth diagonal entry for some 1≤ k≤
n. An illustration is given in Figure 1.

We consider a uniform initial density represented by the
vector

ρ = ∈
n
1

(1, ..., 1) n
0 

(11)

The kth IPA iteration updates the density distribution as follows

ρ
ρ
ρ

ρ

ρ
=

∥ ∥
=

∥ ∥
=

∥ ∥
−

−

u
u

U

U

U

U
(12) (13)k

k

k

k

k
k

k

1

1 1

0

0 1 1

where repeated application of the matrix U yields

λ λ λ λ λ=u ( , ..., , , , ..., )k
k k k k k

2 2 1 2 2 (14)

with 1-norm (i.e., the sum of the absolute values)

∑ λ λ∥ ∥ = | | = + −
=

nu u( ) ( 1)k
j

n

k j
k k

1
1

1 2
(15)

We note that λ1
k > λ2

k since λ1 > λ2, so the vector ρk produced after
k iterations has only positive entries, a unique maximum

ρ ρ
λ

= =
∥ ∥= u

max ( )k j n k j

k

k
,max 1 ,...,

1

1 (16)

and all other entries with value

ρ ρ
λ

= =
∥ ∥= u

min ( )k j n k j

k

k
,min 1 ,...,

2

1 (17)

Therefore, the minimum to maximum amplitude ratio is

ρ

ρ
λ
λ

=k

k

k
,min

,max

2

1

i
k
jjjjj

y
{
zzzzz

(18)

Each IPA iteration decreases the ratio by a factor of λ2/λ1 < 1
while the norm is conserved. Therefore, only the maximum
entry of the state vector ρk survives in the limit of an infinite

number of iterations k → +∞. Using the normalization
condition,

ρ ρ ρ= ∥ ∥ = + −n1 ( 1)k k k1 ,max ,min (19)

and inserting the ratio given by eq 18 into the normalization
condition introduced by eq 19, we can solve for the maximum
amplitude ρk,max, as follows

ρ
λ λ

=
+ − ×n

1
1 ( 1) ( / )k k,max

2 1 (20)

which converges to 1 in the limit k → ∞.
The number of iterations required to amplify the amplitude of

the global minimum to a value higher than or equal to 1/2 is

λ λ+ − ×
≥

n
1

1 ( 1) ( / )
1
2k

2 1 (21)

Solving this inequality gives the minimum number of required
IPA iterations

λ λ
≥

−
k

nlog( 1)
log( / )1 2 (22)

which scales logarithmically with the size of the search space
n≥2 and inverse logarithmically with the ratio of eigenvalues λ1/
λ2.

4. COMPARISON TO OTHER METHODS
IPA can be compared to the power method49−51 and imaginary
time propagation.55−58 The connection between the power
method and imaginary time propagation has been dis-
cussed,59−63 although the relationship between the twomethods
has yet to be formally analyzed.
We begin with the recurrence relation of the power method.

For a matrix ∈ ×U n n with eigenvalues λ λ ∈,..., n1 , the
subscripts denote the order |λ1| > |λ2|≥ ...≥ |λn|. Given a starting
vector ρ ∈ n

0  that has a nonzero amplitude along the direction
of the eigenvector with the largest eigenvalue λ1, the power
method produces the following sequence of vectors ρ ∈k

n

ρ
ρ
ρ

ρ

ρ
=

∥ ∥
=

∥ ∥
−

−

U

U

U

Uk
k

k

k

k
1

1

0

0 (23)

a sequence that converges to an eigenvector associated with the
largest eigenvalue λ1 independently of the norm ∥·∥. The
resulting convergence is geometric in the ratio53

λ
λ

< 12

1 (24)

We note that according to the recurrence relation, introduced by
eq 23, imaginary time propagation is essentially the power
method where ρ0 represents a trial initial wavefunction in a given
basis set and U is the matrix representation of the Boltzmann
operator e−βĤ, where the Hamiltonian Ĥ is typically Ĥ = p̂2/
(2m) + V with m the mass and p̂ = −iℏ∇ the momentum
operator.
In IPA, however, ρ0(x) is a probability density and U(x) can

be any integrable, continuous, and strictly positive function of
∈x n that is maximal at the global minima locations of V(x).

As a result, IPA finds the global minima of V(x), while the
imaginary time propagation method finds the eigenstate of the
Hamiltonian with minimum eigenvalue (i.e., the ground state).

Figure 1. Illustration of the oracles’ diagonal entries, assumed to have
the unique maximum λ1 > 0 and all other eigenvalues of equal
amplitude.
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For the particular choice of U(x) = e−βV(x), however, IPA
corresponds to the imaginary time propagation with m = ∞.
Equation 23 also shows that IPA differs from the power

method because it employs an integrable function U(x) that
meets the conditions described in Section 2 and a probability
density function ρ0(x) to find the global minima, whereas the
power method employs an arbitrary matrix ∈ ×U n n and a
discrete vector ρ ∈ n

0  to find an eigenvector. This relationship
also allows us to use the power method to analyze the
convergence rate of IPA for discrete problems, as discussed in
the Appendix.

5. COMPUTATIONAL RESULTS
We demonstrate the capabilities of IPA as applied to the global
minimum energy configuration search in a model PES of a DNA
chain of D = 50 hydrogen-bonded adenine−thymine (A−T)
base pairs, depicted in Figure 2. The potential energy as a

function of the D physical proton coordinates xi is modeled as a
sum of double wells77

∑= − − +
=

=

V x x x xx( ) 0.429 1.126 0.143 0.563
i

D

i i i i
1

50
2 3 4

(25)

parametrized to yield the scaled energy in electronvolts of an A−
T/A*−T* base pair as a function of a dimensionless reduced
coordinate of a single proton ∈xi .77 The analytic global
minimum xi* = −1 and local minimum xi = 1 correspond to the
lowest energy configuration (A−T) and the tautomeric

configuration (A*−T*), respectively. Since each proton forms
a stable configuration upon adherence to either base, the
potential energy surface features 250 local minima. Identification
of the minimal energy configuration is essential as anomalous
hydrogen bonding causes affinity to the incorrect base on
replication, which is a proposed mechanism for oncogene-
sis.78−80 Here, global optimization is performed with d = 8
quantics (i.e., in n = d ×D = 400 dimensions, as the overall
dimensionality of the quantics tensor train considered is a
product of the number of folding dimensions d and physical
dimensions D).
IPA correctly identifies the global minimum with the Python

code provided in Appendix C. As expected, the density initially
equally weights all possible proton positions. The expectation
value of the position of the initial density lies in the local
minimum well, such that gradient descent would not locate the
global minimum. IPA iterations successfully concentrate the
density at the global minimum well, as evidenced by the rapid
convergence of the position expectation value of a representative
proton to its global minimum value (see Figure 3). As shown in

Figure 4, after one iteration (with scaling parameter β = 10
eV−1), the density is localized in the global minimum well; and
after 30 iterations, the density is localized at the global minimum
within an absolute error of 10−3.

Figure 2.DNA chain (left) ofD = 50 hydrogen bonds corresponding to
25 hydrogen-bonded adenine−thymine base pairs (inset, top right),
with hydrogen bonds shown as dashed yellow lines. Each hydrogen-
bonded proton attaches to either base, with energy represented by the
double-well potential (bottom right). The global minima position at−1
and 1 correspond to the depicted A−T form and tautomeric A*−T*
form, respectively. Global optimization is performed with 28 possible
proton positions for each double well. IPA thus finds the global
minimum out of 2400 possible proton configurations on a PES with 250

minima.

Figure 3. Expectation value of the position of a representative proton
rapidly approaches the known global minimum position of the
hydrogen bonding potential, eq 25.

Figure 4. 2-dimensional cut of the 50-dimensional PES (with all other
coordinates evaluated at x = −1), showing that IPA successfully
localizes the final density (dark blue surface) at the global minimum
position * = − − ∈x ( 1, 1) 2 (yellow point) of each proton as
described by eq 25 (light blue surface). Results are shown for
optimization of two hydrogen bonds in the domain x1, x2 ∈[−1.5, 2.5].
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In addition, this section shows that IPA successfully finds the
global minima of the discrete potential

=V p N( ) mod p (26)

for p in the set of primes {2, 3, ..., pmax}, which models a rugged
potential energy surface with many local minima and degenerate
global minima. This surface enables detection of the prime
factors of a given integer N, when formulating the factorization
problem as a rather challenging global minimum energy search.
The modulo operation that defines V(p) in the space of prime
numbers p returns the remainder after division ofN by p. For the
difficult problem of optimizing surfaces where the integer N is
large (equivalent to prime factorization of large numbers), the
Python scripts provided in Appendices D and E representN and
operations on N with 3000-digit precision, using the mpmath
library.81 Global optimization of the potential surfaces shows
that IPA can resolve the m multiple degenerate prime factors of
integers with thousands of digits of the form

= * × * ×···× *N p p p( ) ( ) ( )e e
m

e
1 2

m1 2
(27)

where ej ≥ 1 is the degeneracy of the prime factor pj*. A simple
example for N = 187 is shown in Figure 5, where the global
optima are p1* = 11 and p2* = 17 with e1 = e2 = 1. In the quantics
tensor train (QTT) format employed here, the search space is
reshaped such that optimization is performed in d = 3 to 14
folding dimensions.
The Python script provided in Appendix D successfully

resolves multiple degenerate global minima, regardless of the
number of minima, their degeneracy, the distance between
minima, or the potential energy barrier separating the minima.
The QTT approximation of ρ0(p) provides an accurate and

efficient representation of the initial uniform distribution in the
search space (the prime numbers ≤ N), folded as a d-
dimensional 21 × 22 × ···× 2d tensor. The distribution evolves
according to the IPA recurrence relation, which increases the
amplitude at the global optima while reducing it elsewhere.
Application of U(p) = e−β V(p) with the scaling parameter β = 30
(arbitrary units) yields a numerically converged final density in
only three IPA iterations.
Figure 6 shows that IPA correctly amplifies the amplitude of

the global minima: the degenerate prime factors ofN = (32 × 11
× 17 × 23 × 41 × 53 × 79 × 101 × 109)200, a large integer with
2773 digits (more than 9212 bits). Consistent with a Dirac
sequence, the final density is maximal for the global minima and
nearly zero elsewhere in the search space. Measurement with the
ramp function, as described in Section 2.2, then successfully

resolves the individual global minima as shown in Figure 7. IPA
thus correctly determines the position of all global minima of the
test potential function.
Figure 8 shows the IPA execution time as a function of N

when the potential eq 26 has two degenerate minima (i.e., when

Figure 5. Scaled potential energy surface log(1 + V(p)) for optimization of V(p) = Nmod p, withN = 187 (left). The process of folding the potential
into multidimensional form is illustrated in two reshaping dimensions for a 6× 7 configuration 2-dimensional search space (right). The global minima
(starred) correspond to the prime factors of N = 11 × 17. The reported IPA prime factorization of large numbers folds the PES analogously in higher
dimensionality, d = 3 − 14.

Figure 6. As expected, the IPA procedure for global optimization of the
function eq 26, forN as defined in the text, yielded a final density in the
form of a Dirac comb that was maximal at positions of global optima
and zero elsewhere. Only a fraction of the search space is illustrated for
clarity.

Figure 7. Dirac delta components of the final density in IPA were
successfully isolated without evaluation of the function at all points on
the search space via the ramp method for U = e−β̃p ramp with the
parameter β̃ = 0.5 (arbitrary units). The components are found to be
located at the global optima of the function eq 26 for the large number
N. Given the size of the search space of prime numbers, the density is
shown in a restricted region to enable visualization of its maximal
values.
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solving the factorization of biprimes N = p1* × p2* with values up
to 9 998 000 099, where p1* and p2* are primes). Results are
shown whereU(p) = e−β V(p) with β = 20 (arbitrary units), which
requires only one IPA iteration. The regression analysis shows
that the execution time scales approximately as

=N R(ln )( 0.978)2 , or N( ln(ln )) (R2 = 0.977). The
logarithmic scaling agrees with the analysis of Section 3, which
shows that the resulting scaling for amplitude amplification is
comparable to or better than that in optimal quantum search
algorithms (e.g., the Grover quantum search method,71 where
the number of queries necessary to amplify the amplitude of one
out of N possible states scales as N( )).

6. DISCUSSION
The QTT implementation of IPA illustrates the possibility of
developing efficient algorithms for classical computing and
chemistry. Analogous to quantum computing algorithms,
superposition states can be evolved by applying a sequence of
unitary transformations, and the outcome of the calculation
corresponds to a “measurement” (i.e., an expectation value
obtained with the evolved superposition). The QTT represen-
tation avoids the curse of dimensionality, enabling benchmark
calculations that would be otherwise impossible on classical
high-performance computing facilities. We find that such a
computational strategy enables IPA to perform quite efficiently,
bypassing the usual limitations of traditional optimization
methods. Therefore, it is natural to anticipate that IPA should
be of great interest for a wide range of applications, including
optimization problems in molecular and electronic structure
calculations.

■ APPENDIX A: PROOF OF CONVERGENCE
This section shows that the sequence generated by the IPA
recurrence relation converges to a delta distribution δ(x− x*) if
V(x) has a single global minimum at x = x*. An analogous proof
can be provided for surfaces with multiple global minima by
generalization of the concept of a Dirac sequence.
The sequence of densities ρk(x) converges to the delta

distribution as a Dirac sequence:

For all ∈k  and all ∈x : ρk(x) ≥ 0.

For all ∈k : ρ ∈ L ( )k
1  and ∫ ρ =x xd ( ) 1k

.

For all ε > 0: , where

the integral is evaluated over the real line except the
interval (x* − ε, x* + ε).

These conditions guarantee the area under the curve ρk(x) is
concentrated near the global minimum location x*, provided the
number of iterations k is sufficiently large.
The properties (i) and (ii) follow by construction of the IPA

sequence. To prove property (iii), let ε > 0 be a positive distance.
For a radius r > 0, we denote the minimum of U(x) on the
interval [x* − r, x* + r] by

=
∈[ *− *+ ]

m U xmin ( )r
x x r x r, (28)

Since by assumption U(x) is continuous with a single global
maximum at x = x*, there exists a radius rε > 0 such that the
numbermrε is a positive and strict upper bound forU(x) outside
the interval (x* − ε, x* + ε), as follows (cf. Figure 9)

ε ε< ∈ \ * − * +
ε

U x
m

x x x
( )

1, for all ( , )
r


(29)

We then introduce the probability

∫ ρ= >ε *−

*+

ε

ε
p x xd ( ) 0

x r

x r

0 (30)

and according to the definition of the minimum mrε > 0,
introduced by eq 28, for all k ≥ 1 we obtain the norm

∫ ∫ρ ρ ρ∥ ∥ = ≥

= ε

*−

*+

ε
ε

ε

ε

U x U x x m x x

m p

d ( ) ( ) d ( )k
L

k
r
k

x r

x r

r
k

0 0 01



(31)

which gives the bound

ρ
ρ

ρ

ρ
=

∥ ∥
≤

∥ ∥
∈

ε

∞

ε

x
U x x

U p
U x

m
x( )

( ) ( ) ( )
for allk

k

k
L r

k
0

0

0

1


i

k
jjjjjj

y

{
zzzzzz

(32)

where ∥ρ0∥∞ is the supremum ρ| |∈ xsup ( )x 0
. According to eq

29,U(x)/mrε < 1 for all positions outside the interval (x*− ε, x*
+ ε). Hence, we conclude that the density after k iterations is
bounded for all those positions x and all iterations k ≥ 1, as
follows

Figure 8. Real execution time for IPA global optimization of the
function eq 26 in the twin global minima case (i.e., for prime
factorization of biprimes), which agrees with the predicted scaling of
Section 3 and which is comparable to or better than the number of steps
required for the rate-limiting part of the foremost quantum approach.

Figure 9. There exists a radius rε > 0 such that the minimummrε on [x*
− rε, x* + rε] is a strict upper bound (dashed line) for all values outside
the interval (x*− ε, x* + ε) (shown in blue), sinceU(x) is a continuous
function with a single global maximum at x = x*.
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showing that the sequence is dominated by an integrable
function. Thus, the Lebesgue-dominated convergence theorem
yields

∫
∫

ρ

ρ=

=

ε ε

ε ε

→∞ \ *− *+

\ *− *+ →∞

x x

x x

lim d ( )

d lim ( )
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k x x k
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( , )





(34)

■ APPENDIX B: POWER METHOD: CONVERGENCE
RATE ANALYSIS

We consider a diagonal matrix ∈ ×U n n whose entries are
given by the values of U(x) at the equally spaced positions
a=x1<x2<...<xn=bwithΔx = xj+1− xj = (b− a)/(n-1) in the finite
interval x = [a,b], that is,

= U x U x U xU diag ( ( ), ( ),..., ( ))n1 2 (35)

We consider an initial vector whose entries are given by the value
of the initial density ρ0(x) at the same positions

ρ ρ ρ ρ= ∈x x x( ( ), ( ),..., ( ))n
n

0 0 1 0 2 0  (36)

When n is sufficiently large, we obtain the following
approximation for all iterations

∫∑ρ ρ ρ

ρ

∥ ∥ = ≈
Δ

=
Δ
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U x x

x
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L
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1
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0 1



(37)

In the following, we denote by ρ* ∈ n the vector whose jth
coordinate equals 1 ifU(xj) = λ1 is the dominant eigenvalue ofU
and zero otherwise. Moreover, we introduce the constant

λ
=

#{ | = }
c

j U x
1

( )j 1 (38)

where we use the notation #A for the cardinality (i.e., the number
of elements in the set). The definition of U in eq 35 yields that
the sequence ρ1, ρ2,... produced by the power iteration (i.e., eq 23
using the norm ∥·∥1) converges to c × ρ* if ρ0 is the uniform
distribution. Using the approximation in eq 37, we conclude that
the density ρk produced by IPA can be approximated at a given
grid point xj as

ρ
ρ

ρ

ρ
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(39)

In the special case where U has a single unique dominant
eigenvalue, (i.e. λ1 = U(xl) for some unique l ∈{1,...,n}), we get
ρj* is the Kronecker delta δj,l. This allows us to confirm that IPA
generates a Dirac sequence at the global minimum for discrete
optimization problems. The relationship of this expression to
that of the power method also shows that IPA inherits the
geometric convergence rate in the ratio λ2/λ1 < 1 from the power
method, in agreement with the alternative analysis introduced in
Section 3.

To further specify the convergence rate of IPA, we relate the
ratio λ2/λ1 to the grid sizeΔx > 0 in IPA. This is accomplished by
classifying the steepness of U(x) around its maximum location
x* via local approximations by polynomials of even degree. If
there exist parameters α > 0 and γ ≥ 1 such that

α≥ * − − * γU x U x x x( ) ( ) ( )2 (40)

for all x∈(x*−Δx, x* +Δx), then the eigenvalue λ2 is bounded
from below by U(x*) − αΔx2γ. Therefore, we conclude that the
rate of convergence is bounded as

λ
λ

α α≥ * − Δ
*

= −
*

Δ
γ

γU x x
U x U x

x
( )

( )
1

( )
2

1

2
2

(41)

In particular, λ2/λ1 → 1 as Δx → 0

■ APPENDIX C: GLOBAL MINIMUM ENERGY
CONFIGURATION OF HYDROGEN BONDS

The Python script in Figure C1 illustrates the use of IPA to find
the global minimum energy configuration of 50 adenine−
thymine (A−T) hydrogen bonds in a DNA chain with the ttpy
library installed from http://github.com/oseledets/ttpy.

■ APPENDIX D: MULTIPLE DEGENERATE GLOBAL
MINIMA

The Python script in Figure D1 illustrates the implementation of
IPA as applied to finding multiple degenerate global minima
corresponding to the degenerate prime factors of the integerN =
(32 × 11 × 17 × 23 × 41 × 53 × 79 × 101 × 109)200 with 2773
digits, when using the ttpy library installed from http://github.
com/oseledets/ttpy.

■ APPENDIX E: PAIRED DEGENERATE GLOBAL
MINIMA

The Python script in Figure E1 illustrates the implementation of
IPA as applied to finding the prime factors of the biprime N =
99 989 × 99 991 by resolving the degenerate global minima of
the mod function, as described in the text, while using the ttpy
library installed from http://github.com/oseledets/ttpy.
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