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ABSTRACT. Borehole seismic data is obtained by receivers located in a well,
with sources located on the surface or another well. Using microlocal analysis,
we study possible approximate reconstruction, via linearized, filtered backpro-
jection, of an isotropic sound speed in the subsurface for three types of data
sets. The sources may form a dense array on the surface, or be located along a
line on the surface (walkaway geometry) or in another borehole (crosswell). We
show that for the dense array, reconstruction is feasible, with no artifacts in the
absence of caustics in the background ray geometry, and mild artifacts in the
presence of fold caustics in a sense that we define. In contrast, the walkaway
and crosswell data sets both give rise to strong, nonremovable artifacts.

1. Introduction. In seismic acoustic imaging, borehole data refers to measure-
ments of waves made by receivers (sensors) at various depths in a well; applications
include prospecting for CO5 sequestration sites or geothermal reservoirs, and moni-
toring aquifer pollution or existing hydrocarbon reservoirs. In Vertical Seismic Pro-
filing, the waves are excited by sources located at positions on the surface [3, 31];
in crosswell (or crosshole) imaging, the sources are in another well [5, 6, 1, 33].
Compared to data resulting from traditional seismic experiments, where both the
sources and receivers are located on the surface, the decreased travel distance for
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the waves traveling to receivers in a borehole results in less attenuation and allows
the use of higher frequency waves, potentially resulting in more sensitive and higher
resolution imaging of material parameters in the subsurface [31].

The purpose of this work is to formulate a general approach to the analysis of
borehole seismic data, using techniques of microlocal analysis that have previously
been successful for conventional seismic data [24, 30, 28, 34, 8, 9, 11, 12] (and
also for a variety of other imaging problems). As in those works, here we analyze
the relation between features in the subsurface, in the form of singularities of the
sound speed profile, and the resulting singularities of the data. In some cases, the
latter accurately encode the former; in others, imaging artifacts arise from the data
acquisition geometry, the presence of caustics (multi-pathing) in the subsurface, or
the interaction of the two. For several specific borehole data geometries, we either
show that the imaging is artifact free, or determine the location and strength of the
artifacts.

In applying microlocal analysis to inverse problems, one is using a set of tools
whose theoretical foundation is rigorously established in the high frequency limit to
problems where the data is intrinsically band-limited. Past work has shown, how-
ever, that this can be a fruitful approach, since in practice frequencies do not have
to be very high for the high frequency limit to be a good enough approximation that
useful conclusions can be drawn regarding the structure and strength of artifacts in
images produced from the data.

For simplicity, assume the Earth is R3; its surface, R? = {x3 = 0}, is flat; and
x3 increases with depth. Throughout, we will assume that the set X of receivers
occupies a line segment located in a vertical borehole along the positive xs-axis,

Yr:=4(0,0,7) : oin <7 < Trax}-

In Vertical Seismic Profiling, waves are generated by impulses located at a set Xg
of sources located on the surface R2, scatter off of features in the subsurface, and
are then measured at points of X at all times ¢t € T = (¢,min, tmaz). By contrast,
for crosswell imaging the sources are located in another borehole some distance
from the borehole containing the receivers. Possible data sets D = ¥g x X x T
may be crudely classified by their dimensionality, depending on whether S is zero-,
one- or two-dimensional. If dim g = 0, then the source set is at a single offset,
or at most a discrete set of points; in this case, dimID = 2, so that the data set
is underdetermined, which is not of interest for the questions we pose. Instead, we
study three basic data sets:

Overdetermined (dimD = 4):

For the dense array data acquisition geometry (also called 3D Vertical Seismic
Profiling), ©g C 9R3 \ 0 = R?\ (0,0) is an open subset on the surface.

Determined (dimD = 3):
In the crosswell geometry, the sources are located in another vertical borehole,
along a line segment,

Yo :={(50,8) : Smin < $ < Smaz}, SoF (0,0).

For the walkaway geometry, Yg is contained in a line on the surface, passing
over the borehole top (0,0,0). Without loss of generality, we assume that

S = {(5,0,0) : 0 < Spmin < 5 < Spaa} -
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Remark 1. To avoid having to deal with uninteresting degeneracies arising from
sources located very close to the top of the borehole, for all of the geometries we
only consider sources S = (s9,0) = (s1, s2,0) with |(s1,s2)] > ¢ > 0.

Our goal is to study, for each of the data sets D considered here, the formal
linearization dF about a known smooth background sound speed, ¢o(z) of the sound
speed-to-data map, restricted to ID.

In Sec. 2, we describe the model and the linearization of the forward scattering
operator and recall the Fourier integral operator theory needed in the paper. (The
C* singularity theory, describing the types of degeneracies of smooth functions
- folds, blowdowns, submersions with folds and cross caps - that we will use to
understand the structure of the forward and normal operators for the various data
sets, is included as an appendix, Sec. 7.)

The remainder of the paper analyzes, for the data acquisition geometries de-
scribed above, the linearized scattering operator F' := dJF, which is a Fourier inte-
gral operator; the geometry of its canonical relation; and the implications for the
associated normal operator, F*F'. We focus on the overdetermined dense array data
set, for which the results are the most positive. First, in Thm. 3.1, we show that if
the ray geometry of the background sound speed has no caustics, and satisfies two
additional technical assumptions, then F' satisfies the Traveltime Injectivity Condi-
tion, introduced in [24, 30] when both the sources and receivers are on the surface.
This implies that the normal operator is a pseudodifferential operator, and filtered
backprojection does not give rise to artifacts in the images. We first prove this for
a constant background sound speed in Sec. 3, where the additional assumptions
are unnecessary. This is followed by the analysis in Sec. 4 of variable ¢y with no
caustics, where the additional assumptions are used.

Then, in Sec. 5 we study the situation for the dense array geometry when
the most commonly encountered form of caustics (or multipathing) is present. We
formulate a notion of caustics of fold type appropriate for this setting and show that,
in the presence of caustics no worse than this type, the canonical relation of F, while
degenerate, has a structure, that of a folded cross cap, introduced previously by two
of the authors in the context of marine seismic imaging [11]; see Thm. 5.2 and Def.
5.3. This allows a precise description of the normal operator and characterization of
imaging artifacts microlocally away from high codimension sets. We point out that
the marine source-receiver manifold treated in [11] and the borehole dense array
here are inequivalent: one cannot be reduced to the other by changes of variables
in the source and receiver spaces, and necessarily the definition of fold caustics are
distinct. Nevertheless, the microlocal geometries of the resulting canonical relations
are of the same type (the folded cross caps), and although the calculations needed
to show that the dense array leads to a folded cross cap are similar to those in [11],
for completeness we present these in full.

In contrast, for the crosswell and walkaway data sets, the microlocal geometry is
less favorable, resulting in strong, nonremovable artifacts. In Sec. 6 we analyze their
normal operators when the background sound speed ¢ is constant. Calculating and
analyzing their canonical relations shows that attempted inversion by filtered back
projection results in strong artifacts; see Thms. 6.1 and 6.2. Since these are al-
ready badly behaved for a constant background sound speed, we do not pursue the
analysis of the crosswell and walkaway geometries for variable backgrounds.
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2. Scattering model, microlocal analysis and singularity theory. The idea
of using techniques from microlocal analysis to study linearized seismic imaging was
introduced by Beylkin [4], and expanded upon by Nolan and Symes [30] and ten
Kroode, Smit and Verdel [24]. In the forward scattering problem, acoustic waves
are generated at the surface of the Earth, scatter off of features in the subsurface,
and some of the reflected waves return to the surface to be detected by receivers,
which in these works were also at the surface. The goal of the full inverse problem
is to obtain an image of the subsurface using measurements of the pressure field at
various receivers. Due to the strong nonlinearity of the full problem, works such as
[4, 30, 24] instead considered a formal linearization of the nonlinear sound speed-to-
data map, F. The linearization maps perturbations of a smooth background sound
speed in the subsurface (assumed known), to perturbations of the resulting pressure
field at receivers. The linearized problem was explored further by several authors
for a variety of data acquisition geometries; see, e.g., [28, 34, 8, 9, 11, 12]. In this
section, we review the scattering model and its linearization, and set down or give
references to the basic microlocal analysis needed for the remainder of the paper; a
summary of the requisite singularity theory is in the appendix, Sec. 7. Since this
material, in forms suitable for what is needed here, is standard, we will keep the
presentation as brief as possible.

2.1. Scattering model and normal operator. We now recall the scattering
problem and its linearization. Represent the Earth as Y = Rf_ ={z € R3, 23 > 0},
consisting of isotropic material with sound speed ¢(x), the recovery of which is our
goal. An impulse at a source x = s, t = 0, assumed for simplicity to be a delta
waveform, creates a pressure field p(s; x,t) which solves the acoustic wave equation,
2
S g~ Aplsat) = 503w =)

p(s;z,t) = 0, t<0, (1)

where A is the Laplacian on R3. Fixing a data acquisition set D = g x X x T,
where Y5 is a set of sources, X is a set of receivers, and T = (¢min, tmaz) 1S & time
interval, the corresponding forward map F = Fp is the sound speed-to-data map,

ch p(5;7,1)|(s,rt)e; the full inverse problem is to reconstruct ¢ from F(c).

Due to the nonlinearity of F, the works cited below instead considered the formal
linearization of F, assuming ¢ to be of the form ¢ = ¢y +dc, with ¢y a known smooth
background sound speed. Thus, associated Green’s function, i.e., background pres-
sure field pg satisfying (1) for co, is also known (in principle). The linearization dF
of F then arises from writing p = po +6p mod (8¢)?, where dp =: (dF)(dc) satisfies

1 0%p 2 0%po
|:lco (5]7) T %W(waat) - A(Sp(svxat) - Cg(x) ' o2 : (5C(1‘)
sp = 0, t<0. (2)

We denote dF by F, using a subscript D if needed for clarity. Thus,

: (3)

T=r

2
Fert) =) (- G 0c(o)) (i)

where Dc_ol is the forward solution operator. One assumes that dc is supported at
a positive distance from all sources s, so that its product above with the Green’s
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function with pole at s only involves the singularities of pg on the wavefront, and
not at s. (The linearization can be justified in terms of Fréchet differentiability of
F between certain pairs of function spaces [23].)

Beylkin [4] showed that, for a single source on the surface and an open set
of receivers, also on the surface, if caustics do not occur for the background sound
speed, then the normal operator N := F*F is a pseudodifferential operator (¥ DO).
To avoid difficulties with even the basics of the operator theory, for more general
ray geometries two conditions have been commonly assumed in the literature: ()
no single (unbroken) ray connects a source to a receiver; and (i¢) no ray originating
in the subsurface grazes Xg or Xr. Condition (ii) ensures that F is a Fourier
integral operator (FIO) in the sense of Hormander [22], while (¢) ensures that the
composition F*F makes sense on distributions. Under these assumptions, in the
case of a single source on the surface, and receivers forming an open subset of the
surface {z3 = 0}, Rakesh [32] showed that F' is an FIO, and this was extended to
other surface-surface data sets D in [21, 30, 24]. However, for borehole data sets
these conditions no longer make physical sense since, for example, one fully expects
unbroken rays to travel from source points on the surface to receivers in the borehole
(as they already do for a constant sound speed), and so we replace (i) and (i¢) by
Assumption 3.2 below which can be satisfied if the data has been suitably filtered
(muted). See Sec. 3 for the statement of Assumption 3.2 and the description of a
filter to implement it.

The invertibility of F' (modulo C*) was established in [4, 30, 24] under various
combinations of assumptions on the data acquisition set I (assumed to be a smooth
manifold in 9Y x dY) and the ray geometry for the background sound speed cg.
In these cases, the FIO F' is associated with a canonical relation C C T*D x T*Y
which satisfies the so-called traveltime injectivity condition (TIC) described below.
By the standard theory of FIO with nondegenerate canonical relations, it follows
that the normal operator N is a pseudodifferential operator on Y, N € ¥(Y);
furthermore, N is elliptic (and hence invertible microlocally) under an illumination
condition. If @ € U(Y) is a left-parametrix for N (i.e., a left-inverse modulo C*°),
then Q o F* is a left-parametrix for F'. This implies the injectivity of dF mod C°,
so that the singularities of F'(6¢) determine the singularities of dc, as well as giving
an approximate reconstruction formula via filtered backprojection. In [34], part of
the TIC is relaxed, but the composition F*F is still covered by the standard clean
composition calculus for FIO.

On the other hand, combinations of data sets and background ray geometries for
which the TIC is violated were studied in [28, 8, 9, 11, 12]. In each of these, the
composition forming the normal operator lies outside the clean intersection calculus
and N is not a pseudodifferential operator. The wavefront relation of IV is larger
than that of a ¥YDO, including an additional part, which gives rise to artifacts in
the image when attempting filtered back projection; the strength of that artifact
depends both on the geometry of D, the nature of the multi-pathing (if any), the
background ray geometry, and their interaction.

2.2. Microlocal analysis. We now recall some basic definitions and results from
the theory of FIOs [22]. Let X and Y be smooth manifolds, of (possibly different)
dimensions, nx, ny, resp. A Fourier integral operator is a continuous linear map
A E(Y) - D'(X), whose Schwartz kernel is a locally finite sum of oscillatory
integrals of the form
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Ka(e,y) = / @Iz, y: 0) do),
RN

where ¢ is a nondegenerate operator phase function on X x Y x (R¥ \ 0), for some

N > 1, and a is a Hérmander class amplitude of order p and type (1,0). The order

of A is defined to be

2N — nx —ny

mi=pg+
4

and the canonical relation of A is

Ca = {(z,depry, —dyep) : (x,y:0) € supp(a), dg(z,y;0) =0}
C(T*X \ 0) x (T*Y \ 0).

If WF(-) denotes the C* wavefront set of a distribution, the wavefront relation
of A, WF(A) := WF(K,)', is the image of the wavefront set of the Schwartz kernel
of A under the map (z,y,&,n) — (z,&;y,—n); from the general theory of Fourier
integral distributions, one knows that WF(A) C C4. Thus, by the Hormander-Sato
Lemma, for all u € £'(Y),

WF(Au) C WEF(A) o WF(u) € Cy 0 WF (), (4)

where WF(A) and C4 are considered as relations from 7*Y \ 0 to 7% X \ 0.

For any canonical relation C C (T*X \ 0) x (T*Y \ 0) and m € R, I"™(X,Y;C)
denotes the class of properly supported m-th order FIOs A with C4 C C. Thus,
for any A in this class, WF(Au) C C o WF(u), YVu € E'(Y).

A generalization of Fourier integral operators are the paired Lagrangian oper-
ators of Melrose and Uhlmann [26] and Guillemin and Uhlmann [20]. These are
associated to cleanly intersecting pairs of canonical relations, Cy,C; C T*X X T*Y,
and are indexed by bi-orders (p,1) € R?. We will not need the definitions and
characterizations of these operators, but note two properties for later use. First, if
A€ Ip’l(X,Y; Co, Cl), then

WEF(A) C CyUCh. (5)

Secondly, microlocally away from Cy N C1,
A€ IPTHCy\ Cy) and A € IP(Cy \ Cp). (6)
Now let C; C (T*X \ 0) x (T*Y' \ 0) and Cy C (T*Y \ 0) x (T*Z \ 0) be two
canonical relations, and A; € I (X,Y;Cy) and Ay € I"2(Y, Z;C5). If Cy x Cs
intersects T* X X Apsy X T*Z transversely, then Hormander proved that A; o A €
It (X 75 Ch o Cy) where C1 o Cy is the composition of C; and Cy as relations
in T*X x T*Y and T*Y x T*Z. Duistermaat and Guillemin [7] and Weinstein
[36] extended this to the case of clean intersection and showed that if C; x Cy and

T*X X Ap«y x T*Z intersect cleanly with excess e then, as in the transverse case,
C1 0o (5 is again a smooth canonical relation, and

Ay oAy € I™MHmtel2(X 7:Cy 0 Cy).

We say that a canonical relation C' C T* X x T*Y satisfies the traveltime injectiv-
ity condition (TIC) [30, 24] (equivalent to the earlier Bolker condition in tomography
[19]) if the natural projection to the left, 77, : C' — T* X, satisfies the following two
conditions. First,

77, is an immersion, i.e., dry, is injective everywhere. (7)
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(By results for general canonical relations, this is equivalent with 7g : C — T*Y
being a submersion, i.e., drp is surjective.) Secondly,

mr, is globally injective. (8)

(Note that (7) already implies that 7y, is locally injective; (8) demands that the
injectivity holds globally.)

If A e I™(X,Y;C), then A* € I"™(Y,X;C?). If C satisfies the TIC, then it
follows from (7) that the composition A*A is covered by the clean intersection
calculus, with excess e = dim (X) — dim (Y). Furthermore, from (8) it follows
that C* o C C Arp-y, the diagonal of T*Y x T*Y. Thus, the normal operator

dim (X)— dim (Y)
2

N:=A*"Ae*t (Y, Y5 Ap-y), (9)

i.e., is a pseudodifferential operator on Y. N is elliptic if A is, which in applications
corresponds to an illumination condition. In that case, N admits a left parametrix
Q € "2 (Y), i.e.,, Qo N — I is a smoothing operator, and then QA* is a left
parametrix for A, so that, for all u € £'(Y), Au mod C* determine u mod C°.

However, in many inverse problems, the TIC condition fails, and to understand
the possibility of imaging using filtered back projection, it is important to analyze
the composition A*A and the nature of the resulting normal operator, N. Any
component of the wavefront relation of N in the complement of the diagonal Ap«y
will produce artifacts, i.e., features in Nu which are not present in w. It turns
out that the geometry of the canonical relation C, as expressed by degeneracies of
projections 7y, and mg, if they exist, plays an important role in determining the
nature, location and strength of artifacts.

It is known that if either dn, or dmg has maximal rank, so does the other one and
we say that the canonical relation C' is nondegenerate. In this case the composition
C' o C is clean, and (9) holds.

On the other hand, if C' is degenerate (the differentials of the projections fail to
be of maximal rank), there is no general theory that applies to the compositions
Ot o C and A*A. However, certain particular geometries have been analyzed, and
one in particular is relevant here, for the dense array in the presence of fold caustics.

When one of the projections drops rank, then the other one does, too, and their
coranks are the same. However, although corank(dry,)=corank(drg) at all points,
the two projections might have the same type of singularity, or quite different ones.
The singularities needed in this article are blowdowns, folds, submersion with folds
and cross caps. We refer the reader to Sec. 7 for a concise summary of these classes;
see [17, 37, 27] for more background, and to Sec. 5 for the existing composition
calculus [11], originating in marine seismic imaging, that we show is relevant for the
dense array with fold caustics.

3. Dense array: Constant cy. We start with the dense array geometry, with
sources S = (s1,82,0) in an open subset Yg of the surface, and receivers in the
borehole X g, R = (0,0,7), 7 € ("min, "maz)- LThe perturbation in sound speed is a
function of the three variables, y = (y1,y2,ys), while the resulting data is a function
of four variables, (s1,sq,r,t) = (s,7,t). We make the following assumptions, which,
as discussed above in Sec. 2.1 are modifications appropriate to the borehole setting
of standard assumptions in the literature (cf. [32, 24, 30]), needed for the operators
to satisfy even the most basic conditions:
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Assumption 3.1. The perturbation dc in the sound speed has compact support at
a positive depth below the surface.

Assumption 3.2. For any unbroken ray connecting a source to a receiver which
intersects the support of the reflectivity function, its contribution to the data has been
muted by application of the filter described below. (See Figure 1 for an illustration
of this.)

Filter Construction: Suppose a ray connects a source to a receiver located at
ro € X g and that this ray arrives at rg in a direction pg. Let pg be the orthogonal
projection of pg onto )., X,.

(i) Localize the data d(s,r,t) by multiplying it by a cutoff function x1(r) sup-
ported near r = rg, and then take the partial Fourier transform of x1d(s,r,t) with
respect to r to get 5’1\1(3, p,t), where p is the Fourier variable dual to 7.

(ii) Multiply dr by a cutoff function x2(p) which is homogeneous of degree 1 and
vanishes in a conic neighborhood of the direction of py whenever dy (s, Apo, ) is not
rapidly decaying as A — oo.

(iii) Apply the inverse Fourier transform (w.r.t. p) to chil, and use the result as
the suitably modified data, referred to in Assumption 3.2 above.

In this section and the next, we show that the linearized scattering operator,
filtered as above, satisfies the Traveltime Injectivity Condition:

Theorem 3.1. Suppose, in addition to Assumptions 3.1 and 3.2, the ray geometry
of a smooth background sound speed co(x) satisfies Assumptions 4.1 and 4.2 below.
Then the linearized scattering operator for the dense array data set, F : 5’(Ri) —
D'(D), is a Fourier integral operator, F € I (D, R3;0).

If ¢y also has no caustics, then the canonical relation C C T*D x T*Ri satisfies

the Traveltime Injectivity Condition (7), (8), and thus the normal operator is a
pseudodifferential operator of order 2, F*F € W?(R3).

In the current section, we consider first the model case of constant sound speed,
normalized to ¢y = 1, for which Assumptions 4.1 and 4.2 hold automatically. We
will show that the canonical relation of the linearized forward scattering operator
F satisfies the traveltime injectivity condition (7), (8). As discussed in Sec. 2.2,
this implies that the normal operator F*F is a pseudodifferential operator, and
a perturbation dc of the sound speed can be reconstructed from F(dc) by filtered
backprojection.

Proof of Thm. 3.1. In the case of constant background sound speed ¢y, we compute
the canonical relations of F' = dF for each of the data geometries (dense array here;
crosswell and walkaway in Sec. 6), restricting to the various data sets the basic
phase function

o(s,rtiw) = (t— |y — R — |y = S| w, (10)
where S = S(s), R = R(r) and y denote a general source, receiver and a point in the
subsurface, respectively, and w € R\ 0 is a phase variable. Note that the function
¢ defined in (10) is a non-degenerate phase function as can be easily verified by
noting that w # 0 and also using Assumption 3.2. The Schwartz kernel of F' is

K(s,rty) = /ei¢(s’r’t’y;“)a(s,r,t,y;w) dw,
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Sources (Xg)

~

Ficure 1. Illustration of data acquisition geometry and filtering:
contributions to the data from unbroken rays such as that illus-
trated here are filtered out by removing data associated to those
rays arriving from nearby directions, as indicated by the gray cone.

where ¢ is given by

(t—ly=Sl—ly—R)w
(t—\/(y1—81)2+(y2—82)2+y§—\/y?+y§+(y3—r)2>w

d)(su T, tv Y; w)

anda € Sfl is a classical symbol of order 2. Thus, F is a Fourier integral operator of
order m = 2+ % — 4%3 = % associated with the canonical relation C C T*R* x T*R3
parametrized by ¢. See [30] for a discussion of F' as an FIO for general data sets.

Coordinates on the 7-dimensional C' can be taken to be (s,7,y,w) € R® x (R 0):

Ypr—81  Ya—S2 Y3 —r
Cc = {(Slas%raA—’_Ba A W, A w, B

Yyr—81 Y1 Y2 — 82 | Y2 Ys Y3 — T
ylayQ)yBa( A + B>wa< A + B>W,<A + B >w)}5(11)

where A = /(y1 —51)2 + (y2 — s2)2+y2 and B = \/y? + y2 + (y3 — r)2. Thus,
C C (T*R*\ 0) x (IT*R?\ 0), and we see that the projections to left and right are

W, W;

TrL(Svr)y?w) = (817827r7A + BJ YL ;Slwv Y2 2 82("}7 yBB_ Tw7w> (12)
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and

7TR(S7 ™Y, W)

_ yi—s1 1 Yo — 52 Y2 Ys Yz (13)
- <y1’y27y37( A + B>wa< A + B>wa<A + B >w>

Since g is the identity in y variables, rank(dmrr)= 3 + rank (%

), where 7 is

dual to y, and the minor Dg ”w) is

(y2—s2)%+y2 (y1—s1)(y2—52) y1—S1 Y1
— w w T T 5

D A3 A3
noo_ (y1—51)(y2—52) _ (y1—s1)*+y3 y2=s2 | y2
A3 A3 w A B

w

D(s,w) y3(yj‘;51)w (y2;§2)y3w %3 + yaE:r
which has determinant
_ -5)-(y—R)
2,43 (1 (y )
w7 Y3 + AB

Using w # 0, y3 > 0, the Cauchy-Schwarz inequality and Assumption 3.2, one sees

that det [%} # 0, so that rank(drg) = 6. It follows that dmg has maximal
rank and mg is a submersion; hence 7, is an immersion, and C' is a nondegenerate
canonical relation.

To verify the Traveltime Injectivity Condition, it remains to show the injectivity
of mr; we do this using Assumption 3.2. The unit vectors (y — (0,0,r)) /B and
(y — (s1,52,0)) /A point to y from the source S = (s1, $2,0) and from the receiver

R =(0,0,7), resp. In terms of these, the condition in Assumption 3.2 is that
1

a (y — (s1,52,0)) + é (y —(0,0,7)) # 0.

To prove that 7y, is injective, let us consider
S: (3178270); R:(0,0,T), y:(yhyQuyS); 0%
and } ~
52(51?5270); R:(0,0,f), g:(g17527g3); (:')7
such that 7 (s, y,w) = 7.(8,7,¢,0). Then

$1 = 81, S2=2382, r=7r, w=0w, A—FB:A—FB
s 231—51& y2—82w:§l2—§2® yS—Tw:ﬂs—fa) (14)
A A ’ A A ’ B B
where ) : - )
A=ly-S|; B=|y-Rl; A=[|j-S|; B=I[j—R| (15)
The first four equalities in (14) imply that S = S, R = R, ® = w, so to prove
injectivity of 7y, we only need to verify that § = y. Defining
y—S . §-S y—R . J-R
= = —; = = 16
o A0 =T 5 P 5 (16)
the last three equalities in (14) (together with the fact that w = @) imply that
o, =0, 1=1,2; (17)

p3s = ps. (18)
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Recalling that o = (01, 02,03) and ¢ = (61, d2,53) are unit vectors, we obtain

2 _ 2 2 _ ~ ~2 _ =2
o3=1—0]—05=1—-07—05 =03

= 03 = t+o03.
However, ys, 93 > 0 = 03,03 > 0, hence ¢ = 7, that is
m=58 ly=s5I"

which shows that y and ¢ lie on the same ray emanating from S. The last equality
in (14) can be expressed as

T(s,r,y) =T(s,7,9), whereT(s,r,y) = A(y,s)+ B(y,r). (20)

In the argument below, if z € R? and z # 0, we denote the corresponding unit
vector as Z := z/|z|. We also denote a point on the line segment between y and ¢
as y; =y + t(§ — y), where t € [0, 1].

To prove that 7y, is an injection, we argue by contradiction. Assume that 7 # y;
the Mean Value Theorem then implies 3¢ € (0,1) such that

d
(T} =0
ﬁvyT(s,r,yc)-(g—y) =0
= ()e—S+y.—R)- G-y =0
= (yc75+ych)-(£/fy):0
= (= S+9—R) (-8 =0

é(yc—R)~(yc—S):—17

where we have used the fact that ( ) = (y.— S), which in turn is true be-
cause s, Y, ¥, Y. all lie on a single ray emanating from S. However, the last equality
contradicts Assumption (3.2), and therefore § = y.

gy—y

Hence, C satisfies the Traveltime Injectivity Condition. Taking the clean inter-
section calculus (9) into account, since dim(ID) — dim(R%) = 1 we should write the
order of F as % =1- %; since the ‘effective’ order of F' is 1, the composition F*F is
a pseudodifferential operator of order 2 on R3 , which will be elliptic at those points
in T*Ri where F' is. Thus, under an illumination assumption, a perturbation dc of
the sound speed can be reconstructed without artifacts by filtered backprojection:
F(6¢) mod C* determines d¢ mod C°. O

4. Dense array: No caustics. In this section, we continue the proof of Thm.
3.1, modifying the argument of the previous section to a variable background speed,
co = ¢o(x), satisfying assumptions which we now describe.

Parametrize the maximally defined characteristic curve (i.e., a ray) departing z
in the direction

v(0, ) = (sin(p) cos(d), sin(p) sin(), cos(¢)) (21)
by a smooth function

RO I3pw a(p;,¢,2) € R, (22)
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where x(0;0, v, z) = z. The angle ¢ is the polar angle with respect to the zz-axis.
If the take-off angle corresponds to ¢ = 0,7, then we change coordinates so ¢ is
the polar angle with respect to another axis and adjust (21) correspondingly. In
the following discussion, we proceed as though polar angles ¢ are the polar angles
with respect to the xz-axis but none of the arguments depend on this and will
work just as well if ¢ is another polar angle. Following [35], we make the following
assumption:

Assumption 4.1 (No Caustics). Assume sing supp (V) is contained in a region
QC Ri which is completely illuminated by each source and receiver with a unique
minimal traveltime ray connecting each point y € Q with each z € ¥g U Xg. Also
assume that there are no caustic points in ) on rays issuing from any z € XgUXR.

Under this assumption, we have a well-defined and smooth traveltime function,
teo (2,Y) = te, (y, 2), which is the minimal travel time between any z € ¥g UX g and
y € Q. We will also make the standard no-grazing ray assumption:

Assumption 4.2 (No grazing rays). Whenever z € sing supp (V) C R3, we
assume
8:63
dp

which means that there are no rays emanating from the subsurface to graze Xg.

(p;0,0,2) #0, when x(p,0,p,z2) € Eg, (23)

Remark 2. With this setup, the phase function ¢ from the previous section is
replaced, as in [30], by
o(s,rty,w) i=w(t—T(s,y,71)),
where T'(s,y,7) := te, ((51,52,0),9) + te ((0,0,7),y),
the sum of the travel times of the incident and reflected rays, is the total travel

time. One easily verifies, using Assumption 3.2, that ¢ is a non-degenerate phase
function, so that F' is an FIO.

Writing z = (21, 22, 23) = (2, 23), the wavefront relation of F' is contained in the
canonical relation

O = {(s:n.T(s. o). w00 (s 9).0p(r ). ¢ .~ na(s.9) + 7)) |
(0,0,7) € Sg, (51,52,0) € B, w € R\O}, (24)

where

7 (518) 5= Vot (51,52,0)0)s plr) = F2(0.0.0). ) (25)

ns(8,y) == Vyte, ((s1,52,0),9); ne(r,y) == Vyte, ((0,0,7),y). (26)

Since F is an FIO, C" is a 7-dimensional conic Lagrangian submanifold of T*R”.
We note that the above canonical relation avoids the zero section due to ¢ being a
Hormander-type non-degenerate phase function. One can check that Assumptions
4.1, 4.2 imply that we may parametrize C' using coordinates (r,t,cs, @, é, gb,aw),
defined as follows, describing each broken ray backwards: a ray, departing (0,0, r)

in direction (Sin(gé) cos(f),sin(p) sin(é),cos(@)) and traveling for time ¢,y > 0,

arrives at location y := x(t,cf; &, 0,r) e R? (see (22) for a reminder of the definition
of the function z here). Then a ray leaving y in the direction

(sin() cos(6), sin(¢) sin(6), cos(¢))
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arrives at (s,0) € g, where (s,0) = 2(tine; @, U, y); here, the travel time function
tine = tinc(y, @, ) is the travel time needed for this ray to reach ¥;. Note that
tine(y, p, 1) is smooth and guaranteed to exist by the implicit function theorem and
the non-grazing ray assumption. Finally ¢ := t;,c + tref is the two-way traveltime
from (s,0) to y and from y to (0,0,7).

FI1GURE 2. Construction of the y-coordinates, with the y;-direction
being tangent to the ray connecting y to a source (s,0) € Xg.

We now verify that C satisfies the Traveltime Injectivity Condition, starting by
showing that 7y is an immersion. We check this by showing that

a(s,0,T)

8(tref7 @a 97 @a 9)

Observe that the assumption of no caustics (4.1) implies

£0. (27)

0
e el AL (28)
6(tr6fv 0, ‘P)
using the chain rule, it will follow that 7, is an immersion once we establish
T
‘ 8(87 0;7 V) (29)
A(y,0,¢)

as follows. Make a change of y-coordinates so that the y;-direction is parallel with
the velocity of a specific ray departing yo € R‘i and arriving at (sp,0) € Xg. Let
(y2, y3) be coordinates on the plane that contains yo and is also orthogonal to the y;-
direction, as illustrated in Figure 2. With this choice of coordinates, the no-grazing
ray and no caustics assumptions imply that

’ (9(31, 52)

o(2.0) |7 " (30)
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and also, the no-grazing ray assumption guarantees that
0(o1,09)
8(y27 y3)

Let v : (—€,e) = R3,~(t) = y(t) be a parametrization of an open interval of
the ray connecting yog to so, for a suitably small ¢ € R, with v(0) = yo. By
construction, the y;-direction is tangent to the ray connecting yo to (sp,0) and
since (s(y(t)),o(v(¢))) = (s0,00),Vt € (—¢, €), we therefore have

1 d < ds do (yo)) — (0,0) . (32)

(31)

(s(v(1), o (v(t))) = (%0),

4(0) dt oy oy
We also have
or 8t60((0a0ar)ay) 8tco((31a5270>7y)
—(s,r,y) = +
o (s,71,9) 7 oo

8tco((0,0,r),y) —1
=——" "% ¢ , 33
5 ) (3)
with the latter equality following from the definition of the y;-direction. Addition-

ally,

W < [Vt oo ((0,0,7),9))] = 5 (), (34)

where we have used the eikonal equation in the last equality. Furthermore, equality
is attained in the left side of (34) if and only if we have scattering over m, which is
ruled out by Assumption 3.2. It now follows from (33-34) that

oT
Tyl(SO?rOa yO) 7é 0 ) (35)

for any ro € (Tmin, "maz ). Therefore, (30-32,35) establish (29) and so we have shown
that 77, is an immersion.

We now verify that 7y, is injective. To prove this, it will be convenient to use
(s,r,y,w) as coordinates on C. Suppose that 7 (s,r,y,w) = 71(5,7,¢,&). Then
we immediately have s = §,r = 7,w = © and we deduce that

Visteo ((8,0),y) = Vste ((8,0),9) =: (01,02), T(s,rm,y) =T(s,7,9). (36)
To prove injectivity of 7z, it remains to show that § = y. Condition (36) implies y
and ¢ lie on a common ray issuing from (s, 0) in the direction

(sin(ps) sin(6s), sin(ps) cos(8s), cos(ps)) :=
(—01, —09, —\/062(73 0) —o? — 0%) (37)

for some angles (s, 0s). Let p1,pa be the values of p that satisfy

y=a(p1;6s, 05, (5,0)); §=x(p2;6s, 95, (5,0)),
which then implies that

T(S7 T, l'(pl; Os, ¢s, (57 O))) = T(Sv Ty .T(pg; 05, @s, (Sa O))) : (38)

We can now use the same argument used at the end of Sec. 3 to show that, if

we assume that § # y, then (38) contradicts Assumption 3.2. So, under the above

assumptions, 7y, is injective; combining this with 77, being an immersion, established

earlier, we have shown that the Traveltime Injectivity Condition is satisfied. Thus,
as in the case of constant ¢o, F*F € WQ(Ri), concluding the proof of Thm. 3.1.
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5. Dense array: Fold caustics. We start by formulating a notion of what it
means for the ray geometry of ¢y to have fold caustics with respect to borehole data
acquisition.

5.1. Fold caustics: Single receiver. First recall the concept for conventional
seismic data, where both sources and receivers are on the surface [30, 28]. For a
single receiver, 7, the cotangent space A, := TR3 is a Lagrangian submanifold of
T*R3, on which the canonical dual variables ¢ = (q1,q2,g3) are coordinates. The
exponential map, x := exp (H,,) : T*R® — T*R3, of the Hamiltonian vector field of
the (nonhomogeneous) symbol 3(co(z)~? — [¢[?) is a (nonhomogeneous) canonical
transformation of T*R3. Thus, the image A% := y (A,.) is also a Lagrangian, which
is not conic since x is not homogeneous in &; on A%, the pushforwards ¢ := x.(q)
by x are coordinates. On A¢ there is a well-defined acoustical distance function,
which is the integral of ¢; ' along each bicharacteristic.

A caustic of ¢y (with respect to r) is a point A\g = (z°,£°) € A% where the
spatial projection mx : A% — R3 has a noninvertible differential, and \q is a
fold caustic if mx has a Whitney fold singularity at Ao (see Def. 7.2). At such a
point, drx (Th,A%) is a hyperplane II C T,0R?. For the following, assume that
IT is not vertical; otherwise, the discussion needs to be slightly modified. Since
dim(IT) = 2 and is nonvertical, x1, z2 have linearly independent gradients and thus
are independent functions on A§°. By Darboux’s Theorem, these may be augmented
with p3 = &3[pc0 to obtain a coordinate system on Af® near Ag. On A, the
restrictions of the other canonical coordinates on T*R? are functions of (1, x2,p3):

z3 = f(w1,72,p3) and (p1,p2) = (§1,82)[ac0 = (91(21, %2, p3), g2(21,22,p3)). The
fold caustic at Ay then implies that

of 0% f
— =0, —5 #0. 39
Ops 510% # (39)

Note also that the acoustical distance function described above is a smooth function
of (z1,z2,p3), since they are coordinates on A%.

5.2. Fold caustics: Borehole data. Now let D be the dense array data set as in
the previous two sections, for which g C 9R3 \ 0 ~ R?\ (0,0) is an open subset
and ¥p = {(0,0,7) : rmin <7 < Imaz}. For each value of r, one can repeat the
above constructions and analysis. Since each A, = T*R3 is Lagrangian, it follows
that I := |, A, is a 4-dimensional coisotropic (or involutive) submanifold of T*RR?,
and I' is foliated by the family of A,. Thus, with the canonical transformation
X as in Sec. 5.1, the image I'® := x (T') is also a (nonconic) four-dimensional
coisotropic submanifold of T*R3, foliated by {A : 7 <7 < Ppax}- At a regular
point of the spatial projection, mx : I'® — R3, rank (dnx) = 3 is maximal, while
a caustic is a 9 where rank (drx (7)) < 2. We will demand that mx has at
most fold singularities. Due to the difference in dimensions, this means that it is a
submersion with folds (see Def. 7.3).

Definition 5.1. We say that the ray geometry of ¢y has at most fold caustics with
respect to the borehole Y g if

(i) for each rpin < 7 < Tyaz, the only singularities of the spatial projection
mx : A2 — RY are Whitney folds; and

(ii) the only singularities of 7x : I'®© — R} are submersions with folds.

Remark 3. One can compare conditions (i) and (ii). These are in fact independent
of each other: The receiver-by-receiver Whitney fold condition (i) does not imply
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(ii), since the latter requires the invariantly defined Hessian to have rank two,
which cannot be derived from the rank one Hessian coming from a Whitney fold.
Conversely, (i) only implies that the mx : A® — R3 are Whitney folds under
a tangent space condition which, while generic, does not appear to be physically
required. This is because the restriction of a submersion with folds to a submanifold
passing through the critical set is not necessarily a fold; for example, the function
F(z1,x9) = 129 is a submersion with folds R2 — R!, but restricted to either axis
it is not a Whitney fold R — R.

We also mention that this Def. 5.1 is related to but differs from the notion of
fold caustic formulated in [11] for another overdetermined data set, the marine data
acquisition geometry.

The main result of this section is the following; the terminology used and the
consequences for imaging are explained after its statement.

Theorem 5.2. Under the fold caustic assumption, and a small slope assumption on
the caustic surface (see (47)), the linearized forward operator F' is a Fourier integral
operator, F € I%(]D),]Ri; (), whose canonical relation C is a folded crosscap in the
sense of Def. 5.3 below, away from a possible set of codimension at least four.

We now recall the class of degenerate canonical relations and Fourier integral
operators referred to in the theorem, which was originally introduced by two of the
authors in the context of marine seismic imaging. Suppose that dim (X) =n+ 1,
dim (Y)=nand C C (T*X \ 0) x (T*Y \ 0) is a canonical relation, so that

dim(T*Y)=2n < dim(C)=2n+1< dim (T*X) =2n + 2.

Definition 5.3. [11] The canonical relation C' is a folded cross cap if

(i) g : C — T*Y is a submersion with folds (see Def. 7.3) and the image of its
critical manifold, 7 (X (7g)), is a nonradial hypersurface in T*Y’;

(ii) 7, : C — T*X is a cross cap (see Def. 7.4) and 7 (X (71)), which is a
codimension three, immersed submanifold in 7* X, is also nonradial.

Remark 4. Recall that nonradial means that the restriction of the canonical 1-
form does not vanish anywhere. Also, from [11] one knows that 7z, (X (7z)) must
be maximally noninvolutive, i.e., the restriction to it of the canonical two form has
maximal possible rank everywhere, which on the (2n —1)— dimensional 7y, (X (7))
is 2n — 2.

For a folded cross cap, the composition C? o C lies outside the clean intersection
calculus, but the following holds.
Theorem 5.4. [11] If C is a folded cross cap and A € I35 (X,Y;C), then
A*A € IPm—%:% (AT*y,é), where C C T*Y x T*Y intersects Ap+y cleanly in
codimension 1, and C is a folding canonical relation, i.e., both w; and wgr are

Whitney folds.

It f9110WS that the wavefront relation of N := A*A is contained in Ag«y U C’,
with C' a folding canonical relation. By (4), (5) and that Ar«y acts as the identity
relation on T*Y, for any u € £'(Y'), we have

WF(Nu) C WF(u) U (éo WF(u)) : (40)
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Furthermore, by (6), microlocally away from Agp.y N C, we have N € I*™
(AT*Y \ C’), and N € [2m—3 (C~’ \ AT*y); thus, away from Ap«y N C’, the order of
the non-pseudodifferential operator part of N, which constitutes an artifact, is 1/2
lower order than the pseudodifferential part of N. Although the artifact’s order is
1/2 lower, the two-sided fold degeneracy of C , combined with the paired Lagrangian
nature of the normal operator, produce a situation where it is not known whether
the artifact is completely removable; see [13] for further analysis and discussion.

Under the assumptions of Theorem 5.2 and away from a very small microlocal
set, this composition result and its implications apply to the dense array borehole
data set, resulting in artifacts 1/2 order smoother than the primary image.

5.3. Proof of Thm. 5.2. The analysis here has a great deal of similarity with
that for the marine surface data set in the presence of fold caustics [11]; however,
the dense array data set differs in fundamental ways from the marine data set (e.g.,
for each source in the dense array, the line of receivers is the same, while that is not
the case for the marine geometry), and can not be reduced to that case.

Let rmin < 70 < Tmaz and 79 € x (Ay,) C T’ be a Whitney fold point for
Tx @ Ay — Rf_. Repeating the analysis from Sec. 5.1, we can assume that
T1,To,P3 = §3|r;§) have independent gradients near 7. Since 0, is transverse
to TA,, dx(0,) is transverse to Ty, x(A,). Thus, (x1,z2,r, p3) form coordinates on
I'° near g, the acoustical distance function described above is a smooth function
of (z1,x2,7,p3), and we can express x3 and (p1,p2) := (£1,&2) on I' in terms of
them: x3 = f(x1,22,7,p3) and (p1,p2) = (91(w1, 22,7, p3), g2(x1, 72,7, p3)) on I'°0.
With respect to these coordinates, 7x (z1, 22,7, p3) = (21, z2, f(x1, 22,7, p3)) and

1 0 0 0

dix=| 0 1 0 0
or of of 9f
1 Oz or Ops

From this we see that

2, if ¥=700=
rank (dry) = T " ps,
3, if % # 0 or aan; # 0,

and X(rx) = {aanS = % = 0}. At points of X(nx), ker(dmx) is spanned by

{(0,0,6r,dp3) : or,dps € R}, and the tangent space to X(mx) is

TZ(WX) = ker (dml,wz,pg,’f“ (aaf>) N ker (d;pl,wQ,pg,’l‘ (gf)> .
P3 "

‘We have:
W (AN (T P R
TLE2PIT \ G B axlapg’axQ(‘?pg’ap%’aTap:s
. O\ _ (0% f f &
T1,T2,P3,T s - 8xlar’ 81'287’) 8p337“’ 87”2 '

The assumption Def. 5.1(ii) that 7x : ' — R3 is a submersion with folds implies
that 3X(wx) is smooth (i.e., these gradients are linearly independent), and

and

TX(mwx) is transverse to ker (drx) . (41)
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We can parametrize the canonical relation C in terms of r, 1,22, p3; (1, as),
where (a1, @2,+/1 — |a|?) is the unit take off direction of the reflected ray; and 7,
the variable dual to time. The incident ray travel time t;,., the time it takes for
a ray to travel from a source S = (s,0) to an incident point z, i.e., the acoustical
distance from S to z, can, by the nongrazing assumption at the surface described
in Sec. 2.1 and symmetry, be expressed in terms of x and «, tine = tinc(x,@). On
the other hand, the reflected ray travel time t,.y, the time it then takes for the
reflected ray to reach the borehole at point R = (0,0, r), is, again by symmetry, the
acoustical distance from R to x, and thus t,cf = tyef(21, 2, 1, p3); the total time for
the single-reflection event is t = t;,,c +tycs. Letting (p, 01,02, 7) be the coordinates
dual to 7, s1, $2,t in T*D, we can take (x1,x2,7,ps3, a1, @2, T) as coordinates on C,
and

C = {(r,sl(xl,acg,f(xl,xg,r,pg),a),SQ(acl,mg,f(xl,xg,r,pg),a),
tref (71, 22,7, 03) + tinc(21, T2, f(21, 72,7, p3), @),
p(w1, T2, f(x1,22,7,p3),p3,7), 01(T1, T2, f(T1, 22,7, P3), @0, T),
o2, 2, f(21, 22,7, P3), 0, T), T;
x1, T2, f(T1,22,7,p3); =T (051(931,332,f($1,$277"7p3))0é1 + g1(z1, 22,7, p3))

-7 (Cal(xla x2, f(thQ,T,pS))OQ + 92(x1>$2»T»P3)) ’

7 (o (o1, w2, flan,@2,7p3)) VT [ +pa) },

where p(+) is homogeneous of degree 1 in p3, 7, and o1(-), 02(-) are homogeneous of
degree 1 in 7.

We now show that C is a folded cross cap in the sense of Def. 5.3, except
possibly on a set of codimension four. In terms of the above coordinates on C'
and the standard canonical coordinates (x,¢) on T*R?, we can write mp as a map
mr : R7 = RS, given by

7TR($17$27T7p37041,04277) = ($1a$27f(55171'277">p3)7
-7 (Cal (xl,JjQ,f ($1,$2,T,p3)) a1 + gl(xlnyarap?))) 3
-7 (Cal (x17x27f (1'1,1'2,7',]?3)) Qg + 92(m1ax23Tap3)) )

-7 (Cal (.’E1,£C2,f($1,$2,7",p3)) 1- |a|2+P5))

Thus,
dT('R =

1 0 0 0 0 0 0

0 1 0 0 0 0 0

of of of of
Ger Oes 00 Ops 0 0 :

A1 A2 Ag A4 —Tc(;l 0 —(Caloél + gl)
By By B; By 0 —rcyt ~(cg'az + g2)
—1 a -1 a
Ci Cy C3 Ci 7¢ \/171|a|2 T¢, \/17"‘|a‘2 1—|a|? + ps3
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for some Aj;, B;,C;. The lower right 3 x 3 submatrix
eyt 0 —(cgton +g1)
0 —1cy?t —(cgtan + g2)

1o —1_ _ay (g /I ]aP
TG o= T s (cg /1 —laf? +ps)

is nonsingular, since its determinant

— _1 — 1
21— [al) "} [ + arg1 + @292 + py(1 o)t

is nonzero: (g1,92,p3) = &|reo and by Assumption 3.2, any scattering over 7 has

been filtered out, i.e.,

(Ctl,OtQ, (1 - |CYD%) : (p15p2ap3) # _Cal'

It follows that )

5, if gL =%L—0,

6, if 5L #0or §L #0.
Now, kerdmr = {(0,0, dr, dps, day, das, d7)}, where day, dag, 57 depend on dps,

dr. On the other hand, the tangent space to X(mg) is

of of
TY(mgr) = ker (dzl,zz,nps’al,az,r (3p3>) n ker (dml»IQW’IByahahT (5,7,)> )

where
af 0%f 0% f o%f O0%*f
dﬁ?17$277"7p3,a17(12,7' = ’ ’ ’ 72707070
Ops 0x10p3” Oxo0p3 Ordps” Ops

d OF\ _(0f O O OF 4,
TIPS T\ gr )\ Ox10r’ 0xeds’ Or2’ Opsor’ )

Combining this with (41), one sees that ker (dmg) is transverse to T3(wgr) and
thus, mg is a submersion with folds. One can also check that, off an exceptional set,
the image of the critical set is nonradial, i.e., {-dz # 0 on X(7g). Since T (X(7g)) is
the span of the columns of the matrix in (42) representing dnr, while 77 1€ consists
of the last three entries in its last column, and OF — 9 — () at Y(mRr), we see that

Ips or
(€-dx)(W)=0for all W € T (X(np)) if and only if

¢y ej g+ o V1= [0 + fa,ps =0,j =12,
which defines a codimension 2 submanifold in ¥(7wg) and hence codimension 4 in
C.

We next need to show that my is a cross cap. As for any canonical relation,
Y(r) = X(ng). Similar to the analysis for 7g, the projection np : C — T*D can
be treated as mapping R” — R, with (reordering the variables for convenience)

rank (drg) = { (43)

and

7L (7, @1, T2, 00, 02,3, T)
= (7”781(3017962,f($17372,7“,273)704)»82(3317552,f(xl,wzﬂﬁpg)aa)’
tref(x1, 22,7, 03) + tine(@1, T2, f(21, 22,7, p3), @),
p (w1, o, f(x1,22,7,p3),p3,7),
o1(x1, 22, f(x1,22,7,03), 0, T),
Ug(xl,zg,f(xl,:cz,r,pg),a,T),T)

and thus dnp, =
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1 0 0 0 0 0 0
951 Of sy |, 9s1 Of s, , 9s1 Of 9s1  9sy 9s1 Of 0
Tig  npiomoy  gm.omoy o o
2 2 2 2 2 52 2 2
dxg Or CEZ + dxg 0wy EED) + CEENCED) daq dag dw3 Op3 0
atT@f Otine Of atTEf Otine Of 8t7‘€f Otine 8f Otine Otinc 0t7‘€f Otine Of 0
or T w3 or Do, T Ows 0wy Ozy T O3 Dzz Oay Oas Ops Dws Opg
9p Op | 0p Of Op | 9p Of 0 0 9p 9p 9p
or dxq dx3 Oz ED dxz Oxo dx3 Op3 dp3 T
9oy Of oy 901 of doq o1 of doq doq do1 Of doq
Dwg Or ooy T 9wg Der 9wy T 9w 923 Day Daz w3 Dp3 o
905 of Doy | bos BF dos | bos OFf 905 Do op8 of oy
6w%m a5 T 8)13 Da1 dzg T gmg dag agl 632 aw3oap3 a7
Since corank(dry) = corank(dmg), it follows from (43) that dmry is injective
. . . . . )
except where it has a one-dimensional kernel above caustic points, where Tpfg =

% = 0. We will use these two conditions, plus one more, in order to simplify this
matrix. Namely, by rotation about the borehole, we can assume that, for the point
of interest, the tangent plane IT = mx (Th,AS) from Sec. 5.1 is the graph of x5 as
a linear function independent of x2. As a consequence, f,, = 0 at this point. The

matrix for dr;, then becomes

1 0 0 0 0 0
dsq 9s1 Of 9ds1  Os1 Osi

0 oz + Oxz Ox Oxo da;  Oao 0

0 Osa + Osa 3]‘1 Osa  Osg Osa 0 0

o O

81‘1 8:63 8I1 81’2 8&1 8042
at’"ef 8t7'3f + atinc af at7‘€f atinc atinc 8t'"ef
— or ox Oxs Ox ox o o 0,
dro=| 3 7, T AT TR (44)

+ Op Of
or oxq Oxsz Oxy Oxo Ops T
0 9oy 4 90y 0f 9oy doy Doy (g Oay

oz Odx3 Ox dxrs Oai1 Oas oT
0 doa + doa 3]‘1 doy  OQoa  OJog 0 dog

6331 8963 6581 6902 8&1 Baz or
0 0 0 0 0 0 1

Writing a spanning element Vi, € ker (dry) as (0r, dz1,0xe, day, dava, dps, 6T ), we
see from (44) that or = 67 = 0, so that the %"Tl, % terms in (44) can be ignored.
Furthermore, under the assumption that the rays from the sources are transverse

to the caustic surface (see [28]), the determinant

Os1 Os1 9s1 0Osy
81‘1 81‘2 8(,!1 60(2
Osy 0Osy 0Osy Osy
xr xr (e% (o3
bo. b7 05, 01 | 70 (45)
8:1}1 8:1}2 80[1 8&2
9gy 0oy 0oy 0o
8$1 8$2 8@1 60(2

The matrix in (45) is almost a minor of (44): they differ only in the first column,
by

T
foy [(81) a5 (52) 255 (01) 2, (02) 5] - (46)
Thus, if we make the small slope assumption that
|fz,| s sufficiently small, (47)

which, since the x; direction was chosen for convenience, can only be ensured if we
assume |dy, 4, f| is small, i.e., the normal to the fold caustic surface is sufficiently
close to vertical, then the corresponding minor of (44) is nonsingular, which implies
that dz1 = dxo = dag = dag = 0. (A “small dip” assumption such as (47) could
be conceivably verified from a sufficiently accurate background velocity model, but
is included here in order for the mathematical analysis to be valid.) Thus, dps is
the only nonzero entry in Vz; note also that this then implies that 3;;‘:" = a‘% =

at caustics. It then follows from (39) that (iii) below Def. 7.4 is satisfied, and (i),
(ii) follow from this analysis as well. Hence, 7y, is a cross cap. Again, one can
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check that, away from a set of high codimension, the image of the cross cap points
is nonradial in 7*D. A point is radial if and only if (p, o1, 09, T)T - W =0 for all
W e T (rp(X(wr))), i-e., for W in the span of the columns of the upper 4 x 7
submatrix of dmy, this becomes

p=—

S1 82)x,02 = —

($1)a, +€1)o1 + (52)

(51)as + €2)01 + (82)2,02 = —
(51)a; +€3)01 + (s2)
((81)ar +€1)01 + (52)ay02 = —(tinc)an T,

for some small €;, 1 < j < 4. The first equation imposes one condition. On the
other hand, the last four equations impose two more, since the coefficient matrix is
the upper 2 x 4 submatrix of the matrix in (45) and thus has rank two, meaning that
the right hand sides of these last four equations must satisfy two linear conditions
in order for the equations to be solvable. Thus, the set of possibly radial points of
7, (X(7p)) is of codimension at least three in the critical set, and thus codimension
5 in C. Combined with the codimension 4 set of possible radial points of mr, we
see that the nonradiality conditions of Def. 5.3 are satisfied away from a set of
codimension at least 4 in C.

In summary, we have shown that if the ray geometry of the background sound
speed ¢g has at most fold caustics with respect to the borehole, and the small slope
assumption (47) holds, then away from a codimension 4 set the canonical relation
C is a folded cross cap, finishing the proof of Thm. 5.2. O

Theorem 5.2 then implies that Theorem 5.4 applies to the composition forming
the normal operator F*F (away from the possible bad set microlocally), with the
consequences for artifacts as described above.

(
(
(

52 0410-2 = -

6. Crosswell and walkaway geometries. As for the dense array in Sec. 3,
for the crosswell and walkaway geometries we compute F' = dF at the constant
background sound speed ¢y = 1 by restricting the basic phase function (10) to each
data set D.

6.1. Crosswell geometry. For the crosswell (CW) geometry, we assume that the
sources and receivers are located in parallel, vertical boreholes. For simplicity,
assume that the sources form an open interval along the line y; = sg, y2 = 0, for
some sg > 0,

ES = {<307073) 1 sE (Sminvsmaw) = IS},
and the receivers are similarly located, as for the other geometries, in the borehole
along the y3 axis, say

Sr={(0,0,7) : 7 € (T"min, Tmaz) = Ir},

and we ldentlfy D= ]D)CW = (Smiru Smaz) X (rmina rmax) X (tmina tmaz)-
The associated linearized scattering operator F' is then a Fourier integral operator
with phase function obtained by restricting (10) to Dow:

¢CW(S»T7t7y§W)=(t—\/(%—so) +y2 (y3 — s)? \/y1+y2 S_T)>W~
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The structure of the linearized scattering operator F' for the crosswell geometry
is summarized by the following.

Theorem 6.1. The linearized scattering operator F for the crosswell imaging
geometry is a Fourier integral operator, F € Iz (Cew), whose canonical relation
Cow is singular on the union of two hypersurfaces, ©* UX2, with X! and X2 inter-
secting transversally. On X1\ X2, wp has a fold singularity and wg is a blowdown,
while on X2\ $1, both of the projections wy, and Tr have fold singularities.

Proof of Thm. 6.1. Let

A= \/(y1_80)2+y%+(y3_8)2’ B .= \/y%+y§+(y3—r)2.

We calculate the canonical relation, Coyw, parametrized by ¢ow, and classify
the singularities of the left and right projections. We have:

Cow = {(s,r,A—i—B,

ys—Sw Yy — T
A " B

Yi—% N (& @) Yys—8 Yz — T )
y17y2ay37( A + B)wa A + B UJ7( A + B )OJ

:yGR?’,SGIS,rGIR,w#O}.

W, W

With respect to these coordinates, the left projection, 7y, : Cow — T*Deow, is
Ys —s Yz T w)
A 7 B

71y, 8,1, w) = (s,r,w,A + B,
and the right projection, mg : Cow — T*R3, is

— S -5 -r
7T-R(y7877n7(“)) = (y17y27y37 (ylA 0 + 32) w, (yTj + %) w, <y3A + ySB )o'})

We first study m7,. Denote the variables dual to s,7,t by o, p, T, resp. Since 7y,
is the identity in the s,r, w variables, det dry, equals det D(o, p,7)/Dy, i.e.,

311;150 + % % + y§2 yaA—S tysér
det(dry) = 7(y3752§grso)w 7(y322)y2w (yrjgg) 2+y2w
_ (y3;§)yl W - (y3§73“)y2 w 91;3?/2 w
W Yo =5 ys—r
ENERUL A ] B /)

Thus, det(drz) =0 on X' U X2, where

1._ _ 2. JYs—s8 Ys—T _
¥ = {y2 =0}, E.—{ " + 5 —O}.

Note that points in X! N X2 correspond to unbroken rays from Xg to Xg,
not undergoing any scattering, and thus are first arrival events. Omne can thus
filter the data away from X' N $2 by multiplying d(s,r,t) by a smooth cutoff
X (cot = |S(s) = R(r)]), where supp(x) C {t > e} for some ¢ > 0. Hence, we do
not need to consider the more singular structure of Cow at X! N X2,

Along each of ¥\ ¥2 and ¥2\ !, det (dry) vanishes simply, and thus drp,
drops rank by 1. One easily sees that, along X' \ X2, ker (dnz) = 8%2 and hence

(cf. Def. 7.2) 1, has a fold singularity at points of ¥!\ 2. Similarly, ker (drp) =
6%2 at points of X2\ ¥!, and hence 77, has a fold singularity there as well.
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Next, we consider wr. As for any canonical relation, dwg also drops rank by the
same amount as drr,, and hence by 1 on (Zl \ 22) U (22 \ 21). We find its kernel
by computing

Dn (91—50)3(?!3—3) w yl(yss—’f) w y1280 + y§1

y2(ys—s) y2(ys—r) y y
Dis,rw) A TR At )
v _ (y1*50)2+y§w —ylﬂéw Ys—s | Ys—T
A3 B3 A B

The kernel of drg is contained in span {%, %, %}, which when applied to the
defining function y, of ¥' gives 0. Hence, along (X! \ %?), ker(drg) C TS! and
thus (cf. Def. 7.1) mg has a blowdown singularity along X!\ ¥2. On the other
hand, along X2\ !, the first 2 entries of the last row are nonzero while the last one
is 0. Hence the kernel of drg is spanned by % or %, which is transverse to 2,
and so g has a fold singularity. O

6.2. Walkaway geometry. For the walkaway geometry, the set of sources is as-
sumed to be an open subset of the y; axis,

Ys = {(87070) tselsg = (Sminvsmax)}
and the set of receivers is as throughout an open subset of the y3 axis,
Yr={(0,0,7): r € Ig = ("min, "mazx )}
so that D = Dy 4 = Is X I x Ip. Restricting (10) to Dy 4, the phase function of
Fis
Pwa(s,rt,yiw) = (t— \/(y1 —s)?+yi+ui - \/z/f +y5 + (vs —7")2> w.

Let

A= \/(y1 — )%+ + i (49)

B i= [} + 13 + (1 — )" (50)

The structure of the linearized scattering operator F' for the walkaway geometry
is summarized by the following.

Theorem 6.2. The linearized scattering operator F' for the walkaway geometry is a
Fourier integral operator, F' € I3 (Cwa), whose canonical relation Cyy 4 is singu-
lar at the union of two smooth hypersurfaces L' and X2, which intersect transver-
sally. At S\ X2, 71, has a fold singularity and 7r has a blowdown singularity, while
at ¥2\ X1, 7y is a fold at all points and TR is a fold away from a hypersurface.

Proof of Thm. 6.2. The canonical relation Cy 4 of F' is

CWA = {(S7T7A+B7 yl‘A_ SW) yg-B_rw7w;

yi=s Y\, (Ve vy, (Y5, YT
y17y27y37( A +B)W7(A+B)W7<A+ B )w)

:y€R3,s€IS7r€IR,w7EO}.
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The right projection mg : Cyya — T*R3 is

’R'R(y,s,'f',UJ) = <y17y27y37 <y1A i + ZE) w, (% + %) w, (:i/j + ydB r) w)
(51)
Since 7 is the identity in the y variables, to compute det(dmg) we only need to
compute the Jacobian in the remaining variables s, 7, w, which (in this order) is

2 2
_Yatys , yilys—r) o yi—s U
D m, 2,13 AE BB, A B
(11,72, 13) y2(y1—s) ?/2(?/33 ") w yf"‘% . (52)

p— w
2
y3(y1—s Y1ty g 3—T
(A3 Lo — grw §+ Yy

D(s,r,w) o

A calculation yields that

_ @ (=)t sl yEud +us(ys =)
A2B2 A B

i

det (d’/TR) =

the expression in the parentheses can be written as y - (% + %) If we let

$hi={fi ==y2 =0}, »? = {fz Izy'(y;ls-i‘y;%):o}’ (53)

then 3!, ¥2 intersect transversally. Furthermore, on (X!\ £2)U(%? \ £!), det (drg)
vanishes simply, and thus dmg drops rank by 1 there; by general principles concern-
ing canonical relations, the same facts hold for det (dny,) = det (dwr) and rank(dry,),
resp.

¥\ ¥2: From (51) we see that kerdmr C span {%, %, %}, which is contained
in TY!, and is one-dimensional at points of X! \ ¥2?; hence, g has a blowdown
singularity there. Next consider 7y, : Cyw a4 — T* Dy 4,

-8 —r
mr(y,s,rw)=|s,r, A+ B, 2l w, Y3 w,w . (54)
A B
As noted above, drp, drops rank by the same amount as drg and so also has a one-
dimensional kernel along ¥! \ ¥2. Since 7 is the identity in the s,r,w variables,
we only need compute the differential in the remaining variables, v,
(ylfgS)j_ y§1 yjz + % yTiv. + yg};r
ygjgyg w _QQ(ZIA]S_S) w _ys(zlg—S) W

D(t,o,p)
D(y1,y2,93)

: (55)

_yl(%ss—r) w _yz(yBaS—T) w yf;r;ﬁ w
9 0
? Qy2’ Oys
dle column are multiples of ys, which vanishes on !, one sees that, on X1\ 32,
ker (drr) = span{a%z}, which is transverse to ! = {yo = 0}. Thus, 7, has a fold

and kerdmy, is contained in span {6%1 }. Since the entries in the mid-

singularity along 3!\ 32.

%2\ X¥1: We show that all the singularities of 77, are of fold type, while 7 has
fold singularities on the complement of a subset defined by a polynomial equation.
At points of X2\ $!, as was the case on $!\ X2, ker (dry) C {6%17 ain, aiys} and
is one-dimensional. If V}, # 0 spans ker (drp), then it is annihilated by all of the
rows of (55), in particular the first row, and thus (d, (A + B), V) = 0.

There is a geometric interpretation of this last fact: for fixed s,r, the family
of level surfaces of A+ B, Es,; = {y : A+ B = t}, indexed by t > V52 +¢2,

are ellipsoids with foci at s and r, and outward pointing (nonunit) normal v :=
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d,(A+ B). Then, since (v, Vy) = 0, we see that V7, is tangent to E; ,;; on the other
hand, by (53), y (considered as a vector) is also tangent to Fs , ;.
Notice that, with fo =y - v as in (53), dy fo = v + y'd,v. One has

<dyf2, VL> = <l/7 VL> + yt(dyu)VL. (56)

The first term on the right hand side of (56) is zero and the second one is positive
since the ellipsoid Ej ,.; has positive curvature (for every V.V’ € T, E ,.,, V' (d,v)V’
>0) and y, v € T E; ;. Thus 71, has a fold singularity along 2.

For mp, ker (drg) C span {2, 2, -2} is one-dimensional, and thus spanned by
aVg = 65% +57“% —&—&u%. From the matrix (52) representing the essential part of
dm g, we use the second row to solve for dw in terms of ds and dr (the value of which
will be irrelevant below), and the first row to solve for ds in terms of dr, namely
s = —57’%%. Thus, Vi = 757"%%8% + 57‘% + 5(.0%; applying this to fo (which is
independent of w), a calculation gives the critical set

Y (mrlva\s) = {s°B*(y3 +y3) — A% (yi +y3) = 0}. (57)

We can see that the polynomial defining function in (57) is nonzero at some points,
e.g., by taking s or 7 — oo and considering the leading coefficient in s or r, resp.
Therefore, ¥ (g|s2\ 51 ) is a lower dimensional variety, whose complement in $2\ X!
is dense; on that set, Vg fo # 0 so that mg has a fold singularity at those points.
This finishes the proof of Thm. 6.2. O

6.3. Artifacts for crosswell and walkaway. A canonical relation similar to Cow
described in Thm. 6.1, with similar geometry for X!, ¥2, and singularities types of
the projections from them, was shown to appear in the context of synthetic aperture
radar and analyzed in [2]. The open dense subset of Cy 4 described in Thm. 6.2 has
a similar structure. It was shown in [2] that, if A is an FIO of order m associated
with such a canonical relation, then

A*A e IZm’O(A, Ol) + I2m’O(A, 02) + IZm,O(Ch Cg), (58)

where Cy is the graph of a canonical involution y, and C5 is a two-sided fold. It
follows from (6) that the order of A*A is the same (namely 2m) on all three of A, C;
and Cs, away from their intersections, and hence the artifacts created by Cy and Cs
when attempting imaging by backprojection are as strong as the true image, and
thus are nonremovable.

Due to the presumed absence of normal forms for canonical relations with this
structure, the results of [2], and thus (58), cannot be applied directly to the lin-
earized scattering map F € I -2 (Cow), but the negative implications for artifacts
are nevertheless relevant here, as can be seen by microlocalizing to %!\ %2 and
2\ 3!, strongly indicating but not proving the presence of strong, nonremovable
artifacts in reconstructions from crosswell and walkaway data. However, the pres-
ence of strong artifacts can definitely be deduced from the microlocal structure of
Cew and Cyy 4 near points where both 7y and mg are folds. Folding canonical
relations, for which both 7wy and 7wgr are folds, were first studied in the context of
scattering by obstacles [25], and then for linearized seismics in [28, 8, 9]. It was
shown in [28, 8] that, if A € I"™(C), then A*A € I*™°(A,C1) where C} is another
folding canonical relation. Since A*A € I*™(A\ Cy) and A*A € I?™(Cy \ A) by
(6), the artifact created by Cy is as strong as the true image, again resulting in a
nonremovable artifact.
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7. Appendix: Singularity classes. Let V and W be smooth manifolds, ini-
tially of the same dimension, n, and let f : V' — W be a smooth function. Let
X(f) :=={xz € V : det(df (z)) = 0} be the set of critical points of f. (This and all of
the sets defined below are coordinate-independent.) The only singularities we will
be concerned with are those which are corank one, by which we mean points zg € V
such that

rank (df (x9)) =n — 1 and d (det(df)) (zo) # 0. (59)

If f only has corank one singularities, then ¥ is a smooth hypersurface in V.

Definition 7.1. f: V — W is a blowdown if ker (df) C TX(f) at all points of
()

Definition 7.2. f has singularities of (Whitney) fold type if, for every x € X(f),
ker (df (x)) intersects TpX(f) transversally.

Now consider the non-equidimensional situation. There is some variation in the

literature in terms of how these singularities are denoted. The analogues of Whitney
folds are called submersions with folds (if dim (V) > dim (W)) or cross caps (if
dim (V) < dim (W)). Suppose that dim (V) = N, dim (W) = M, with N > M.
For N = M, submersions with folds are Whitney folds, and are denoted by 5 ¢
(in the Thom theory of C'* singularities [17]) and by X1 ¢ (in the Boardman-Morin
theory [27]) in the equidimensional case. In general,

Definition 7.3. f is a submersion with folds if the only singularities of f are of
type S1,0 (Thom) or En_pr+1,0 (Boardman-Morin).

For our purposes, we do not need to define the classes S1¢ or Xn_ar41,0, but
simply recall that one can verify that f is a submersion with folds as follows. At
points where rankdf > M — 1, by [27], we can choose suitable adapted local coor-
dinates on V' and W such that f has the form: f(x1,29,...,2pm—1,Zrp,...,ZN) =
(x1,29,...xp-1,9(x)). The set X(f) where f drops rank (by 1, by assumption) is
described by X(f) = {z : 887% =0, M <i< N}. Then f is a submersion with folds
if, for all x € X(f), /

(i) {d (%) M <i< N)} is linearly independent (so that X(f) is a smooth
submanifold of V'); and

(ii) the (N — M + 1)-dimensional kernel of df(x) is transversal to the tangent
space of X(f) in T, V.

These conditions can be combined [27] into
%g }
8@8;@ M<i,j<N
and this is independent of the choice of adapted coordinates.

For each N, M, there are a finite number of local normal forms for a submersion
with folds, determined by the signature of the Hessian of f [17]:

det [ £0, (60)

f(xlax27"'7xN) = (xlaan"'va—hm?\/[ix?\/IJ,-l:l:'”:l:x?\/')'

In the case relevant here, N =4 = M + 1 and the last entry is a quadratic form in
two variables.

We now define the final singularity class of interest, assuming that f: V — W,
with dim (V) =N < dim (W) = M.
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Definition 7.4. f is across cap if the only singularities of f are of type S1,0 (Thom)
or 310 (Boardman-Morin).

One can identify a cross cap as follows [27]. At a point where df has rank > N —1,
we can find suitable adapted coordinates such that

f(xtha"'axN—la‘TN) = (x17x27"'7IN—17917927"'gq)7
where ¢ = M — N + 1. The set X(f) where f drops rank by 1 from its maximal

possible value, N, is given by X(f) = {= : % =0, 1<i<gq}. Assume that
o

2.
65?10 (0) # 0. Then, g has a cross cap singularity near 0

there is an 7o, such that

. . 0
if the map x : RY — R given by x(z1, 22, an) = (92, 22, 3

rank (dx(0)) = g. (Notice that this forces N > ¢, i.e., M < 2N — 1.) These
conditions can be expressed as:

) satisfies

(1) 2(f) is smooth and of codimension g;
(74) the N x N minors of df generate the ideal of X(f); and
(#4i) ker(df)NTX(f) = (0).

As for folds, there is a local normal form for cross caps, due to
Whitney [37] and Morin [27]:

flz1,za,...,zNn) = (z1,22,...,TN-1,Z1ZN, . ..xM,NxN,x%,). (61)

Acknowledgments. This paper grew out of work supported by an American In-
stitute of Mathematics Structured Quartet Research Experience (SQuaRE). The au-
thors would like to thank Olga Podgornova for wuseful conversations.
RG and CN were partly supported by Science Foundation Ireland under Grant
number 16/RC/3918. AG was partly supported by US NSF Applied Mathematics
Program grant DMS-1906186.

REFERENCES

[1] J. Ajo-Franklin, J. Peterson, J. Doetsch and T. Daleya, High-resolution characterization of
a CO2 plume using crosswell seismic tomography: Cranfield, MS, USA, Int. J. Greenhouse
Gas Control, 18 (2013), 497-509.

[2] G. Ambartsoumian, R. Felea, V. Krishnan, C. Nolan and E. T. Quinto, A class of singular

Fourier integral operators in synthetic aperture radar imaging, II: Transmitter and receiver

with different speeds, SIAM J. Math. Analysis, 50 (2018), 591-621.

A. Balch and M. Lee, Vertical Seismic Profiling: Technique, Applications, and Case Histories,

International Human Resources Development Corporation (Boston), 1984.

G. Beylkin, Imaging of discontinuities in the inverse problem by inversion of a generalized

Radon transform, J. Math. Phys., 26 (1985), 99-108.

[5] T. Daley, E. Majer and J. Peterson, Crosswell seismic imaging in a contaminated basalt
aquifer, Geophysics, 69 (2004), 16-24.

[6] T. Daley, L. Myer, J. Peterson, E. Majer and G. Hoversten, Time-lapse crosswell seismic and
VSP monitoring of injected CO 2 in a brine aquifer, Environ. Geology, 54 (2008), 1657-1665.

[7] J. J. Duistermaat and V. Guillemin, The spectrum of positive elliptic operators and periodic
bicharacteristics, Inv. Math., 29 (1975), 39-79.

[8] R. Felea, Composition of Fourier integral operators with fold and blowdown singularities,
Comm. Partial Differential Equations, 30 (2005), 1717-1740.

, Displacement of artefacts in inverse scattering, Inverse Problems, 23 (2007), 1519.

[10] R. Felea, R. Gaburro, A. Greenleaf and C. Nolan, Microlocal analysis of Doppler synthetic

aperture radar, Inverse Prob. Imaging, 13 (2019), 1283-1307.
[11] R. Felea and A. Greenleaf, An FIO calculus for marine seismic imaging: Folds and cross-caps,
Comm. Partial Differential Equations, 33 (2008), 45-77.

3

4




28 RALUCA FELEA, ROMINA GABURRO, ALLAN GREENLEAF AND CLIFFORD NOLAN

[12] R. Felea and A. Greenleaf, Fourier integral operators with open umbrellas and seismic inver-
sion for cusp caustics, Math. Research Lett., 17 (2010), 867-886.

[13] R. Felea, A. Greenleaf and M. Pramanik, An FIO calculus for marine seismic imaging, II:
Sobolev estimates, Math. Ann., 352 (2012), 293-337.

[14] R. Felea, V. P. Krishnan, C. Nolan and E. T. Quinto, Common midpoint versus common
offset acquisition geometry in seismic imaging, Inverse Probl. Imaging, 10 (2016), 87-102.

[15] R. Felea and C. Nolan, Monostatic SAR with fold/cusp singularities, J. Fourier Anal. Appl.,
21 (2015), 799-821.

[16] R. Felea and E. T. Quinto, The microlocal properties of the local 3-D SPECT operator, SIAM
J. Math. Anal., 43 (2011), 1145-1157.

[17] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Graduate Texts
in Mathematics, 14, Springer-Verlag, New York-Heidelberg, 1973.

(18] A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudodifferential
operators with singular symbols, J. Funct. Anal., 89 (1990), 202-232.

[19] V. Guillemin, On some results of Gelfand in integral geometry, Proc. Symp. Pure Math, 43
(1985), 149-155.

[20] V. Guillemin and G. Uhlmann, Oscillatory integrals with singular symbols, Duke Math. J.,
48 (1981), 251-267.

[21] S. Hansen, Solution of a hyperbolic inverse problem by linearization, Comm. Partial Differ-
ential Equations, 16 (1991), 291-309.

[22] L. Hormander, Fourier integral operators, I, Acta Math., 127 (1971), 79-183.

[23] A. Kirsch and A. Rieder, On the linearization of operators related to the full waveform
inversion in seismology, Math. Meth. Appl. Sci., 37 (2014), 2995-3007.

[24] A. ten Kroode, D. Smit and A. Verdel, A microlocal analysis of migration, Wave Motion, 28
(1998), 149-172.

[25] R. Melrose and M. Taylor, Near peak scattering and the corrected Kirchhoff approximation
for a convex obstacle, Adv. in Math., 55 (1985), 242-315.

[26] R. Melrose and G. Uhlmann, Lagrangian intersection and the Cauchy problem, Comm. Pure
Appl. Math., 32 (1979), 483-519.

[27] B. Morin, Formes canoniques des singularités d’une application differentiable, I, C. R. Acad.
Sc. Paris, 260 (1965), 5662-5665; II, C. R. Acad. Sc. Paris, 260 (1965), 6503—6506.

[28] C. Nolan, Scattering in the presence of fold caustics, STAM J. Appl. Math., 61 (2000), 659—
672.

[29] C. Nolan and M. Cheney, Microlocal analysis of synthetic aperture radar, J. Fourier Anal.
Appl., 10 (2004), 133-148.

[30] C. J. Nolan and W. W. Symes, Global solution of a linearized inverse problem for the wave
equation, Comm. Partial Differential Equations, 22 (1997), 919-952.

[31] O. Podgornova, Lecture at ICERM, 2015, https://icerm.brown.edu/video_archive/?play=
720.

[32] Rakesh, A linearized inverse problem for the wave equation, Comm. Partial Differential Equa-
tions, 13 (1988), 573-601.

[33] C. Schmelzbach, et al., Advanced seismic processing/imaging techniques and their potential
for geothermal exploration, Interpretation, 4 (2016).

[34] C. Stolk, Microlocal analysis of a seismic linearized inverse problem, Wave Motion, 32 (2000),
267-290.

[35] W. W. Symes, The seismic reflection inverse problem, Inverse Problems, 25 (2009), 123008.

[36] A. Weinstein, On Maslov’s quantization condition, In Fourier Integral Operators and Partial
Differential Equations, Lecture Notes in Math., Springer-Verlag, New York, 459 (1975), 341—
372.

[37] H. Whitney, The general type of singularity of a set of 2n — 1 smooth functions of n variables,
Duke Math. J., 10 (1943), 161-172.

Received October 2021; revised March 2022; early access May 2022.

E-mail address: rxfsma@rit.edu

E-mail address: Romina.Gaburro@ul.ie
E-mail address: allan@math.rochester.edu
E-mazil address: Clifford.Nolan®@ul.ie



	1. Introduction
	2. Scattering model, microlocal analysis and singularity theory
	2.1. Scattering model and normal operator
	2.2. Microlocal analysis

	3. Dense array: Constant c0
	4. Dense array: No caustics
	5. Dense array: Fold caustics
	5.1. Fold caustics: Single receiver
	5.2. Fold caustics: Borehole data
	5.3. Proof of Thm. 5.2

	6. Crosswell and walkaway geometries
	6.1. Crosswell geometry
	6.2. Walkaway geometry
	6.3. Artifacts for crosswell and walkaway

	7. Appendix: Singularity classes
	Acknowledgments
	REFERENCES

