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Abstract

We give conditions for k-point configuration sets of thin
sets to have nonempty interior, applicable to a wide vari-
ety of configurations. This is a continuation of our ear-
lier work (J. Geom. Anal. 31 (2021), 6662-6680) on 2-
point configurations, extending a theorem of Mattila and
Sjolin (Math. Nachr. 204 (1999), 157-162) for distance
sets in Euclidean spaces. We show that for a general
class of k-point configurations, the configuration set of
a k-tuple of sets, E}, ..., E;, has nonempty interior pro-
vided that the sum of their Hausdorff dimensions sat-
isfies a lower bound, dictated by optimizing L?-Sobolev
estimates of associated generalized Radon transforms
over all nontrivial partitions of the k points into two
subsets. We illustrate the general theorems with numer-
ous specific examples. Applications to 3-point configu-
rations include areas of triangles in R? or the radii of
their circumscribing circles; volumes of pinned paral-
lelepipeds in R?; and ratios of pinned distances in R?
and R3. Results for 4-point configurations include cross-
ratios on R, pairs of areas of triangles determined by
quadrilaterals in R?, and dot products of differences in
R
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1 | INTRODUCTION

A classical result of Steinhaus [37] states that if E C R%,d > 1, has positive Lebesgue measure,
then the difference set E — E C RY contains a neighborhood of the origin. E — E can interpreted
as the set of two-point configurations, x — y, of points of E modulo the translation group.

Similarly, in the context of the Falconer distance set problem, a theorem of Mat-
tila and Sjolin [30] states that if E C RY, d > 2, is compact, then the distance set of E,
A(E) :={|x—y| : x,y € E} CR, contains an open interval, that is, has nonempty inte-
rior, if the Hausdorff dimension dim;,(E) > %. This represented a strengthening of Falconer’s
original result [7], from A(E) merely having positive Lebesgue measure to having nonempty
interior, for the same range of dim,,(E). This was generalized to distance sets with respect to
norms on R? with positive-curvature unit spheres by Iosevich, Mourgoglou and Taylor [23].

These latter types of result, for two-point configurations in thin sets, that is, E allowed to have
Lebesgue measure zero but satisfying a lower bound on dim;,(E), were extended by the current
authors to more general settings in [14]: (i) configurations in E as measured by a general class of
®-configurations, which can be vector-valued and nontranslation-invariant; and (ii) asymmetric
configurations, that is, between points in sets E; and E, lying in different spaces, for example,
between points and circles in R2, or points and hyperplanes in R¢.

We point out that there are a number of other results that are explicitly, or can be interpreted
as being, concerned with establishing conditions under which configuration sets of thin sets have
nonempty interior, including [3, 6, 13, 24, 36] in the continuous setting and [4, 5, 34, 35] in finite
field analogues.

The purpose of the current paper is to extend our results in [14], from 2-point to quite general
k-point configuration sets for k > 3, using that paper’s Fourier integral operator (FIO) approach,
making use of linear L?-Sobolev estimates, but now optimizing over all possible nontrivial par-
titions of the k points into two subsets. The FIO method we describe works in the absence of
symmetry and on general manifolds, and indeed, exploring that generality, rather than sharpness
of the lower bounds on the Hausdorff dimensions, is the focus of the current work.

However, we will start by illustrating the variety of what can be obtained via this approach with
configurations defined by classical geometric quantities in low-dimensional Euclidean spaces. We
describe a number of concrete examples, but emphasize that the choice of these specific config-
urations is arbitrary; our general results can be applied to other configurations of interest, with
the Hausdorff dimension threshold guaranteeing that the configuration set has nonempty interior
depending on the outcome of optimizing over a family of FIO estimates; see Theorems 2.1 and 5.2
for exact statements. Our first example is the following.

Theorem 1.1 (Areas and circumradii of triangles). If E C R? is compact with dim,,(E) > 5/3,
then

(i) the set of areas of triangles determined by triples of points of E,
{%|det[x—z,y—z]| :x,y,zeE}CR, (1.1)

contains an open interval; and
(ii) the set of radii of circles determined by triples of points in E contains an open interval.

‘We will see in Remark 4.1 that the FIO method does not yield a pinned version of Theorem 1.1,
that is, it says nothing about two-point configuration sets,
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{%Idet[x—z,y—z]l Y EE}

for a fixed z € E. However, in dimension d > 3 it does yield a result for all z € E (or, indeed, any
z € RY), and we have the following d-point configuration result.

Theorem 1.2 (Strongly pinned” volumes). Let d > 3. IfE C R is compact, then for any x° € R,
the set of volumes of parallelepipeds determined by x° and d-tuples of points of E,

V;‘O(E) 1= {|det [xl —x% x2—x° .. xi— x°]| cxlx? . xte E}, (1.2)
has nonempty interior in R if dimy,(E) > d — 1 + (1/d).

Remark 1.3. For d = 3, this improves upon an earlier result of the first two authors and Mour-
goglou [12], which was that if dim,(E) > 13/5, then Vg(E) has positive Lebesgue measure.
(Added in proof: see also [8] for further improvements on lowering the threshold for positive
Lebesgue measure of V;(E).)

Returning to three-point configurations, our method also yields a result about ratios of dis-
tances. Mkrtchyan and the first two named authors studied in [11] the existence of similarities of
k-point configurations in thin sets. They posed the question of whether, under some lower bound
restriction on dimy,(E), for every r > 0 there exist x, y, z € E such that |[x — z| = r|y — z|. We can
partially address this, showing that the set of such r at least contains an interval.

To put this in perspective, note that an immediate consequence of the result of Mattila and
Sjolin [30] is that if dim;,(E) > (d + 1)/2, then

int<{ w—z| : x,y,z,weE}) + 0. (1.3)
|x =yl

(See also [21] for a finite field analogue.) On the other hand, Peres and Schlag [33] showed that if
dimy,(E) > (d + 2)/2, a stronger property holds:

there exists an x € E such that int<{ lljz—_)Z): Y,z € E}) # 0. (1.4)

(See also [22, 25] for extensions of this.) Here we prove a result for a property of intermediate
strength, one which implies (1.3) but is in turn implied by (1.4); however, in dimensions d = 2, 3
our result is proved for lower dimy,(E) than the known range for (1.4):

Theorem 1.4 (Ratios of pairs of pinned distances). Let d > 2 and E C R? compact. Then, if
dimy,(E) > (2d +1)/3,

int<{|x_z| : x,y,zeE,x#y});éﬂ. (1.5)
lx =yl

TThe term pinned is often used to refer to estimates for the supremum over x° € E of expressions such as (1.2). Here we
obtain a result valid for all x°, hence our adoption of strongly pinned for lack of a better term.
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‘We now turn from three-point configurations to a pair of results concerning four-point config-
urations, in R and R?, respectively.

Theorem 1.5 (Cross ratios). Let E C R be compact with dim;,(E) > 3/4. Then the set of cross ratios
of four-tuples of points of E,

(x5 = x1)(x4 — x3)
(3 = x)(x4 — Xx1)

Cross(E) = {[xl,xz;x3,x4] = DXy, Xy, X3,X, € E} CR,

contains an open interval.

So far, all of the configurations described have been measured by scalar-valued functions.
Returning to d = 2, an example of a vector-valued configuration is a variation of Theorem 1.1,
where one takes four points in the plane, say x, y, z, w, and considers the quadrilateral they gen-
erate. Pick one of the two diagonals, say yw; this splits the quadrilateral into two triangles, and
we study the vector-valued configuration consisting of their areas.

Theorem 1.6 (Pairs of areas of triangles). If E C R? is a compact set and has dim,,(E) > 7/4, then
the set of pairs of areas of triangles determined by 4-tuples of points of E,

{(%Idet[x -w,y —w]|, %|det[y -w,z— w]|> P Xx,y,z,wEE }, (1.6)
has nonempty interior in R,

Finally, we give two more applications of the FIO method, this time to configurations with a
more additive combinatorics flavor. There has been considerable work on products of differences
in the discrete or finite field setting; just a few references are [1, 2, 17, 31, 32]. An analogue of some
of these results in the continuous setting is the following.

Theorem 1.7. Ford > 1 and E C R compact, the set of dot products of differences of points in E,
{x=y)-(z-w) : x,y,z,w € E} CR,
has nonempty interior’ if dim;,(E) > % + ‘1—‘.

Another result of sum-product type is

Theorem 1.8 (Generalized sum-product sets). Let Qy, ..., Q; be nondegenerate, symmetric bilinear

forms on RY, Suppose that E; C R are compact sets with dim;,(E;) > % + % forall1 <i< 2L Then
the set of values

l
Z5(Eys s By 1= {Z{Qj(xzf_l,x21) tx'€E,1<ig 21} CR (1.7)
J:

" Added in proof: Similarly, if E C R with dimy,(E) > %, then (E + E)(E + E) has nonempty interior, answering a question
posed to us by Pham; see [27] for related Falconer-type results and references.
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has nonempty interior. In particular, taking all of the Q;(x,y) = x - y, under the same conditions on
the dimy, (E;), the sum-(Euclidean inner) product set of the E;,

{61 ) (o) e () X € B 1 <2t
has nonempty interior.

Remark1.9. This follows from a more general result allowing the forms to be on spaces of different
dimensions; see Theorem 6.1.

2 | THREE-POINT CONFIGURATIONS

To describe a general class of k-point configurations which includes the examples above, we
start by recalling the framework of ®-configuration sets, introduced by Grafakos, Palsson and
the first two authors in [9]. We used this approach in the current article’s prequel, [14] to establish
nonempty interior results for 2-point configuration sets. To minimize the notation, we initially
describe these for 3-point configurations, introducing the basic method and results, which will be
extended to higher k in Section 5.

A 3-point configuration function is initially a smooth ® : R? x R¢ x R? — RP (with p < d); we
use the notation ®(x!, x2, x3), x/ € RY, j = 1,2, 3. Since, for many problems of interest, there are
points, often corresponding to degenerate configurations, where @ has critical points or fails to
be smooth, it is useful to restrict the domain of ®. Anticipating the extension to k-point configu-
rations later, we label the three copies of R? (or open subsets of R%) as X', X2, X3. Furthermore,
for some applications it is useful to allow the X/ to be manifolds of possibly different dimen-
sions d;, j =1,2,3. Thus, in general we define a 3-point configuration function to be a mapping
®: X! xX%?xX3 - T,whereT CC RP,orevena p-dimensional manifold, containing the range
of ® on the compact sets of interest. Function spaces on the X/ are with respect to smooth densi-
ties, which do not play a significant role and therefore are suppressed in the notation.

For compact sets E; C X/, j =1,2,3, define the 3-point ®-configuration set of E;, E,, E,

Ay(E, By, Ey) i= {@(x',x%,x%) : X/ €Ej, j=1,2,3} CT. 1)

The goal is to find conditions on dimy,(E;) ensuring that int(Aq(E;, E, E3)) # 0.

If the full differential D, ,2 ,3® has maximal rank (= p) everywhere, that is, ® is a submersion,
then @ is a defining function for a family of smooth surfaces in X := X' x X2 x X3, and for each
t €T, the level set

Z, ={(x",x*,x)eXx o(x', X3 xP) =t} (2.2)

is smooth and of codimension p in X, and Z; depends smoothly on t. (For p = 1, we denote t by
simply ¢.)

Ifs i < dimy, (E j), let u § be a Frostman measure on E § with finite s j-energy (see the discussion in
Section 3). The choice of the y1; induces a configuration measure, v, on T, having various equivalent
definitions, for example, for g € Cy(T),

— 1 2 3 1 2 3
/T gty du(t) = / / /E o, TOEL DA () D G
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If one can show that v is absolutely continuous with respect to Lebesgue measure, dt;
its density function is continuous; and Ag(E;,E,,E;) is nonempty, then it follows that
int(Ag(Ey, By, E3)) # 0.

Following the general approach of [14], but now exploiting the fact that we are studying 3-point,
rather than 2-point, configurations, we will derive the continuity of the density of dv (denoted
v(t)) from L?-Sobolev mapping properties of any of three different families of generalized Radon
transforms associated to Z, , as follows.

Write a nontrivial partition of {1,2, 3} as ¢ = (¢, |oy), grouping the variable(s) x' correspond-
ing to i € o; on the left and the variable(s) corresponding to i € o on the right. Due to the sym-
metry of L?-Sobolev estimates for FIOs under adjoints, we may assume that |o; | = 2, |ok| = 1;
furthermore, permutation within o; is irrelevant, so up to interchange of those two indices, there
are three such partitions, o = (12|3), (13|2), and (23|1). Corresponding to each of these, for each
t € T, partitioning and permuting the variables according to o, the surface Z; defines incidence
relations,

ZElZlS) =0 %) s (L xh ) ez c (X x XP) x XP,
ZEBIZ) ={0h X3 X))  (xL a3 xh) e Z.}cC X' x X3 x X2, 2.4)

ZzPIW = {2 1 xh) L (A3 x) € Z b e (X2 x XY x X

Each Z¢,with o = (ij|k), defines an incidence relation from X* to X’ x X/, and to this is associated
a generalized Radon transform, R?; all the R‘t’ have the “same” Schwartz kernel, namely the
singular measure supported on Z; ,

A o=yt x?x?) - 8(@(x, X%, x7) —t),

except that the order and grouping of the variables are dictated by o. That is, the kernel of Riij k)
is K, GIO(x!, xJ, xK) : = A(x', x2, x*). (Here y is a fixed cutoff function = 1 on E, X E, X E; which
plays no further role.)

For each o, we can formulate the double fibration condition, (DF),, standard in the theory
of generalized Radon transforms and originating in the works of Gelfand; Helgason [18]; and
Guillemin and Sternberg [15, 16], namely that the two spatial projections from Z{ have maximal
rank, namely

(DF), T Z] = X! x X/ and Ty L Zy > X* are submersions. (2.5)

ij

This implies that not only does R : D(X*) - £(X! x X/), but also
. k i j

R 1 £'X") » D'(X' x X7),

defined weakly by

RYf(x!,x7) = / FG5,

{xk: d(xl,x2,x3)=t}

where the integral is with respect to the surface measure induced by A; on the codimension p
surface {x* : ®(x!,x2, x3) =t} c Xk,
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An alternate description of the configuration measure defined by (2.3) is in terms of the R{; this
was stated and proved in the case of 2-point configuration measures in [14, Section 3]. However,
the proof there goes over with minor modifications to the case of k-point configurations, and for
completeness we give the argument for k = 3 in Section 3.4. Namely, as long as the terms in the
two arguments of the (-, -) pairing below belong to Sobolev spaces on which the bilinear pairing
is continuous, v has a density given by

v(t) = (R ¢ ). 26)

Now, under the double fibration condition (DF),, the generalized Radon transform Rf isa
Fourier integral operator (FIO) associated with a canonical relation

C? c (T*(X'xX/)\ 0) x (T*X*\ 0),

where C; = (N*Z7 ), the (twisted) conormal bundle of Z] (see Section 3). All three of

REHB), REB |2), R§23I1) are Fourier integral operators of the same order,

1 1 p 1 .
m=0+£p_z(d1+d2+d3)=E_ZdtO[, dt0t.=d1+d2+d3.

However, due to the (possibly) different dimensions, in order to understand the optimal estimates
for the operators R?, one knows from standard FIO theory that the estimates are conveniently
expressed in terms of what we will call their effective orders, mgff. These are defined by writing m
in three different ways, accounting for the dimension differences |dim(X! x X/) — dim(X¥)|:

1213y 1
132 1

m= miffl ) Zldl +d3 —d2|, or
231 1

In terms of the mgff, the mapping properties of the operators Ry can be described as

g .72 2
Rt : Lr — Lr—msz—ﬁf’ Vr € R,
for certain (possible) losses /3t°' > 0. If, for some value t , € T, Cfo is nondegenerate, that is, one of
its two natural projections to the left or right, 7r; or 77y, is of maximal rank (which implies that the
other is as well), then /3;’0 = 0, and by structural stability of submersions this is also true for all t
near t ; (see Section 3.) Our basic assumption is that, for at least one o, there is a known 87 > 0
such that RY : L} —» L> . go uniformly fort € T.
eff
To simplify the arithmetic, assume that for all the o = (ij|k), we have d; + d > d;, which

includes the equidimensional case, d; = d, = d;. Then m/!¥) = (p — d,.)/2, and thus our basic
boundedness assumption is that, for at least one of the o,

RO . L2(XF) - 12 X' % X/) uniformly in t . 2.7
¢ - L:(XY) r+§<dk—p>—ﬁ$( ) y 2.7)
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At the start of the argument, the Sj» j=1,2,3, were chosen to be any values such that

dimy,(E;) > s;, and each y; has finite s; energy, so that u; € L? (X7). An easy calcu-

(.sj—d.,-)/Z

lation with Sobolev norms shows that if u; € Lf‘(Rdi) with rp < 0, j=1,2, then u; ®u, €
J

Lfl +r2([Rd1+d2), and this extends to compactly supported distributions on manifolds (see Propo-

sition 3.2 below). Thus,
2 2 2
KXty €L o gy M} €L g ayyp A0d B XU €Ly g

Combining all of these considerations, and focusing on o = (12|3) for the moment, we see that
the bilinear pairing in the expression (2.6) for »(t ) is continuous if

(s3—d3)/2+(d3 —p)/2— B2 4 (s; +5,—d; —dy)/2 >0,
that is,
51+ 8, + 53> dy +dy + p+2602°,

The analogous calculation holds for whichever of the R{ one knows estimates for, and the min-
imum over o of the right hand sides gives a sufficient condition for »(t ) to be continuous. Thus,
the set where »(t ) > 0 is an open set; to conclude that int(A4(E;, E5, E3)) # @, it suffices to show
that Ay (E;, E,, E3) itself is nonempty.

As in [14], this follows by noting that what we have done above already implies the Falconer-
type conclusion that Ag(E;, E,, E;) C RP has positive Lebesgue measure. In fact, if {B(t o€ j)} is
any cover of Ay (E,, E,, E;), one has

1=y (Ey) - pup(Ey) - u3(E3) = (U1 X pp X pt3)(Ey X B X E3)

< (U X g XM3)<¢_1(UB(ti’€j)>>
]

< )y Xy X ) (@7 (B(t €5 )
7

= S u(B(t)) <Co Y, @
J J

by (3.6) below, so that ); i [B(t j,e)l, > C(’P is bounded below. Hence A4 (E,, E,, E5) has positive
p-dimensional Lebesgue measure and is therefore nonempty; by the continuity of »(t ), it in fact
has nonempty interior.

Summarizing, we have established the following method for proving that 3-point configuration
sets have nonempty interior:

Theorem 2.1.

(i) With the notation and assumptions as above, define

sp = p+min (dy +dy + 26029, d +dy + 26197, d, + d; + 2631V,
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where the min is taken over those of the partitions o = (i j|k) for which
(a) the double fibration condition (DF), (2.5) holds, and
(b) one has uniform boundedness of the generalized Radon transforms Ry with loss of < °
derivatives (2.7).

Then, ifE; C X/ are compact sets with dim,,(E,) + dim,,(E,) + dim,,(E;) > s, it follows that
int(Ag(Ey, By, E3)) # 0.

(ii) In particular, suppose that X' = X? = X3 = X, with dim(X) = d, and there is a partition o =
(ijlk) such that (a) holds and the canonical relations C{ are nondegenerate (so that f° = 0). It
follows that, if E C X is compact with dim,,(E) > (2d + p)/3, then int(Ag(E, E, E)) # 0.

3 | BACKGROUND MATERIAL

We give a brief survey of the relevant facts needed in the paper, referring for more background
and further details to Hérmander [19, 20] for Fourier integral operator theory, Mattila [28, 29] for
geometric measure theory, and [14] for the case of 2-point configurations.

3.1 | Fourier integral operators

Let X and Y be smooth manifolds of dimensions n;, n,, respectively. Then T*X, T*Y are each
symplectic manifolds, with canonical two-forms denoted wy:y, wr«y, respectively. Equip T*X X
T*Y with the difference symplectic form, wp.x — wry. For our purposes, a canonical relation will
mean a submanifold, C ¢ (T*X \ 0) X (T*Y \ 0) (hence of dimension n; + n,), which is conic
Lagrangian with respect to wp«y — wrsy-.

Forsome N > 1,let¢ : X x Y x (RN \ 0) — R be a smooth phase function which is positively
homogeneous of degree 1in 6 € RV, that is, ¢(x,y,70) = 7 - $(x,y,0) for all T € R,. Let Iy be
the critical set of ¢ in the 6 variables,

Ty 1 ={(x,,0) X XY x RV \ 0) : dpp(x,y,6) =0},
and
Cy 1=1{(x,d,p(x,y,0);y, =d (X, ¥,0)) : (x,9,6) € Zy},
both of which are conic sets. If we impose the first-order nondegeneracy conditions
d.¢(x,y,0) # 0and d,¢(x, y,0) # 0,V(x, ,0) € Zy,
then C, C (T*X \ 0) X (T*Y \ 0). If in addition one demands that
rank[dx,yﬁdeqS(x,y, 6)] =N, V(x,y,0) e Z¢,

then X4 is smooth, mdim(Zy) = n; + n,, and the map

243 (x,,0) = (x,d,$(x,y,0);y, —d,$(x,y,6)) € Cy (3.1)
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is an immersion, whose image is an immersed canonical relation; the phase function ¢ is said to
parametrize Cy.

For a canonical relation C ¢ (T*X \ 0) X (T*Y \ 0) and m € R, one defines I"(X,Y;C) =
I"™(C), the class of Fourier integral operators A : £'(Y) — D'(X) of order m, as the collection of
operators whose Schwartz kernels are locally finite sums of oscillatory integrals of the form

K(x,y)=/ e#r9q(x, y,0) d6,
RN

where a(x,y,0) is a symbol of order m — N /2 + (n; + n,)/4 and ¢ is a phase function as above,
parametrizing some relatively open Cy C C.

The FIO relevant for this paper are the generalized Radon transforms R, determined by defin-
ing functions @ : X XY — RP satisfying the double fibration condition that D, ® and D,® have
maximal rank. The Schwartz kernel of each R, is a smooth multiple of § p(d)(x, y) —t), where § b
is the delta distribution on RP. From the Fourier inversion representation of § p» We see that R
has kernel

K, (x,y) = / (@D b(x 1) . 1(8) dB,
Rk

where b € C;°. Since the amplitude is a symbol of order 0, R; is an FIO of order 0+ p/2 —
(n; + n,)/4 = —(n; + n, — 2p)/4 associated with the canonical relation parametrized as in (3.1)
by ¢(x,y,0) = (®(x,y) —t) - 6, which is the twisted conormal bundle of the incidence relation
Z,,

k k
Cy :N*Z{ = {<x,detbj(x,y)ej;y,—detbj(x,y)6j> T (x,y)€Z,06€ R¥ \0}.
j=1 j=1

For T-valued defining functions @, as in the general formulation of our results, this discussion is
easily modified by introducing local coordinates on T.

For a general canonical relation, C, the natural projections 7r; : T*X X T*Y — T*X and 7y :
T*X X T*Y — T*Y restrict to C, and by abuse of notation, we refer to the restricted maps
with the same notation. One can show that, at any point ¢, = (xy, &y; ¥, 7o) € C, one has
corank(D7; )(c,) = corank(Drry)(c,); we say that the canonical relation C is nondegenerate if this
corank is zero at all points of C, that is, if Dzr; and D7y are of maximal rank. If dim(X) = dim(Y),
then C is nondegenerate if and only if 7}, 7y are local diffeomorphisms, and then C is a local
canonical graph, that is, locally near any ¢, € C is equal to the graph of a canonical transforma-
tion. If dim(X) = n; > n, = dim(Y), then C is nondegenerate if and only if 7; is an immersion
and 7y, is a submersion. To describe the L?-Sobolev estimates for FIOs, it is convenient to normal-

lmy —my |

ize the order and consider A € I~ 2 (C). One has

Theorem 3.1 [19, 20]. Suppose that C C (T*X \ 0) X (T*Y \ 0) is a canonical relation, where
In1 =l
dim(X) = n;, dim(Y) = n,, and A € I~ 7

4

has a compactly supported Schwartz kernel.

(i) If C is nondegenerate, then A LSZ(Y) - L?_m ﬁ(X) for all s € R. Furthermore, the operator
norm depends boundedly on a finite number of derivatives of the amplitude and phase function.
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(ii) If the spatial projections from C to X and to Y are submersions and, for some , the corank of
D7 (and thus that of D7) is < | at all points of C, then A : L2(Y) — L? , (X).

s—Mmyp—3

3.2 | Frostman measures and s-energy

Also recall (see Mattila [28, 29]) that if E ¢ R? is a compact set and 0 < s < d satisfies s <
dimy,(E), then there exists a Frostman measure on E relative to s: a probability measure u, sup-
ported on E, satisfying the ball condition

uB(x,8) <8, VxeRY, 0<58 <1, (3.2)

and of finite s-energy,

/E/Elx—yl‘sd#(X)d#(yRoo,

or equivalently,
[P 1217 dg < o, (33)
Since u is of compact support, £ € C* and thus (3.3) implies
peLy_, ,RY. (34)

This also holds in the general setting of E C X, a compact subset of a d-dimensional manifold X
with dimy,(E) > s.

3.3 | Tensor products of Sobolev spaces

We need an elementary result on the tensor products of Sobolev spaces of negative order:

Proposition 3.2. For 1< j <k, let X/ be a C*® manifold of dimension d j» and suppose that

u; € ij’comp(Xj), 1 < j <k, with each ri < 0. Then the tensor product u; ® --- ® u, belongs to
2 k _ vk

Lr,comp(X1 X - X XF), forr = ZFl rj.

Proof. Due to the compact support assumption, we can localize to a coordinate patch on each
manifold, reducing the problem to showing that

12 (R) @ - ® L2 (R%) & L2(REV),

and this follows from the fact that each @;(¢/) - (¢/)"7 € LA(R%), together with the lower bound
H§=1<§j>rj > (&L, ..., E5y on RZ Y, -
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3.4 | Justification of density formula

To justify (2.6), we argue as follows, restricting for simplicity the analysis to the case k = 3 dis-
cussed in Section 2, when @ : X! x X? x X> — RP. The proof extends to ® with codomain a gen-
eral T of dimension p using local coordinates on T, and also extends in a straightforward way to
general k.

Without loss of generality, we consider o = (123). Fora y € C;°(RP)supported in a sufficiently
smallball, y = 1 near 0,and with / y dt = 1,set y (t) :=¢7P )((tz) the associated approximation

to the identity, which converges to 5(t ) weakly as € — 0*. Define RE1§I3) to be the operator with
Schwartz kernel

Kf(xl,xz;x3) = xo(®(xh, x%,x%) —t).
(12]3)

Then R, 77 (u;) € C®(X ! x X?) and depends smoothly on t, and thus we can represent the mea-
sure v in (2.6) as the weak limit of absolutely continuous measures with smooth densities,

—1; € T (1213)
v(t) = lim v(t) = lim (R{7(us), 1 X o), (35)

with v having a density, which is in fact continuous in t, if the integral represented by the pairing
converges. Now, the operators R??B) el _°°(CE12|3)), with symbols which converge in the Fréchet

topology on the space of symbols as € — 0 to the symbol of R . Since the singular limits REHB)

satisfy (2.7) (for o = (12|3)), so do the R??B) uniformly in €. Hence, v(t ), being the uniform limit
of smooth functions of t, is continuous. Furthermore, since €? - y, is bounded below by a constant
times the characteristic function of the ball of radius ¢ in RP, we have that

V(B(t,€)) 1= (u; X py X ,u3)<{ (xh,x%,x%) |d>(x1,x2,x3) —t ’ < e}) < Cye?, (3.6)

with constant Cg, uniform in t, which was used in (2.8) above.

4 | PROOFS OF THEOREMS ON 3-POINT CONFIGURATIONS

We are now able to prove the theorems stated the Introduction that concern 3-point configura-
tions: Theorem 1.1 about the areas of triangles in R? and the radii of their circumscribing circles;
the three-dimensional case of Theorem 1.2 regarding strongly pinned volumes of parallelepipeds;
and Theorem 1.4 on ratios of pinned distances. For all of these, we will show that Theorem 2.1 (ii)
applies for appropriate choice of o.

4.1 | Areas of triangles in R?

We start with part (i) of Theorem 1.1, on areas. The absolute value of the determinant is irrelevant
for the conclusion of nonempty interior; this will also be true for the other results where the
configuration measurements have absolute values. Additionally, the 1/2 can be ignored. So, we
start with the scalar-valued configuration function,

d(x', x?, x%) = det [x! —x?, x* — x’]
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on R? x R? X R?. Here, d = 2, p = 1, and we will show that, using o = (12|3), that the canoni-
cal relations Cy are (after localizing) nondegenerate, so that Theorem 2.1 (ii) yields a result for
dimy(E) > (2-2+1)/3=5/3.

We compute the gradient of @ by noting that, on R? X R?,

du,v(det [u,v]) = (_Ula ul),
where ut = (—u,, uy) for u = (u;, u,). Hence,

A, 2,3 = ((x3 - xz)L, (x! = x3)l, (x* - xl)L>. (4.1)

Given a compact E C R? with dim;,(E) > 5/3, pick any s with 5/3 < s < dim;,(E), and take
u to be a Frostman measure on E with finite s-energy. Then we claim that one can find points
x}, x2, x; € Eand a § > 0 such that'

det [x; — x3, x3 — x| # 0and 4.2)
,u(B(xé,é’)) >0,j=1,23V0<d <. (4.3)

To verify this, suppose not. Then, for every x!, x?, x> € E and any 6 > 0, either

(1) ®(x!,x% x3)=0,ie., x!, x2, x3 are collinear, or
(ii) for some j = 1,2 or 3, and some &’ < &, u(B(x/,8")) = 0.

Now, Z, = {x € R® : ®(x!,x?, x3) = 0}is a five-dimensional algebraic variety. Since u X u X u
has finite 3s-energy, and 3s > 5, it follows that (u X u X u)(Z,) = 0, and hence (u X u X u)(E X
E X E\ Z;) = 1. We can in fact make this quantitative: Assuming without loss of generality that
E is contained in the unit square centered at the origin, for € > 0, let Z_ :={x € RS : |x| <
2 and |®(x)| < €}. Then, since Z, is a rigid motion in R® of the Cartesian product of R? with a
quadratic cone in R*, one sees that Z_ is covered by ~ ¢~ balls of radius ¢ (away from the conical
points), together with ~ ¢! balls of radius ¢!/? (covering a tubular neighborhood of the conical
points). Since u satisfies the ball condition (3.2) on R?, u X u X u satisfies the corresponding con-
dition on R® with exponent 3s and is thus dominated by 3s-dimensional Hausdorff measure (up
to a multiplicative constant). Thus,

UXUXU(Z)Se>-e¥ et e3/2 <375 5 0ase — 0.

Thus, if we define F, :=EXEXE \ Z., which is compact, and ft, 1= (u X uX |y, then
f.(F.) > 1/2 for € sufficiently small. By (ii) above, every x € F, isin a (u X u X @)-null set which
is also relatively open, the intersection of F, with a set of one of the three forms,

B(x!,8") xR>x R?, R?>xB(x%6")xR?orR*xR?xB(x3,8).

Since F, is compact, it is covered by a finite number of these, and hence it follows that (u x

u X u)(F.) = ji.(F,) = 0. Contradiction. Hence, there exists an x, = (x;, x7,X;) € E X E X E such

" Note that (4.3) just says that the xé belong to supp(u) (which by Frostman’s Lemma is C E but can be a proper subset);
however, for our purposes, it is useful to express this as (4.3).
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that (4.2) and (4.3) hold. We now show that localizing near this base point allows us to apply The-
orem 2.1.

Set , = (I)(x(l), x(z), xg) #0; by continuity of ® and relabelling there is a & >0 with
O(x!,x%,x3)#0forx) e X/ := B(xg, 8), j =1,2,3. We claim that for ®|y1,y25x3 and ¢ close to
tg, (DF) (153 is satisfied and and CEIZB) is nondegenerate, so that 8123 = 0 and the last statement
of Theorem 2.1 applies with d = 2 and p = 1; hence, if dim;,(E) > 5/3, then int(4;(E)) # 0.

That (DF)(1,3) is satisfied is immediate, since all three components of d,1,2 ,3® are nonzero
on X! X X? x X3 (the linear independence of the first two by (4.2) and the nonvanishing of third
by that linear independence), which is an even stronger condition. As for the canonical relations,
one computes

L L L
Ct(12|3) = {(xl,xz,e(x3 —x*)7,0(xt = x) 75 X, 0(x* — x1) ) (b xtxh e Zt(12|3), 0 # O}.
Now, shrinking § if necessary, for (x!, x?, x3) € X' x X?> x X* and ¢ near ¢, for a smooth, X-
valued function y'(x?, x3, t) we can parametrize Zt(12|3) by
(V'3 0 +ulx? = x%), x%, x%), (3 x)eX* XX, ueR;
for example, one can take
)

yr(x?, x3,1) = t’x2 - x3‘ C(x2 =)

Thus, (x2, x3,u, 6) form coordinates on C[12’3, with respect to which
L
mr(x*,x%,u,0) = <x3, 0(x* — x'(x% x%,u)) ),

from which we see that
|1 0 0
Dx3,u,67TR |« _e(xz _ x3)L (xz _ xl)L ’

which is of maximal rank since the last two columns are linearly independent. Thus, 7y is a sub-
mersion; by the general properties of canonical relations from Section 3.1, 7 is an immersion and

C§12|3) is nondegenerate. ]

4.2 | Circumradii of triangles in R?

We now turn to the proof of Theorem 1.1(ii). Changing the notation to denote the vertices of the
triangle as x,y,z € R?, the circumradius R(x, y, z) of /\xyz is the distance from x to the inter-
section point of the perpendicular bisectors of xy and xz. For computational purposes, we work
with

|z = x]2((y — x) - (z = x))?

(-0 c-n)

®(x, y,2) :=2R2(x,y,z)=% ly—x|? + |z — x|? + . 49
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with the homeomorphism r — 2r? of R, of course preserving nonempty interior. With the same
hypersurface Z, as in the proof of part (i) corresponds to degenerate triangles, 5/3 < s < dimy,(E)
and Frostman measure g, as in (i) we can find x°, y°, z° € supp(u) such that all of the compo-
nents of d® are nonzero. Picking o = (132), the incidence relation Z7 = {(x,z;y) : ®(x,y,z) =
t} satisfies the double fibration condition (DF), for t near t, = ®(x°,°,2z%) and x e X!, y €
X2, z € X3, neighborhoods of x°,y°,z°% respectively. We can thus assume that x, ER,y €
R?, z € R? form coordinates on Z7, with x; a function of x,, y, z, and rotating in x if necessary,
can further assume that d,x; = 0 at x% y, z% and is therefore small nearby. On C? = (N*Z7)/,
these together with the radial phase variable 6 € R \ 0 are coordinates.

To show that the canonical relation C; is nondegenerate, it suffices to show that 7 : C7 —
T*X? is a submersion. Since the y coordinate of 7z(x,,y, z,0) = y, it suffices to show that

Dn
k| ——| = 2.
ran [D(xz,z,e)]

Setting

a=ly-x>, b=@-x)-(z-x), c=lz—x>, d=0@-x)*z-y),

Dn  c¢b b cb cb? 0
o=z (1-3) - (5% ) )

where J = [(1) _01] is the standard 2 X 2 symplectic matrix, representing the L map. The operator

one calculates

pencil I — AJ A € R, is nonsingular, while the second term in (4.5) is small near x°,y°, z°, and

thus Dy /Dz is nonsingular, and Cy is nondegenerate. Thus, as for areas, Theorem 2.1 (ii) applies

fors > 5/3. Ol

4.3 | Volumes of strongly pinned parallelepipeds in R?

For the proof of the d = 3 case of Theorem 1.2, the configuration function ® on R3 X R3 x R3 is
®(x',x% x%) =det [x!, x, X*] = x' - (¥*xx%) = —x? - (x! xx°) = %7 - (x! x x?).

We will show that Theorem 2.1(ii) applies for o = (12|3), with k =3, p =1 and d = 3, giving a
positive result for dim,,(E) > (2 -3 + 1)/3 = 7/3. One computes

dd, 2, = (22 xx?, —x! xx?, x! x x?).
Asin the previous proofs, given a compact E C R3, contained in the unit cube and with dim,, (E) >
7/3, pick s with 7/3 < s < dimy,(E) and let u be a Frostman measure of finite s-energy. We claim

there exist x(l), x(z), xS € E and § > 0O such that

1 2 1 3 2 3
Xy X x5 #0,, xy X x5 #0, x5 Xx7 #0, and (4.6)

M(B(xé,é’)) >0,j=1,23V0<d <8. (4.7)
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As before, we proceed with a proof by contradiction: suppose not. Then for every x =
(x!,x2,x3) € R% and § > 0, either

(i) atleast one of x' x x/ = 0, for some 1 <i < j < 3,0r
(ii) for some j = 1,2 or 3, and some &’ < &, u(B(x/,8")) = 0.

On R, i X u X w has finite 3s-energy and satisfies the ball condition with exponent 3s > 7. For
each1<i<j<3ande>0, W/ :={x €R’: |x! x x/| < ¢} is a tubular neighborhood of {x :
x! X x/ = 0}, a codimension two quadratic variety in R® which is a rigid motion in R® of the Carte-
sian product o_f'IR3 with a 4-dimensional cone in R®. Following the analysis in the previous proof,
each of the W,/ can be covered by ~ ¢~7 balls of radius ¢ and ¢~ balls of radius ¢!/2, and thus

(X ux W) <37 4+3/23 <37 L pase — 0.

Hence, if we let F, = EXEXE\ (Ui,jWéj) and ft, = (u X 1 X ()|p., then F, is compact and
f.(F.) > 1/2 for e sufficiently small. On the other hand, F. is covered by fi.-null and relatively
open sets which are intersections of F, with sets of the three forms
B(x',8")xR3*xR3, R3xB(x?8)xR>?orR>xR>xB(x3,8),

and the compactness of F, leads to a contradiction. Hence, we can find xé, xg, xg and & such that
(4.6) and (4.7) hold. Further restricting & if necessary, we can assume that x! X x?, x! x x* and
x2x x3are # 0. forall x/ € B(x(]),é) =:XJ,j=1,2,3.

Restricting @ to X' X X* X X, (DF) )3 is satisfied; in fact all three components of d® are
nonzero. On the incidence relation Zt(12|3)
R2, solving for x! with

, we can take as coordinates x2, x* and i = (u,,u;) €

xt =yl x3,0) + Uy Xy + UsXs,
for some smooth function y'. Thus,

Ct(12|3) = {(x",x%,6(x* x x*), -0 (x' x x*); x*, -0 (x" x x?))

DX EXT XX, UER? 640}

Then 7y, is a submersion since, with §* = —8(x! x x?), D2, o€ is surjective: one has D&*(9p) =
x! x x2, D§3(6u3) = 0(x? x x*) and the range of D,.&3 is (x!)*; together, these span all of the
J¢3 directions.

Since 7y is a submersion, C[(12|3 ) is nondegenerate, and Theorem 2.1(ii) applies, this time with

d = 3and p = 1; hence, if dim;,(E) > 7/3, then int(V(E)) # #. QE.D.

Remark 4.1. The proof for d > 4 will be presented in Section 6.2. On the other hand, Theorem 1.2
does not give a positive result for pinned volumes (areas) in two dimensions,

VI(E) := {det [x!, x}] : x',x* € E}.

In fact, since this concerns a 2-point configuration, it would already fall under the framework
of [14]; however, the projections 7;, 7 from the canonical relation to T*R? both drop rank by
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1
1 everywhere, resulting in a loss of §112) = 1/2 derivatives. Hence, Rguz) el _E(C?'z)) is not
smoothing on L?-based Sobolev spaces, and the FIO approach to configuration problems does
not imply a result in this case.

4.4 | Ratios of pinned distances

For E ¢ R4, d > 2, we prove Theorem 1.4 concerning the set defined in (1.5). On (R4, Jet

1_ 43
[0)) xl’xz’x3 = u

( )=
We show that, after suitable localization, Theorem 2.1(ii), with k = 3, p = 1, applies for o =
(12]3), implying a nonempty interior result when dim;,(E) > (2d + 1)/3.

One computes

do(x!, x%,x3) = |x1 - xZ’_z((x2 —x),—(x! = x?), —(x' = x%)).

Let dimy(E) > (2d +1)/3 and u be a Frostman measure on E of finite s-energy for some
(2d +1)/3 < 5 < dimy(E). Then u X u X u is dominated by 3s-dimensional Hausdorff measure,
and 3s > 2d + 1 > 2d. Since {(x! — x?)(x! — x*)(x? — x*) = 0} is a union of three 2d dimensional
planes, as above one can show that there exist xé, xé, xg € supp(u) such that xf) — x(J) #£0,i#j.
Taking X/ = B(xé, ) for suitably small &, all three components of d® are nonzero and, setting
ty = ®(x,, x, x;), the double fibration condition (DF),, is satisfied by Z7 for t close to t.

On Z?, solving for x* = x! — t|x! — x*|w we can take as coordinates (x',x* w) € RY x R? x
s4-1  Then, the canonical relation of Z7is

o = (N*Z7Y
={(-ns x =Xt = X2 o, 0t]x! — x*|w) @ x!,x* € R, we st o+ 0},

where we have suppressed the T*(X! x X?) components as irrelevant for analyzing 7. One eas-
ily sees that the projection from C7 to T*X 3 is a submersion, so that Theorem 2.1 (ii) applies
as claimed.

5 | k-POINT CONFIGURATION SETS, GENERAL k

To describe results for general k-point configurations, let X i 1<i<k,and T, be smooth man-

ifolds of dimensions d; and p, respectively. We sometimes denote X! x --- x X¥ by X, and set
. . k

dy :=dimX) = 3., d;.

Definition 5.1. Let ® € C*(X,T). Suppose that E; C X I 1<i<gk,are compact sets. Then the
k-configuration set of the E; defined by ® is

Ag(Ey,Ey, .o, By) i= {@(x),..,x*) 1 X' €E, 1<i<k} CT. (5.1)
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We want to find sufficient conditions on dimy(E;) ensuring that Ag(E,E,,...,E;) has
nonempty interior. To this end, now suppose that ® : X — T is an submersion, so that for each
teTl,Z, .= ®~1(t)is a smooth, codimension p submanifold of X, and these vary smoothly with
t. For each t, the measure

A = 5(<I>(x1,...,xk) —t) (5.2)

is a smooth density on Z; ; using local coordinates on T, one sees that this can be represented as
an oscillatory integral of the form

where the a(-) belongs to a partition of unity on T. Thus, 4, is a Fourier integral distribution on
X; in Hormander’s notation [19, 20],

A, € 1@P=dod/4(X: N*7,), (5.3)

where N*Z, c T*X \ 0 is the conormal bundle of Z; and the value of the order follows from the
amplitude having order zero and the numbers of phase variables and spatial variables being p and
d.;, respectively, so that the orderism := 0+ p/2 — d;, /4.

As in the analysis of 3-point configurations in Section 2, we separate the variables x!, ..., x
into groups on the left and right, associating to ® a collection of families of generalized Radon
transforms indexed by the nontrivial partitions of {1, ..., k}, with each family then depending on
the parameter t € T. Write such a partition as ¢ = (o | o), with |o; |, |og| > 0, |o; | + |og| = k,
and let ;. denote the set of all such partitions. We will use i and j to refer to elements of o; and
oy, respectively. Define df = ¥, d'and d§ = Licoy d', so that d7 + d = d,.

Foreacho € Py, 0; = {ij, ..., i|UL|}and or = {1 ...,j|c,R|}, where we may assume thati; < -+ <
i|g, 1 and j; < -+ < ji5, |- With a slight abuse of notation we still refer to as x the permuted version
as x,

k

x = (xp;xg) 1= (xil, s xhorl cxd L x/iorl )
Write the corresponding reordered Cartesian product as
X; X Xp 1= (Xil X e xXilffL‘) X (le X o ijlf’Rl>;
again by abuse of notation, we sometimes still refer to this as X. The dimensions of the two factors
are dim(X;) = df and dim(Xy) = d, respectively. The choice of o also defines a permuted version
ofeach Z, ,

zZ] i={(xp;xg) ¢ ®(x) =t} C X XX, (5.4)

with spatial projections to the left and right, 7y, : Z7 — X and 7y, @ Z{ — Xg. The integral
geometric double fibration condition extending (2.5) to general k is the requirement,

(DF), 7y : Z; - Xpand m, © Z] — Xy are submersions. (5.5)
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(Note that (DF), can only hold for a given o if p < min(d7, d3).)
If (DF), holds, then the generalized Radon transform R¢, defined weakly by

RS f(xy) = / i)
fxg: @(xp,xg)=t}

where the integral is with respect to the surface measure induced by A; on the codimension p
submanifold {xp : ®(x;,xg) =t} ={xg : (x1,Xg) € Z]} C Xy, extends from mapping D(Xp) —
EX;)to

RS 1 €'(Xp) — D/ (X))
Furthermore,
C;I = (N*Zg), = {(XL, §L’ xR,fR) . (XL,xR) (S ZU, (gL,—gR) J_ TZ:I} (56)

is contained in (T*X} \ 0) X (T*Xg \ 0). Thus, R{ is an FIO, R{ € I"(X[, Xg; Cy), where the
order m is determined by Hérmander’s formula, m = 0 + p/2 — d,,, /4. Given the possible differ-
ence in the dimensions of X; and Xy, due to the clean intersection calculus, it is useful to express
m as

1
m = mg — - |df —dg|,
where the effective order of R{ is defined to be

miy = (2p = di + [d° = &°|) /4 = (p — min (a5, d5)) /2. (5.7)

As recalled in Section 3.1, if Cf is a nondegenerate canonical relation, that is, the cotangent space
projections 7z, : Cf — T*Xp and 7 : CY — T*Xp have differentials of maximal rank’, then

R L(Xp) —» L}, .(Xp).

As in the result concerning 3-point configurations in Theorem 2.1, it is natural to express the
estimates for possibly degenerate FIO in terms of possible losses relative to the optimal estimates.
As for k = 3, our basic assumption is that, for at least one o, the double fibration condition (5.5)
is satisfied and there is a known 89 > 0 such that, for all r € R,

RY - LX(Xg) — Lf_msz_ go (X;) uniformly fort € T. (5.8)

Now suppose that, for 1 <i <k, E; C X' are compact sets. Our goal is to find conditions on
the dim,,(E;) ensuring that Ay(E;, E,, ..., E; ) has nonempty interior in T. For each i, fix an s; <
dimy,(E;) and a Frostman measure y; on E; of finite s;-energy. Define measures

My = py X Xy on Xy and pg 1= gy X Xy on Xp.

This is a structurally stable condition, so that if Cfo is nondegenerate, then Cy is nondegenerate for all t in some neigh-
borhood of t .
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By (3.4), each y; € L(zsi_ i /2(X 1), so that Proposition 3.2 implies that y; € LfL(X 1) and yy €
L} (Xg), where r; = 2 Zli’il(sil —d;)and rg = 3 Z:iﬁl(sjl —d;)), respectively. The analogue of
the representation formula (3.5) for v(t ), justified by a minor modification of the k = 3 case in

Section 3.4, is

Our basic assumption, that (5.8) holds for the o in question, then implies that R{(ug) €

2 g (X}).Since y; € Lfg (X}), the pairing in (5.9) is bounded, and yields a continuous func-

rR—m:ff—
tion of t, if

rg—mg—B% +rp 0. (5.10)

(-]

and using (5.7), we see that (5.10) holds if and only if

Noting that

VL+}’R=

N | =

k

tot
P = d® +2(mgff+ﬁc)
~

= dtOt + p - l’Ilil’l (dL’ dR) + 266

= max (d;,dg) + p + 2p°.

Optimizing over all o € P,, we obtain the analogue of Theorem 2.1 for k-point configuration
sets:

Theorem 5.2.

(i) With the notation and assumptions as above, define
S = min (max (d;,dg) + p + 2p°),

where the min is taken over those o € P). for which both the double fibration condition (5.5) and
the uniform boundedness of the generalized Radon transforms R{ with loss of < ° derivatives
(5.8) hold.
Then, if E; C X', 1<i<k, are compact sets with Zle dimy,(E;) > sq, it follows that
int(Ag(E,, Ey, ..., Ey)) # 0.
(ii) In particular, if X' = --- = X* = X, with dim(X,) = d, and if E C X, is compact with

dim,, (E) > %[min (max (d, dg) + p)l, (5.11)

where the minimum is taken over all o € Py such that the canonical relations C{ are nondegen-
erate, then int(Ay(E, E, ..., E)) # 0.
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6 | PROOFS OF THEOREMS FOR k-POINT CONFIGURATIONS, k > 4

We now use Theorem 5.2 to prove Theorem 1.5 on cross ratios of four-tuples of points in R, The-
orem 1.2 concerning strongly pinned volumes of parallelepipeds generated by d-tuples of points
in R? for d > 4, Theorem 1.6 on pairs of areas of triangles in R2, Theorem 1.7 on dot products of
differences and Theorem 1.8 on generalized sum-product sets.

6.1 | Crossratios on R

We prove Theorem 1.5 on the set of cross ratios of four-tuples of points in a set E C R. This will
be an application of the second part of Theorem 5.2, with d; =1, 1 < j < 4. Since each of the
variables in one dimensional, we use subscripts rather than superscripts. Thus, set ® : R* - R,

(27 — x3)(x; — X4)
(37 = x)(x; — x3)’

D(x1, X5, X3, X4) = [X71, X5 X3, X4] =

and introduce the notation

xij:xi—x 1<l<_]<4

j’
Then one computes
_ -2
d®(xy, X5, X3, X4) = (X14%23) " (X23%24X34, —X13X14X345 X14X24 X345 —X12X13X3)-

Given a compact E C R with dim,,(E) > 3/4, let s be such that 3/4 < s < dim(E) and u be a
Frostman measure on E of finite s-energy. We claim that

(3xY, x9, x3, x§ € supp(w)) s.t. x) — x? £0, foralll<i<j<4, (6.1)

so that all four components of d® are nonzero at x° := (x?,x3, x2, xJ). Arguing as in the proofs
for 3-point configurations in Section 4, set

Z={ xeR*: xX;;i =0 p,
fres ILee)

1<i<j<4

on the complement of which all of the components of d® are nonzero. Noting that Z is a union of
hyperplanes, dim;,(Z) = 3; thus, since u X u X ¢ X u is dominated by 4s-dimensional Hausdorff
measure and 4s > 3, (u X u X u X w)(Z) = 0. By a slight variant of the reasoning in Theorems 1.1
and 1.2, one obtains (6.1). This actually shows that the conditions in (6.1) hold for a set of full
U X X u X umeasure, which we use below.

Now let o = (12|34). Setting t° = ®(x°), and taking the X/ to be sufficiently small neighbor-
hoods of xj.’, 1 < j < 4, it follows that for ¢ close to t° the double fibration condition (5.5) holds on

Z7i={x : d(x) =t} CX 1= (X' x X)X (XXX =1 X| X X.

Since d, @ # 0, on Z7 we can solve for x; as a function of x,, x5, x, and the parameter ¢ (possibly
again reducing the size of the neighborhoods of the x?),



184 GREENLEAF ET AL.

1
xl = y (x2, x3, X4, t).

Furthermore, using the fact that the factor (x;,x,;)~2 in all of the terms of d® can be absorbed
into the radial scaling factor, as in (5.6) we define

!
C? 1= (N*Z7)" = {(x, #; X3, X4,0X14X04X34, —0%X5X13X23)

(X X3,x,) EXP XX X XY, 0#0},

where we have suppressed the T*(X! x X?) components on the left. We claim that this is a local
canonical graph, so that the family of FIOs lose no derivatives (3° = 0); the desired result then
follows from Theorem 5.2 (ii), using d; = dgr =2, k =4 and p = 1in (5.11).

To see that C;’ is a local canonical graph, it suffices to show that the differential of 7y : Cf -
T*X; hasrank 4. Due to the (x5, x,) in the spatial variables, this is equivalent to showing that

D(§3,€,) | *1a%2aX34s 9<x34<x14 + x24y)1(2)>

h 1 1
D®,x2) | =xppx13%3, —6(—X13%a3 + X1p%13 + Xp3 X13Vy, + xlzyx2>)

is nonsingular. However, the determinant of this is an algebraic function, not identically vanishing
on Z7, so its zero variety is three-dimensional and thus a null set with respect to 4s-Hausdorff
measure, and hence with respect to u X u X u X u. Thus, choosing our basepoint x°, and then
shrinking the X/ suitably, to avoid this, ensures that C? is a local canonical graph, finishing the
proof of Theorem 1.5.

6.2 | Strongly pinned volumes in R%, d > 4

With Theorem 5.2 in hand, we now prove Theorem 1.2 concerning pinned volumes in R¢ for
d > 4, following the lines of the proof for d = 3 in Section 4. On (R9)4, let ®(x!,...,x%) =
det[x!, x2,..., x%]. We will show that for o = (12...(d — 1)|d), some t, # 0 and with the domain
of @ suitably localized, condition (DF), is satisfied and the canonical relation CZ) is nondegener-
ate; these conditions then hold for all ¢ near ¢, by structural stability of submersions. Using just
this o, applying (5.11) with d; = d(d — 1) > dy = d, p =1 and 4 = 0 shows that if dim,(E) >
1/d)d(d—-1)+1)=d -1+ (1/d) then int(A4(E, ..., E)) # @, proving Theorem 1.2.
To verify the claims for o, we start by noting that

do = <x(l), —x@ (—l)d_lx(d)>,

where

x) o =x (X' AXEA o AXITEAXITEA /\xd),

where * is the Hodge star operator, which is an isomorphism #: A?"'R? — R?, As in the proof
for d = 3, note thatif d — 1 + (1/d) < s < dim(E) and u is a Frostman measure on E of finite
s-energy, one can find xJ, x2, ..., xg € supp(u) and & > O such that x4 # 0, 1 < j < d, whenever
x/ e B(xé, §=:X/,1< J < d. This follows by a straight-forward modification of the argument
in Section 4.3.
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For1 < j < d, eachvariety W) : = {x € R? : x0) = 0 € R4} is codimension (d — 1), and thus
their union is a null set with respect to ®“u, since sd > d? — (d — 1). Restricting ® to X! x --- X
X4, (DF), is satisfied. In fact, each of the components of d®,

dqu)|x0 = (_l)jX(J)’

is nonzero, since when paired against xé it gives <I>(x(1), X3 #£0.
Thus, for o = (12...(d — 1)|d) and ¢ close to ¢, as coordinates on the incidence relations Z7 we
can take (x?, ..., x4) € X? x - x X4 and i = (u,, ..., uy) € R%"!, with x! determined by

x! = y!(x?, ...,xd,t) + U, X% o+ ugxd,

for some smooth function y', since the perturbations of any specific x! that preserve
det[x!, x2, ...,xd] are arbitrary translates in the directions spanned by x2, ..., x%. Furthermore,
by translating by a constant in the s variables, we can assume that at the base point,

D,2y' (R, ty) = 0. (6.2)
Thus, in T*(X! x --- x X971) x T*X4,

ce={(, axd 4 ox o[(y* (x?, ...,xd,t) AXZA - /\xd_l) +(—1)d(udx2 Ao /\xd)])

DA x) extx X4 deriT 0 R\ 0},

where the first entries, giving the coordinates in T*(X Iy .on X d_l), have been suppressed because
they are not needed to study 7. In the last, that is, & d entry, we have used

(y'(x?, e X D)+ U X e udxd) AXEA - AxET

= yl(x?, ...,xd,t)/\ X2 A e A x4

+(-1)¢ Ug X2 A A x4,

We claim that 7, : Cf — T*X4 is a submersion, which, as described in Section 3.1, then implies
that C7 is nondegenerate and thus o is one of the competitors in (5.11). Note that

Dung=1;® (i * G[Dxdyl AXPA - AxIT 4 (—1)dud X2 A AxdTE /\IdD
while, for2 < j<d -1,
D, imp =0 <i * G[Dx,-y1 AXEA - AXT 4 (DU X2 A AT A - A xd] ) (6.3)

Due to the form of D a7y, it suffices to show that D,.7 has rank equal to d. Since 8 # 0 and *
is an isomorphism, we can ignore the + % 8 and work directly in the d-dimensional vector space
A1RA. At X,, the expression in square brackets in (6.3) equals (—l)dudId A3 A A xD) due
to (6.2). Since x3 A -+ A x4 € A42R? — {0}, this last map is an isomorphism R¢ — A4~1R4, thus
has rank d, finishing the proof.
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6.3 | Pairs of areas in R?

We now prove Theorem 1.6 concerning the set of pairs of areas of triangles generated by 4-tuples
of points in a compact E C R?. Here,d = 2, k = 4and p = 2. On (R?)*, let

®(x',x?,x%, x*) = (det [x! —x*, x* — x*], det [x* — x*,x* — x*])

= (' = xh - (2 = xHh (= xh - (P = xhHY).

We will show that, for o = (13|24), although C7 is degenerate, the projections 7}, 7y drop rank
by at most 1 everywhere, and therefore, by Theorem 3.1(ii), there is a loss of at most 3% = 1/2
derivative. Here, d; = di = 4, so Theorem 5.2 implies that for

4dimy,(E) > max(dy,dg) + p+2Bp =4+24+1=7,

that is, for dim;,(E) > 7/4, one has int(A4(E, E, E, E)) # @.
To verify (DF), for o = (13|24), we calculate

Do (x2 _ x4)J_ (x4 _ xl)J_ 0 (xl _ x2)J_
- 0 (x3 — x4)J_ (x* — xZ)J_ (x? — x3)J_
and note that the first and third columns form a matrix of rank two if x2 # x4, as do the second
and fourth columns under the same condition.

Pick any s with 7/4 < s < dim;,(E) and let u be a Frostman measure on E of finite s-energy.
Arguing as in the earlier proofs, we can pick a four-tuple x, = (x,x2,x3, x3) with each x} €
supp(u) such that
(i) x; —x§ #0;and
(i) x} —x; and x} — x; are linearly independent;

Let XJ = B(xé, ), with & chosen small enough so that (i) and (ii) hold with x, replaced by any
x €XPxXExX3x X4

Lett, = (¢}, t7) = ®(x,). Then, we claim that the projections 7;, : Cf — T*X; and 7y : C{ —
T*Xy drop rank by 1 everywhere; as described in Theorem 3.1(ii), it suffices to show this for one
of projections, say ;.. By (ii) above, we can parametrize Z by (x!, x3, x*), with x? determined by
the nonsingular linear system

(xl _ x4) . (x2 _ x4)J_ — [(1)’ (x2 _ X4) . (x3 _ x4)J_ — tg’
whose unique solution we can describe by x? = X?(x!, x3, x*). Then

Cg) = {(xl,x3,61(X2 - x“)L,—QZ(X2 - x4)l; .y > :

(L3, x) € X! x X3 x X4, (6,,0,) € R? \o},

where the T*X° components on the right are suppressed because they are not needed for the
analysis. One easily sees that Dzr; drops rank by 1 everywhere, that is, has constant rank equal



ON k-POINT CONFIGURATION SETS WITH NONEMPTY INTERIOR | 187

to 7, with the image of 7r; being contained in the hypersurface {(x!, x3, &1, &3) : EL A £3 = 0}. By
a fact valid for general canonical relations, Dz also drops rank by 1 everywhere, as well, and by
semicontinuity of the rank, C{ drops rank by k < 1 for all t close to t,. (Thus, & above is chosen
small enough that all of the values in ®(X) are sufficiently close to t,.) By Theorem 3.1(ii), the R¢
lose at most B4 < 1/2 derivatives, and we are done.

6.4 | Dot products of differences

To prove the main part of Theorem 1.7, define
o : (R 5 R, ®(x,y,z,w) = (x—y) - (z — w).

We will show that using o = (13]24) results in Cy that are local canonical graphs, so that Theo-
rem 5.2(ii) applies (with 39 = 0) to yield nonempty interior of the set of dot products of differences
for dimy, (E) > (d/2) + (1/4). By minor modification, the same analysis holds for ®(x,y, z, w) =
(x +y) - (z + w), yielding the result in the footnote to Theorem 1.7.

One computes

do(x,y,z,w) = (z - w, —=(z - w), x =y, =(x =),

so that (DF),, is satisfied away from W := {x — y = z — w = 0}, which is a codimension 2d plane
in R, 1f (d/2) + (1/4) < s < dim,,(E) and u is a Frostman measure on E of finite s-energy then,
arguing as we have above, ®*u is dominated by 4s-dimensional Hausdorff measure, and 4s >
2d + 1. Since W is a subspace of dimension 2d, (®*u)(W) = 0; repeating previous arguments,
we can find base points x°,y°,z%, w® € supp(x) and €, > 0 such that |x —y|+ |z —w| > ¢
forx € X! := B(x°,6), y e X? :=B(°,6), ze€ X? :=B(z°,§)andw € X* := B(w’, §), respec-
tively. Thus, (DF), is satisfied on X; X Xj. Furthermore, by relabelling and rotating if necessary,
we can assume that |z; — w,; | # 0 on X} X Xg, so thatd, ® # 0.

Thus, letting t© = ®(x°, y°, x% w?), for ¢ close to °, on the hypersurface Z we can solve for
X, as a smooth function of the other variables: x; = x,(x/, y, z, w), defined for x’ in a small ball
B c R%!, and then parametrize

C[U = {(’ B Y, W, Q(Z_ LU), e((xlvx,) _.V))
Dy, z,weX* XX x XY, X' €B,6 #0},
where we have suppressed the T*X entries as irrelevant for the analysis of 7y : C7 — T*Xy =

T*(X? x X*). Due to the simple dependence of the T*X? and X* entries on the coordinates y, z
and w on C7, and denoting elements of T*X* by (w, w), we see that

rank(Dry) = 3d + rank<D(g’wx,)> =4d

Thus, C§13|24) is a local canonical graph for ¢ close to t°, and Theorem 5.2(ii) applies with k =
4, p =1, d; = dy = 2d, so that for dim,(E) > (1/4)2d + 1) = (d/2) + (1/4),

intf(x—y)-(z—w) : x,y,z,w €E}) # 0.



188 | GREENLEAF ET AL.

6.5 | Sum-product sets for bilinear forms

We now state and prove a more general version of Theorem 1.8 on sum-product sets associated to
families of bilinear forms.

Theorem 6.1. Let (3 =(Qy, ..., Qy), with the Q; nondegenerate, symmetric bilinear forms on
R", 1< j <l Defined,,...,dy byd,;_; = dy; =nj, 1< j <L Supposethat E; C R% are compact,
1<i <2l with

21 21 l

. 1
Y dimy, (E;) > 1+§Zdi =1+ n;
i=1 i=1 j=1

Then the generalized sum-product set,

l
Z5(Eps s Ey) 1= {2 x¥x) X €E,1<ig 21} CR, (6.4)

has nonempty interior.

Define

!
db(xl,...,xZI) = ZQj(x2j_1,x2j) on R% x ... x R%,

We show that Theorem 6.1 follows from Theorem 5.2 (ii), using o = (13... (2l — 1)|24 ... (21)), so
thatd, =dg =n := 25  nj,and w1thp = 1. Since we may write Q;(x* ™!, x*/) = AJx?/1 . x2]
for nonsingular, symmetric A/ € R"/*

dojo® = Alx? and d ;@ = AJx¥~1,

Since the A/ are nonsingular, all of these are nonzero, and thus the double fibration condition (5.5)
is satisfied if all x>/ =1, x*/ # 0. Letting X' = R% \ 0, 1 < i < 21, itfollows that Z° c X : =[], X'is
asmooth hypersurface, and we need to analyze the canonical relation in (T*X; \ 0) X (T*Xy \ 0),

c? = {(x', X3, ., x24T g Alx? 042kt L 0Al2 )1 x€ZI, 040},

where the entries on the right, in T*X, are the even variants of the entries on the left and have
been suppressed.

For each of the 2I sets E;, let 5; < dimy,(E;) and y; be a Frostman measure on E; with finite s;-
energy. Let E 1= E; X E; X - X E; X E; and pick a base point x, := (x],..., x}) € E, which we
can assume has all of its components nonzero and thus belongs to X, and a0 < §; < |x| such that
:ui(B(x(i)’ ;) > 0.

Set t; = ®(x,). By rotations, if necessary, in x* = (x1, ... x1 ) =: (x%,(xl)’) and x2 we can
assume that d 1<1>(x0) # 0, so that near x°, Z‘7 is the graph of a functlon x = f((x'Y,x x2h,
with d,. 2 f#0. Hence we can compute the prOJectlon Vi CUO - T*X| w1th respect to coordl-

nates (x')’, x2, ..., x%, 6. Since A' is nonsingular and 8 # 0, one sees that the map (x')’, x2, 6 into
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the T*X! entries has full rank, as do all of the maps x%~1, x?/ (with 8 fixed) to T*X?/~1, so that
D, has full rank, and C" is a local canonical graph. Hence B° = 0 and Theorem 5.2(ii) applies,
yielding int(Z5(Ey, .. Ezl)) #@if Y, s; > n+ 1. thatis, if ), dimy, (E;) > 1+ (1/2) X d;.

7 | FINAL COMMENTS

It would be interesting to know whether the Hausdorff dimension thresholds in any of these the-
orems are sharp.” However, it is worth remarking that the results on pinned volumes and sum-
products at least have the correct asymptotic behavior as the dimension or the number of quadratic
forms tend to infinity, even for the weaker Falconer problem of positive Lebesgue measure:

In Theorem 1.2, since all of the volumes are zero if x° and E both lie in a hyperplane, one cannot
take dim(E) < d — 1, and so the restriction dim;,(E) > d — 1 + (1/d) cannot be improved by
more than 1/d.

Similarly, in Theorems 1.8 and 6.1, if we take E,;_; and E,; to be in Q;-orthogonal sub-
spaces of R? (in the notation of Theorem 1.8), then Zé(El, ..., E5) = {0}. Thus, it is necessary
that dimH(Ezj_l) + dimH(Ezj) >d, 1< j<sothatthel/lin dimH(Ezj_l) + dimH(Ezj) >d+
(1/1) cannot be reduced by more than 1/1.

Finally, we observe that the results here are obtained by extracting as much as possible
from standard estimates for linear Fourier integral operators. A number of previous results on
translation-invariant Falconer-type configuration problems, such as [9, 10, 12], are based on gen-
uinely bilinear or multi-linear estimates for generalized Radon transforms and FIOs, in settings
where the Fourier transform is an effective tool. One can ask whether the thresholds in this
paper (and in [14] for 2-point configurations), where the families Ry are typically nontranslation-
invariant, can be lowered by obtaining truly multi-linear estimates for FIOs.
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