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Abstract

We give conditions for 𝑘-point configuration sets of thin

sets to have nonempty interior, applicable to a wide vari-

ety of configurations. This is a continuation of our ear-

lier work (J. Geom. Anal. 31 (2021), 6662–6680) on 2-

point configurations, extending a theoremofMattila and

Sjölin (Math. Nachr. 204 (1999), 157–162) for distance

sets in Euclidean spaces. We show that for a general

class of 𝑘-point configurations, the configuration set of

a 𝑘-tuple of sets, 𝐸1, … , 𝐸𝑘, has nonempty interior pro-

vided that the sum of their Hausdorff dimensions sat-

isfies a lower bound, dictated by optimizing 𝐿2-Sobolev

estimates of associated generalized Radon transforms

over all nontrivial partitions of the 𝑘 points into two

subsets. We illustrate the general theorems with numer-

ous specific examples. Applications to 3-point configu-

rations include areas of triangles in ℝ2 or the radii of

their circumscribing circles; volumes of pinned paral-

lelepipeds in ℝ3; and ratios of pinned distances in ℝ2

andℝ3. Results for 4-point configurations include cross-

ratios on ℝ, pairs of areas of triangles determined by

quadrilaterals in ℝ2, and dot products of differences in

ℝ𝑑.
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1 INTRODUCTION

A classical result of Steinhaus [37] states that if 𝐸 ⊂ ℝ𝑑, 𝑑 ⩾ 1, has positive Lebesgue measure,
then the difference set 𝐸 − 𝐸 ⊂ ℝ𝑑 contains a neighborhood of the origin. 𝐸 − 𝐸 can interpreted
as the set of two-point configurations, 𝑥 − 𝑦, of points of 𝐸 modulo the translation group.
Similarly, in the context of the Falconer distance set problem, a theorem of Mat-

tila and Sjölin [30] states that if 𝐸 ⊂ ℝ𝑑, 𝑑 ⩾ 2, is compact, then the distance set of 𝐸,
Δ(𝐸) ∶= { |𝑥 − 𝑦| ∶ 𝑥, 𝑦 ∈ 𝐸} ⊂ ℝ, contains an open interval, that is, has nonempty inte-

rior, if the Hausdorff dimension dim(𝐸) > 𝑑+1
2
. This represented a strengthening of Falconer’s

original result [7], from Δ(𝐸) merely having positive Lebesgue measure to having nonempty

interior, for the same range of dim(𝐸). This was generalized to distance sets with respect to

norms on ℝ𝑑 with positive-curvature unit spheres by Iosevich, Mourgoglou and Taylor [23].

These latter types of result, for two-point configurations in thin sets, that is, 𝐸 allowed to have
Lebesgue measure zero but satisfying a lower bound on dim(𝐸), were extended by the current
authors to more general settings in [14]: (i) configurations in 𝐸 as measured by a general class of
Φ-configurations, which can be vector-valued and nontranslation-invariant; and (ii) asymmetric
configurations, that is, between points in sets 𝐸1 and 𝐸2 lying in different spaces, for example,
between points and circles in ℝ2, or points and hyperplanes in ℝ𝑑.

We point out that there are a number of other results that are explicitly, or can be interpreted

as being, concerned with establishing conditions under which configuration sets of thin sets have

nonempty interior, including [3, 6, 13, 24, 36] in the continuous setting and [4, 5, 34, 35] in finite

field analogues.

The purpose of the current paper is to extend our results in [14], from 2-point to quite general

𝑘-point configuration sets for 𝑘 ⩾ 3, using that paper’s Fourier integral operator (FIO) approach,
making use of linear 𝐿2-Sobolev estimates, but now optimizing over all possible nontrivial par-

titions of the 𝑘 points into two subsets. The FIO method we describe works in the absence of

symmetry and on general manifolds, and indeed, exploring that generality, rather than sharpness

of the lower bounds on the Hausdorff dimensions, is the focus of the current work.

However, we will start by illustrating the variety of what can be obtained via this approach with

configurations defined by classical geometric quantities in low-dimensional Euclidean spaces.We

describe a number of concrete examples, but emphasize that the choice of these specific config-

urations is arbitrary; our general results can be applied to other configurations of interest, with

theHausdorff dimension threshold guaranteeing that the configuration set has nonempty interior

depending on the outcome of optimizing over a family of FIO estimates; see Theorems 2.1 and 5.2

for exact statements. Our first example is the following.

Theorem 1.1 (Areas and circumradii of triangles). If 𝐸 ⊂ ℝ2 is compact with dim(𝐸) > 5∕3,
then

(i) the set of areas of triangles determined by triples of points of 𝐸,

{1
2
|det [𝑥 − 𝑧, 𝑦 − 𝑧]| ∶ 𝑥, 𝑦, 𝑧 ∈ 𝐸

}
⊂ ℝ, (1.1)

contains an open interval; and

(ii) the set of radii of circles determined by triples of points in 𝐸 contains an open interval.

We will see in Remark 4.1 that the FIO method does not yield a pinned version of Theorem 1.1,

that is, it says nothing about two-point configuration sets,
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{1
2
|det [𝑥 − 𝑧, 𝑦 − 𝑧]| ∶ 𝑥, 𝑦 ∈ 𝐸

}

for a fixed 𝑧 ∈ 𝐸. However, in dimension 𝑑 ⩾ 3 it does yield a result for all 𝑧 ∈ 𝐸 (or, indeed, any
𝑧 ∈ ℝ𝑑), and we have the following 𝑑-point configuration result.

Theorem 1.2 (Strongly pinned† volumes). Let 𝑑 ⩾ 3. If 𝐸 ⊂ ℝ𝑑 is compact, then for any 𝑥0 ∈ ℝ𝑑,

the set of volumes of parallelepipeds determined by 𝑥0 and 𝑑-tuples of points of 𝐸,

𝑉𝑥
0

𝑑 (𝐸) ∶=
{|||det

[
𝑥1 − 𝑥0, 𝑥2 − 𝑥0, … , 𝑥𝑑 − 𝑥0

]||| ∶ 𝑥
1, 𝑥2, … , 𝑥𝑑 ∈ 𝐸

}
, (1.2)

has nonempty interior in ℝ if dim(𝐸) > 𝑑 − 1 + (1∕𝑑).

Remark 1.3. For 𝑑 = 3, this improves upon an earlier result of the first two authors and Mour-
goglou [12], which was that if dim(𝐸) > 13∕5, then 𝑉03(𝐸) has positive Lebesgue measure.
(Added in proof: see also [8] for further improvements on lowering the threshold for positive

Lebesgue measure of 𝑉𝑑(𝐸).)

Returning to three-point configurations, our method also yields a result about ratios of dis-

tances. Mkrtchyan and the first two named authors studied in [11] the existence of similarities of

𝑘-point configurations in thin sets. They posed the question of whether, under some lower bound
restriction on dim(𝐸), for every 𝑟 > 0 there exist 𝑥, 𝑦, 𝑧 ∈ 𝐸 such that |𝑥 − 𝑧| = 𝑟|𝑦 − 𝑧|. We can
partially address this, showing that the set of such 𝑟 at least contains an interval.
To put this in perspective, note that an immediate consequence of the result of Mattila and

Sjölin [30] is that if dim(𝐸) > (𝑑 + 1)∕2, then

int

({|𝑤 − 𝑧|
|𝑥 − 𝑦| ∶ 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐸

})
≠ ∅. (1.3)

(See also [21] for a finite field analogue.) On the other hand, Peres and Schlag [33] showed that if

dim(𝐸) > (𝑑 + 2)∕2, a stronger property holds:

there exists an 𝑥 ∈ 𝐸 such that int

({|𝑥 − 𝑧|
|𝑥 − 𝑦| ∶ 𝑦, 𝑧 ∈ 𝐸

})
≠ ∅. (1.4)

(See also [22, 25] for extensions of this.) Here we prove a result for a property of intermediate

strength, one which implies (1.3) but is in turn implied by (1.4); however, in dimensions 𝑑 = 2, 3
our result is proved for lower dim(𝐸) than the known range for (1.4):

Theorem 1.4 (Ratios of pairs of pinned distances). Let 𝑑 ⩾ 2 and 𝐸 ⊂ ℝ𝑑 compact. Then, if

dim(𝐸) > (2𝑑 + 1)∕3,

int

({|𝑥 − 𝑧|
|𝑥 − 𝑦| ∶ 𝑥, 𝑦, 𝑧 ∈ 𝐸, 𝑥 ≠ 𝑦

})
≠ ∅. (1.5)

† The term pinned is often used to refer to estimates for the supremum over 𝑥0 ∈ 𝐸 of expressions such as (1.2). Here we

obtain a result valid for all 𝑥0, hence our adoption of strongly pinned for lack of a better term.
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We now turn from three-point configurations to a pair of results concerning four-point config-

urations, in ℝ and ℝ2, respectively.

Theorem 1.5 (Cross ratios). Let 𝐸 ⊂ ℝ be compact with dim(𝐸) > 3∕4. Then the set of cross ratios
of four-tuples of points of 𝐸,

Cross(𝐸) =

{
[𝑥1, 𝑥2; 𝑥3, 𝑥4] =

(𝑥3 − 𝑥1)(𝑥4 − 𝑥2)

(𝑥3 − 𝑥2)(𝑥4 − 𝑥1)
∶ 𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ 𝐸

}
⊂ ℝ,

contains an open interval.

So far, all of the configurations described have been measured by scalar-valued functions.

Returning to 𝑑 = 2, an example of a vector-valued configuration is a variation of Theorem 1.1,

where one takes four points in the plane, say 𝑥, 𝑦, 𝑧, 𝑤, and considers the quadrilateral they gen-
erate. Pick one of the two diagonals, say 𝑦𝑤; this splits the quadrilateral into two triangles, and
we study the vector-valued configuration consisting of their areas.

Theorem 1.6 (Pairs of areas of triangles). If 𝐸 ⊂ ℝ2 is a compact set and has dim(𝐸) > 7∕4, then
the set of pairs of areas of triangles determined by 4-tuples of points of 𝐸,

{(1
2
|det [𝑥 − 𝑤, 𝑦 − 𝑤]|, 1

2
|det [𝑦 − 𝑤, 𝑧 − 𝑤]|

)
∶ 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐸

}
, (1.6)

has nonempty interior in ℝ2.

Finally, we give two more applications of the FIO method, this time to configurations with a

more additive combinatorics flavor. There has been considerable work on products of differences

in the discrete or finite field setting; just a few references are [1, 2, 17, 31, 32]. An analogue of some

of these results in the continuous setting is the following.

Theorem 1.7. For 𝑑 ⩾ 1 and 𝐸 ⊂ ℝ𝑑 compact, the set of dot products of differences of points in 𝐸,

{(𝑥 − 𝑦) ⋅ (𝑧 − 𝑤) ∶ 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐸 } ⊂ ℝ,

has nonempty interior† if dim(𝐸) > 𝑑
2
+ 1

4
.

Another result of sum-product type is

Theorem 1.8 (Generalized sum-product sets). Let 𝑄1, … , 𝑄𝑙 be nondegenerate, symmetric bilinear
forms onℝ𝑑 . Suppose that 𝐸𝑖 ⊂ ℝ𝑑 are compact sets with dim(𝐸𝑖) > 𝑑

2
+ 1

2𝑙
for all 1 ⩽ 𝑖 ⩽ 2𝑙. Then

the set of values

Σ𝑄⃗(𝐸1, … , 𝐸2𝑙) ∶=

{
𝑙∑
𝑗=1

𝑄𝑗
(
𝑥2𝑗−1, 𝑥2𝑗

)
∶ 𝑥𝑖 ∈ 𝐸𝑖 , 1 ⩽ 𝑖 ⩽ 2𝑙

}
⊂ ℝ (1.7)

†Added in proof: Similarly, if 𝐸 ⊂ ℝwith dim(𝐸) > 3
4
, then (𝐸 + 𝐸)(𝐸 + 𝐸) has nonempty interior, answering a question

posed to us by Pham; see [27] for related Falconer-type results and references.
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has nonempty interior. In particular, taking all of the𝑄𝑗(𝑥, 𝑦) = 𝑥 ⋅ 𝑦, under the same conditions on
the dim(𝐸𝑖), the sum-(Euclidean inner) product set of the 𝐸𝑖 ,

{(
𝑥1 ⋅ 𝑥2

)
+

(
𝑥3 ⋅ 𝑥4

)
+⋯ +

(
𝑥2𝑙−1 ⋅ 𝑥2𝑙

)
∶ 𝑥𝑖 ∈ 𝐸𝑖 , 1 ⩽ 𝑖 ⩽ 2𝑙

}
,

has nonempty interior.

Remark 1.9. This follows from amore general result allowing the forms to be on spaces of different

dimensions; see Theorem 6.1.

2 THREE-POINT CONFIGURATIONS

To describe a general class of 𝑘-point configurations which includes the examples above, we

start by recalling the framework of Φ-configuration sets, introduced by Grafakos, Palsson and

the first two authors in [9]. We used this approach in the current article’s prequel, [14] to establish

nonempty interior results for 2-point configuration sets. To minimize the notation, we initially

describe these for 3-point configurations, introducing the basic method and results, which will be

extended to higher 𝑘 in Section 5.
A 3-point configuration function is initially a smooth Φ ∶ ℝ𝑑 × ℝ𝑑 × ℝ𝑑 → ℝ𝑝 (with 𝑝 ⩽ 𝑑); we

use the notationΦ(𝑥1, 𝑥2, 𝑥3), 𝑥𝑗 ∈ ℝ𝑑, 𝑗 = 1, 2, 3. Since, for many problems of interest, there are
points, often corresponding to degenerate configurations, where Φ has critical points or fails to

be smooth, it is useful to restrict the domain of Φ. Anticipating the extension to 𝑘-point configu-
rations later, we label the three copies of ℝ𝑑 (or open subsets of ℝ𝑑) as 𝑋1, 𝑋2, 𝑋3. Furthermore,
for some applications it is useful to allow the 𝑋𝑗 to be manifolds of possibly different dimen-
sions 𝑑𝑗 , 𝑗 = 1, 2, 3. Thus, in general we define a 3-point configuration function to be a mapping
Φ ∶ 𝑋1 × 𝑋2 × 𝑋3 → 𝑇, where 𝑇 ⊂⊂ ℝ𝑝, or even a 𝑝-dimensional manifold, containing the range
of Φ on the compact sets of interest. Function spaces on the 𝑋𝑗 are with respect to smooth densi-
ties, which do not play a significant role and therefore are suppressed in the notation.

For compact sets 𝐸𝑗 ⊂ 𝑋
𝑗, 𝑗 = 1, 2, 3, define the 3-point Φ-configuration set of 𝐸1, 𝐸2, 𝐸3,

ΔΦ(𝐸1, 𝐸2, 𝐸3) ∶=
{
Φ
(
𝑥1, 𝑥2, 𝑥3

)
∶ 𝑥𝑗 ∈ 𝐸𝑗 , 𝑗 = 1, 2, 3

}
⊂ 𝑇. (2.1)

The goal is to find conditions on dim(𝐸𝑗) ensuring that int(ΔΦ(𝐸1, 𝐸2, 𝐸3)) ≠ ∅.
If the full differential𝐷𝑥1,𝑥2,𝑥3Φ hasmaximal rank (= 𝑝) everywhere, that is,Φ is a submersion,

then Φ is a defining function for a family of smooth surfaces in 𝑋 ∶= 𝑋1 × 𝑋2 × 𝑋3, and for each
𝐭 ∈ 𝑇, the level set

𝑍𝐭 ∶=
{
(𝑥1, 𝑥2, 𝑥3) ∈ 𝑋 ∶ Φ(𝑥1, 𝑥2, 𝑥3) = 𝐭

}
(2.2)

is smooth and of codimension 𝑝 in 𝑋, and 𝑍𝐭 depends smoothly on 𝐭. (For 𝑝 = 1, we denote 𝐭 by
simply 𝑡.)
If 𝑠𝑗 < dim(𝐸𝑗), let𝜇𝑗 be a Frostmanmeasure on𝐸𝑗 with finite 𝑠𝑗-energy (see the discussion in

Section 3). The choice of the𝜇𝑗 induces a configurationmeasure, 𝜈, on𝑇, having various equivalent
definitions, for example, for g ∈ 𝐶0(𝑇),

∫𝑇 g(𝐭 ) 𝑑𝜈(𝐭 ) = ∫ ∫ ∫𝐸1×𝐸2×𝐸3 g(Φ(𝑥1, 𝑥2, 𝑥3)) 𝑑𝜇1(𝑥
1) 𝑑𝜇2(𝑥

2) 𝑑𝜇3(𝑥
3). (2.3)
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If one can show that 𝜈 is absolutely continuous with respect to Lebesgue measure, 𝑑𝐭;
its density function is continuous; and ΔΦ(𝐸1, 𝐸2, 𝐸3) is nonempty, then it follows that

int(ΔΦ(𝐸1, 𝐸2, 𝐸3)) ≠ ∅.
Following the general approach of [14], but now exploiting the fact that we are studying 3-point,

rather than 2-point, configurations, we will derive the continuity of the density of 𝑑𝜈 (denoted
𝜈(𝐭 )) from 𝐿2-Sobolev mapping properties of any of three different families of generalized Radon
transforms associated to 𝑍𝐭 , as follows.
Write a nontrivial partition of {1, 2, 3} as 𝜎 = (𝜎𝐿|𝜎𝑅), grouping the variable(s) 𝑥𝑖 correspond-

ing to 𝑖 ∈ 𝜎𝐿 on the left and the variable(s) corresponding to 𝑖 ∈ 𝜎𝑅 on the right. Due to the sym-
metry of 𝐿2-Sobolev estimates for FIOs under adjoints, we may assume that |𝜎𝐿| = 2, |𝜎𝑅| = 1;
furthermore, permutation within 𝜎𝐿 is irrelevant, so up to interchange of those two indices, there
are three such partitions, 𝜎 = (12|3), (13|2), and (23|1). Corresponding to each of these, for each
𝐭 ∈ 𝑇, partitioning and permuting the variables according to 𝜎, the surface 𝑍𝐭 defines incidence
relations,

𝑍(12|3)𝐭 ∶= {(𝑥1, 𝑥2; 𝑥3) ∶ (𝑥1, 𝑥2, 𝑥3) ∈ 𝑍𝐭 } ⊂ (𝑋
1 × 𝑋2) × 𝑋3,

𝑍(13|2)𝐭 ∶= {(𝑥1, 𝑥3; 𝑥2) ∶ (𝑥1, 𝑥3, 𝑥2) ∈ 𝑍𝐭 } ⊂ (𝑋
1 × 𝑋3) × 𝑋2, (2.4)

𝑍(23|1)𝐭 ∶= {(𝑥2, 𝑥3; 𝑥1) ∶ (𝑥2, 𝑥3, 𝑥1) ∈ 𝑍𝐭 } ⊂ (𝑋
2 × 𝑋3) × 𝑋1.

Each𝑍𝜎𝐭 , with𝜎 = (𝑖𝑗|𝑘), defines an incidence relation from𝑋𝑘 to𝑋𝑖 × 𝑋𝑗, and to this is associated
a generalized Radon transform, 𝜎

𝐭 ; all the 𝜎
𝐭 have the “same” Schwartz kernel, namely the

singular measure supported on 𝑍𝐭 ,

𝜆𝐭 ∶= 𝜒(𝑥
1, 𝑥2, 𝑥3) ⋅ 𝛿

(
Φ
(
𝑥1, 𝑥2, 𝑥3

)
− 𝐭

)
,

except that the order and grouping of the variables are dictated by 𝜎. That is, the kernel of(𝑖𝑗|𝑘)
𝐭

is𝐾𝐭
(𝑖𝑗|𝑘)(𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘) ∶= 𝜆(𝑥1, 𝑥2, 𝑥3). (Here𝜒 is a fixed cutoff function≡ 1 on 𝐸1 × 𝐸2 × 𝐸3 which

plays no further role.)

For each 𝜎, we can formulate the double fibration condition, (𝐷𝐹)𝜎, standard in the theory
of generalized Radon transforms and originating in the works of Gelfand; Helgason [18]; and

Guillemin and Sternberg [15, 16], namely that the two spatial projections from 𝑍𝜎𝐭 have maximal
rank, namely

(𝐷𝐹)𝜎 𝜋𝑖𝑗 ∶ 𝑍
𝜎
𝐭 → 𝑋𝑖 × 𝑋𝑗 and 𝜋𝑘 ∶ 𝑍

𝜎
𝐭 → 𝑋𝑘 are submersions. (2.5)

This implies that not only does𝜎
𝐭 ∶ (𝑋𝑘) → (𝑋𝑖 × 𝑋𝑗), but also
𝜎
𝐭 ∶  ′(𝑋𝑘) → ′(𝑋𝑖 × 𝑋𝑗),

defined weakly by

𝜎
𝐭 𝑓(𝑥

𝑖 , 𝑥𝑗) = ∫{𝑥𝑘∶Φ(𝑥1,𝑥2,𝑥3)=𝐭 } 𝑓(𝑥
𝑘),

where the integral is with respect to the surface measure induced by 𝜆𝐭 on the codimension 𝑝
surface {𝑥𝑘 ∶ Φ(𝑥1, 𝑥2, 𝑥3) = 𝐭 } ⊂ 𝑋𝑘.
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An alternate description of the configurationmeasure defined by (2.3) is in terms of the𝜎
𝐭 ; this

was stated and proved in the case of 2-point configuration measures in [14, Section 3]. However,

the proof there goes over with minor modifications to the case of 𝑘-point configurations, and for
completeness we give the argument for 𝑘 = 3 in Section 3.4. Namely, as long as the terms in the
two arguments of the ⟨⋅, ⋅⟩ pairing below belong to Sobolev spaces on which the bilinear pairing

is continuous, 𝜈 has a density given by

𝜈(𝐭 ) =
⟨(𝑖𝑗|𝑘)

𝐭 (𝜇𝑘), 𝜇𝑖 × 𝜇𝑗

⟩
. (2.6)

Now, under the double fibration condition (𝐷𝐹)𝜎, the generalized Radon transform 𝜎
𝐭 is a

Fourier integral operator (FIO) associated with a canonical relation

𝐶𝜎𝐭 ⊂
(
𝑇∗

(
𝑋𝑖 × 𝑋𝑗

)
⧵ 0

)
×
(
𝑇∗𝑋𝑘 ⧵ 0

)
,

where 𝐶𝜎𝐭 = (𝑁
∗𝑍𝜎𝐭 )

′, the (twisted) conormal bundle of 𝑍𝜎𝐭 (see Section 3). All three of

(12|3)
𝐭 , (13|2)

𝐭 , (23|1)
𝐭 are Fourier integral operators of the same order,

𝑚 = 0 +
1
2
𝑝 −

1
4
(𝑑1 + 𝑑2 + 𝑑3) =

𝑝

2
−
1
4
𝑑𝑡𝑜𝑡, 𝑑𝑡𝑜𝑡 ∶= 𝑑1 + 𝑑2 + 𝑑3.

However, due to the (possibly) different dimensions, in order to understand the optimal estimates

for the operators 𝜎
𝐭 , one knows from standard FIO theory that the estimates are conveniently

expressed in terms of what we will call their effective orders,𝑚𝜎
eff
. These are defined by writing𝑚

in three different ways, accounting for the dimension differences |dim(𝑋𝑖 × 𝑋𝑗) − dim(𝑋𝑘)|:

𝑚 = 𝑚(12|3)
eff

−
1
4
|𝑑1 + 𝑑2 − 𝑑3|,

𝑚 = 𝑚(13|2)
eff

−
1
4
|𝑑1 + 𝑑3 − 𝑑2|, or

𝑚 = 𝑚(23|1)
eff

−
1
4
|𝑑2 + 𝑑3 − 𝑑1|.

In terms of the𝑚𝜎
eff
, the mapping properties of the operators𝜎

𝐭 can be described as

𝜎
𝐭 ∶ 𝐿

2
𝑟 → 𝐿2

𝑟−𝑚𝜎
eff
−𝛽𝜎𝐭

, ∀𝑟 ∈ ℝ,

for certain (possible) losses 𝛽𝜎𝐭 ⩾ 0. If, for some value 𝐭 0 ∈ 𝑇, 𝐶
𝜎
𝐭 0
is nondegenerate, that is, one of

its two natural projections to the left or right, 𝜋𝐿 or 𝜋𝑅, is of maximal rank (which implies that the
other is as well), then 𝛽𝜎𝐭 0

= 0, and by structural stability of submersions this is also true for all 𝐭
near 𝐭 0 (see Section 3.) Our basic assumption is that, for at least one 𝜎, there is a known 𝛽

𝜎 ⩾ 0
such that𝜎

𝐭 ∶ 𝐿
2
𝑟 → 𝐿2

𝑟−𝑚𝜎
eff
−𝛽𝜎

uniformly for 𝐭 ∈ 𝑇.

To simplify the arithmetic, assume that for all the 𝜎 = (𝑖𝑗|𝑘), we have 𝑑𝑖 + 𝑑𝑗 ⩾ 𝑑𝑘, which
includes the equidimensional case, 𝑑1 = 𝑑2 = 𝑑3. Then𝑚eff

(𝑖𝑗|𝑘) = (𝑝 − 𝑑𝑘)∕2, and thus our basic
boundedness assumption is that, for at least one of the 𝜎,

𝜎
𝐭 ∶ 𝐿

2
𝑟 (𝑋

𝑘) → 𝐿2
𝑟+ 1

2
(𝑑𝑘−𝑝)−𝛽

𝜎
𝐭

(𝑋𝑖 × 𝑋𝑗) uniformly in 𝐭 . (2.7)
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At the start of the argument, the 𝑠𝑗, 𝑗 = 1, 2, 3, were chosen to be any values such that

dim(𝐸𝑗) > 𝑠𝑗, and each 𝜇𝑗 has finite 𝑠𝑗 energy, so that 𝜇𝑗 ∈ 𝐿
2
(𝑠𝑗−𝑑𝑗)∕2

(𝑋𝑗). An easy calcu-

lation with Sobolev norms shows that if 𝑢𝑗 ∈ 𝐿
2
𝑟𝑗
(ℝ𝑑𝑗 ) with 𝑟𝑗 ⩽ 0, 𝑗 = 1, 2, then 𝑢1 ⊗ 𝑢2 ∈

𝐿2𝑟1+𝑟2
(ℝ𝑑1+𝑑2), and this extends to compactly supported distributions on manifolds (see Propo-

sition 3.2 below). Thus,

𝜇1 × 𝜇2 ∈ 𝐿
2
(𝑠1+𝑠2−𝑑1−𝑑2)∕2

, 𝜇1 × 𝜇3 ∈ 𝐿
2
(𝑠1+𝑠3−𝑑1−𝑑3)∕2

, and 𝜇2 × 𝜇3 ∈ 𝐿
2
(𝑠2+𝑠3−𝑑2−𝑑3)∕2

.

Combining all of these considerations, and focusing on 𝜎 = (12|3) for the moment, we see that
the bilinear pairing in the expression (2.6) for 𝜈(𝐭 ) is continuous if

(𝑠3 − 𝑑3)∕2 + (𝑑3 − 𝑝)∕2 − 𝛽
(12|3) + (𝑠1 + 𝑠2 − 𝑑1 − 𝑑2)∕2 ⩾ 0,

that is,

𝑠1 + 𝑠2 + 𝑠3 ⩾ 𝑑1 + 𝑑2 + 𝑝 + 2𝛽
(12|3).

The analogous calculation holds for whichever of the𝜎
𝐭 one knows estimates for, and the min-

imum over 𝜎 of the right hand sides gives a sufficient condition for 𝜈(𝐭 ) to be continuous. Thus,
the set where 𝜈(𝐭 ) > 0 is an open set; to conclude that int(ΔΦ(𝐸1, 𝐸2, 𝐸3)) ≠ ∅, it suffices to show
that ΔΦ(𝐸1, 𝐸2, 𝐸3) itself is nonempty.
As in [14], this follows by noting that what we have done above already implies the Falconer-

type conclusion that ΔΦ(𝐸1, 𝐸2, 𝐸3) ⊂ ℝ𝑝 has positive Lebesgue measure. In fact, if {𝐵(𝐭 𝑗 , 𝜖𝑗)} is
any cover of ΔΦ(𝐸1, 𝐸2, 𝐸3), one has

1 = 𝜇1(𝐸1) ⋅ 𝜇2(𝐸2) ⋅ 𝜇3(𝐸3) = (𝜇1 × 𝜇2 × 𝜇3)(𝐸1 × 𝐸2 × 𝐸3)

⩽ (𝜇1 × 𝜇2 × 𝜇3)

(
Φ−1

(⋃
𝑗

𝐵
(
𝐭 𝑗 , 𝜖𝑗

)))

⩽
∑
𝑗

(𝜇1 × 𝜇2 × 𝜇3)
(
Φ−1

(
𝐵
(
𝐭 𝑗 , 𝜖𝑗

)))

=
∑
𝑗

𝜈
(
𝐵
(
𝐭 𝑗 , 𝜖𝑗

))
⩽ 𝐶Φ

∑
𝑗

𝜖𝑝
𝑗
, (2.8)

by (3.6) below, so that
∑
𝑗 |𝐵(𝐭 𝑗 , 𝜖𝑗)|𝑝 ⩾ 𝐶′Φ is bounded below. Hence ΔΦ(𝐸1, 𝐸2, 𝐸3) has positive

𝑝-dimensional Lebesgue measure and is therefore nonempty; by the continuity of 𝜈(𝐭 ), it in fact
has nonempty interior.

Summarizing, we have established the followingmethod for proving that 3-point configuration

sets have nonempty interior:

Theorem 2.1.

(i) With the notation and assumptions as above, define

𝑠Φ = 𝑝 +min
(
𝑑1 + 𝑑2 + 2𝛽

(12|3), 𝑑1 + 𝑑3 + 2𝛽(13|2), 𝑑2 + 𝑑3 + 2𝛽(23|1)
)
,
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where themin is taken over those of the partitions 𝜎 = (𝑖𝑗|𝑘) for which
(a) the double fibration condition (𝐷𝐹)𝜎 (2.5) holds, and
(b) one has uniform boundedness of the generalized Radon transforms 𝜎

𝐭 with loss of ⩽ 𝛽
𝜎

derivatives (2.7).

Then, if 𝐸𝑗 ⊂ 𝑋
𝑗 are compact sets with dim(𝐸1) + dim(𝐸2) + dim(𝐸3) > 𝑠Φ, it follows that

int(ΔΦ(𝐸1, 𝐸2, 𝐸3)) ≠ ∅.
(ii) In particular, suppose that 𝑋1 = 𝑋2 = 𝑋3 = 𝑋, with 𝑑𝑖𝑚(𝑋) = 𝑑, and there is a partition 𝜎 =

(𝑖𝑗|𝑘) such that (a) holds and the canonical relations 𝐶𝜎𝐭 are nondegenerate (so that 𝛽𝜎 = 0). It
follows that, if 𝐸 ⊂ 𝑋 is compact with dim(𝐸) > (2𝑑 + 𝑝)∕3, then int(ΔΦ(𝐸, 𝐸, 𝐸)) ≠ ∅.

3 BACKGROUNDMATERIAL

We give a brief survey of the relevant facts needed in the paper, referring for more background

and further details to Hörmander [19, 20] for Fourier integral operator theory, Mattila [28, 29] for

geometric measure theory, and [14] for the case of 2-point configurations.

3.1 Fourier integral operators

Let 𝑋 and 𝑌 be smooth manifolds of dimensions 𝑛1, 𝑛2, respectively. Then 𝑇
∗𝑋, 𝑇∗𝑌 are each

symplectic manifolds, with canonical two-forms denoted 𝜔𝑇∗𝑋 , 𝜔𝑇∗𝑌 , respectively. Equip 𝑇
∗𝑋 ×

𝑇∗𝑌 with the difference symplectic form, 𝜔𝑇∗𝑋 − 𝜔𝑇∗𝑌 . For our purposes, a canonical relation will
mean a submanifold, 𝐶 ⊂ (𝑇∗𝑋 ⧵ 𝟎) × (𝑇∗𝑌 ⧵ 𝟎) (hence of dimension 𝑛1 + 𝑛2), which is conic

Lagrangian with respect to 𝜔𝑇∗𝑋 − 𝜔𝑇∗𝑌 .
For some𝑁 ⩾ 1, let 𝜙 ∶ 𝑋 × 𝑌 × (ℝ𝑁 ⧵ 𝟎) → ℝ be a smooth phase function which is positively

homogeneous of degree 1 in 𝜃 ∈ ℝ𝑁 , that is, 𝜙(𝑥, 𝑦, 𝜏𝜃) = 𝜏 ⋅ 𝜙(𝑥, 𝑦, 𝜃) for all 𝜏 ∈ ℝ+. Let Σ𝜙 be
the critical set of 𝜙 in the 𝜃 variables,

Σ𝜙 ∶= {(𝑥, 𝑦, 𝜃) ∈ 𝑋 × 𝑌 × (ℝ
𝑁 ⧵ 𝟎) ∶ 𝑑𝜃𝜙(𝑥, 𝑦, 𝜃) = 0},

and

𝐶𝜙 ∶= {(𝑥, 𝑑𝑥𝜙(𝑥, 𝑦, 𝜃); 𝑦, −𝑑𝑦𝜙(𝑥, 𝑦, 𝜃)) ∶ (𝑥, 𝑦, 𝜃) ∈ Σ𝜙},

both of which are conic sets. If we impose the first-order nondegeneracy conditions

𝑑𝑥𝜙(𝑥, 𝑦, 𝜃) ≠ 0 and 𝑑𝑦𝜙(𝑥, 𝑦, 𝜃) ≠ 0, ∀(𝑥, 𝑦, 𝜃) ∈ Σ𝜙,
then 𝐶𝜙 ⊂ (𝑇

∗𝑋 ⧵ 𝟎) × (𝑇∗𝑌 ⧵ 𝟎). If in addition one demands that

rank[𝑑𝑥,𝑦,𝜃𝑑𝜃𝜙(𝑥, 𝑦, 𝜃)] = 𝑁, ∀ (𝑥, 𝑦, 𝜃) ∈ Σ𝜙,

then Σ𝜙 is smooth, m𝑑𝑖𝑚(Σ𝜙) = 𝑛1 + 𝑛2, and the map

Σ𝜙 ∋ (𝑥, 𝑦, 𝜃) →
(
𝑥, 𝑑𝑥𝜙(𝑥, 𝑦, 𝜃); 𝑦, −𝑑𝑦𝜙(𝑥, 𝑦, 𝜃)

)
∈ 𝐶𝜙 (3.1)
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is an immersion, whose image is an immersed canonical relation; the phase function 𝜙 is said to
parametrize 𝐶𝜙.
For a canonical relation 𝐶 ⊂ (𝑇∗𝑋 ⧵ 𝟎) × (𝑇∗𝑌 ⧵ 𝟎) and 𝑚 ∈ ℝ, one defines 𝐼𝑚(𝑋, 𝑌; 𝐶) =

𝐼𝑚(𝐶), the class of Fourier integral operators 𝐴 ∶  ′(𝑌) → ′(𝑋) of order 𝑚, as the collection of
operators whose Schwartz kernels are locally finite sums of oscillatory integrals of the form

𝐾(𝑥, 𝑦) = ∫ℝ𝑁 𝑒
𝑖𝜙(𝑥,𝑦,𝜃)𝑎(𝑥, 𝑦, 𝜃) 𝑑𝜃,

where 𝑎(𝑥, 𝑦, 𝜃) is a symbol of order 𝑚 −𝑁∕2 + (𝑛1 + 𝑛2)∕4 and 𝜙 is a phase function as above,
parametrizing some relatively open 𝐶𝜙 ⊂ 𝐶.
The FIO relevant for this paper are the generalized Radon transforms𝐭 determined by defin-

ing functions Φ ∶ 𝑋 × 𝑌 → ℝ𝑝 satisfying the double fibration condition that 𝐷𝑥Φ and 𝐷𝑦Φ have

maximal rank. The Schwartz kernel of each𝐭 is a smooth multiple of 𝛿𝑝(Φ(𝑥, 𝑦) − 𝐭 ), where 𝛿𝑝
is the delta distribution on ℝ𝑝. From the Fourier inversion representation of 𝛿𝑝, we see that 𝐭

has kernel

𝐾𝐭 (𝑥, 𝑦) = ∫ℝ𝑘 𝑒
𝑖(Φ(𝑥,𝑦)−𝐭 )⋅𝜃 𝑏(𝑥, 𝑦) ⋅ 1(𝜃) 𝑑𝜃,

where 𝑏 ∈ 𝐶∞0 . Since the amplitude is a symbol of order 0, 𝐭 is an FIO of order 0 + 𝑝∕2 −
(𝑛1 + 𝑛2)∕4 = −(𝑛1 + 𝑛2 − 2𝑝)∕4 associated with the canonical relation parametrized as in (3.1)
by 𝜙(𝑥, 𝑦, 𝜃) = (Φ(𝑥, 𝑦) − 𝐭 ) ⋅ 𝜃, which is the twisted conormal bundle of the incidence relation
𝑍𝐭 ,

𝐶𝐭 = 𝑁
∗𝑍′𝐭 ∶=

{(
𝑥,

𝑘∑
𝑗=1

𝑑𝑥Φ𝑗(𝑥, 𝑦)𝜃𝑗; 𝑦, −
𝑘∑
𝑗=1

𝑑𝑥Φ𝑗(𝑥, 𝑦)𝜃𝑗

)
∶ (𝑥, 𝑦) ∈ 𝑍𝐭 , 𝜃 ∈ ℝ𝑘 ⧵ 𝟎

}
.

For 𝑇-valued defining functions Φ, as in the general formulation of our results, this discussion is
easily modified by introducing local coordinates on 𝑇.
For a general canonical relation, 𝐶, the natural projections 𝜋𝐿 ∶ 𝑇

∗𝑋 × 𝑇∗𝑌 → 𝑇∗𝑋 and 𝜋𝑅 ∶
𝑇∗𝑋 × 𝑇∗𝑌 → 𝑇∗𝑌 restrict to 𝐶, and by abuse of notation, we refer to the restricted maps

with the same notation. One can show that, at any point 𝑐0 = (𝑥0, 𝜉0; 𝑦0, 𝜂0) ∈ 𝐶, one has

corank(𝐷𝜋𝐿)(𝑐0) = corank(𝐷𝜋𝑅)(𝑐0); we say that the canonical relation 𝐶 is nondegenerate if this
corank is zero at all points of 𝐶, that is, if𝐷𝜋𝐿 and𝐷𝜋𝑅 are of maximal rank. If dim(𝑋) = dim(𝑌),
then 𝐶 is nondegenerate if and only if 𝜋𝐿, 𝜋𝑅 are local diffeomorphisms, and then 𝐶 is a local

canonical graph, that is, locally near any 𝑐0 ∈ 𝐶 is equal to the graph of a canonical transforma-

tion. If dim(𝑋) = 𝑛1 > 𝑛2 = dim(𝑌), then 𝐶 is nondegenerate if and only if 𝜋𝐿 is an immersion
and 𝜋𝑅 is a submersion. To describe the 𝐿

2-Sobolev estimates for FIOs, it is convenient to normal-

ize the order and consider 𝐴 ∈ 𝐼𝑚eff−
|𝑚1−𝑚2|

4 (𝐶). One has

Theorem 3.1 [19, 20]. Suppose that 𝐶 ⊂ (𝑇∗𝑋 ⧵ 𝟎) × (𝑇∗𝑌 ⧵ 𝟎) is a canonical relation, where

dim(𝑋) = 𝑛1, dim(𝑌) = 𝑛2, and 𝐴 ∈ 𝐼
𝑚eff −

|𝑛1−𝑛2|
4 has a compactly supported Schwartz kernel.

(i) If 𝐶 is nondegenerate, then 𝐴 ∶ 𝐿2𝑠 (𝑌) → 𝐿2𝑠−𝑚eff
(𝑋) for all 𝑠 ∈ ℝ. Furthermore, the operator

norm depends boundedly on a finite number of derivatives of the amplitude and phase function.
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(ii) If the spatial projections from 𝐶 to 𝑋 and to 𝑌 are submersions and, for some 𝑙, the corank of
𝐷𝜋𝐿 (and thus that of 𝐷𝜋𝑅) is ⩽ 𝑙 at all points of 𝐶, then 𝐴 ∶ 𝐿

2
𝑠 (𝑌) → 𝐿2

𝑠−𝑚eff −
𝑙
2

(𝑋).

3.2 Frostmanmeasures and 𝒔-energy

Also recall (see Mattila [28, 29]) that if 𝐸 ⊂ ℝ𝑑 is a compact set and 0 < 𝑠 < 𝑑 satisfies 𝑠 <
dim(𝐸), then there exists a Frostman measure on 𝐸 relative to 𝑠: a probability measure 𝜇, sup-
ported on 𝐸, satisfying the ball condition

𝜇(𝐵(𝑥, 𝛿) ≲ 𝛿𝑠, ∀ 𝑥 ∈ ℝ𝑑, 0 < 𝛿 < 1, (3.2)

and of finite 𝑠-energy,

∫𝐸 ∫𝐸 |𝑥 − 𝑦|−𝑠 𝑑𝜇(𝑥) 𝑑𝜇(𝑦) < ∞,

or equivalently,

∫𝐸 |𝜇̂(𝜉)|2 ⋅ |𝜉|𝑠−𝑑 𝑑𝜉 < ∞. (3.3)

Since 𝜇 is of compact support, 𝜇̂ ∈ 𝐶𝜔 and thus (3.3) implies

𝜇 ∈ 𝐿2
(𝑠−𝑑)∕2

(ℝ𝑑). (3.4)

This also holds in the general setting of 𝐸 ⊂ 𝑋, a compact subset of a 𝑑-dimensional manifold 𝑋
with dim(𝐸) > 𝑠.

3.3 Tensor products of Sobolev spaces

We need an elementary result on the tensor products of Sobolev spaces of negative order:

Proposition 3.2. For 1 ⩽ 𝑗 ⩽ 𝑘, let 𝑋𝑗 be a 𝐶∞ manifold of dimension 𝑑𝑗 , and suppose that

𝑢𝑗 ∈ 𝐿
2
𝑟𝑗 , 𝑐𝑜𝑚𝑝

(𝑋𝑗), 1 ⩽ 𝑗 ⩽ 𝑘, with each 𝑟𝑗 ⩽ 0. Then the tensor product 𝑢1 ⊗⋯⊗ 𝑢𝑘 belongs to

𝐿2𝑟, 𝑐𝑜𝑚𝑝(𝑋
1 ×⋯ × 𝑋𝑘), for 𝑟 =

∑𝑘
𝑗=1 𝑟𝑗 .

Proof. Due to the compact support assumption, we can localize to a coordinate patch on each

manifold, reducing the problem to showing that

𝐿2𝑟1
(
ℝ𝑑1

)
⊗⋯⊗ 𝐿2𝑟𝑘

(
ℝ𝑑𝑘

)
↪ 𝐿2𝑟

(
ℝ

∑
𝑑𝑗
)
,

and this follows from the fact that each 𝑢𝑗(𝜉
𝑗) ⋅ ⟨𝜉𝑗⟩𝑟𝑗 ∈ 𝐿2(ℝ𝑑𝑗 ), together with the lower bound

Π𝑘
𝑗=1

⟨𝜉𝑗⟩𝑟𝑗 ⩾ 𝑐⟨𝜉1, … , 𝜉𝑘⟩𝑟 on ℝ∑
𝑑𝑗 . □
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3.4 Justification of density formula

To justify (2.6), we argue as follows, restricting for simplicity the analysis to the case 𝑘 = 3 dis-
cussed in Section 2, when Φ ∶ 𝑋1 × 𝑋2 × 𝑋3 → ℝ𝑝. The proof extends to Φwith codomain a gen-

eral 𝑇 of dimension 𝑝 using local coordinates on 𝑇, and also extends in a straightforward way to
general 𝑘.
Without loss of generality, we consider𝜎 = (12|3). For a𝜒 ∈ 𝐶∞0 (ℝ𝑝) supported in a sufficiently

small ball,𝜒 ≡ 1 near𝟎, andwith ∫ 𝜒 𝑑𝐭 = 1, set𝜒𝜖(𝐭 ) ∶= 𝜖−𝑝𝜒( 𝐭𝜖 ) the associated approximation
to the identity, which converges to 𝛿(𝐭 ) weakly as 𝜖 → 0+. Define(12|3)

𝐭 ,𝜖 to be the operator with

Schwartz kernel

𝐾𝜖𝐭 (𝑥
1, 𝑥2; 𝑥3) ∶= 𝜒𝜖

(
Φ
(
𝑥1, 𝑥2, 𝑥3

)
− 𝐭

)
.

Then(12|3)
𝐭 ,𝜖 (𝜇3) ∈ 𝐶

∞(𝑋1 × 𝑋2) and depends smoothly on 𝐭, and thus we can represent themea-
sure 𝜈 in (2.6) as the weak limit of absolutely continuous measures with smooth densities,

𝜈(𝐭 ) = lim
𝜖→0+

𝜈𝜖(𝐭 ) ∶= lim
𝜖→0+

⟨(12|3)
𝐭 ,𝜖 (𝜇3), 𝜇1 × 𝜇2⟩, (3.5)

with 𝜈 having a density, which is in fact continuous in 𝐭, if the integral represented by the pairing
converges. Now, the operators(12|3)

𝐭 ,𝜖 ∈ 𝐼−∞(𝐶(12|3)𝐭 ), with symbols which converge in the Fréchet

topology on the space of symbols as 𝜖 → 0 to the symbol of 𝐭 . Since the singular limits (12|3)
𝐭

satisfy (2.7) (for 𝜎 = (12|3)), so do the(12|3)
𝐭 ,𝜖 uniformly in 𝜖. Hence, 𝜈(𝐭 ), being the uniform limit

of smooth functions of 𝐭, is continuous. Furthermore, since 𝜖𝑝 ⋅ 𝜒𝜖 is bounded below by a constant

times the characteristic function of the ball of radius 𝜖 in ℝ𝑝, we have that

𝜈(𝐵(𝐭 , 𝜖)) ∶= (𝜇1 × 𝜇2 × 𝜇3)
({(

𝑥1, 𝑥2, 𝑥3
)
∶ |||Φ(𝑥

1, 𝑥2, 𝑥3) − 𝐭 ||| < 𝜖
})

⩽ 𝐶Φ𝜖
𝑝, (3.6)

with constant 𝐶Φ uniform in 𝐭, which was used in (2.8) above.

4 PROOFS OF THEOREMS ON 3-POINT CONFIGURATIONS

We are now able to prove the theorems stated the Introduction that concern 3-point configura-

tions: Theorem 1.1 about the areas of triangles in ℝ2 and the radii of their circumscribing circles;

the three-dimensional case of Theorem 1.2 regarding strongly pinned volumes of parallelepipeds;

and Theorem 1.4 on ratios of pinned distances. For all of these, we will show that Theorem 2.1 (ii)

applies for appropriate choice of 𝜎.

4.1 Areas of triangles in ℝ𝟐

We start with part (i) of Theorem 1.1, on areas. The absolute value of the determinant is irrelevant

for the conclusion of nonempty interior; this will also be true for the other results where the

configuration measurements have absolute values. Additionally, the 1∕2 can be ignored. So, we
start with the scalar-valued configuration function,

Φ(𝑥1, 𝑥2, 𝑥3) = det
[
𝑥1 − 𝑥3, 𝑥2 − 𝑥3

]
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on ℝ2 × ℝ2 × ℝ2. Here, 𝑑 = 2, 𝑝 = 1, and we will show that, using 𝜎 = (12|3), that the canoni-
cal relations 𝐶𝜎𝑡 are (after localizing) nondegenerate, so that Theorem 2.1 (ii) yields a result for

dim(𝐸) > (2 ⋅ 2 + 1)∕3 = 5∕3.
We compute the gradient of Φ by noting that, on ℝ2 × ℝ2,

𝑑𝑢,𝑣(det [𝑢, 𝑣]) =
(
−𝑣⟂, 𝑢⟂

)
,

where 𝑢⟂ = (−𝑢2, 𝑢1) for 𝑢 = (𝑢1, 𝑢2). Hence,

𝑑Φ𝑥1,𝑥2,𝑥3 =
((
𝑥3 − 𝑥2

)⟂
,
(
𝑥1 − 𝑥3

)⟂
,
(
𝑥2 − 𝑥1

)⟂)
. (4.1)

Given a compact 𝐸 ⊂ ℝ2 with dim(𝐸) > 5∕3, pick any 𝑠 with 5∕3 < 𝑠 < dim(𝐸), and take
𝜇 to be a Frostman measure on 𝐸 with finite 𝑠-energy. Then we claim that one can find points

𝑥10 , 𝑥
2
0 , 𝑥

3
0 ∈ 𝐸 and a 𝛿 > 0 such that

†

det
[
𝑥10 − 𝑥

3
0 , 𝑥

2
0 − 𝑥

3
0

] ≠ 0 and (4.2)

𝜇
(
𝐵
(
𝑥𝑗0, 𝛿

′
))

> 0, 𝑗 = 1, 2, 3, ∀ 0 < 𝛿′ < 𝛿. (4.3)

To verify this, suppose not. Then, for every 𝑥1, 𝑥2, 𝑥3 ∈ 𝐸 and any 𝛿 > 0, either

(i) Φ(𝑥1, 𝑥2, 𝑥3) = 0, i.e., 𝑥1, 𝑥2, 𝑥3 are collinear, or
(ii) for some 𝑗 = 1, 2 or 3, and some 𝛿′ < 𝛿, 𝜇(𝐵(𝑥𝑗 , 𝛿′)) = 0.

Now, 𝑍0 = {𝑥 ∈ ℝ6 ∶ Φ(𝑥1, 𝑥2, 𝑥3) = 0} is a five-dimensional algebraic variety. Since 𝜇 × 𝜇 × 𝜇
has finite 3𝑠-energy, and 3𝑠 > 5, it follows that (𝜇 × 𝜇 × 𝜇)(𝑍0) = 0, and hence (𝜇 × 𝜇 × 𝜇)(𝐸 ×
𝐸 × 𝐸 ⧵ 𝑍0) = 1. We can in fact make this quantitative: Assuming without loss of generality that
𝐸 is contained in the unit square centered at the origin, for 𝜖 > 0, let 𝜖 ∶= {𝑥 ∈ ℝ6 ∶ |𝑥| <
2 and |Φ(𝑥)| < 𝜖}. Then, since 𝑍0 is a rigid motion in ℝ6 of the Cartesian product of ℝ2 with a
quadratic cone in ℝ4, one sees that𝜖 is covered by ≃ 𝜖−5 balls of radius 𝜖 (away from the conical

points), together with ≃ 𝜖−1 balls of radius 𝜖1∕2 (covering a tubular neighborhood of the conical
points). Since 𝜇 satisfies the ball condition (3.2) on ℝ2, 𝜇 × 𝜇 × 𝜇 satisfies the corresponding con-
dition on ℝ6 with exponent 3𝑠 and is thus dominated by 3𝑠-dimensional Hausdorff measure (up
to a multiplicative constant). Thus,

(𝜇 × 𝜇 × 𝜇)(𝜖) ≲ 𝜖−5 ⋅ 𝜖3𝑠 + 𝜖−1 ⋅ 𝜖3𝑠∕2 ≲ 𝜖3𝑠−5 → 0 as 𝜖 → 0.

Thus, if we define 𝐹𝜖 ∶= 𝐸 × 𝐸 × 𝐸 ⧵𝜖, which is compact, and 𝜇̃𝜖 ∶= (𝜇 × 𝜇 × 𝜇)|𝐹𝜖 , then
𝜇̃𝜖(𝐹𝜖) > 1∕2 for 𝜖 sufficiently small. By (ii) above, every 𝑥 ∈ 𝐹𝜖 is in a (𝜇 × 𝜇 × 𝜇)-null set which
is also relatively open, the intersection of 𝐹𝜖 with a set of one of the three forms,

𝐵(𝑥1, 𝛿′) × ℝ2 × ℝ2, ℝ2 × 𝐵(𝑥2, 𝛿′) × ℝ2 or ℝ2 × ℝ2 × 𝐵(𝑥3, 𝛿′).

Since 𝐹𝜖 is compact, it is covered by a finite number of these, and hence it follows that (𝜇 ×
𝜇 × 𝜇)(𝐹𝜖) = 𝜇̃𝜖(𝐹𝜖) = 0. Contradiction. Hence, there exists an 𝑥0 = (𝑥

1
0 , 𝑥

2
0 , 𝑥

3
0) ∈ 𝐸 × 𝐸 × 𝐸 such

†Note that (4.3) just says that the 𝑥𝑗0 belong to supp(𝜇) (which by Frostman’s Lemma is ⊆ 𝐸 but can be a proper subset);

however, for our purposes, it is useful to express this as (4.3).
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that (4.2) and (4.3) hold. We now show that localizing near this base point allows us to apply The-

orem 2.1.

Set 𝑡0 = Φ(𝑥
1
0 , 𝑥

2
0 , 𝑥

3
0) ≠ 0; by continuity of Φ and relabelling there is a 𝛿 > 0 with

Φ(𝑥1, 𝑥2, 𝑥3) ≠ 0 for 𝑥𝑗 ∈ 𝑋𝑗 ∶= 𝐵(𝑥𝑗0, 𝛿), 𝑗 = 1, 2, 3. We claim that for Φ|𝑋1×𝑋2×𝑋3 and 𝑡 close to
𝑡0, (𝐷𝐹)(12|3) is satisfied and and 𝐶

(12|3)
𝑡 is nondegenerate, so that 𝛽12,3 = 0 and the last statement

of Theorem 2.1 applies with 𝑑 = 2 and 𝑝 = 1; hence, if dim(𝐸) > 5∕3, then int(𝐴3(𝐸)) ≠ ∅.
That (𝐷𝐹)(12|3) is satisfied is immediate, since all three components of 𝑑𝑥1𝑥2,𝑥3Φ are nonzero

on 𝑋1 × 𝑋2 × 𝑋3 (the linear independence of the first two by (4.2) and the nonvanishing of third
by that linear independence), which is an even stronger condition. As for the canonical relations,

one computes

𝐶(12|3)𝑡 =
{(
𝑥1, 𝑥2, 𝜃

(
𝑥3 − 𝑥2

)⟂
, 𝜃

(
𝑥1 − 𝑥3

)⟂
; 𝑥3, 𝜃

(
𝑥2 − 𝑥1

)⟂)
∶ (𝑥1, 𝑥2, 𝑥3) ∈ 𝑍(12|3)𝑡 , 𝜃 ≠ 0}.

Now, shrinking 𝛿 if necessary, for (𝑥1, 𝑥2, 𝑥3) ∈ 𝑋1 × 𝑋2 × 𝑋3 and 𝑡 near 𝑡0, for a smooth, 𝑋
1-

valued function 𝑦1(𝑥2, 𝑥3, 𝑡) we can parametrize 𝑍(12|3)𝑡 by

(
𝑦1(𝑥2, 𝑥3, 𝑡) + 𝑢(𝑥2 − 𝑥3), 𝑥2, 𝑥3

)
, (𝑥2, 𝑥3) ∈ 𝑋2 × 𝑋3, 𝑢 ∈ ℝ;

for example, one can take

𝑦1(𝑥2, 𝑥3, 𝑡) = 𝑡|||𝑥
2 − 𝑥3|||

−2
⋅ (𝑥2 − 𝑥3)⟂.

Thus, (𝑥2, 𝑥3, 𝑢, 𝜃) form coordinates on 𝐶12,3𝑡 , with respect to which

𝜋𝑅
(
𝑥2, 𝑥3, 𝑢, 𝜃

)
=

(
𝑥3, 𝜃

(
𝑥2 − 𝑥1

(
𝑥2, 𝑥3, 𝑢

))⟂)
,

from which we see that

𝐷𝑥3,𝑢,𝜃𝜋𝑅 =

[
𝐼 0 0
∗ −𝜃(𝑥2 − 𝑥3)⟂ (𝑥2 − 𝑥1)⟂

]
,

which is of maximal rank since the last two columns are linearly independent. Thus, 𝜋𝑅 is a sub-
mersion; by the general properties of canonical relations from Section 3.1, 𝜋𝐿 is an immersion and

𝐶(12|3)𝑡 is nondegenerate. □

4.2 Circumradii of triangles in ℝ𝟐

We now turn to the proof of Theorem 1.1(ii). Changing the notation to denote the vertices of the

triangle as 𝑥, 𝑦, 𝑧 ∈ ℝ2, the circumradius 𝑅(𝑥, 𝑦, 𝑧) of △𝑥𝑦𝑧 is the distance from 𝑥 to the inter-
section point of the perpendicular bisectors of 𝑥𝑦 and 𝑥𝑧. For computational purposes, we work
with

Φ(𝑥, 𝑦, 𝑧) ∶= 2𝑅2(𝑥, 𝑦, 𝑧) =
1
2

⎛⎜⎜⎜⎝
|𝑦 − 𝑥|2 + |𝑧 − 𝑥|2 + |𝑧 − 𝑥|2((𝑦 − 𝑥) ⋅ (𝑧 − 𝑥))2(

(𝑦 − 𝑥)⟂ ⋅ (𝑧 − 𝑥)
)2

⎞⎟⎟⎟⎠
, (4.4)
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with the homeomorphism 𝑟 → 2𝑟2 of ℝ+ of course preserving nonempty interior. With the same

hypersurface 𝑍0 as in the proof of part (i) corresponds to degenerate triangles, 5∕3 < 𝑠 < dim(𝐸)
and Frostman measure 𝜇, as in (i) we can find 𝑥0, 𝑦0, 𝑧0 ∈ supp(𝜇) such that all of the compo-
nents of 𝑑Φ are nonzero. Picking 𝜎 = (13|2), the incidence relation 𝑍𝜎𝑡 = {(𝑥, 𝑧; 𝑦) ∶ Φ(𝑥, 𝑦, 𝑧) =
𝑡} satisfies the double fibration condition (𝐷𝐹)𝜎 for 𝑡 near 𝑡0 = Φ(𝑥

0, 𝑦0, 𝑧0) and 𝑥 ∈ 𝑋1, 𝑦 ∈
𝑋2, 𝑧 ∈ 𝑋3, neighborhoods of 𝑥0, 𝑦0, 𝑧0, respectively. We can thus assume that 𝑥2 ∈ ℝ, 𝑦 ∈
ℝ2, 𝑧 ∈ ℝ2 form coordinates on 𝑍𝜎𝑡 , with 𝑥1 a function of 𝑥2, 𝑦, 𝑧, and rotating in 𝑥 if necessary,
can further assume that 𝑑𝑧𝑥1 = 0 at 𝑥

0, 𝑦0, 𝑧0 and is therefore small nearby. On 𝐶𝜎𝑡 = (𝑁
∗𝑍𝜎𝑡 )

′,

these together with the radial phase variable 𝜃 ∈ ℝ ⧵ 0 are coordinates.
To show that the canonical relation 𝐶𝜎𝑡 is nondegenerate, it suffices to show that 𝜋𝑅 ∶ 𝐶

𝜎
𝑡 →

𝑇∗𝑋2 is a submersion. Since the 𝑦 coordinate of 𝜋𝑅(𝑥2, 𝑦, 𝑧, 𝜃) = 𝑦, it suffices to show that

𝑟𝑎𝑛𝑘

[
𝐷𝜂

𝐷(𝑥2, 𝑧, 𝜃)

]
= 2.

Setting

𝑎 = |𝑦 − 𝑥|2, 𝑏 = (𝑦 − 𝑥) ⋅ (𝑧 − 𝑥), 𝑐 = |𝑧 − 𝑥|2, 𝑑 = (𝑦 − 𝑥)⟂(𝑧 − 𝑦),

one calculates

𝐷𝜂

𝐷𝑧
=
𝑐𝑏
𝑑2

(
𝐼 −

𝑏
𝑑
𝐽

)
−

(
1 +

𝑐𝑏
𝑑2
−
𝑐𝑏2

𝑑3

)[
0

𝑑𝑧𝑥1

]
, (4.5)

where 𝐽 = [0 −11 0 ] is the standard 2 × 2 symplectic matrix, representing the ⟂ map. The operator

pencil 𝐼 − 𝜆𝐽 𝜆 ∈ ℝ, is nonsingular, while the second term in (4.5) is small near 𝑥0, 𝑦0, 𝑧0, and
thus 𝐷𝜂∕𝐷𝑧 is nonsingular, and 𝐶𝜎𝑡 is nondegenerate. Thus, as for areas, Theorem 2.1 (ii) applies

for 𝑠 > 5∕3. □

4.3 Volumes of strongly pinned parallelepipeds in ℝ𝟑

For the proof of the 𝑑 = 3 case of Theorem 1.2, the configuration function Φ on ℝ3 × ℝ3 × ℝ3 is

Φ
(
𝑥1, 𝑥2, 𝑥3

)
= det

[
𝑥1, 𝑥2, 𝑥3

]
= 𝑥1 ⋅

(
𝑥2 × 𝑥3

)
= −𝑥2 ⋅ (𝑥1 × 𝑥3) = 𝑥3 ⋅ (𝑥1 × 𝑥2).

We will show that Theorem 2.1(ii) applies for 𝜎 = (12|3), with 𝑘 = 3, 𝑝 = 1 and 𝑑 = 3, giving a
positive result for dim(𝐸) > (2 ⋅ 3 + 1)∕3 = 7∕3. One computes

𝑑Φ𝑥1,𝑥2,𝑥3 =
(
𝑥2 × 𝑥3, −𝑥1 × 𝑥3, 𝑥1 × 𝑥2

)
.

As in the previous proofs, given a compact𝐸 ⊂ ℝ3, contained in the unit cube andwith dim(𝐸) >
7∕3, pick 𝑠 with 7∕3 < 𝑠 < dim(𝐸) and let 𝜇 be a Frostman measure of finite 𝑠-energy. We claim
there exist 𝑥10 , 𝑥

2
0 , 𝑥

3
0 ∈ 𝐸 and 𝛿 > 0 such that

𝑥10 × 𝑥
2
0 ≠ 0, , 𝑥10 × 𝑥30 ≠ 0, 𝑥20 × 𝑥30 ≠ 0, and (4.6)

𝜇
(
𝐵
(
𝑥𝑗0, 𝛿

′
))

> 0, 𝑗 = 1, 2, 3, ∀ 0 < 𝛿′ < 𝛿. (4.7)
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As before, we proceed with a proof by contradiction: suppose not. Then for every 𝑥 =
(𝑥1, 𝑥2, 𝑥3) ∈ ℝ9 and 𝛿 > 0, either

(i) at least one of 𝑥𝑖 × 𝑥𝑗 = 0, for some 1 ⩽ 𝑖 < 𝑗 ⩽ 3, or
(ii) for some 𝑗 = 1, 2 or 3, and some 𝛿′ < 𝛿, 𝜇(𝐵(𝑥𝑗 , 𝛿′)) = 0.

Onℝ9, 𝜇 × 𝜇 × 𝜇 has finite 3𝑠-energy and satisfies the ball condition with exponent 3𝑠 > 7. For
each 1 ⩽ 𝑖 < 𝑗 ⩽ 3 and 𝜖 > 0,  𝑖𝑗

𝜖 ∶= {𝑥 ∈ ℝ9 ∶ |𝑥𝑖 × 𝑥𝑗| < 𝜖} is a tubular neighborhood of {𝑥 ∶
𝑥𝑖 × 𝑥𝑗 = 0}, a codimension two quadratic variety inℝ9 which is a rigidmotion inℝ9 of the Carte-
sian product of ℝ3 with a 4-dimensional cone in ℝ6. Following the analysis in the previous proof,

each of the 𝑖𝑗
𝜖 can be covered by ≃ 𝜖−7 balls of radius 𝜖 and 𝜖−3 balls of radius 𝜖1∕2, and thus

(𝜇 × 𝜇 × 𝜇)( 𝑖𝑗
𝜖 ) ≲ 𝜖

3𝑠−7 + 𝜖3𝑠∕2−3 ≲ 𝜖3𝑠−7 → 0 as 𝜖 → 0.

Hence, if we let 𝐹𝜖 = 𝐸 × 𝐸 × 𝐸 ⧵ (∪𝑖,𝑗 𝑖𝑗
𝜖 ) and 𝜇̃𝜖 = (𝜇 × 𝜇 × 𝜇)|𝐹𝜖, then 𝐹𝜖 is compact and

𝜇̃𝜖(𝐹𝜖) > 1∕2 for 𝜖 sufficiently small. On the other hand, 𝐹𝜖 is covered by 𝜇̃𝜖-null and relatively
open sets which are intersections of 𝐹𝜖 with sets of the three forms

𝐵(𝑥1, 𝛿′) × ℝ3 × ℝ3, ℝ3 × 𝐵(𝑥2, 𝛿′) × ℝ3 or ℝ3 × ℝ3 × 𝐵(𝑥3, 𝛿′),

and the compactness of 𝐹𝜖 leads to a contradiction. Hence, we can find 𝑥
1
0 , 𝑥

2
0 , 𝑥

3
0 and 𝛿 such that

(4.6) and (4.7) hold. Further restricting 𝛿 if necessary, we can assume that 𝑥1 × 𝑥2, 𝑥1 × 𝑥3 and
𝑥2 × 𝑥3 are ≠ 0. for all 𝑥𝑗 ∈ 𝐵(𝑥𝑗0, 𝛿) =∶ 𝑋𝑗, 𝑗 = 1, 2, 3.
Restricting Φ to 𝑋1 × 𝑋2 × 𝑋3, (𝐷𝐹)(12|3) is satisfied; in fact all three components of 𝑑Φ are

nonzero. On the incidence relation 𝑍(12|3)𝑡 , we can take as coordinates 𝑥2, 𝑥3 and 𝑢⃗ = (𝑢2, 𝑢3) ∈
ℝ2, solving for 𝑥1 with

𝑥1 = 𝑦1(𝑥2, 𝑥3, 𝑡) + 𝑢2𝑥2 + 𝑢3𝑥3,

for some smooth function 𝑦1. Thus,

𝐶(12|3)𝑡 =
{(
𝑥1, 𝑥2, 𝜃

(
𝑥2 × 𝑥3

)
, −𝜃

(
𝑥1 × 𝑥3

)
; 𝑥3, −𝜃

(
𝑥1 × 𝑥2

))

∶ (𝑥2, 𝑥3) ∈ 𝑋2 × 𝑋3, 𝑢⃗ ∈ ℝ2, 𝜃 ≠ 0}.
Then 𝜋𝑅 is a submersion since, with 𝜉

3 = −𝜃(𝑥1 × 𝑥2),𝐷𝑥2,𝑢3,𝜃𝜉
3 is surjective: one has𝐷𝜉3(𝜕𝜃) =

𝑥1 × 𝑥2, 𝐷𝜉3(𝜕𝑢3) = 𝜃(𝑥
2 × 𝑥3) and the range of 𝐷𝑥2𝜉

3 is (𝑥1)⟂; together, these span all of the

𝜕𝜉3 directions.

Since 𝜋𝑅 is a submersion, 𝐶
(12|3)
𝑡 is nondegenerate, and Theorem 2.1(ii) applies, this time with

𝑑 = 3 and 𝑝 = 1; hence, if dim(𝐸) > 7∕3, then int(𝑉03(𝐸)) ≠ ∅. Q.E.D.
Remark 4.1. The proof for 𝑑 ⩾ 4 will be presented in Section 6.2. On the other hand, Theorem 1.2

does not give a positive result for pinned volumes (areas) in two dimensions,

𝑉02(𝐸) ∶=
{
det

[
𝑥1, 𝑥2

]
∶ 𝑥1, 𝑥2 ∈ 𝐸

}
.

In fact, since this concerns a 2-point configuration, it would already fall under the framework

of [14]; however, the projections 𝜋𝐿, 𝜋𝑅 from the canonical relation to 𝑇∗ℝ2 both drop rank by



ON 𝑘-POINT CONFIGURATION SETS WITH NONEMPTY INTERIOR 179

1 everywhere, resulting in a loss of 𝛽(1|2) = 1∕2 derivatives. Hence, (1|2)
𝑡 ∈ 𝐼−

1
2 (𝐶(1|2)𝑡 ) is not

smoothing on 𝐿2-based Sobolev spaces, and the FIO approach to configuration problems does

not imply a result in this case.

4.4 Ratios of pinned distances

For 𝐸 ⊂ ℝ𝑑, 𝑑 ⩾ 2, we prove Theorem 1.4 concerning the set defined in (1.5). On (ℝ𝑑)3, let

Φ(𝑥1, 𝑥2, 𝑥3) =
|𝑥1 − 𝑥3|
|𝑥1 − 𝑥2| .

We show that, after suitable localization, Theorem 2.1(ii), with 𝑘 = 3, 𝑝 = 1, applies for 𝜎 =
(12|3), implying a nonempty interior result when dim(𝐸) > (2𝑑 + 1)∕3.
One computes

𝑑Φ(𝑥1, 𝑥2, 𝑥3) = |||𝑥
1 − 𝑥2|||

−2(
(𝑥2 − 𝑥3), −(𝑥1 − 𝑥2), −(𝑥1 − 𝑥3)

)
.

Let dim(𝐸) > (2𝑑 + 1)∕3 and 𝜇 be a Frostman measure on 𝐸 of finite 𝑠-energy for some

(2𝑑 + 1)∕3 < 𝑠 < dim(𝐸). Then 𝜇 × 𝜇 × 𝜇 is dominated by 3𝑠-dimensional Hausdorff measure,
and 3𝑠 > 2𝑑 + 1 > 2𝑑. Since {(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)(𝑥2 − 𝑥3) = 0} is a union of three 2𝑑 dimensional
planes, as above one can show that there exist 𝑥10 , 𝑥

2
0 , 𝑥

3
0 ∈ supp(𝜇) such that 𝑥𝑖0 − 𝑥

𝑗
0 ≠ 0, 𝑖 ≠ 𝑗.

Taking 𝑋𝑗 = 𝐵(𝑥𝑗0, 𝛿) for suitably small 𝛿, all three components of 𝑑Φ are nonzero and, setting

𝑡0 = Φ(𝑥
1
0 , 𝑥

2
0 , 𝑥

3
0), the double fibration condition (𝐷𝐹)𝜎 is satisfied by 𝑍

𝜎
𝑡 for 𝑡 close to 𝑡0.

On 𝑍𝜎𝑡 , solving for 𝑥
3 = 𝑥1 − 𝑡|𝑥1 − 𝑥2|𝜔 we can take as coordinates (𝑥1, 𝑥2, 𝜔) ∈ ℝ𝑑 × ℝ2 ×

𝕊𝑑−1 . Then, the canonical relation of 𝑍𝜎𝑡 is

𝐶𝜎𝑡 = (𝑁
∗𝑍𝜎𝑡 )

′

=
{(

⋅, ⋅, ⋅, ⋅ ; 𝑥1 − 𝑡|𝑥1 − 𝑥2|𝜔, 𝜃𝑡|𝑥1 − 𝑥2|𝜔) ∶ 𝑥1, 𝑥2 ∈ ℝ𝑑, 𝜔 ∈ 𝕊𝑑−1, 𝜃 ≠ 0},
where we have suppressed the 𝑇∗(𝑋1 × 𝑋2) components as irrelevant for analyzing 𝜋𝑅. One eas-
ily sees that the projection from 𝐶𝜎𝑡 to 𝑇∗𝑋3 is a submersion, so that Theorem 2.1 (ii) applies

as claimed.

5 𝒌-POINT CONFIGURATION SETS, GENERAL 𝒌

To describe results for general 𝑘-point configurations, let 𝑋𝑖 , 1 ⩽ 𝑖 ⩽ 𝑘, and 𝑇, be smooth man-
ifolds of dimensions 𝑑𝑖 and 𝑝, respectively. We sometimes denote 𝑋

1 ×⋯ × 𝑋𝑘 by 𝑋, and set
𝑑tot ∶= dim(𝑋) =

∑𝑘
𝑖=1 𝑑𝑖 .

Definition 5.1. Let Φ ∈ 𝐶∞(𝑋, 𝑇). Suppose that 𝐸𝑖 ⊂ 𝑋
𝑖 , 1 ⩽ 𝑖 ⩽ 𝑘, are compact sets. Then the

𝑘-configuration set of the 𝐸𝑖 defined by Φ is

ΔΦ(𝐸1, 𝐸2, … , 𝐸𝑘) ∶=
{
Φ
(
𝑥1, … , 𝑥𝑘

)
∶ 𝑥𝑖 ∈ 𝐸𝑖 , 1 ⩽ 𝑖 ⩽ 𝑘

}
⊂ 𝑇. (5.1)
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We want to find sufficient conditions on dim(𝐸𝑖) ensuring that ΔΦ(𝐸1, 𝐸2, … , 𝐸𝑘) has
nonempty interior. To this end, now suppose that Φ ∶ 𝑋 → 𝑇 is an submersion, so that for each
𝐭 ∈ 𝑇, 𝑍𝐭 ∶= Φ

−1(𝐭 ) is a smooth, codimension 𝑝 submanifold of𝑋, and these vary smoothly with
𝐭. For each 𝐭, the measure

𝜆𝐭 ∶= 𝛿
(
Φ
(
𝑥1, … , 𝑥𝑘

)
− 𝐭

)
(5.2)

is a smooth density on 𝑍𝐭 ; using local coordinates on 𝑇, one sees that this can be represented as
an oscillatory integral of the form

∫ℝ𝑝 𝑒
𝑖
[∑𝑝

𝑙=1 (Φ𝑙(𝑥
1,…, 𝑥𝑘)−𝐭 𝑙)𝜃𝑙

]
𝑎(𝐭 )1(𝜃) 𝑑𝜃,

where the 𝑎(⋅) belongs to a partition of unity on 𝑇. Thus, 𝜆𝐭 is a Fourier integral distribution on
𝑋; in Hörmander’s notation [19, 20],

𝜆𝐭 ∈ 𝐼
(2𝑝−𝑑tot)∕4(𝑋;𝑁∗𝑍𝐭 ), (5.3)

where 𝑁∗𝑍𝐭 ⊂ 𝑇
∗𝑋 ⧵ 0 is the conormal bundle of 𝑍𝐭 and the value of the order follows from the

amplitude having order zero and the numbers of phase variables and spatial variables being 𝑝 and
𝑑tot, respectively, so that the order is𝑚 ∶= 0 + 𝑝∕2 − 𝑑tot∕4.
As in the analysis of 3-point configurations in Section 2, we separate the variables 𝑥1, … , 𝑥𝑘

into groups on the left and right, associating to Φ a collection of families of generalized Radon

transforms indexed by the nontrivial partitions of {1, … , 𝑘}, with each family then depending on
the parameter 𝐭 ∈ 𝑇. Write such a partition as 𝜎 = (𝜎𝐿 |𝜎𝑅), with |𝜎𝐿|, |𝜎𝑅| > 0, |𝜎𝐿| + |𝜎𝑅| = 𝑘,
and let 𝑘 denote the set of all such partitions. We will use 𝑖 and 𝑗 to refer to elements of 𝜎𝐿 and
𝜎𝑅, respectively. Define 𝑑

𝜎
𝐿 =

∑
𝑖∈𝜎𝐿

𝑑𝑖 and 𝑑𝜎𝑅 =
∑
𝑖∈𝜎𝑅

𝑑𝑖 , so that 𝑑𝜎𝐿 + 𝑑
𝜎
𝑅 = 𝑑tot.

For each 𝜎 ∈ 𝑘, 𝜎𝐿 = {𝑖1, … , 𝑖|𝜎𝐿|} and 𝜎𝑅 = {𝑗1, … , 𝑗|𝜎𝑅|}, where wemay assume that 𝑖1 <⋯ <
𝑖|𝜎𝐿| and 𝑗1 < ⋯ < 𝑗|𝜎𝑅|. with a slight abuse of notation we still refer to as 𝑥 the permuted version
as 𝑥,

𝑥 = (𝑥𝐿; 𝑥𝑅) ∶=
(
𝑥𝑖1 , … , 𝑥𝑖|𝜎𝐿 | ; 𝑥𝑗1 , … , 𝑥𝑗|𝜎𝑅 |

)
.

Write the corresponding reordered Cartesian product as

𝑋𝐿 × 𝑋𝑅 ∶=
(
𝑋𝑖1 ×⋯ × 𝑋𝑖|𝜎𝐿 |

)
×
(
𝑋𝑗1 ×⋯ × 𝑋𝑗|𝜎𝑅 |

)
;

again by abuse of notation, we sometimes still refer to this as𝑋. The dimensions of the two factors
are dim(𝑋𝐿) = 𝑑

𝜎
𝐿 and dim(𝑋𝑅) = 𝑑

𝜎
𝑅, respectively. The choice of𝜎 also defines a permuted version

of each 𝑍𝐭 ,

𝑍𝜎𝐭 ∶= {(𝑥𝐿; 𝑥𝑅) ∶ Φ(𝑥) = 𝐭 } ⊂ 𝑋𝐿 × 𝑋𝑅, (5.4)

with spatial projections to the left and right, 𝜋𝑋𝐿 ∶ 𝑍
𝜎
𝐭 → 𝑋𝐿 and 𝜋𝑋𝑅 ∶ 𝑍

𝜎
𝐭 → 𝑋𝑅. The integral

geometric double fibration condition extending (2.5) to general 𝑘 is the requirement,

(𝐷𝐹)𝜎 𝜋𝐿 ∶ 𝑍
𝜎
𝐭 → 𝑋𝐿 and 𝜋𝑅 ∶ 𝑍

𝜎
𝐭 → 𝑋𝑅 are submersions. (5.5)
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(Note that (𝐷𝐹)𝜎 can only hold for a given 𝜎 if 𝑝 ⩽ min(𝑑
𝜎
𝐿 , 𝑑

𝜎
𝑅).)

If (𝐷𝐹)𝜎 holds, then the generalized Radon transform𝜎
𝐭 , defined weakly by

𝜎
𝐭 𝑓(𝑥𝐿) = ∫{𝑥𝑅∶Φ(𝑥𝐿 ,𝑥𝑅)=𝐭 } 𝑓(𝑥𝑅),

where the integral is with respect to the surface measure induced by 𝜆𝐭 on the codimension 𝑝
submanifold {𝑥𝑅 ∶ Φ(𝑥𝐿, 𝑥𝑅) = 𝐭 } = {𝑥𝑅 ∶ (𝑥𝐿, 𝑥𝑅) ∈ 𝑍

𝜎
𝐭 } ⊂ 𝑋𝑅, extends frommapping(𝑋𝑅) →(𝑋𝐿) to

𝜎
𝐭 ∶  ′(𝑋𝑅) → ′(𝑋𝐿).

Furthermore,

𝐶𝜎𝐭 ∶=
(
𝑁∗𝑍𝜎𝐭

)′
=

{
(𝑥𝐿, 𝜉𝐿; 𝑥𝑅, 𝜉𝑅) ∶ (𝑥𝐿, 𝑥𝑅) ∈ 𝑍

𝜎
𝐭 , (𝜉𝐿, −𝜉𝑅) ⟂ 𝑇𝑍

𝜎
𝐭

}
(5.6)

is contained in (𝑇∗𝑋𝐿 ⧵ 0) × (𝑇
∗𝑋𝑅 ⧵ 0). Thus, 𝜎

𝐭 is an FIO, 𝜎
𝐭 ∈ 𝐼

𝑚(𝑋𝐿, 𝑋𝑅; 𝐶
𝜎
𝐭 ), where the

order𝑚 is determined by Hörmander’s formula,𝑚 = 0 + 𝑝∕2 − 𝑑tot∕4. Given the possible differ-
ence in the dimensions of 𝑋𝐿 and 𝑋𝑅, due to the clean intersection calculus, it is useful to express
𝑚 as

𝑚 = 𝑚𝜎
eff
−
1
4
||𝑑𝜎𝐿 − 𝑑𝜎𝑅||,

where the effective order of𝜎
𝐭 is defined to be

𝑚𝜎
eff
∶=

(
2𝑝 − 𝑑tot +

|||𝑑
𝜎 − 𝑑𝜎̂|||

)
∕4 =

(
𝑝 −min

(
𝑑𝜎𝐿 , 𝑑

𝜎
𝑅

))
∕2. (5.7)

As recalled in Section 3.1, if 𝐶𝜎𝐭 is a nondegenerate canonical relation, that is, the cotangent space
projections 𝜋𝐿 ∶ 𝐶

𝜎
𝐭 → 𝑇∗𝑋𝐿 and 𝜋𝑅 ∶ 𝐶

𝜎
𝐭 → 𝑇∗𝑋𝑅 have differentials of maximal rank

†, then

𝜎
𝐭 ∶ 𝐿

2
𝑟 (𝑋𝑅) → 𝐿2𝑟−𝑚eff

𝜎 (𝑋𝐿).

As in the result concerning 3-point configurations in Theorem 2.1, it is natural to express the

estimates for possibly degenerate FIO in terms of possible losses relative to the optimal estimates.

As for 𝑘 = 3, our basic assumption is that, for at least one 𝜎, the double fibration condition (5.5)
is satisfied and there is a known 𝛽𝜎 ⩾ 0 such that, for all 𝑟 ∈ ℝ,

𝜎
𝐭 ∶ 𝐿

2
𝑟 (𝑋𝑅) → 𝐿2

𝑟−𝑚𝜎
eff
−𝛽𝜎 (𝑋𝐿) uniformly for 𝐭 ∈ 𝑇. (5.8)

Now suppose that, for 1 ⩽ 𝑖 ⩽ 𝑘, 𝐸𝑖 ⊂ 𝑋
𝑖 are compact sets. Our goal is to find conditions on

the dim(𝐸𝑖) ensuring that ΔΦ(𝐸1, 𝐸2, … , 𝐸𝑘) has nonempty interior in 𝑇. For each 𝑖, fix an 𝑠𝑖 <
dim(𝐸𝑖) and a Frostman measure 𝜇𝑖 on 𝐸𝑖 of finite 𝑠𝑖-energy. Define measures

𝜇𝐿 ∶= 𝜇𝑖1 ×⋯ × 𝜇𝑖|𝜎| on 𝑋𝐿 and 𝜇𝑅 ∶= 𝜇𝑗1 ×⋯ × 𝜇𝑗|𝜎̂| on 𝑋𝑅.

† This is a structurally stable condition, so that if 𝐶𝜎𝐭 0
is nondegenerate, then 𝐶𝜎𝐭 is nondegenerate for all 𝐭 in some neigh-

borhood of 𝐭 0.
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By (3.4), each 𝜇𝑖 ∈ 𝐿
2
(𝑠𝑖−𝑑𝑖)∕2

(𝑋𝑖), so that Proposition 3.2 implies that 𝜇𝐿 ∈ 𝐿
2
𝑟𝐿
(𝑋𝐿) and 𝜇𝑅 ∈

𝐿2𝑟𝑅
(𝑋𝑅), where 𝑟𝐿 =

1
2

∑|𝜎𝐿|
𝑙=1
(𝑠𝑖𝑙 − 𝑑𝑖𝑙 ) and 𝑟𝑅 =

1
2

∑|𝜎𝑅|
𝑙=1
(𝑠𝑗𝑙 − 𝑑𝑗𝑙 ), respectively. The analogue of

the representation formula (3.5) for 𝜈(𝐭 ), justified by a minor modification of the 𝑘 = 3 case in
Section 3.4, is

𝜈(𝐭 ) =
⟨𝜎

𝐭 (𝜇𝑅), 𝜇𝐿
⟩
. (5.9)

Our basic assumption, that (5.8) holds for the 𝜎 in question, then implies that 𝜎
𝐭 (𝜇𝑅) ∈

𝐿2
𝑟𝑅−𝑚

𝜎
eff
−𝛽𝜎

(𝑋𝐿). Since 𝜇𝐿 ∈ 𝐿
2
𝑟𝜎 (𝑋𝐿), the pairing in (5.9) is bounded, and yields a continuous func-

tion of 𝐭, if

𝑟𝑅 −𝑚
𝜎
eff
− 𝛽𝜎 + 𝑟𝐿 ⩾ 0. (5.10)

Noting that

𝑟𝐿 + 𝑟𝑅 =
1
2

[(
𝑘∑
𝑖=1

𝑠𝑖

)
− 𝑑tot

]
,

and using (5.7), we see that (5.10) holds if and only if

𝑘∑
𝑖=1

𝑠𝑖 ⩾ 𝑑
tot + 2

(
𝑚𝜎
eff
+ 𝛽𝜎

)

= 𝑑tot + 𝑝 −min (𝑑𝐿, 𝑑𝑅) + 2𝛽
𝜎

= max (𝑑𝐿, 𝑑𝑅) + 𝑝 + 2𝛽
𝜎.

Optimizing over all 𝜎 ∈ 𝑘, we obtain the analogue of Theorem 2.1 for 𝑘-point configuration
sets:

Theorem 5.2.

(i) With the notation and assumptions as above, define

𝑠Φ = min (max (𝑑𝐿, 𝑑𝑅) + 𝑝 + 2𝛽
𝜎),

where themin is taken over those 𝜎 ∈ 𝑘 for which both the double fibration condition (5.5) and
the uniform boundedness of the generalized Radon transforms𝜎

𝐭 with loss of ⩽ 𝛽
𝜎 derivatives

(5.8) hold.

Then, if 𝐸𝑖 ⊂ 𝑋
𝑖 , 1 ⩽ 𝑖 ⩽ 𝑘, are compact sets with

∑𝑘
𝑖=1 dim(𝐸𝑖) > 𝑠Φ, it follows that

int(ΔΦ(𝐸1, 𝐸2, … , 𝐸𝑘)) ≠ ∅.
(ii) In particular, if 𝑋1 = ⋯ = 𝑋𝑘 = 𝑋0, with 𝑑𝑖𝑚(𝑋0) = 𝑑, and if 𝐸 ⊂ 𝑋0 is compact with

dim(𝐸) > 1
𝑘
[min (max (𝑑𝐿, 𝑑𝑅) + 𝑝)], (5.11)

where the minimum is taken over all 𝜎 ∈ 𝑘 such that the canonical relations𝐶𝜎𝐭 are nondegen-
erate, then int(ΔΦ(𝐸, 𝐸, … , 𝐸)) ≠ ∅.
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6 PROOFS OF THEOREMS FOR 𝒌-POINT CONFIGURATIONS, 𝒌 ⩾ 𝟒

We now use Theorem 5.2 to prove Theorem 1.5 on cross ratios of four-tuples of points in ℝ, The-

orem 1.2 concerning strongly pinned volumes of parallelepipeds generated by 𝑑-tuples of points
in ℝ𝑑 for 𝑑 ⩾ 4, Theorem 1.6 on pairs of areas of triangles in ℝ2, Theorem 1.7 on dot products of

differences and Theorem 1.8 on generalized sum-product sets.

6.1 Cross ratios on ℝ

We prove Theorem 1.5 on the set of cross ratios of four-tuples of points in a set 𝐸 ⊂ ℝ. This will

be an application of the second part of Theorem 5.2, with 𝑑𝑗 = 1, 1 ⩽ 𝑗 ⩽ 4. Since each of the

variables in one dimensional, we use subscripts rather than superscripts. Thus, set Φ ∶ ℝ4 → ℝ,

Φ(𝑥1, 𝑥2, 𝑥3, 𝑥4) = [𝑥1, 𝑥2; 𝑥3, 𝑥4] =
(𝑥1 − 𝑥3)(𝑥2 − 𝑥4)

(𝑥1 − 𝑥4)(𝑥2 − 𝑥3)
,

and introduce the notation

𝑥𝑖𝑗 = 𝑥𝑖 − 𝑥𝑗 , 1 ⩽ 𝑖 < 𝑗 ⩽ 4.

Then one computes

𝑑Φ(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥14𝑥23)
−2(𝑥23𝑥24𝑥34, −𝑥13𝑥14𝑥34, 𝑥14𝑥24𝑥34, −𝑥12𝑥13𝑥23).

Given a compact 𝐸 ⊂ ℝ with dim(𝐸) > 3∕4, let 𝑠 be such that 3∕4 < 𝑠 < dim(𝐸) and 𝜇 be a
Frostman measure on 𝐸 of finite 𝑠-energy. We claim that

(
∃𝑥01 , 𝑥

0
2 , 𝑥

0
3 , 𝑥

0
4 ∈ 𝑠𝑢𝑝𝑝(𝜇)

)
s.t. 𝑥0𝑖 − 𝑥

0
𝑗 ≠ 0, for all 1 ⩽ 𝑖 < 𝑗 ⩽ 4, (6.1)

so that all four components of 𝑑Φ are nonzero at 𝑥0 ∶= (𝑥01 , 𝑥
0
2 , 𝑥

0
3 , 𝑥

0
4). Arguing as in the proofs

for 3-point configurations in Section 4, set

 =

{
𝑥 ∈ ℝ4 ∶

∏
1⩽𝑖<𝑗⩽4

𝑥𝑖𝑗 = 0

}
,

on the complement of which all of the components of 𝑑Φ are nonzero. Noting that is a union of

hyperplanes, dim() = 3; thus, since 𝜇 × 𝜇 × 𝜇 × 𝜇 is dominated by 4𝑠-dimensional Hausdorff
measure and 4𝑠 > 3, (𝜇 × 𝜇 × 𝜇 × 𝜇)() = 0. By a slight variant of the reasoning in Theorems 1.1
and 1.2, one obtains (6.1). This actually shows that the conditions in (6.1) hold for a set of full

𝜇 × 𝜇 × 𝜇 × 𝜇measure, which we use below.
Now let 𝜎 = (12|34). Setting 𝑡0 = Φ(𝑥0), and taking the 𝑋𝑗 to be sufficiently small neighbor-

hoods of 𝑥0
𝑗
, 1 ⩽ 𝑗 ⩽ 4, it follows that for 𝑡 close to 𝑡0 the double fibration condition (5.5) holds on

𝑍𝜎𝑡 ∶= {𝑥 ∶ Φ(𝑥) = 𝑡} ⊂ 𝑋 ∶= (𝑋
1 × 𝑋2) × (𝑋3 × 𝑋4) =∶ 𝑋𝐿 × 𝑋𝑅.

Since 𝑑𝑥1Φ ≠ 0, on 𝑍𝜎𝑡 we can solve for 𝑥1 as a function of 𝑥2, 𝑥3, 𝑥4 and the parameter 𝑡 (possibly
again reducing the size of the neighborhoods of the 𝑥0

𝑗
),
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𝑥1 = 𝑦
1(𝑥2, 𝑥3, 𝑥4, 𝑡).

Furthermore, using the fact that the factor (𝑥14𝑥23)
−2 in all of the terms of 𝑑Φ can be absorbed

into the radial scaling factor, as in (5.6) we define

𝐶𝜎𝑡 ∶=
(
𝑁∗𝑍𝜎𝑡

)′
=

{
(∗, ∗; 𝑥3, 𝑥4, 𝜃𝑥14𝑥24𝑥34, −𝜃𝑥12𝑥13𝑥23)

∶ (𝑥2, 𝑥3, 𝑥4) ∈ 𝑋
2 × 𝑋3 × 𝑋4, 𝜃 ≠ 0},

where we have suppressed the 𝑇∗(𝑋1 × 𝑋2) components on the left. We claim that this is a local

canonical graph, so that the family of FIOs lose no derivatives (𝛽𝜎 = 0); the desired result then
follows from Theorem 5.2 (ii), using 𝑑𝐿 = 𝑑𝑅 = 2, 𝑘 = 4 and 𝑝 = 1 in (5.11).
To see that 𝐶𝜎𝑡 is a local canonical graph, it suffices to show that the differential of 𝜋𝑅 ∶ 𝐶

𝜎
𝑡 →

𝑇∗𝑋𝐿 has rank 4. Due to the (𝑥3, 𝑥4) in the spatial variables, this is equivalent to showing that

𝐷(𝜉3, 𝜉4)

𝐷(𝜃, 𝑥2)
=

⎡
⎢⎢⎣
𝑥14𝑥24𝑥34, 𝜃

(
𝑥34

(
𝑥14 + 𝑥24𝑦

1
𝑥2

))

−𝑥12𝑥13𝑥23, −𝜃
(
−𝑥13𝑥23 + 𝑥12𝑥13 + 𝑥23

(
𝑥13𝑦

1
𝑥2
+ 𝑥12𝑦

1
𝑥2

))
⎤
⎥⎥⎦

is nonsingular. However, the determinant of this is an algebraic function, not identically vanishing

on 𝑍𝜎𝑡 , so its zero variety is three-dimensional and thus a null set with respect to 4𝑠-Hausdorff
measure, and hence with respect to 𝜇 × 𝜇 × 𝜇 × 𝜇. Thus, choosing our basepoint 𝑥0, and then
shrinking the 𝑋𝑗 suitably, to avoid this, ensures that 𝐶𝜎𝑡 is a local canonical graph, finishing the
proof of Theorem 1.5.

6.2 Strongly pinned volumes in ℝ𝒅, 𝒅 ⩾ 𝟒

With Theorem 5.2 in hand, we now prove Theorem 1.2 concerning pinned volumes in ℝ𝑑 for

𝑑 ⩾ 4, following the lines of the proof for 𝑑 = 3 in Section 4. On (ℝ𝑑)𝑑, let Φ(𝑥1, … , 𝑥𝑑) =
det[𝑥1, 𝑥2, … , 𝑥𝑑]. We will show that for 𝜎 = (12… (𝑑 − 1)|𝑑), some 𝑡0 ≠ 0 and with the domain
of Φ suitably localized, condition (𝐷𝐹)𝜎 is satisfied and the canonical relation 𝐶

𝜎
𝑡0
is nondegener-

ate; these conditions then hold for all 𝑡 near 𝑡0 by structural stability of submersions. Using just
this 𝜎, applying (5.11) with 𝑑𝐿 = 𝑑(𝑑 − 1) > 𝑑𝑅 = 𝑑, 𝑝 = 1 and 𝛽Φ = 0 shows that if dim(𝐸) >
(1∕𝑑)(𝑑(𝑑 − 1) + 1) = 𝑑 − 1 + (1∕𝑑) then int(ΔΦ(𝐸, … , 𝐸)) ≠ ∅, proving Theorem 1.2.

To verify the claims for 𝜎, we start by noting that

𝑑Φ =
(
𝐱(1), −𝐱(2), … , (−1)𝑑−1𝐱(𝑑)

)
,

where

𝐱(𝑗) ∶=∗
(
𝑥1 ∧ 𝑥2 ∧⋯ ∧ 𝑥𝑗−1 ∧ 𝑥𝑗+1 ∧⋯ ∧ 𝑥𝑑

)
,

where ∗ is the Hodge star operator, which is an isomorphism ∗∶ Λ𝑑−1ℝ𝑑 → ℝ𝑑. As in the proof

for 𝑑 = 3, note that if 𝑑 − 1 + (1∕𝑑) < 𝑠 < dim(𝐸) and 𝜇 is a Frostman measure on 𝐸 of finite

𝑠-energy, one can find 𝑥10 , 𝑥
2
0 , … , 𝑥

𝑑
0 ∈ supp(𝜇) and 𝛿 > 0 such that 𝐱(𝑗) ≠ 0, 1 ⩽ 𝑗 ⩽ 𝑑, whenever

𝑥𝑗 ∈ 𝐵(𝑥𝑗0, 𝛿) =∶ 𝑋
𝑗, 1 ⩽ 𝑗 ⩽ 𝑑. This follows by a straight-forward modification of the argument

in Section 4.3.
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For 1 ⩽ 𝑗 ⩽ 𝑑, each variety (𝑗) ∶= {𝑥 ∈ ℝ𝑑
2
∶ 𝐱(𝑗) = 0 ∈ ℝ𝑑} is codimension (𝑑 − 1), and thus

their union is a null set with respect to ⊗𝑑𝜇, since 𝑠𝑑 > 𝑑2 − (𝑑 − 1). Restricting Φ to 𝑋1 ×⋯ ×
𝑋𝑑, (𝐷𝐹)𝜎 is satisfied. In fact, each of the components of 𝑑Φ,

𝑑𝑥𝑗Φ|𝑥0 = (−1)𝑗𝐱(𝑗),

is nonzero, since when paired against 𝑥𝑗0 it gives Φ(𝑥
1
0 , … , 𝑥

𝑑
0 ) ≠ 0.

Thus, for 𝜎 = (12… (𝑑 − 1)|𝑑) and 𝑡 close to 𝑡0, as coordinates on the incidence relations 𝑍𝜎𝑡 we
can take (𝑥2, … , 𝑥𝑑) ∈ 𝑋2 ×⋯ × 𝑋𝑑 and 𝑢⃗ = (𝑢2, … , 𝑢𝑑) ∈ ℝ𝑑−1, with 𝑥1 determined by

𝑥1 = 𝑦1
(
𝑥2, … , 𝑥𝑑, 𝑡

)
+ 𝑢2𝑥

2 +⋯ + 𝑢𝑑𝑥
𝑑,

for some smooth function 𝑦1, since the perturbations of any specific 𝑥1 that preserve

det[𝑥1, 𝑥2, … , 𝑥𝑑] are arbitrary translates in the directions spanned by 𝑥2, … , 𝑥𝑑. Furthermore,
by translating by a constant in the 𝑠 variables, we can assume that at the base point,

𝐷𝑥2𝑦
1(𝑥⃗0, 𝑡0) = 0. (6.2)

Thus, in 𝑇∗(𝑋1 ×⋯ × 𝑋𝑑−1) × 𝑇∗𝑋𝑑,

𝐶𝜎𝑡 =
{(

⋅, ⋅ ; 𝑥𝑑, ± ∗ 𝜃
[(
𝑦1

(
𝑥2, … , 𝑥𝑑, 𝑡

)
∧ 𝑥2 ∧⋯ ∧ 𝑥𝑑−1

)
+ (−1)𝑑

(
𝑢𝑑𝑥

2 ∧⋯ ∧ 𝑥𝑑
)])

∶ (𝑥2, … , 𝑥𝑑) ∈ 𝑋2 ×⋯𝑋𝑑, 𝑢⃗ ∈ ℝ𝑑−1, 𝜃 ∈ ℝ ⧵ 0
}
,

where the first entries, giving the coordinates in 𝑇∗(𝑋1 ×⋯𝑋𝑑−1), have been suppressed because
they are not needed to study 𝜋𝑅. In the last, that is, 𝜉

𝑑, entry, we have used

(
𝑦1(𝑥2, … , 𝑥𝑑, 𝑡) + 𝑢2𝑥

2 +⋯ + 𝑢𝑑𝑥
𝑑) ∧ 𝑥2 ∧⋯ ∧ 𝑥𝑑−1

= 𝑦1(𝑥2, … , 𝑥𝑑, 𝑡) ∧ 𝑥2 ∧⋯ ∧ 𝑥𝑑−1

+(−1)𝑑 𝑢𝑑 𝑥
2 ∧⋯ ∧ 𝑥𝑑.

We claim that 𝜋𝑅 ∶ 𝐶
𝜎
𝑡 → 𝑇∗𝑋𝑑 is a submersion, which, as described in Section 3.1, then implies

that 𝐶𝜎𝑡 is nondegenerate and thus 𝜎 is one of the competitors in (5.11). Note that

𝐷𝑥𝑑𝜋𝑅 = 𝐈𝑑 ⊕
(
± ∗ 𝜃

[
𝐷𝑥𝑑𝑦

1 ∧ 𝑥2 ∧⋯ ∧ 𝑥𝑑−1 + (−1)𝑑𝑢𝑑 𝑥
2 ∧⋯ ∧ 𝑥𝑑−1 ∧ 𝐼𝑑

])

while, for 2 ⩽ 𝑗 ⩽ 𝑑 − 1,

𝐷𝑥𝑗𝜋𝑅 = 𝟎⊕
(
± ∗ 𝜃

[
𝐷𝑥𝑗𝑦

1 ∧ 𝑥2 ∧⋯ ∧ 𝑥𝑑−1 + (−1)𝑑𝑢𝑑 𝑥
2 ∧⋯ ∧ 𝐼𝑑 ∧⋯ ∧ 𝑥𝑑

])
. (6.3)

Due to the form of 𝐷𝑥𝑑𝜋𝑅, it suffices to show that 𝐷𝑥2𝜋𝑅 has rank equal to 𝑑. Since 𝜃 ≠ 0 and ∗
is an isomorphism, we can ignore the ± ∗ 𝜃 and work directly in the 𝑑-dimensional vector space
Λ𝑑−1ℝ𝑑. At 𝑥0, the expression in square brackets in (6.3) equals (−1)

𝑑𝑢𝑑𝐼𝑑 ∧ (𝑥
3 ∧⋯ ∧ 𝑥𝑑) due

to (6.2). Since 𝑥3 ∧⋯ ∧ 𝑥𝑑 ∈ Λ𝑑−2ℝ𝑑 − {0}, this last map is an isomorphism ℝ𝑑 → Λ𝑑−1ℝ𝑑, thus
has rank 𝑑, finishing the proof.
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6.3 Pairs of areas in ℝ𝟐

We now prove Theorem 1.6 concerning the set of pairs of areas of triangles generated by 4-tuples

of points in a compact 𝐸 ⊂ ℝ2. Here, 𝑑 = 2, 𝑘 = 4 and 𝑝 = 2. On (ℝ2)4, let

Φ
(
𝑥1, 𝑥2, 𝑥3, 𝑥4

)
=

(
det

[
𝑥1 − 𝑥4, 𝑥2 − 𝑥4

]
, det

[
𝑥2 − 𝑥4, 𝑥3 − 𝑥4

])

= ((𝑥1 − 𝑥4) ⋅ (𝑥2 − 𝑥4)⟂, (𝑥2 − 𝑥4) ⋅ (𝑥3 − 𝑥4)⟂)).

We will show that, for 𝜎 = (13|24), although 𝐶𝜎𝑡 is degenerate, the projections 𝜋𝐿, 𝜋𝑅 drop rank
by at most 1 everywhere, and therefore, by Theorem 3.1(ii), there is a loss of at most 𝛽𝜎 = 1∕2
derivative. Here, 𝑑𝐿 = 𝑑𝑅 = 4, so Theorem 5.2 implies that for

4 dim(𝐸) > max(𝑑𝐿, 𝑑𝑅) + 𝑝 + 2𝛽Φ = 4 + 2 + 1 = 7,

that is, for dim(𝐸) > 7∕4, one has int(ΔΦ(𝐸, 𝐸, 𝐸, 𝐸)) ≠ ∅.
To verify (𝐷𝐹)𝜎 for 𝜎 = (13|24), we calculate

𝐷Φ =

[
(𝑥2 − 𝑥4)⟂ (𝑥4 − 𝑥1)⟂ 0 (𝑥1 − 𝑥2)⟂

0 (𝑥3 − 𝑥4)⟂ (𝑥4 − 𝑥2)⟂ (𝑥2 − 𝑥3)⟂

]

and note that the first and third columns form a matrix of rank two if 𝑥2 ≠ 𝑥4, as do the second
and fourth columns under the same condition.

Pick any 𝑠 with 7∕4 < 𝑠 < dim(𝐸) and let 𝜇 be a Frostman measure on 𝐸 of finite 𝑠-energy.
Arguing as in the earlier proofs, we can pick a four-tuple 𝑥0 = (𝑥

1
0 , 𝑥

2
0 , 𝑥

3
0 , 𝑥

4
0) with each 𝑥𝑗0 ∈

supp(𝜇) such that

(i) 𝑥20 − 𝑥
4
0 ≠ 0; and

(ii) 𝑥10 − 𝑥
4
0 and 𝑥

3
0 − 𝑥

4
0 are linearly independent;

Let 𝑋𝑗 = 𝐵(𝑥𝑗0, 𝛿), with 𝛿 chosen small enough so that (i) and (ii) hold with 𝑥0 replaced by any
𝑥 ∈ 𝑋1 × 𝑋2 × 𝑋3 × 𝑋4.
Let 𝐭0 = (𝑡

1
0 , 𝑡

2
0) = Φ(𝑥0). Then, we claim that the projections 𝜋𝐿 ∶ 𝐶

𝜎
𝐭0
→ 𝑇∗𝑋𝐿 and 𝜋𝑅 ∶ 𝐶

𝜎
𝐭0
→

𝑇∗𝑋𝑅 drop rank by 1 everywhere; as described in Theorem 3.1(ii), it suffices to show this for one

of projections, say 𝜋𝐿. By (ii) above, we can parametrize 𝑍
𝜎
𝐭0
by (𝑥1, 𝑥3, 𝑥4), with 𝑥2 determined by

the nonsingular linear system

(𝑥1 − 𝑥4) ⋅ (𝑥2 − 𝑥4)⟂ = 𝑡10 , (𝑥2 − 𝑥4) ⋅ (𝑥3 − 𝑥4)⟂ = 𝑡20 ,

whose unique solution we can describe by 𝑥2 = 𝑋2(𝑥1, 𝑥3, 𝑥4). Then

𝐶𝜎𝐭0
=

{(
𝑥1, 𝑥3, 𝜃1

(
𝑋2 − 𝑥4

)⟂
, −𝜃2

(
𝑋2 − 𝑥4

)⟂
; … , …

)
∶

(𝑥1, 𝑥3, 𝑥4) ∈ 𝑋1 × 𝑋3 × 𝑋4, (𝜃1, 𝜃2) ∈ ℝ2 ⧵ 0
}
,

where the 𝑇∗𝑋𝜎̂ components on the right are suppressed because they are not needed for the

analysis. One easily sees that 𝐷𝜋𝐿 drops rank by 1 everywhere, that is, has constant rank equal
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to 7, with the image of 𝜋𝐿 being contained in the hypersurface {(𝑥
1, 𝑥3, 𝜉1, 𝜉3) ∶ 𝜉1 ∧ 𝜉3 = 0}. By

a fact valid for general canonical relations, 𝐷𝜋𝑅 also drops rank by 1 everywhere, as well, and by
semicontinuity of the rank, 𝐶𝜎𝐭 drops rank by 𝑘 ⩽ 1 for all 𝐭 close to 𝐭0. (Thus, 𝛿 above is chosen
small enough that all of the values inΦ(𝑋) are sufficiently close to 𝐭0.) By Theorem 3.1(ii), the𝜎

𝐭
lose at most 𝛽Φ ⩽ 1∕2 derivatives, and we are done.

6.4 Dot products of differences

To prove the main part of Theorem 1.7, define

Φ ∶
(
ℝ𝑑

)4
→ ℝ, Φ(𝑥, 𝑦, 𝑧, 𝑤) = (𝑥 − 𝑦) ⋅ (𝑧 − 𝑤).

We will show that using 𝜎 = (13|24) results in 𝐶𝜎𝑡 that are local canonical graphs, so that Theo-
rem 5.2(ii) applies (with 𝛽𝜎 = 0) to yield nonempty interior of the set of dot products of differences
for dim(𝐸) > (𝑑∕2) + (1∕4). By minor modification, the same analysis holds for Φ(𝑥, 𝑦, 𝑧, 𝑤) =
(𝑥 + 𝑦) ⋅ (𝑧 + 𝑤), yielding the result in the footnote to Theorem 1.7.

One computes

𝑑Φ(𝑥, 𝑦, 𝑧, 𝑤) = (𝑧 − 𝑤, −(𝑧 − 𝑤), 𝑥 − 𝑦, −(𝑥 − 𝑦)),

so that (𝐷𝐹)𝜎 is satisfied away from ∶= {𝑥 − 𝑦 = 𝑧 − 𝑤 = 0}, which is a codimension 2𝑑 plane
inℝ4𝑑. If (𝑑∕2) + (1∕4) < 𝑠 < dim(𝐸) and 𝜇 is a Frostmanmeasure on 𝐸 of finite 𝑠-energy then,
arguing as we have above, ⊗4𝜇 is dominated by 4𝑠-dimensional Hausdorff measure, and 4𝑠 >
2𝑑 + 1. Since  is a subspace of dimension 2𝑑, (⊗4𝜇)() = 0; repeating previous arguments,
we can find base points 𝑥0, 𝑦0, 𝑧0, 𝑤0 ∈ supp(𝜇) and 𝜖, 𝛿 > 0 such that |𝑥 − 𝑦| + |𝑧 − 𝑤| > 𝜖
for𝑥 ∈ 𝑋1 ∶= 𝐵(𝑥0, 𝛿), 𝑦 ∈ 𝑋2 ∶= 𝐵(𝑦0, 𝛿), 𝑧 ∈ 𝑋3 ∶= 𝐵(𝑧0, 𝛿) and𝑤 ∈ 𝑋4 ∶= 𝐵(𝑤0, 𝛿), respec-
tively. Thus, (𝐷𝐹)𝜎 is satisfied on 𝑋𝐿 × 𝑋𝑅. Furthermore, by relabelling and rotating if necessary,
we can assume that |𝑧1 − 𝑤1| ≠ 0 on 𝑋𝐿 × 𝑋𝑅, so that 𝑑𝑥1Φ ≠ 0.
Thus, letting 𝑡0 = Φ(𝑥0, 𝑦0, 𝑥0, 𝑤0), for 𝑡 close to 𝑡0, on the hypersurface 𝑍𝜎𝑡 we can solve for

𝑥1 as a smooth function of the other variables: 𝑥1 = 𝐱1(𝑥
′, 𝑦, 𝑧, 𝑤), defined for 𝑥′ in a small ball

𝐵 ⊂ ℝ𝑑−1, and then parametrize

𝐶𝜎𝑡 =
{(

⋅, ⋅, ⋅, ⋅ ; 𝑦, 𝑤, 𝜃(𝑧 − 𝑤), 𝜃((𝐱1, 𝑥
′) − 𝑦)

)

∶ 𝑦, 𝑧, 𝑤 ∈ 𝑋2 × 𝑋3 × 𝑋4, 𝑥′ ∈ 𝐵, 𝜃 ≠ 0},
where we have suppressed the 𝑇∗𝑋𝐿 entries as irrelevant for the analysis of 𝜋𝑅 ∶ 𝐶

𝜎
𝑡 → 𝑇∗𝑋𝑅 =

𝑇∗(𝑋2 × 𝑋4). Due to the simple dependence of the 𝑇∗𝑋2 and 𝑋4 entries on the coordinates 𝑦, 𝑧
and 𝑤 on 𝐶𝜎𝑡 , and denoting elements of 𝑇

∗𝑋4 by (𝑤, 𝜔), we see that

rank(𝐷𝜋𝑅) = 3𝑑 + rank

(
𝐷𝜔

𝐷(𝜃, 𝑥′)

)
= 4𝑑.

Thus, 𝐶(13|24)𝑡 is a local canonical graph for 𝑡 close to 𝑡0, and Theorem 5.2(ii) applies with 𝑘 =
4, 𝑝 = 1, 𝑑𝐿 = 𝑑𝑅 = 2𝑑, so that for dim(𝐸) > (1∕4)(2𝑑 + 1) = (𝑑∕2) + (1∕4),

int({(𝑥 − 𝑦) ⋅ (𝑧 − 𝑤) ∶ 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐸 }) ≠ ∅.
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6.5 Sum-product sets for bilinear forms

We now state and prove a more general version of Theorem 1.8 on sum-product sets associated to

families of bilinear forms.

Theorem 6.1. Let 𝑄⃗ = (𝑄1, … , 𝑄𝑙), with the 𝑄𝑗 nondegenerate, symmetric bilinear forms on
ℝ𝑛𝑗 , 1 ⩽ 𝑗 ⩽ 𝑙. Define 𝑑1, … , 𝑑2𝑙 by 𝑑2𝑗−1 = 𝑑2𝑗 = 𝑛𝑗 , 1 ⩽ 𝑗 ⩽ 𝑙. Suppose that 𝐸𝑖 ⊂ ℝ𝑑𝑖 are compact,

1 ⩽ 𝑖 ⩽ 2𝑙, with

2𝑙∑
𝑖=1

dim(𝐸𝑖) > 1 + 1
2

2𝑙∑
𝑖=1

𝑑𝑖 = 1 +
𝑙∑
𝑗=1

𝑛𝑗 .

Then the generalized sum-product set,

Σ𝑄⃗(𝐸1, … , 𝐸2𝑙) ∶=

{
𝑙∑
𝑗=1

𝑄𝑗
(
𝑥2𝑗−1, 𝑥2𝑗

)
∶ 𝑥𝑖 ∈ 𝐸𝑖 , 1 ⩽ 𝑖 ⩽ 2𝑙

}
⊂ ℝ, (6.4)

has nonempty interior.

Define

Φ
(
𝑥1, … , 𝑥2𝑙

)
=

𝑙∑
𝑗=1

𝑄𝑗
(
𝑥2𝑗−1, 𝑥2𝑗

)
on ℝ𝑑1 ×⋯ × ℝ𝑑2𝑙 .

We show that Theorem 6.1 follows from Theorem 5.2 (ii), using 𝜎 = (13… (2𝑙 − 1)|24… (2𝑙)), so
that 𝑑𝐿 = 𝑑𝑅 = 𝑛 ∶=

∑𝑙
𝑗=1 𝑛𝑗 , and with 𝑝 = 1. Since we may write 𝑄𝑗(𝑥

2𝑗−1, 𝑥2𝑗) = 𝐴𝑗𝑥2𝑗−1 ⋅ 𝑥2𝑗

for nonsingular, symmetric 𝐴𝑗 ∈ 𝑅𝑛𝑗×𝑛𝑗 ,

𝑑𝑥2𝑗−1Φ = 𝐴
𝑗𝑥2𝑗 and 𝑑𝑥2𝑗Φ = 𝐴

𝑗𝑥2𝑗−1.

Since the𝐴𝑗 are nonsingular, all of these are nonzero, and thus the double fibration condition (5.5)
is satisfied if all 𝑥2𝑗−1, 𝑥2𝑗 ≠ 0. Letting𝑋𝑖 = ℝ𝑑𝑖 ⧵ 0, 1 ⩽ 𝑖 ⩽ 2𝑙, it follows that 𝑍𝜎𝑡 ⊂ 𝑋 ∶=

∏
𝑖 𝑋

𝑖 is

a smooth hypersurface, andwe need to analyze the canonical relation in (𝑇∗𝑋𝐿 ⧵ 0) × (𝑇
∗𝑋𝑅 ⧵ 0),

𝐶𝜎𝑡 =
{(
𝑥1, 𝑥3, … , 𝑥2𝑙−3, 𝑥2𝑙−1, 𝜃𝐴1𝑥2, 𝜃𝐴2𝑥4, … , 𝜃𝐴𝑙𝑥2𝑙; … , …

)
∶ 𝑥 ∈ 𝑍𝜎𝑡 , 𝜃 ≠ 0},

where the entries on the right, in 𝑇∗𝑋𝑅, are the even variants of the entries on the left and have
been suppressed.

For each of the 2𝑙 sets 𝐸𝑖 , let 𝑠𝑖 < dim(𝐸𝑖) and 𝜇𝑖 be a Frostman measure on 𝐸𝑖 with finite 𝑠𝑖-
energy. Let 𝐸 ∶= 𝐸1 × 𝐸1 ×⋯ × 𝐸𝑙 × 𝐸𝑙 and pick a base point 𝑥0 ∶= (𝑥

1
0 , … , 𝑥

2𝑙
0 ) ∈ 𝐸, which we

can assume has all of its components nonzero and thus belongs to𝑋, and a 0 < 𝛿𝑖 < |𝑥𝑖0| such that
𝜇𝑖(𝐵(𝑥

𝑖
0, 𝛿𝑖)) > 0.

Set 𝑡0 = Φ(𝑥0). By rotations, if necessary, in 𝑥
1 = (𝑥11 , … , 𝑥

1
𝑑1
) =∶ (𝑥11 , (𝑥

1)′) and 𝑥2, we can

assume that 𝑑𝑥11
Φ(𝑥0) ≠ 0, so that near 𝑥0, 𝑍𝜎𝑡0 is the graph of a function, 𝑥11 = 𝑓((𝑥1)′, 𝑥2, … , 𝑥2𝑙),

with 𝑑𝑥21
𝑓 ≠ 0. Hence, we can compute the projection 𝜋𝐿 ∶ 𝐶𝜎𝑡0 → 𝑇∗𝑋𝐿 with respect to coordi-

nates (𝑥1)′, 𝑥2, … , 𝑥2𝑙, 𝜃. Since𝐴1 is nonsingular and 𝜃 ≠ 0, one sees that the map (𝑥1)′, 𝑥2, 𝜃 into
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the 𝑇∗𝑋1 entries has full rank, as do all of the maps 𝑥2𝑗−1, 𝑥2𝑗 (with 𝜃 fixed) to 𝑇∗𝑋2𝑗−1, so that
𝐷𝜋𝐿 has full rank, and 𝐶

𝜎
𝑡0
is a local canonical graph. Hence, 𝛽𝜎 = 0 and Theorem 5.2(ii) applies,

yielding int(Σ𝑄⃗(𝐸1, … , 𝐸2𝑙)) ≠ ∅ if∑𝑖 𝑠𝑖 > 𝑛 + 1. that is, if
∑
𝑖 dim(𝐸𝑖) > 1 + (1∕2)

∑
𝑑𝑖 .

7 FINAL COMMENTS

It would be interesting to know whether the Hausdorff dimension thresholds in any of these the-

orems are sharp.† However, it is worth remarking that the results on pinned volumes and sum-

products at least have the correct asymptotic behavior as the dimension or the number of quadratic

forms tend to infinity, even for the weaker Falconer problem of positive Lebesgue measure:

In Theorem 1.2, since all of the volumes are zero if 𝑥0 and𝐸 both lie in a hyperplane, one cannot
take dim(𝐸) ⩽ 𝑑 − 1, and so the restriction dim(𝐸) > 𝑑 − 1 + (1∕𝑑) cannot be improved by
more than 1∕𝑑.
Similarly, in Theorems 1.8 and 6.1, if we take 𝐸2𝑗−1 and 𝐸2𝑗 to be in 𝑄𝑗-orthogonal sub-

spaces of ℝ𝑑 (in the notation of Theorem 1.8), then Σ𝑄⃗(𝐸1, … , 𝐸2𝑙) = {0}. Thus, it is necessary
that dim(𝐸2𝑗−1) + dim(𝐸2𝑗) > 𝑑, 1 ⩽ 𝑗 ⩽ 𝑙, so that the 1∕𝑙 in dim(𝐸2𝑗−1) + dim(𝐸2𝑗) > 𝑑 +
(1∕𝑙) cannot be reduced by more than 1∕𝑙.
Finally, we observe that the results here are obtained by extracting as much as possible

from standard estimates for linear Fourier integral operators. A number of previous results on

translation-invariant Falconer-type configuration problems, such as [9, 10, 12], are based on gen-

uinely bilinear or multi-linear estimates for generalized Radon transforms and FIOs, in settings

where the Fourier transform is an effective tool. One can ask whether the thresholds in this

paper (and in [14] for 2-point configurations), where the families𝜎
𝐭 are typically nontranslation-

invariant, can be lowered by obtaining truly multi-linear estimates for FIOs.
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