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ABSTRACT: Methods for efficient simulations of multidimensional
quantum dynamics are essential for theoretical studies of chemical systems
where quantum effects are important, such as those involving rearrange-
ments of protons or electronic configurations. Here, we introduce the
functional tensor-train Chebyshev (FTTC) method for rigorous nuclear
quantum dynamics simulations. FTTC is essentially the Chebyshev
propagation scheme applied to the initial state represented in a continuous
analogue tensor-train format. We demonstrate the capabilities of FTTC as
applied to simulations of proton quantum dynamics in a 50-dimensional
model of hydrogen-bonded DNA base pairs.

1. INTRODUCTION

Quantum dynamics simulations are essential for rigorous
theoretical studies of quantum reaction dynamics, including
applications to structural and dynamical problems with critical
rearrangements of protons or electronic configurations. A
variety of approaches have been developed, including time-
dependent Hartree methods1−11 and other methods based on
short-time approximations of the time-evolution operator, such
as the Trotter expansion and finite difference methods.12−24

Here, we focus on the Chebyshev method for simulation of
quantum wavepacket dynamics, which enables computation of
the time-evolved quantum state at the final time without
having to compute intermediate states at earlier times.12 Thus,
contrary to methods based on short-time propagators, the
Chebyshev propagation scheme can be implemented without
error accumulation. Chebyshev propagation is currently one of
the foremost approaches for simulations of quantum dynamics
in low dimensionality,12,25−27 as demonstrated for nuclear
quantum dynamics simulations of molecular systems with up
to six dimensions.28,29 However, applications to higher-
dimensional systems have been hindered by the exponential
scaling of memory and computational cost with dimension-
ality, due to its reliance on full-grid representations. Here, we
introduce a viable solution to the exponential scaling with
dimensionality by applying the Chebyshev propagation scheme
to the initial state represented in functional tensor-train (FT)
formati.e., the continuous analogue of the tensor-train/
matrix product state decomposition. The resulting functional
tensor-train Chebyshev (FTTC) method is demonstrated as
applied to simulations of proton dynamics in a high-
dimensional (50-dimensional) model of hydrogen-bonded

adenine−thymine DNA base pairs, where photo-induced
proton transfer has long been thought to have important
biological implications (e.g., photoinduced mutations).30

Tensor networks have been successfully applied to a wide
range of studies, including applications to solving partial
differential equations,31−34 quantum dynamics methods,35−55

machine learning,56 electronic structure calculations,57−62 and
calculations of vibrational states.63−65

Here, we build upon the tensor-train split-operator Fourier
transform (TT-SOFT) method,40 and we develop the FTTC
method which is essentially a functional tensor-train
implementation of the Chebyshev propagation scheme,
popularized by Kosloff and co-workers.25 FTTC expands the
initial state as a functional tensor train and evolves it by
applying the Chebyshev expansion of the time-evolution
operator
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where ̂T ( )k are Chebyshev polynomials of the Hamiltonian
Ĥ in functional tensor-train format, Jk(t) are the Bessel
functions of the first kind, and t is the final propagation time.
In practice, a finite number N ≥ 1 of polynomials is employed
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and the expansion is applied iteratively in time. Important
advantages of the proposed FTTC algorithm when compared
to other propagation methods based on matrix product states
are: (i) the error need not accumulate with time since the state
at time t can be obtained directly without having to compute
earlier intermediate states and (ii) the uniform character of the
Chebyshev expansion that decreases the error exponentially
with N.
We focus on functional tensor trains (FT),66−69 which are

continuous analogues of tensor trains/matrix product states
and have yet to be demonstrated as applied to simulations of
quantum nuclear dynamics. Functional tensor-train represen-
tations of time-dependent states allow for efficient computa-
tions of gradients of multidimensional tensors, so they are
expected to be particularly valuable for a variety of
applications, including studies of the quantum control of
molecular systems.70 Therefore, we can implement eq 1 as
applied to the time-evolving state directly by computing
functional tensor-train decompositions of the Chebyshev
polynomials applied to the time-evolved wave function without
having to pre-compute the Chebyshev polynomials of the
Hamiltonian. The FTTC method can also be implemented
using discrete tensor trains,71,72 instead of their continuous
analogues, allowing for efficient representation and manipu-
lation of matrix product states.73

The article is organized as follows. Section 2 describes the
Chebyshev methodology. Section 2.1 introduces the Cheby-
shev polynomials. Section 2.2 describes how to generate
Chebyshev expansions of complex-valued functions, and
Section 2.3 describes Chebyshev propagation based on discrete
space representations. Section 3 describes the functional
tensor-train decomposition as a continuous analogue tensor-
train format for multilinear algebra manipulations of high-
dimensional tensors. Section 4 describes our functional tensor-
train Chebyshev propagation method (FTTC) as implemented
for numerical integration of the time-dependent Schrödinger
equation. Section 6 demonstrates the capabilities of FTTC as
applied to simulations of proton quantum dynamics in a 50-
dimensional model of DNA base pairs with highly anharmonic
modes. The Supporting Information demonstrates that tensor-
train Chebyshev dynamics can entail lower computational cost
relative to the state-of-the-art split operator Fourier transform
method for long time steps. The results show that FTTC
enables simulations of molecular systems far beyond the
capabilities of the standard grid-based Chebyshev method.

2. CHEBYSHEV APPROACH

The Chebyshev propagation method25 integrates numerically
the time-dependent Schrödinger equation

∂Ψ
∂

= ̂ Ψ
t

Hi
(2)

where we have used atomic units (ℏ = 1). For simplicity, we
consider a system described by the Hamiltonian

̂ =
̂· ̂

+ ̂ = − Δ Ψ + ̂H
p p

m
V

m
V

2
1

2 x (3)

where m > 0 is the mass of the system, p̂ = −i∇x is the
momentum operator, and → V : d is a given potential
energy surface (PES) describing interactions that rule the
underlying dynamics of the system. Using the unitary evolution

propagator Û(t) = e−itĤ, the solution of eq 2, Ψ(t),
corresponding to the initial state Ψ0 is

Ψ = ̂ Ψt U t( ) ( ) 0 (4)

The Chebyshev propagation method approximates the
propagator Û(t) = e−itĤ for a fixed final time t in terms of a
linear combination of the first N ≥ 1 Chebyshev polynomials
of the Hamiltonian T0(Ĥ), ..., TN−1(Ĥ), as discussed in Section
2.1.

2.1. Chebyshev Polynomials. For all integers k ≥ 0 and
all x ∈ [−1, 1], the kth Chebyshev polynomial is defined as
follows

=T x k x( ) cos( arccos( ))k (5)

where arccos is the inverse of the cosine (i.e., cos(arccos(x)) =
arccos(cos(x)) = x). We note that the Chebyshev polynomials
are defined only for input values x ∈ [−1, 1], since the cosine
function attains values only in that limited range, and satisfy
the following recurrence relation

= −+ −T x xT x T x( ) 2 ( ) ( )k k k1 1 (6)

with T0(x) = 1 and T1(x) = x defining the subsequent
Chebyshev polynomials, so the first four polynomials are
(Figure 1)
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We note that Chebyshev polynomials have a number of
remarkable properties and are therefore an important tool in
the field of approximation theory.74,75 For instance, let us
remark that they satisfy the following orthogonality relation for
all j, k ≥ 1, j ≠ k

∫ π δ
−

=
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x
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T x T x

d

1
( ) ( )

2j k j k
1

1

2 ,
(8)

showing that the Chebyshev polynomials are orthogonal with
respect to the weighted inner product defined by the left hand
side of eq 8.

2.2. Chebyshev Expansion of Complex-Valued Func-
tions. Chebyshev polynomials can be used to approximate a
given complex-valued function f via its Fourier series

Figure 1. Plot of the first four Chebyshev polynomials, defined only in
the limited interval [−1, 1], since the possible values of the cosine
function are limited to that interval.
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representation. To show that, we introduce the 2π-periodic
function75

=g x f x( ) (cos( )) (9)

which can be represented in the interval (e.g., −π < x < π) in
terms of its Fourier series as follows

∫

∑ δ
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= −

=
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∞
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Therefore

=f y g y( ) (arccos( )) (11)

can be represented in terms of the Chebyshev polynomials as
follows
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for y ∈ [−1, 1]. Equation 12 is called the Chebyshev expansion
of f and it can be used to approximate f as the linear
combination of the first N Chebyshev polynomials as follows

∑ δ≈ = −
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,0
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The coefficients ck, defined by eq 12, are essentially the Fourier
coefficients of the function g that decay exponentially with N
for analytic functions76 (i.e., smooth in the complex domain)
and thus provide fast convergence of the partial sums SNf. The
resulting Chebyshev approximant SNf is a polynomial of degree
N, which is known to be close to the polynomial of the same
degree with minimal error in the interval [−1, 1].77
2.3. Chebyshev Propagation in Discrete Representa-

tions.We obtain an approximation of the operator Û = e−itĤ at
time t by considering the function f(y) = e−ity for which the
coefficients ck defined according to eq 12 can be expressed in
terms of the Bessel functions Jk (of the first kind) as follows

78

= −c J t( i) ( )k
k

k (14)

yielding the following approximation
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with y ∈ [−1, 1]. Using a linear transformation of the
argument y, we can restate eq 15 for an arbitrary Hermitian
matrix ∈ ×H D D (where D > 1 is a positive integer) with
eigenvalues contained in a finite interval [a, b] as follows

∑ δ≈ − −− −
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where we have introduced the rescaled variables ∈− + t t,
and the Hermitian matrix ∈ ×H D D

0 with eigenvalues in [−1,
1] defined as follows
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{
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where ID is the D × D identity matrix.
Fast convergence is typically obtained for e−ity since it is a

smooth function, although the number of required polynomials
increases with t since e−ity is oscillatory. Thus, a sufficiently
large number N of Chebyshev polynomials is needed to resolve
the oscillations. In fact, it has been shown that the error falls
like the Nth order in |t−|/(2N) for sufficiently large N.79

It is important to note that eq 16 can be used more generally
than in the current implementation to approximate the
solution to any linear system of the form iu̇ = Hu. Such linear
systems typically arise in space discretization methods,
including the Fourier collocation method, the Fourier Galerkin
method, or the Hermite Galerkin method.79 So, we anticipate
that the FTTC method should also be valuable for solving
high-dimensional linear systems in a wide range of applications
beyond the solution of the time-dependent Schrödinger
equation.

2.4. Discrete Tensor-Train Implementation. Discrete
tensor-train approximations of e−itĤ are obtained by discretiz-
ing the d-dimensional space with a uniform grid of size Δxj > 0
for the jth nuclear coordinate, spanning the range xj,min to xj,max,
with nj > 1 points for each dimension j = 1, ..., d. Analogously,
discrete tensor-train representations of wave functions are
obtained as low-rank d-dimensional complex-valued tensor
trains approximating

[ ] = Ψk k x, ..., ( )d k1 (18)

where k = (k1, ..., kd) are the indices of tensor-train entries
corresponding to nuclear coordinate values xk = (x1,k1, ..., xd,kd).
The discrete tensor-train representation of [ ]k k, ..., d1 is
defined as follows

[ ] = [ ] [ ]··· [ ]

≤ ≤

k k k k k k

k n j

, , ..., ,

1 for all
d d d

j j

1 2 1 1 2 2

(19)

where [ ] ∈ ×−kj j
r rj j1 are matrices and nj are the number of

grid points in the jth coordinate direction.
The action of the Hamiltonian Ĥ on a wave function Ψ is

represented by the Hermitian operator ̂ = ̂ + . The
real-valued “potential energy tensor”

[ ] =k k V x x, ..., ( , ..., )d k d k1 1, , d1 (20)

acts on [ ]k k, ..., d1 as an element-wise multiplication
operator (Hadamard product). The discrete kinetic energy
operator

̂ [ ] ≈ − Δ Ψk k
m

x( ) , ...,
1

2
( )d x k1 (21)

is defined by the Laplacian Δx that acts as a multiplication
operator in momentum space. Therefore, we apply the kinetic
energy operator in momentum space by exploiting the highly
efficient (linear scaling with dimensionality) implementation of
the multidimensional discrete Fourier transform of tensor
trains to switch between position and momentum space. With
the help of the fast Fourier transform (FFT), we therefore
obtain a very efficient and accurate implementation of the
discretized kinetic energy operator.
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The discrete Hamiltonian is rescaled, according to eq 17, as
follows

̂ =
−

̂ −
+ ̂

E E
E E2

20
max min

max mini
k
jjj

y
{
zzz

(22)

where ̂ denotes the identity on the tensor space. The bounds
for the eigenvalues Emin and Emax depend on the extension of
the grid and are given by

π
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where we used Δpj = 2π/(xj,max − xj,min) for the grid size in
momentum space of the jth coordinate, giving the maximum
kinetic energy

π=
Δm
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m x
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2

1
2j
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2
2

2
(24)

Consequently, the solution Ψ(t) is approximated with N
Chebyshev polynomials as follows

∑ δΨ = Ψ ≈ − −
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− ̂ −
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1
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where t± = tE±/2, E± = Emax ± Emin, and 0 samples the initial
wave function.
We implement eq 25 as a one-step propagator to compute

Ψ(t) directly from the initial data using the Clenshaw
algorithm80 (see Appendix A). Alternatively, we can obtain
the time-dependent states ̂T ( )k 0 0 according to the
recurrence relation eq 6

̂ =

̂ = ̂

̂ = ̂ ̂ − ̂

≥
+ −

T

T

T T T
k

( )

( )

( ) 2 ( ) ( ) ,
for 1

k k k

0 0 0 0

1 0 0 0 0

1 0 0 0 0 0 1 0 0

(26)

The same Chebyshev propagation scheme described in this
section for discrete tensor-train (TT) decompositions72 can be
readily implemented using the continuous analogue functional
tensor-train decomposition,66 as described in the following
section.

3. FUNCTIONAL TENSOR-TRAIN DECOMPOSITION
3.1. Continuous Analogue of the Tensor-Train

Decomposition. Following refs 68 and 69, here we give a
brief overview of the functional tensor-train (FT) format,
which offers an efficient data compression scheme66,67

∑ ∑ ∑= ···
= = =

−

f x x x f x f x
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1 2
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1
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0 1 1 2
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(27)

where → f :k
ij

k
( ) , k denotes the domain of the kth

physical dimension, with r0 = rd = 1 for single-output functions
such as polynomials or linear elements. The FT decom-

position, introduced by eq 27, is a low-rank decomposition of
multivariate functions in an analogous way that the TT
decomposition, eq 19, is a low-rank decomposition of
multivariate arrays. A more compact expression for the FT
analogue is obtained by viewing a function value as a set of
products of matrix-valued functions

=f x x x x x x( , , ..., ) ( ) ( )... ( )d d d1 2 1 1 2 2 (28)

where each matrix-valued function → ×−:k k
r rk k1 is called a

core and can be visualized as an array of the univariate
functions

=
− −

x

f x f x
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( ) ( )
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r r
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(11) (1 )
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ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (29)

If each univariate function is represented with p parameters
(for example, coefficients of a polynomial) and rk ≤ r for all k,
then the storage complexity scales as dpr( )2 . Comparing this
representation with eq 19, we see a very close resemblance
between TT cores and FT cores. Indeed, they are both
matrices when indexed by a discrete index ik for the TT or a
continuous index xk for the FT.

3.2. Parameterizations of Low-Rank Functions. The
finer structure of the FT format is described by FT cores
comprised of d sets of univariate functions =( )k k

d
1. Each set

could be different for different dimensions (e.g., 2π-periodic
functions could represent physical dimensions corresponding
to torsional angles, while Hermite polynomials could represent
stretching modes). As a result, the full FT is parameterized
through the parameterization of the set of univariate functions
of each dimension, as chosen for the optimal representation of
physical coordinates. Considering that ∈ +pkij denotes the

number of parameters describing f k
(ij) and θ ∈ pt the vector of

parameters of all of the univariate functions, then there are a
total of pt ≡ ∑k=1

d ∑i=1
rk−1 ∑j=1

rk pkij parameters describing the FT
representation.
The parameter vector θ is indexed by a multi-index α = (k, i,

j, ) where k = 1, ..., d corresponds to an input variable, i = 1, ...,
rk−1 and j = 1, ..., rk correspond to a univariate function within
the kth core, and = 1, ..., pkij corresponds to a specific
parameter within that univariate function. In other words, we
adopt the convention that θα = θkij refers to the th parameter
of the univariate function in the ith row and jth column of the
kth core.
The additional flexibility of the representation allows both

linear and nonlinear parameterizations of univariate functions.
In particular, the linear parameterization represents a
univariate function as an expansion of basis functions

ϕ → =( : )k
ij

k
p( )

1
kij according to

∑θ θ ϕ=
=

f x x( ; ) ( )k
ij

k

p

kij k
ij

k
( )

1

( )
kij

(30)

3.3. Low-Rank Functions vs Low-Rank Coefficients.
For greater versatility, the FT can be used by independently
parameterizing the univariate functions of each core, and both
linear and nonlinear parameterizations are possible. As
described below, the advantage of this representation includes
a naturally sparse storage scheme for the cores.
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An advantage of this type of structure is that it readily
enables adaptivity when performing common multilinear
algebraic operations with functions in low-rank format.68 For
example, taking the product of two functions in low-rank
format requires computing products between univariate
functions in corresponding cores of the two functions. In
particular, it requires computing the product between every
combination of the functions. Because we store each univariate
function separately, this product can accurately account for the
complexity of the resulting univariate function. For instance, if
the product of two third-order polynomials is considered, then
a sixth-order polynomial will be stored. However, if a third-
order polynomial is multiplied by a first-order polynomial, then
only a fourth-order polynomial needs to be stored. In contrast,
traditional tensor-based storage schemes would require storing
each univariate function with the same number of polynomials.
These advantages arise because we consider Chebfun-style
continuous computation.81 The salient point is that we
consider univariate functions, rather than matrices or lower-
order arrays, as the building blocks of low-rank representations.
Another advantage is the availability of efficient computational
algorithms for multilinear algebra that can adapt the
representation of each univariate function individually as
needed in the spirit of continuous computation pioneered by
Chebfun.81

The TT/MPS format is a particular case of the general FT
decomposition, naturally arising when two simplifying
assumptions are made82,83

1. linear parameterization of each f k
(ij);

2. identical basis for the functions within each FT core, i.e.,

pkij = pk and ϕk
ij( ) = ϕk for all i = 1, ..., rk−1, j = 1, ..., rk,

and = 1, ..., pk.

These assumptions transform the problem of storing low-rank
functions to the problem of storing low-rank coefficients,
allowing the use of discrete TT algorithms and theory. Both
representations store the coefficients of a tensor-product basis
ϕk for all k and .
Function evaluations can be obtained from the coefficients

defining the tensor ∈ × ×−k
r p rk k k1 of the following form

θ θ

θ θ
[ ] =

− −

: , , :k

k k r

kr kr r

11 1

1

k

k k k1 1

μ
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μ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (31)

for = 1, ..., pk, by performing the following summation

∑ ∑ ϕ

ϕ

= ··· [ ]··· [ ]

···

= =
f x x x
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From eqs 28, 31, and 32 we can see that the relationship
between the TT cores k and the FT cores k is

∑ ϕ= [ ]
=

x x( ) : , , : ( )k k

p

k k k
1

k

(33)

where the basis function multiplies every element of the tensor.
In other words, FT cores represent a TT decomposition of the
p1 × p2 × ··· × pd coefficient tensor of a tensor-product basis
and inherit the properties of the TT decomposition.

3.4. Operations in the FT Format. Performing
continuous multilinear algebra is one of the main advantages
of the continuous framework. The operations of addition,
multiplication, differentiation, integration, and inner products
are easily performed for functions in the FT format as
follows.68 Addition and multiplication of two functions are
performed similarly to addition and multiplication of tensors in
the TT format. For addition, the cores of g(x) = f(x) + h(x)
are
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for k = 2, ..., d. For multiplication, g(x) = f(x)h(x), we have

= ⊗ =x x x k d( ) ( ) ( ) for 1, ...,k k k (35)

For both of these operations, the continuous functional
decomposition has an important advantage compared to
operations based on the discretized representation. Primarily,
the advantage comes from the ability to add functions of
differing discretization levels, e.g., functions represented with
bases of different orders. In the discrete case, one can only add
functions with identical discretizations.
The continuous nature of the FT also allows us to perform

differentiation, as necessary to the implementation of the
Laplacian, by differentiating scalar-valued functions that make
up the corresponding core. For example, consider the partial
derivative of a d-dimensional function f
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When the univariate functions are expressed in, for example, a
basis of orthonormal polynomials, then this operation is
unique, well-defined, and computationally inexpensive.
Integration is widely used in Section 6 to compute

expectation values. Integrating the multivariate functions scales
linearly with dimensionality since it requires integrating over
the one-dimensional functions in each core and then
performing matrix-vector multiplication d − 1 times as follows

∫ ∫
∫ ∫

∫ ΓΓ Γ

=

=

=

( )( )
( )

f x x x x x x

x x x x x

x x

( ) d ( ) ( )... ( ) d

... d ( ) d ( ) d

... ( ) d ...

d d

d

d d d d

1 1 2 2 1

1 1 1 2 2 2

1 2 (37)

where ∫Γ = x x( ) dk k k k contains entries Γk[i, j] =
∫ f k(ij)(xk) dxk and the integral stands for an integral over an
arbitrary domain. Furthermore, since each of the univariate
functions is typically represented on a known basis, the integral
is well defined, unique, and computationally inexpensive to
obtain.
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The inner product between two functions is another
important operation essential for quantum dynamics simu-
lations and computations of correlation functions. Naively, the
inner product can be implemented by first computing the
product g(x) = f(x)h(x) and then integrating g(x), requiring

dr( )4 operations. However, this operation can be made more
efficient by combining the operations needed for integration
and multiplication. For example, Algorithm 1 uses an efficient
computation of vT (A ⊗ B) to perform the inner product in

dr( )3 , where v is a vector and A and B are matrices.

Furthermore, once in FT format, many other familiar
operators may be applied to a function with relative ease.

Consider the LaplacianΔ = = ∑ =
∂

∂
f x g x( ) ( ) k

d f x
x1
( )

k

2

2 , necessary

for implementation of the kinetic energy operator without
having to rely on the Fourier transform. Written in this form,
one can consider the Laplacian as the summation of d
functions gk(x) in function-train format, where

=
∂

∂
g x

f x
x

( )
( )

k
k

2

2
(38)

The second derivative is implemented core-by-core in the
space of univariate functions. The second derivatives of
univariate functions are computed only once, which exploits
the benefits of the continuous representation and avoids the
need for explicit calculation of the Fourier transform required
by grid-based methods.

4. FUNCTIONAL TENSOR-TRAIN CHEBYSHEV
PROPAGATION

Wavepackets and operators are efficiently represented in terms
of low-rank functional tensor trains (FT) or discrete tensor
trains (TT). The decompositions are constructed analytically
or interpolated with the cross approximation as implemented
in the Compressed Continuous Computation (C3) library84 in
terms of linear element expansions or the TT-Toolbox.85

Operations are computed in the position-space representation,
including the kinetic energy operator in the FT representation,
which is computed analytically from the Laplacian. In the
discrete TT representation, the kinetic energy operator is
computed numerically in momentum space. Algebraic
manipulations are followed by rounding schemes to avoid an
artificial growth of the rank.
The functional tensor-train algebra discussed in Section 3 is

then employed to express the individual Chebyshev poly-
nomials of the Hamiltonian as applied to the initial
wavepacket, as discussed in Section 2. The codes are available

Figure 2. (Left) DNA strand of adenine−thymine base pairs (top right) with a two-dimensional slice of the model potential energy surface eq 39
(bottom right).
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in public domain.86 The minimal and maximal potential energy
surface values required for rescaling the Hamiltonian in the
Chebyshev scheme are determined either analytically or
through constrained nonlinear optimization to avoid calcu-
lation of the multidimensional potential energy surface at all
position-space grid points considered. Individual Chebyshev
polynomials are determined as either tensor trains or function
trains via the recurrence relation eq 6 or the action of the
propagator on the wave function is determined directly from
the Clenshaw algorithm, see Appendix A. The resultant
dynamics is analyzed via calculation of survival amplitudes
and wavepackets.

5. CHEMICAL MODEL

We simulate the dynamics of protons in a 50-dimensional

model of hydrogen-bonded DNA adenine−thymine base pairs,

described by the model potential energy surface87,88

∑
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Figure 3. Comparison of two-dimensional slices of the 50-dimensional time-dependent wavepacket obtained from FTTC simulations (red line)
and its discrete TT implementation (blue line) as compared to benchmark TT-SOFT (black) simulations of tautomerization quantum dynamics
for uncoupled (β = 0 au) DNA base pairs.

Figure 4. Comparison of survival amplitudes from simulations of the time-dependent wavepacket evolving on a 50-dimensional potential energy
surface for the tautomerization dynamics of uncoupled (β = 0 au) DNA base pairs, including the real (left) and imaginary (right) parts, obtained
with FTTC (red line) and its discrete TT implementation (blue line) as compared to benchmark TT-SOFT (black).
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where α = 0.1 au determines the energy scaling of the model
potential and β is the hydrogen-bond coupling parameter (see
Figure 2). Each xi describes the coordinate of proton motion in
an individual adenine−thymine (A−T) pair as it tautomerizes
from the energetically favored amino−keto A−T form to the
isomeric imino−enol A*−T* form. The coupling term
parameterized by β provides a model of interaction between
base pairs.
The resulting 50-dimensional model potential involves

strongly anharmonic modes, which are beyond the reach of
the grid-based Chebyshev approach or other quantum dynamic
methods based on full-grid representations. The molecular
system also provides a challenging test case for low-rank
tensor-train-based dynamics, as the potential energy surface
becomes increasingly demanding as the coupling parameter is
dialed up to β = −2 au. Therefore, the resulting wavepackets
can reach maximal ranks of over rmax = 100 without truncation
in the FT representation.
We examine the ability of the Chebyshev method to

simulate isomerization processes by considering the initial
state, introduced by eq 40, that represents the excited A*−T*
tautomer with width α = 1 au, position x0,i = 1 au, momentum
p0,i = 0 au, and mass m = 1 au. A position-space vector of grid
length L = 10 au in the TT format and a position-space region
of x ∈ [−5, 5] au in the FT format (with Nx = Np = 25 equal
divisions in position space) is used to capture the full extent of
the reactive coordinate oscillation between the two isomers.
The wavepacket is computed at intermediate times (with a
time step of τ = 0.01 au) by defining each intermediate time as
an endpoint. A basis set of Npoly = 50 polynomial terms is used
in the Chebyshev expansion to accurately represent the
dynamics in both the TT and FT formats for the DNA system.

6. RESULTS
Figures 3 and 4 show benchmark calculations of FTTC
simulations for the 50-dimensional tautomerization of
uncoupled DNA base pairs, as compared to the discrete TT
implementation and TT-SOFT simulations. The correspond-
ing simulations for coupled DNA base pairs β = −2 au are
compared in Figures 5 and 6. Comparison slices of the time-
dependent wavepacket along two of the 50 dimensions and
survival amplitudes show excellent agreement between the
methodologies and efficient performance even without relying
on high-performance computing facilities.
The simulations are initialized by a Gaussian
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(40)

with x0,i = 1 au and p0,i = 0 au, corresponding to a displaced
tautomeric form along the double-well potential energy surface
characterizing the energy change as a function of the proton
displacement. The resulting dynamics leads to the motion of
the wavepacket into the well of the energetically favored
tautomer as the isomerization due to proton dynamics
proceeds in the 50-dimensional space of the model system.

7. DISCUSSION
Numerically exact quantum dynamical methods that rely on
full-grid representations are not applicable to high-dimensional
model systems since they require computational resources that
scale exponentially with dimensionality. Even the standard

grid-based implementation of the Chebyshev method,
renowned for its ability to achieve accuracy within machine
precision, has been limited in applications to nuclear quantum
dynamics to model systems with no more than four atoms.
Here, we have shown how to extend the capabilities of the
Chebyshev propagation scheme to high-dimensional systems
in terms of the FTTC algorithm. We anticipate that the
resulting FTTC methodology will be useful not only for
simulations of quantum reaction dynamics in general but also
as a general method to obtain numerical solutions of linear
systems in high dimensionality, typically arising from space
discretization in many other types of applications. Further-
more, the functional train decomposition should also find wide
applicability in studies requiring computations of gradients,
integrals, and correlation functions of systems with high
dimensionality.
With regards to the basis functions, we note that the

functional tensor-train representation can implement suitable
choices of univariate basis functions that could be ideal for data
compression in chemistry, for example, waveforms or Gaussian
functions, which are common to both wavepacket propagation
methods and electronic structure calculations alike. In general,
representations that require O(nd) data points in a d-
dimensional grid with n points for each direction would
require at most O(dnr2) data points for a maximum rank r in a
discrete tensor-train representation and only O(dpr2) data
points in functional tensor-train format where p is the number
of parameters, which represents a significant reduction in
computational cost ideal for modeling molecular systems.
Appendix A

Clenshaw Algorithm. The direct computation of the
Chebyshev expansion eq 25 based on the usual summation

Figure 5. Comparison of two-dimensional slices of the 50-
dimensional time-dependent wavepacket obtained from FTTC
simulations (red line) and its discrete TT implementation (blue
line) as compared to benchmark TT-SOFT (black) simulations of
tautomerization quantum dynamics for coupled (β = −2 au) DNA
base pairs.
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algorithm has two disadvantages: (1) all summands have to be
kept in the memory of the computer, which can be very

expensive in practical applications since the tensors ̂T ( )k 0 0
(and also their low-rank approximations) are typically large
objects, and (2) it is known that the worst-case error generated
by the floating point operations grows proportionally to the
number N of summands.89 We therefore use the Clenshaw
algorithm,80 which offers a stable alternative to evaluate linear
combinations of polynomials that satisfy a linear recurrence
relation such as the Chebyshev polynomials.75

Assuming that for given coefficients ∈− c c c, , ..., N0 1 1 we
are interested in the value of the partial Chebyshev sum eq 13,
the Clenshaw algorithm replaces the summation by the
evaluation of the following backward recurrence system
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= =
+ +

+

B y yB y B y c r N

B y B y

( ) 2 ( ) ( ) , 1, ..., 0

( ) 0, ( ) 0

r r r r

N N

1 2

1

l
m
ooo
n
ooo

(41)

and then expresses the partial Chebyshev sum as
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To obtain the approximation of the wave function Ψ(t), we
adapted the Clenshaw algorithm by first solving the backward
recurrence system
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and then computing the approximant

Ψ ≈ −− +
t( ) e ( )ti

0 2 (44)

We note that this numerically stable procedure needs to keep
only three tensors in memory.

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00941.

fttcsi.zip (ZIP)

Accuracy of the computed wavefunction (Figure S1) and
autocorrelation function (Figure S2) in TTC and TT-
SOFT dynamics and L2-norm error of the wavefunction
in TTC as a function of the number of Chebyshev
polynomials (Figure S3) for an analytically solvable
benchmark system (PDF)

■ AUTHOR INFORMATION

Corresponding Author
Victor S. Batista − Yale Quantum Institute, Yale University,
New Haven, Connecticut 06520-8263, United States;
Department of Chemistry, Yale University, New Haven,
Connecticut 06520, United States; Energy Sciences Institute,
Yale University, West Haven, Connecticut 06516-7394,
United States; orcid.org/0000-0002-3262-1237;
Email: victor.batista@yale.edu

Authors
Micheline B. Soley − Yale Quantum Institute, Yale University,
New Haven, Connecticut 06520-8263, United States;
Department of Chemistry, Yale University, New Haven,
Connecticut 06520, United States; orcid.org/0000-0001-
7973-2842

Paul Bergold − Zentrum Mathematik, Technical University of
Munich, 85748 Garching, Germany

Alex A. Gorodetsky − Department of Aerospace Engineering,
University of Michigan, Ann Arbor, Michigan 48109-2140,
United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.1c00941

Figure 6. Comparison of survival amplitudes from simulations of the time-dependent wavepacket evolving on a 50-dimensional potential energy
surface for the tautomerization dynamics of coupled (β = −2 au) DNA base pairs, including the real (left) and imaginary (right) parts, obtained
with FTTC (red line), its discrete TT implementation (blue line), and benchmark TT-SOFT (black).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00941
J. Chem. Theory Comput. 2022, 18, 25−36

33

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00941?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00941/suppl_file/ct1c00941_si_001.zip
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00941/suppl_file/ct1c00941_si_002.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Victor+S.+Batista"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3262-1237
mailto:victor.batista@yale.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Micheline+B.+Soley"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7973-2842
https://orcid.org/0000-0001-7973-2842
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Paul+Bergold"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alex+A.+Gorodetsky"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00941?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00941?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00941?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00941?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00941?fig=fig6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00941?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

M.B.S. acknowledges financial support from the Yale Quantum
Institute Postdoctoral Fellowship. V.S.B. acknowledges support
from the NSF Grant no. CHE-1900160 and high-performance
computing time from NERSC and the Yale High-Performance
Computing Center. A.A.G. was supported by the AFOSR
Computational Mathematics Program under the Young
Investigator Program.

■ REFERENCES
(1) Dirac, P. A. M. Note on Exchange Phenomena in the Thomas
Atom. Math. Proc. Cambridge Philos. Soc. 1930, 26, 376−385.
(2) McLachlan, A. D.; Ball, M. A. Time-Dependent Hartree-Fock
Theory for Molecules. Rev. Mod. Phys. 1964, 36, 844−855.
(3) Gerber, R. B.; Buch, V.; Ratner, M. A. Time-dependent self-
consistent field approximation for intramolecular energy transfer. I.
Formulation and application to dissociation of van der Waals
molecules. J. Chem. Phys. 1982, 77, 3022−3030.
(4) Flores, S. C.; Batista, V. S. Model Study of Coherent-Control of
the Femtosecond Primary Event of Vision. J. Phys. Chem. B 2004, 108,
6745−6749.
(5) Meyer, H.-D.; Manthe, U.; Cederbaum, L. S. The Multi-
Configurational Time-Dependent Hartree Approach. Chem. Phys. Lett.
1990, 165, 73−78.
(6) Meyer, H.-D.; Manthe, U.; Cederbaum, L. S. The Multi-
Configuration Hartree Approach. In Numerical Grid Methods and
Their Application to Schrödinger’s Equation; Cerjan, C., Ed.; Kluwer
Academic Publishers, 1993.
(7) Beck, M. H.; Jäckle, A.; Worth, G. A.; Meyer, H.-D. The
multiconfiguration time-dependent Hartree (MCTDH) method: a
highly efficient algorithm for propagating wavepackets. Phys. Rep.
2000, 324, 1−105.
(8) Wang, H.; Thoss, M. Multilayer-formulation of the multi-
configuration time-dependent Hartree theory. J. Chem. Phys. 2003,
119, 1289−1299.
(9) Schulze, J.; Shibl, M. F.; Al-Marri, M. J.; Kühn, O. Multi-layer
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