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Abstract. Borehole seismic data is obtained by receivers located in a well,
with sources located on the surface or another well. Using microlocal analysis,
we study possible approximate reconstruction, via linearized, filtered backpro-
jection, of an isotropic sound speed in the subsurface for three types of data

sets. The sources may form a dense array on the surface, or be located along a
line on the surface (walkaway geometry) or in another borehole (crosswell). We

show that for the dense array, reconstruction is feasible, with no artifacts in the
absence of caustics in the background ray geometry, and mild artifacts in the
presence of fold caustics in a sense that we define. In contrast, the walkaway
and crosswell data sets both give rise to strong, nonremovable artifacts.

1. Introduction. In seismic acoustic imaging, borehole data refers to measure-
ments of waves made by receivers (sensors) at various depths in a well; applications
include prospecting for CO2 sequestration sites or geothermal reservoirs, and moni-
toring aquifer pollution or existing hydrocarbon reservoirs. In Vertical Seismic Pro-
filing, the waves are excited by sources located at positions on the surface [3, 31];
in crosswell (or crosshole) imaging, the sources are in another well [5, 6, 1, 33].
Compared to data resulting from traditional seismic experiments, where both the
sources and receivers are located on the surface, the decreased travel distance for
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the waves traveling to receivers in a borehole results in less attenuation and allows
the use of higher frequency waves, potentially resulting in more sensitive and higher
resolution imaging of material parameters in the subsurface [31].

The purpose of this work is to formulate a general approach to the analysis of
borehole seismic data, using techniques of microlocal analysis that have previously
been successful for conventional seismic data [24, 30, 28, 34, 8, 9, 11, 12] (and
also for a variety of other imaging problems). As in those works, here we analyze
the relation between features in the subsurface, in the form of singularities of the
sound speed profile, and the resulting singularities of the data. In some cases, the
latter accurately encode the former; in others, imaging artifacts arise from the data
acquisition geometry, the presence of caustics (multi-pathing) in the subsurface, or
the interaction of the two. For several specific borehole data geometries, we either
show that the imaging is artifact free, or determine the location and strength of the
artifacts.

In applying microlocal analysis to inverse problems, one is using a set of tools
whose theoretical foundation is rigorously established in the high frequency limit to
problems where the data is intrinsically band-limited. Past work has shown, how-
ever, that this can be a fruitful approach, since in practice frequencies do not have
to be very high for the high frequency limit to be a good enough approximation that
useful conclusions can be drawn regarding the structure and strength of artifacts in
images produced from the data.

For simplicity, assume the Earth is R3
+; its surface, R2 = {x3 = 0}, is flat; and

x3 increases with depth. Throughout, we will assume that the set ΣR of receivers
occupies a line segment located in a vertical borehole along the positive x3-axis,

ΣR := {(0, 0, r) : rmin < r < rmax}.

In Vertical Seismic Profiling, waves are generated by impulses located at a set ΣS

of sources located on the surface R2, scatter off of features in the subsurface, and
are then measured at points of ΣR at all times t ∈ T = (tmin, tmax). By contrast,
for crosswell imaging the sources are located in another borehole some distance
from the borehole containing the receivers. Possible data sets D = ΣS × ΣR × T
may be crudely classified by their dimensionality, depending on whether S is zero-,
one- or two-dimensional. If dimΣS = 0, then the source set is at a single offset,
or at most a discrete set of points; in this case, dimD = 2, so that the data set
is underdetermined, which is not of interest for the questions we pose. Instead, we
study three basic data sets:

Overdetermined (dimD = 4):

For the dense array data acquisition geometry (also called 3D Vertical Seismic
Profiling), ΣS ⊂ ∂R3

+ \ 0 = R2 \ (0, 0) is an open subset on the surface.

Determined (dimD = 3):
In the crosswell geometry, the sources are located in another vertical borehole,

along a line segment,

ΣS := {(s0, s) : smin < s < smax} , s0 6= (0, 0).

For the walkaway geometry, ΣS is contained in a line on the surface, passing
over the borehole top (0, 0, 0). Without loss of generality, we assume that

ΣS := {(s, 0, 0) : 0 < smin < s < smax} .
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Remark 1. To avoid having to deal with uninteresting degeneracies arising from
sources located very close to the top of the borehole, for all of the geometries we
only consider sources S = (s0, 0) = (s1, s2, 0) with |(s1, s2)| > ε > 0.

Our goal is to study, for each of the data sets D considered here, the formal
linearization dF about a known smooth background sound speed, c0(x) of the sound
speed-to-data map, restricted to D.

In Sec. 2, we describe the model and the linearization of the forward scattering
operator and recall the Fourier integral operator theory needed in the paper. (The
C∞ singularity theory, describing the types of degeneracies of smooth functions
- folds, blowdowns, submersions with folds and cross caps - that we will use to
understand the structure of the forward and normal operators for the various data
sets, is included as an appendix, Sec. 7.)

The remainder of the paper analyzes, for the data acquisition geometries de-
scribed above, the linearized scattering operator F := dF , which is a Fourier inte-
gral operator; the geometry of its canonical relation; and the implications for the
associated normal operator, F ∗F . We focus on the overdetermined dense array data
set, for which the results are the most positive. First, in Thm. 3.1, we show that if
the ray geometry of the background sound speed has no caustics, and satisfies two
additional technical assumptions, then F satisfies the Traveltime Injectivity Condi-
tion, introduced in [24, 30] when both the sources and receivers are on the surface.
This implies that the normal operator is a pseudodifferential operator, and filtered
backprojection does not give rise to artifacts in the images. We first prove this for
a constant background sound speed in Sec. 3, where the additional assumptions
are unnecessary. This is followed by the analysis in Sec. 4 of variable c0 with no
caustics, where the additional assumptions are used.

Then, in Sec. 5 we study the situation for the dense array geometry when
the most commonly encountered form of caustics (or multipathing) is present. We
formulate a notion of caustics of fold type appropriate for this setting and show that,
in the presence of caustics no worse than this type, the canonical relation of F , while
degenerate, has a structure, that of a folded cross cap, introduced previously by two
of the authors in the context of marine seismic imaging [11]; see Thm. 5.2 and Def.
5.3. This allows a precise description of the normal operator and characterization of
imaging artifacts microlocally away from high codimension sets. We point out that
the marine source-receiver manifold treated in [11] and the borehole dense array
here are inequivalent: one cannot be reduced to the other by changes of variables
in the source and receiver spaces, and necessarily the definition of fold caustics are
distinct. Nevertheless, the microlocal geometries of the resulting canonical relations
are of the same type (the folded cross caps), and although the calculations needed
to show that the dense array leads to a folded cross cap are similar to those in [11],
for completeness we present these in full.

In contrast, for the crosswell and walkaway data sets, the microlocal geometry is
less favorable, resulting in strong, nonremovable artifacts. In Sec. 6 we analyze their
normal operators when the background sound speed c0 is constant. Calculating and
analyzing their canonical relations shows that attempted inversion by filtered back
projection results in strong artifacts; see Thms. 6.1 and 6.2. Since these are al-
ready badly behaved for a constant background sound speed, we do not pursue the
analysis of the crosswell and walkaway geometries for variable backgrounds.
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2. Scattering model, microlocal analysis and singularity theory. The idea
of using techniques from microlocal analysis to study linearized seismic imaging was
introduced by Beylkin [4], and expanded upon by Nolan and Symes [30] and ten
Kroode, Smit and Verdel [24]. In the forward scattering problem, acoustic waves
are generated at the surface of the Earth, scatter off of features in the subsurface,
and some of the reflected waves return to the surface to be detected by receivers,
which in these works were also at the surface. The goal of the full inverse problem
is to obtain an image of the subsurface using measurements of the pressure field at
various receivers. Due to the strong nonlinearity of the full problem, works such as
[4, 30, 24] instead considered a formal linearization of the nonlinear sound speed-to-
data map, F . The linearization maps perturbations of a smooth background sound
speed in the subsurface (assumed known), to perturbations of the resulting pressure
field at receivers. The linearized problem was explored further by several authors
for a variety of data acquisition geometries; see, e.g., [28, 34, 8, 9, 11, 12]. In this
section, we review the scattering model and its linearization, and set down or give
references to the basic microlocal analysis needed for the remainder of the paper; a
summary of the requisite singularity theory is in the appendix, Sec. 7. Since this
material, in forms suitable for what is needed here, is standard, we will keep the
presentation as brief as possible.

2.1. Scattering model and normal operator. We now recall the scattering
problem and its linearization. Represent the Earth as Y = R3

+ = {x ∈ R3, x3 ≥ 0},
consisting of isotropic material with sound speed c(x), the recovery of which is our
goal. An impulse at a source x = s, t = 0, assumed for simplicity to be a delta
waveform, creates a pressure field p(s;x, t) which solves the acoustic wave equation,

1

c2(x)

∂2p

∂t2
(s;x, t)−4p(s;x, t) = δ(t)δ(x− s)

p(s;x, t) = 0, t < 0, (1)

where ∆ is the Laplacian on R3. Fixing a data acquisition set D = ΣS × ΣR × T ,
where ΣS is a set of sources, ΣR is a set of receivers, and T = (tmin, tmax) is a time
interval, the corresponding forward map F = FD is the sound speed-to-data map,

c
F→ p(s; r, t)|(s,r,t)∈D; the full inverse problem is to reconstruct c from F(c).

Due to the nonlinearity of F , the works cited below instead considered the formal
linearization of F , assuming c to be of the form c = c0+δc, with c0 a known smooth
background sound speed. Thus, associated Green’s function, i.e., background pres-
sure field p0 satisfying (1) for c0, is also known (in principle). The linearization dF
of F then arises from writing p = p0+ δp mod (δc)

2
, where δp =: (dF)(δc) satisfies

�c0(δp) :=
1

c20(x)

∂2δp

∂t2
(s;x, t)−4δp(s;x, t) =

2

c30(x)
· ∂

2p0
∂t2

· δc(x)

δp = 0, t < 0. (2)

We denote dF by F , using a subscript D if needed for clarity. Thus,

F (δc)(s, r, t) = �
−1
c0

(
2

c30(x)
· ∂

2p0
∂t2

· δc(x)
)
(s;x, t)

∣∣∣∣
x=r

, (3)

where �
−1
c0 is the forward solution operator. One assumes that δc is supported at

a positive distance from all sources s, so that its product above with the Green’s
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function with pole at s only involves the singularities of p0 on the wavefront, and
not at s. (The linearization can be justified in terms of Fréchet differentiability of
F between certain pairs of function spaces [23].)

Beylkin [4] showed that, for a single source on the surface and an open set
of receivers, also on the surface, if caustics do not occur for the background sound
speed, then the normal operator N := F ∗F is a pseudodifferential operator (ΨDO).
To avoid difficulties with even the basics of the operator theory, for more general
ray geometries two conditions have been commonly assumed in the literature: (i)
no single (unbroken) ray connects a source to a receiver; and (ii) no ray originating
in the subsurface grazes ΣS or ΣR. Condition (ii) ensures that F is a Fourier
integral operator (FIO) in the sense of Hörmander [22], while (i) ensures that the
composition F ∗F makes sense on distributions. Under these assumptions, in the
case of a single source on the surface, and receivers forming an open subset of the
surface {x3 = 0}, Rakesh [32] showed that F is an FIO, and this was extended to
other surface-surface data sets D in [21, 30, 24]. However, for borehole data sets
these conditions no longer make physical sense since, for example, one fully expects
unbroken rays to travel from source points on the surface to receivers in the borehole
(as they already do for a constant sound speed), and so we replace (i) and (ii) by
Assumption 3.2 below which can be satisfied if the data has been suitably filtered
(muted). See Sec. 3 for the statement of Assumption 3.2 and the description of a
filter to implement it.

The invertibility of F (modulo C∞) was established in [4, 30, 24] under various
combinations of assumptions on the data acquisition set D (assumed to be a smooth
manifold in ∂Y × ∂Y ) and the ray geometry for the background sound speed c0.
In these cases, the FIO F is associated with a canonical relation C ⊂ T ∗D × T ∗Y
which satisfies the so-called traveltime injectivity condition (TIC) described below.
By the standard theory of FIO with nondegenerate canonical relations, it follows
that the normal operator N is a pseudodifferential operator on Y , N ∈ Ψ(Y );
furthermore, N is elliptic (and hence invertible microlocally) under an illumination
condition. If Q ∈ Ψ(Y ) is a left-parametrix for N (i.e., a left-inverse modulo C∞),
then Q ◦F ∗ is a left-parametrix for F . This implies the injectivity of dF mod C∞,
so that the singularities of F (δc) determine the singularities of δc, as well as giving
an approximate reconstruction formula via filtered backprojection. In [34], part of
the TIC is relaxed, but the composition F ∗F is still covered by the standard clean
composition calculus for FIO.

On the other hand, combinations of data sets and background ray geometries for
which the TIC is violated were studied in [28, 8, 9, 11, 12]. In each of these, the
composition forming the normal operator lies outside the clean intersection calculus
and N is not a pseudodifferential operator. The wavefront relation of N is larger
than that of a ΨDO, including an additional part, which gives rise to artifacts in
the image when attempting filtered back projection; the strength of that artifact
depends both on the geometry of D, the nature of the multi-pathing (if any), the
background ray geometry, and their interaction.

2.2. Microlocal analysis. We now recall some basic definitions and results from
the theory of FIOs [22]. Let X and Y be smooth manifolds, of (possibly different)
dimensions, nX , nY , resp. A Fourier integral operator is a continuous linear map
A : E ′(Y ) → D′(X), whose Schwartz kernel is a locally finite sum of oscillatory
integrals of the form
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KA(x, y) =

∫

RN

eiϕ(x,y;θ)a(x, y; θ) dθ,

where ϕ is a nondegenerate operator phase function on X × Y × (RN \ 0), for some
N ≥ 1, and a is a Hörmander class amplitude of order µ and type (1, 0). The order
of A is defined to be

m := µ+
2N − nX − nY

4
,

and the canonical relation of A is

CA :=
{
(x, dxϕ; y,−dyϕ) : (x, y; θ) ∈ supp(a), dθϕ(x, y; θ) = 0

}

⊂ (T ∗X \ 0)× (T ∗Y \ 0).
If WF (·) denotes the C∞ wavefront set of a distribution, the wavefront relation

of A, WF (A) := WF (KA)
′, is the image of the wavefront set of the Schwartz kernel

of A under the map (x, y, ξ, η) → (x, ξ; y,−η); from the general theory of Fourier
integral distributions, one knows that WF (A) ⊆ CA. Thus, by the Hörmander-Sato
Lemma, for all u ∈ E ′(Y ),

WF (Au) ⊆ WF (A) ◦WF (u) ⊆ CA ◦WF (u), (4)

where WF (A) and CA are considered as relations from T ∗Y \ 0 to T ∗X \ 0.
For any canonical relation C ⊂ (T ∗X \ 0)× (T ∗Y \ 0) and m ∈ R, Im(X,Y ;C)

denotes the class of properly supported m-th order FIOs A with CA ⊆ C. Thus,
for any A in this class, WF (Au) ⊆ C ◦WF (u), ∀u ∈ E ′(Y ).

A generalization of Fourier integral operators are the paired Lagrangian oper-
ators of Melrose and Uhlmann [26] and Guillemin and Uhlmann [20]. These are
associated to cleanly intersecting pairs of canonical relations, C0, C1 ⊂ T ∗X×T ∗Y ,
and are indexed by bi-orders (p, l) ∈ R2. We will not need the definitions and
characterizations of these operators, but note two properties for later use. First, if
A ∈ Ip,l(X,Y ;C0, C1), then

WF (A) ⊆ C0 ∪ C1. (5)

Secondly, microlocally away from C0 ∩ C1,

A ∈ Ip+l(C0 \ C1) and A ∈ Ip(C1 \ C0). (6)

Now let C1 ⊂ (T ∗X \ 0) × (T ∗Y \ 0) and C2 ⊂ (T ∗Y \ 0) × (T ∗Z \ 0) be two
canonical relations, and A1 ∈ Im1(X,Y ;C1) and A2 ∈ Im2(Y, Z;C2). If C1 × C2

intersects T ∗X ×∆T∗Y ×T ∗Z transversely, then Hörmander proved that A1 ◦A2 ∈
Im1+m2(X,Z;C1 ◦ C2) where C1 ◦ C2 is the composition of C1 and C2 as relations
in T ∗X × T ∗Y and T ∗Y × T ∗Z. Duistermaat and Guillemin [7] and Weinstein
[36] extended this to the case of clean intersection and showed that if C1 ×C2 and
T ∗X ×∆T∗Y × T ∗Z intersect cleanly with excess e then, as in the transverse case,
C1 ◦ C2 is again a smooth canonical relation, and

A1 ◦A2 ∈ Im1+m2+e/2(X,Z;C1 ◦ C2).

We say that a canonical relation C ⊂ T ∗X×T ∗Y satisfies the traveltime injectiv-
ity condition (TIC) [30, 24] (equivalent to the earlier Bolker condition in tomography
[19]) if the natural projection to the left, πL : C → T ∗X, satisfies the following two
conditions. First,

πL is an immersion, i.e., dπL is injective everywhere. (7)
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(By results for general canonical relations, this is equivalent with πR : C → T ∗Y
being a submersion, i.e., dπR is surjective.) Secondly,

πL is globally injective. (8)

(Note that (7) already implies that πL is locally injective; (8) demands that the
injectivity holds globally.)

If A ∈ Im(X,Y ;C), then A∗ ∈ Im(Y,X;Ct). If C satisfies the TIC, then it
follows from (7) that the composition A∗A is covered by the clean intersection
calculus, with excess e = dim (X) − dim (Y ). Furthermore, from (8) it follows
that Ct ◦ C ⊆ ∆T∗Y , the diagonal of T ∗Y × T ∗Y . Thus, the normal operator

N := A∗A ∈ I2m+
dim (X)− dim (Y )

2 (Y, Y ; ∆T∗Y ), (9)

i.e., is a pseudodifferential operator on Y . N is elliptic if A is, which in applications
corresponds to an illumination condition. In that case, N admits a left parametrix
Q ∈ Ψ−2m(Y ), i.e., Q ◦ N − I is a smoothing operator, and then QA∗ is a left
parametrix for A, so that, for all u ∈ E ′(Y ), Au mod C∞ determine u mod C∞.

However, in many inverse problems, the TIC condition fails, and to understand
the possibility of imaging using filtered back projection, it is important to analyze
the composition A∗A and the nature of the resulting normal operator, N . Any
component of the wavefront relation of N in the complement of the diagonal ∆T∗Y

will produce artifacts, i.e., features in Nu which are not present in u. It turns
out that the geometry of the canonical relation C, as expressed by degeneracies of
projections πL and πR, if they exist, plays an important role in determining the
nature, location and strength of artifacts.

It is known that if either dπL or dπR has maximal rank, so does the other one and
we say that the canonical relation C is nondegenerate. In this case the composition
Ct ◦ C is clean, and (9) holds.

On the other hand, if C is degenerate (the differentials of the projections fail to
be of maximal rank), there is no general theory that applies to the compositions
Ct ◦ C and A∗A. However, certain particular geometries have been analyzed, and
one in particular is relevant here, for the dense array in the presence of fold caustics.

When one of the projections drops rank, then the other one does, too, and their
coranks are the same. However, although corank(dπL)=corank(dπR) at all points,
the two projections might have the same type of singularity, or quite different ones.
The singularities needed in this article are blowdowns, folds, submersion with folds
and cross caps. We refer the reader to Sec. 7 for a concise summary of these classes;
see [17, 37, 27] for more background, and to Sec. 5 for the existing composition
calculus [11], originating in marine seismic imaging, that we show is relevant for the
dense array with fold caustics.

3. Dense array: Constant c0. We start with the dense array geometry, with
sources S = (s1, s2, 0) in an open subset ΣS of the surface, and receivers in the
borehole ΣR, R = (0, 0, r), r ∈ (rmin, rmax). The perturbation in sound speed is a
function of the three variables, y = (y1, y2, y3), while the resulting data is a function
of four variables, (s1, s2, r, t) = (s, r, t). We make the following assumptions, which,
as discussed above in Sec. 2.1 are modifications appropriate to the borehole setting
of standard assumptions in the literature (cf. [32, 24, 30]), needed for the operators
to satisfy even the most basic conditions:
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Assumption 3.1. The perturbation δc in the sound speed has compact support at
a positive depth below the surface.

Assumption 3.2. For any unbroken ray connecting a source to a receiver which
intersects the support of the reflectivity function, its contribution to the data has been
muted by application of the filter described below. (See Figure 1 for an illustration
of this.)

Filter Construction: Suppose a ray connects a source to a receiver located at
r0 ∈ ΣR and that this ray arrives at r0 in a direction ρ̂0. Let ρ0 be the orthogonal
projection of ρ̂0 onto Tr0Σr.

(i) Localize the data d(s, r, t) by multiplying it by a cutoff function χ1(r) sup-
ported near r = r0, and then take the partial Fourier transform of χ1d(s, r, t) with

respect to r to get d̂1(s, ρ, t), where ρ is the Fourier variable dual to r.

(ii) Multiply d̂1 by a cutoff function χ2(ρ) which is homogeneous of degree 1 and

vanishes in a conic neighborhood of the direction of ρ0 whenever d̂1(s, λρ0, t) is not
rapidly decaying as λ → ∞.

(iii) Apply the inverse Fourier transform (w.r.t. ρ) to χ2d̂1, and use the result as
the suitably modified data, referred to in Assumption 3.2 above.

In this section and the next, we show that the linearized scattering operator,
filtered as above, satisfies the Traveltime Injectivity Condition:

Theorem 3.1. Suppose, in addition to Assumptions 3.1 and 3.2, the ray geometry
of a smooth background sound speed c0(x) satisfies Assumptions 4.1 and 4.2 below.
Then the linearized scattering operator for the dense array data set, F : E ′(R3

+) →
D′(D), is a Fourier integral operator, F ∈ I

3
4 (D,R3

+;C).
If c0 also has no caustics, then the canonical relation C ⊂ T ∗D× T ∗R3

+ satisfies
the Traveltime Injectivity Condition (7), (8), and thus the normal operator is a
pseudodifferential operator of order 2, F ∗F ∈ Ψ2(R3

+).

In the current section, we consider first the model case of constant sound speed,
normalized to c0 = 1, for which Assumptions 4.1 and 4.2 hold automatically. We
will show that the canonical relation of the linearized forward scattering operator
F satisfies the traveltime injectivity condition (7), (8). As discussed in Sec. 2.2,
this implies that the normal operator F ∗F is a pseudodifferential operator, and
a perturbation δc of the sound speed can be reconstructed from F (δc) by filtered
backprojection.

Proof of Thm. 3.1. In the case of constant background sound speed c0, we compute
the canonical relations of F = dF for each of the data geometries (dense array here;
crosswell and walkaway in Sec. 6), restricting to the various data sets the basic
phase function

φ(s, r, t;ω) = (t− |y −R| − |y − S|)ω, (10)

where S = S(s), R = R(r) and y denote a general source, receiver and a point in the
subsurface, respectively, and ω ∈ R \ 0 is a phase variable. Note that the function
φ defined in (10) is a non-degenerate phase function as can be easily verified by
noting that ω 6= 0 and also using Assumption 3.2. The Schwartz kernel of F is

K(s, r, t, y) =

∫
eiφ(s,r,t,y;ω)a(s, r, t, y;ω) dω,
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and

πR(s, r, y, ω)

=

(
y1, y2, y3,

(
y1 − s1

A
+

y1
B

)
ω,

(
y2 − s2

A
+

y2
B

)
ω,

(
y3
A

+
y3 − r

B

)
ω

)
.

(13)

Since πR is the identity in y variables, rank(dπR)= 3 + rank
(

Dη
D(s,r,ω)

)
, where η is

dual to y, and the minor Dη
D(s,ω) is

Dη

D(s, ω)
=




− (y2−s2)
2+y2

3

A3 ω (y1−s1)(y2−s2)
A3 ω y1−s1

A + y1

B
(y1−s1)(y2−s2)

A3 ω − (y1−s1)
2+y2

3

A3 ω y2−s2
A + y2

B
y3(y1−s1)

A3 ω (y2−s2)y3

A3 ω y3

A + y3−r
B


 ,

which has determinant

ω2y3A
−3

(
1 +

(y − S) · (y −R)

AB

)
.

Using ω 6= 0, y3 > 0, the Cauchy-Schwarz inequality and Assumption 3.2, one sees

that det
[

Dη
D(s,ω)

]
6= 0, so that rank(dπR) = 6. It follows that dπR has maximal

rank and πR is a submersion; hence πL is an immersion, and C is a nondegenerate
canonical relation.

To verify the Traveltime Injectivity Condition, it remains to show the injectivity
of πL; we do this using Assumption 3.2. The unit vectors (y − (0, 0, r)) /B and
(y − (s1, s2, 0)) /A point to y from the source S = (s1, s2, 0) and from the receiver
R = (0, 0, r), resp. In terms of these, the condition in Assumption 3.2 is that

1

A
(y − (s1, s2, 0)) +

1

B
(y − (0, 0, r)) 6= 0.

To prove that πL is injective, let us consider

S = (s1, s2, 0); R = (0, 0, r); y = (y1, y2, y3); ω;

and
S̃ = (s̃1, s̃2, 0); R̃ = (0, 0, r̃); ỹ = (ỹ1, ỹ2, ỹ3); ω̃;

such that πL(s, r, y, ω) = πL(s̃, r̃, ỹ, ω̃). Then

s1 = s̃1, s2 = s̃2, r = r̃, ω = ω̃, A+B = Ã+ B̃

y1 − s1
A

ω =
ỹ1 − s̃1

Ã
ω̃,

y2 − s2
A

ω =
ỹ2 − s̃2

Ã
ω̃,

y3 − r

B
ω =

ỹ3 − r̃

B̃
ω̃, (14)

where
A = |y − S|; B = |y −R|; Ã = |ỹ − S̃|; B̃ = |ỹ − R̃|. (15)

The first four equalities in (14) imply that S̃ = S, R̃ = R, ω̃ = ω, so to prove
injectivity of πL we only need to verify that ỹ = y. Defining

σ :=
y − S

A
; σ̃ =

ỹ − S̃

Ã
; ρ :=

y −R

B
, ρ̃ :=

ỹ − R̃

B̃
, (16)

the last three equalities in (14) (together with the fact that ω = ω̃) imply that

σi = σ̃i, i = 1, 2; (17)

ρ3 = ρ̃3. (18)
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Recalling that σ = (σ1, σ2, σ3) and σ̃ = (σ̃1, σ̃2, σ̃3) are unit vectors, we obtain

σ2
3 = 1− σ2

1 − σ2
2 = 1− σ̃2

1 − σ̃2
2 = σ̃2

3

⇒ σ̃3 = ±σ3.

However, y3, ỹ3 > 0 ⇒ σ3, σ̃3 > 0, hence σ = σ̃, that is

ỹ − S

|ỹ − S| =
y − S

|y − S| , (19)

which shows that y and ỹ lie on the same ray emanating from S. The last equality
in (14) can be expressed as

T (s, r, y) = T (s, r, ỹ), where T (s, r, y) = A(y, s) +B(y, r). (20)

In the argument below, if z ∈ R3 and z 6= 0, we denote the corresponding unit
vector as ẑ := z/|z|. We also denote a point on the line segment between y and ỹ
as yt := y + t(ỹ − y), where t ∈ [0, 1].

To prove that πL is an injection, we argue by contradiction. Assume that ỹ 6= y;
the Mean Value Theorem then implies ∃c ∈ (0, 1) such that

d

dt
{T (s, r, yt)}

∣∣∣∣
t=c

= 0

⇒ ∇yT (s, r, yc) · (ỹ − y) = 0

⇒
(
ŷc − S + ŷc −R

)
· (ỹ − y) = 0

⇒
(
ŷc − S + ŷc −R

)
· ̂(ỹ − y) = 0

⇒
(
ŷc − S + ŷc −R

)
· ̂(yc − S) = 0

⇒ ̂(yc −R) · ̂(yc − S) = −1,

where we have used the fact that ̂(ỹ − y) = ̂(yc − S), which in turn is true be-
cause s, y, ỹ, yc all lie on a single ray emanating from S. However, the last equality
contradicts Assumption (3.2), and therefore ỹ = y.

Hence, C satisfies the Traveltime Injectivity Condition. Taking the clean inter-
section calculus (9) into account, since dim(D)− dim(R3

+) = 1 we should write the

order of F as 3
4 = 1− 1

4 ; since the ‘effective’ order of F is 1, the composition F ∗F is

a pseudodifferential operator of order 2 on R3
+, which will be elliptic at those points

in T ∗R3
+ where F is. Thus, under an illumination assumption, a perturbation δc of

the sound speed can be reconstructed without artifacts by filtered backprojection:
F (δc) mod C∞ determines δc mod C∞.

4. Dense array: No caustics. In this section, we continue the proof of Thm.
3.1, modifying the argument of the previous section to a variable background speed,
c0 = c0(x), satisfying assumptions which we now describe.

Parametrize the maximally defined characteristic curve (i.e., a ray) departing z
in the direction

ν(θ, ϕ) = (sin(ϕ) cos(θ), sin(ϕ) sin(θ), cos(ϕ)) (21)

by a smooth function

R ⊇ I 3 p 7→ x(p; θ, ϕ, z) ∈ R
3
+, (22)
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where x(0; θ, ϕ, z) = z. The angle ϕ is the polar angle with respect to the x3-axis.
If the take-off angle corresponds to ϕ = 0, π, then we change coordinates so ϕ is
the polar angle with respect to another axis and adjust (21) correspondingly. In
the following discussion, we proceed as though polar angles ϕ are the polar angles
with respect to the x3-axis but none of the arguments depend on this and will
work just as well if ϕ is another polar angle. Following [35], we make the following
assumption:

Assumption 4.1 (No Caustics). Assume sing supp (V ) is contained in a region
Ω ⊂ R3

+ which is completely illuminated by each source and receiver with a unique
minimal traveltime ray connecting each point y ∈ Ω with each z ∈ ΣS ∪ ΣR. Also
assume that there are no caustic points in Ω on rays issuing from any z ∈ ΣS ∪ΣR.

Under this assumption, we have a well-defined and smooth traveltime function,
tc0(z, y) = tc0(y, z), which is the minimal travel time between any z ∈ ΣS ∪ΣR and
y ∈ Ω. We will also make the standard no-grazing ray assumption:

Assumption 4.2 (No grazing rays). Whenever z ∈ sing supp (V ) ⊂ R3
+, we

assume
∂x3

∂p
(p; θ, ϕ, z) 6= 0, when x(p, θ, ϕ, z) ∈ ΣS , (23)

which means that there are no rays emanating from the subsurface to graze ΣS .

Remark 2. With this setup, the phase function φ from the previous section is
replaced, as in [30], by

φ(s, r, t, y, ω) := ω (t− T (s, y, r)) ,

where T (s, y, r) := tc0 ((s1, s2, 0) , y) + tc0 ((0, 0, r) , y) ,

the sum of the travel times of the incident and reflected rays, is the total travel
time. One easily verifies, using Assumption 3.2, that φ is a non-degenerate phase
function, so that F is an FIO.

Writing z = (z1, z2, z3) = (z′, z3), the wavefront relation of F is contained in the
canonical relation

C =
{(

s, r, T (s, r, y), ωσ(s, y), ωρ(r, y), ω ; y,−ω [ηs(s, y) + ηr(r, y)]
) ∣∣

(0, 0, r) ∈ ΣR, (s1, s2, 0) ∈ ΣS , ω ∈ R \ 0
}
, (24)

where

σ(s, y) := ∇z′tc0((s1, s2, 0), y); ρ(r, y) :=
∂tc0
∂z3

((0, 0, r), y); (25)

ηs(s, y) := ∇ytc0((s1, s2, 0), y); ηr(r, y) := ∇ytc0((0, 0, r), y). (26)

Since F is an FIO, C ′ is a 7-dimensional conic Lagrangian submanifold of T ∗R7.
We note that the above canonical relation avoids the zero section due to φ being a
Hormander-type non-degenerate phase function. One can check that Assumptions

4.1, 4.2 imply that we may parametrize C using coordinates (r, tref , ϕ̌, θ̌, ϕ̂, θ̂, ω),
defined as follows, describing each broken ray backwards: a ray, departing (0, 0, r)

in direction
(
sin(ϕ̂) cos(θ̂), sin(ϕ̂) sin(θ̂), cos(ϕ̂)

)
and traveling for time tref > 0,

arrives at location y := x(tref ; ϕ̂, θ̂, r) ∈ R3
+ (see (22) for a reminder of the definition

of the function x here). Then a ray leaving y in the direction
(
sin(ϕ̌) cos(θ̌), sin(ϕ̌) sin(θ̌), cos(ϕ̌)

)
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arrives at (s, 0) ∈ ΣS , where (s, 0) = x(tinc; ϕ̌, ϑ̌, y); here, the travel time function
tinc := tinc(y, ϕ, ϑ) is the travel time needed for this ray to reach Σs. Note that
tinc(y, ϕ, ϑ) is smooth and guaranteed to exist by the implicit function theorem and
the non-grazing ray assumption. Finally t := tinc + tref is the two-way traveltime
from (s, 0) to y and from y to (0, 0, r).

rmin

rmax

y0

(s0, 0)

y3

y2

y1

Figure 2. Construction of the y-coordinates, with the y1-direction
being tangent to the ray connecting y to a source (s, 0) ∈ ΣS .

We now verify that C satisfies the Traveltime Injectivity Condition, starting by
showing that πL is an immersion. We check this by showing that

∣∣∣∣∣
∂(s, σ, T )

∂(tref , ϕ̂, θ̂, ϕ̌, θ̌)

∣∣∣∣∣ 6= 0 . (27)

Observe that the assumption of no caustics (4.1) implies
∣∣∣∣∣

∂y

∂(tref , θ̂, ϕ̂)

∣∣∣∣∣ 6= 0; (28)

using the chain rule, it will follow that πL is an immersion once we establish
∣∣∣∣
∂(s, σ, T )

∂(y, θ̌, ϕ̌)

∣∣∣∣ 6= 0 (29)

as follows. Make a change of y-coordinates so that the y1-direction is parallel with
the velocity of a specific ray departing y0 ∈ R3

+ and arriving at (s0, 0) ∈ ΣS . Let
(y2, y3) be coordinates on the plane that contains y0 and is also orthogonal to the y1-
direction, as illustrated in Figure 2. With this choice of coordinates, the no-grazing
ray and no caustics assumptions imply that

∣∣∣∣
∂(s1, s2)

∂(ϕ̌, θ̌)

∣∣∣∣ 6= 0 (30)



14 RALUCA FELEA, ROMINA GABURRO, ALLAN GREENLEAF AND CLIFFORD NOLAN

and also, the no-grazing ray assumption guarantees that∣∣∣∣
∂(σ1, σ2)

∂(y2, y3)

∣∣∣∣ 6= 0 . (31)

Let γ : (−ε, ε) → R3
+, γ(t) = y(t) be a parametrization of an open interval of

the ray connecting y0 to s0, for a suitably small ε ∈ R+, with γ(0) = y0. By
construction, the y1-direction is tangent to the ray connecting y0 to (s0, 0) and
since (s(γ(t)), σ(γ(t))) = (s0, σ0), ∀t ∈ (−ε, ε), we therefore have

1

γ̇(0)

d

dt
(s(γ(t)), σ(γ(t))) =

(
∂s

∂y1
(y0),

∂σ

∂y1
(y0)

)
= (0, 0) . (32)

We also have

∂T

∂y1
(s, r, y) =

∂tc0((0, 0, r), y)

∂y1
+

∂tc0((s1, s2, 0), y)

∂y1

=
∂tc0((0, 0, r), y)

∂y1
− c−1(y) , (33)

with the latter equality following from the definition of the y1-direction. Addition-
ally, ∣∣∣∣

∂tc0((0, 0, r), y)

∂y1

∣∣∣∣ ≤ |∇tc0((0, 0, r), y))| = c−1
0 (y), (34)

where we have used the eikonal equation in the last equality. Furthermore, equality
is attained in the left side of (34) if and only if we have scattering over π, which is
ruled out by Assumption 3.2. It now follows from (33-34) that

∂T

∂y1
(s0, r0, y0) 6= 0 , (35)

for any r0 ∈ (rmin, rmax). Therefore, (30-32,35) establish (29) and so we have shown
that πL is an immersion.

We now verify that πL is injective. To prove this, it will be convenient to use
(s, r, y, ω) as coordinates on C. Suppose that πL(s, r, y, ω) = πL(s̃, r̃, ỹ, ω̃). Then
we immediately have s = s̃, r = r̃, ω = ω̃ and we deduce that

∇stc0((s, 0), y) = ∇stc0((s, 0), ỹ) =: (σ1, σ2), T (s, r, y) = T (s, r, ỹ). (36)

To prove injectivity of πL, it remains to show that ỹ = y. Condition (36) implies y
and ỹ lie on a common ray issuing from (s, 0) in the direction

(sin(ϕs) sin(θs), sin(ϕs) cos(θs), cos(ϕs)) :=(
−σ1,−σ2,−

√
c−2
0 (r, 0)− σ2

1 − σ2
2

)
(37)

for some angles (ϕs, θs). Let p1, p2 be the values of p that satisfy

y = x(p1; θs, ϕs, (s, 0)); ỹ = x(p2; θs, ϕs, (s, 0)),

which then implies that

T (s, r, x(p1; θs, ϕs, (s, 0))) = T (s, r, x(p2; θs, ϕs, (s, 0))) . (38)

We can now use the same argument used at the end of Sec. 3 to show that, if
we assume that ỹ 6= y, then (38) contradicts Assumption 3.2. So, under the above
assumptions, πL is injective; combining this with πL being an immersion, established
earlier, we have shown that the Traveltime Injectivity Condition is satisfied. Thus,
as in the case of constant c0, F

∗F ∈ Ψ2(R3
+), concluding the proof of Thm. 3.1.
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5. Dense array: Fold caustics. We start by formulating a notion of what it
means for the ray geometry of c0 to have fold caustics with respect to borehole data
acquisition.

5.1. Fold caustics: Single receiver. First recall the concept for conventional
seismic data, where both sources and receivers are on the surface [30, 28]. For a
single receiver, r, the cotangent space Λr := T ∗

r R
3 is a Lagrangian submanifold of

T ∗R3, on which the canonical dual variables q = (q1, q2, q3) are coordinates. The
exponential map, χ := exp (Hc0) : T

∗R3 → T ∗R3, of the Hamiltonian vector field of
the (nonhomogeneous) symbol 1

2 (c0(x)
−2 − |ξ|2) is a (nonhomogeneous) canonical

transformation of T ∗R3. Thus, the image Λc0
r := χ (Λr) is also a Lagrangian, which

is not conic since χ is not homogeneous in ξ; on Λc0
r , the pushforwards q̃ := χ∗(q)

by χ are coordinates. On Λc0
r there is a well-defined acoustical distance function,

which is the integral of c−1
0 along each bicharacteristic.

A caustic of c0 (with respect to r) is a point λ0 = (x0, ξ0) ∈ Λc0
r where the

spatial projection πX : Λc0
r → R3 has a noninvertible differential, and λ0 is a

fold caustic if πX has a Whitney fold singularity at λ0 (see Def. 7.2). At such a
point, dπX (Tλ0Λ

c0
r ) is a hyperplane Π ⊂ Tx0R3. For the following, assume that

Π is not vertical; otherwise, the discussion needs to be slightly modified. Since
dim(Π) = 2 and is nonvertical, x1, x2 have linearly independent gradients and thus
are independent functions on Λc0

r . By Darboux’s Theorem, these may be augmented
with p3 := ξ3|Λc0

r
to obtain a coordinate system on Λc0

r near λ0. On Λc0
r , the

restrictions of the other canonical coordinates on T ∗R3 are functions of (x1, x2, p3):
x3 = f(x1, x2, p3) and (p1, p2) := (ξ1, ξ2)|Λc0

r
= (g1(x1, x2, p3), g2(x1, x2, p3)). The

fold caustic at λ0 then implies that

∂f

∂p3
= 0,

∂2f

∂p23
6= 0. (39)

Note also that the acoustical distance function described above is a smooth function
of (x1, x2, p3), since they are coordinates on Λc0

r .

5.2. Fold caustics: Borehole data. Now let D be the dense array data set as in
the previous two sections, for which ΣS ⊂ ∂R3

+ \ 0 ' R2 \ (0, 0) is an open subset
and ΣR = {(0, 0, r) : rmin < r < rmax}. For each value of r, one can repeat the
above constructions and analysis. Since each Λr = T ∗

r R
3 is Lagrangian, it follows

that Γ :=
⋃

r Λr is a 4-dimensional coisotropic (or involutive) submanifold of T ∗R3,
and Γ is foliated by the family of Λr. Thus, with the canonical transformation
χ as in Sec. 5.1, the image Γc0 := χ (Γ) is also a (nonconic) four-dimensional
coisotropic submanifold of T ∗R3, foliated by {Λc0

r : rmin < r < rmax}. At a regular
point of the spatial projection, πX : Γc0 → R3, rank (dπX) = 3 is maximal, while
a caustic is a γ0 where rank (dπX (γ0)) ≤ 2. We will demand that πX has at
most fold singularities. Due to the difference in dimensions, this means that it is a
submersion with folds (see Def. 7.3).

Definition 5.1. We say that the ray geometry of c0 has at most fold caustics with
respect to the borehole ΣR if

(i) for each rmin < r < rmax, the only singularities of the spatial projection
πX : Λc0

r → R3
+ are Whitney folds; and

(ii) the only singularities of πX : Γc0 → R3
+ are submersions with folds.

Remark 3. One can compare conditions (i) and (ii). These are in fact independent
of each other: The receiver-by-receiver Whitney fold condition (i) does not imply
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(ii), since the latter requires the invariantly defined Hessian to have rank two,
which cannot be derived from the rank one Hessian coming from a Whitney fold.
Conversely, (ii) only implies that the πX : Λc0

r → R3
+ are Whitney folds under

a tangent space condition which, while generic, does not appear to be physically
required. This is because the restriction of a submersion with folds to a submanifold
passing through the critical set is not necessarily a fold; for example, the function
F (x1, x2) = x1x2 is a submersion with folds R2 → R1, but restricted to either axis
it is not a Whitney fold R → R.

We also mention that this Def. 5.1 is related to but differs from the notion of
fold caustic formulated in [11] for another overdetermined data set, the marine data
acquisition geometry.

The main result of this section is the following; the terminology used and the
consequences for imaging are explained after its statement.

Theorem 5.2. Under the fold caustic assumption, and a small slope assumption on
the caustic surface (see (47)), the linearized forward operator F is a Fourier integral

operator, F ∈ I
3
4 (D,R3

+;C), whose canonical relation C is a folded crosscap in the
sense of Def. 5.3 below, away from a possible set of codimension at least four.

We now recall the class of degenerate canonical relations and Fourier integral
operators referred to in the theorem, which was originally introduced by two of the
authors in the context of marine seismic imaging. Suppose that dim (X) = n+ 1,
dim (Y ) = n and C ⊂ (T ∗X \ 0)× (T ∗Y \ 0) is a canonical relation, so that

dim (T ∗Y ) = 2n < dim (C) = 2n+ 1 < dim (T ∗X) = 2n+ 2.

Definition 5.3. [11] The canonical relation C is a folded cross cap if

(i) πR : C → T ∗Y is a submersion with folds (see Def. 7.3) and the image of its
critical manifold, πR (Σ (πR)), is a nonradial hypersurface in T ∗Y ;

(ii) πL : C → T ∗X is a cross cap (see Def. 7.4) and πL (Σ (πL)), which is a
codimension three, immersed submanifold in T ∗X, is also nonradial.

Remark 4. Recall that nonradial means that the restriction of the canonical 1-
form does not vanish anywhere. Also, from [11] one knows that πL (Σ (πL)) must
be maximally noninvolutive, i.e., the restriction to it of the canonical two form has
maximal possible rank everywhere, which on the (2n−1)− dimensional πL (Σ (πL))
is 2n− 2.

For a folded cross cap, the composition Ct ◦C lies outside the clean intersection
calculus, but the following holds.

Theorem 5.4. [11] If C is a folded cross cap and A ∈ Im− 1
4 (X,Y ;C), then

A∗A ∈ I2m− 1
2 ,

1
2

(
∆T∗Y , C̃

)
, where C̃ ⊂ T ∗Y × T ∗Y intersects ∆T∗Y cleanly in

codimension 1, and C̃ is a folding canonical relation, i.e., both πL and πR are
Whitney folds.

It follows that the wavefront relation of N := A∗A is contained in ∆T∗Y ∪ C̃,
with C̃ a folding canonical relation. By (4), (5) and that ∆T∗Y acts as the identity
relation on T ∗Y , for any u ∈ E ′(Y ), we have

WF (Nu) ⊆ WF (u) ∪
(
C̃ ◦WF (u)

)
. (40)
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Furthermore, by (6), microlocally away from ∆T∗Y ∩ C̃, we have N ∈ I2m(
∆T∗Y \ C̃

)
, and N ∈ I2m− 1

2

(
C̃ \∆T∗Y

)
; thus, away from ∆T∗Y ∩ C̃, the order of

the non-pseudodifferential operator part of N , which constitutes an artifact, is 1/2
lower order than the pseudodifferential part of N . Although the artifact’s order is
1/2 lower, the two-sided fold degeneracy of C̃, combined with the paired Lagrangian
nature of the normal operator, produce a situation where it is not known whether
the artifact is completely removable; see [13] for further analysis and discussion.

Under the assumptions of Theorem 5.2 and away from a very small microlocal
set, this composition result and its implications apply to the dense array borehole
data set, resulting in artifacts 1/2 order smoother than the primary image.

5.3. Proof of Thm. 5.2. The analysis here has a great deal of similarity with
that for the marine surface data set in the presence of fold caustics [11]; however,
the dense array data set differs in fundamental ways from the marine data set (e.g.,
for each source in the dense array, the line of receivers is the same, while that is not
the case for the marine geometry), and can not be reduced to that case.

Let rmin < r0 < rmax and γ0 ∈ χ (Λr0) ⊂ Γc0 be a Whitney fold point for
πX : Λr0 → R3

+. Repeating the analysis from Sec. 5.1, we can assume that
x1, x2, p3 := ξ3|Γc0

R
have independent gradients near γ0. Since ∂r is transverse

to TΛr, dχ(∂r) is transverse to Tγ0χ(Λr). Thus, (x1, x2, r, p3) form coordinates on
Γc0 near γ0, the acoustical distance function described above is a smooth function
of (x1, x2, r, p3), and we can express x3 and (p1, p2) := (ξ1, ξ2) on Γc0 in terms of
them: x3 = f(x1, x2, r, p3) and (p1, p2) = (g1(x1, x2, r, p3), g2(x1, x2, r, p3)) on Γc0 .
With respect to these coordinates, πX(x1, x2, r, p3) = (x1, x2, f(x1, x2, r, p3)) and

dπX =




1 0 0 0
0 1 0 0
∂f
∂x1

∂f
∂x2

∂f
∂r

∂f
∂p3


 .

From this we see that

rank (dπX) =

{
2, if ∂f

∂r = ∂f
∂p3

= 0

3, if ∂f
∂r 6= 0 or ∂f

∂p3
6= 0,

and Σ(πX) = { ∂f
∂p3

= ∂f
∂r = 0}. At points of Σ(πX), ker (dπX) is spanned by

{(0, 0, δr, δp3) : δr, δp3 ∈ R}, and the tangent space to Σ(πX) is

TΣ(πX) = ker

(
dx1,x2,p3,r

(
∂f

∂p3

))
∩ ker

(
dx1,x2,p3,r

(
∂f

∂r

))
.

We have:

dx1,x2,p3,r

(
∂f

∂p3

)
=

(
∂2f

∂x1∂p3
,

∂2f

∂x2∂p3
,
∂2f

∂p23
,

∂2f

∂r∂p3

)

and

dx1,x2,p3,r

(
∂f

∂s

)
=

(
∂2f

∂x1∂r
,

∂2f

∂x2∂r
,

∂2f

∂p3∂r
,
∂2f

∂r2

)
.

The assumption Def. 5.1(ii) that πX : Γc0 → R3
+ is a submersion with folds implies

that Σ(πX) is smooth (i.e., these gradients are linearly independent), and

TΣ(πX) is transverse to ker (dπX) . (41)
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We can parametrize the canonical relation C in terms of r, x1, x2, p3; (α1, α2),

where (α1, α2,
√
1− |α|2) is the unit take off direction of the reflected ray; and τ ,

the variable dual to time. The incident ray travel time tinc, the time it takes for
a ray to travel from a source S = (s, 0) to an incident point x, i.e., the acoustical
distance from S to x, can, by the nongrazing assumption at the surface described
in Sec. 2.1 and symmetry, be expressed in terms of x and α, tinc = tinc(x, α). On
the other hand, the reflected ray travel time tref , the time it then takes for the
reflected ray to reach the borehole at point R = (0, 0, r), is, again by symmetry, the
acoustical distance from R to x, and thus tref = tref (x1, x2, r, p3); the total time for
the single-reflection event is t = tinc + tref . Letting (ρ, σ1, σ2, τ) be the coordinates
dual to r, s1, s2, t in T ∗D, we can take (x1, x2, r, p3, α1, α2, τ) as coordinates on C,
and

C =
{(

r, s1(x1, x2, f(x1, x2, r, p3), α), s2(x1, x2, f(x1, x2, r, p3), α),

tref (x1, x2, r, p3) + tinc(x1, x2, f(x1, x2, r, p3), α),

ρ(x1, x2, f(x1, x2, r, p3), p3, τ), σ1(x1, x2, f(x1, x2, r, p3), α, τ),

σ2(x1, x2, f(x1, x2, r, p3), α, τ), τ ;

x1, x2, f(x1, x2, r, p3);−τ
(
c−1
0 (x1, x2, f(x1, x2, r, p3))α1 + g1(x1, x2, r, p3)

)
,

−τ
(
c−1
0 (x1, x2, f(x1, x2, r, p3))α2 + g2(x1, x2, r, p3)

)
,

−τ
(
c−1
0 (x1, x2, f(x1, x2, r, p3)

)√
1− |α|2 + p3

)}
,

where ρ(·) is homogeneous of degree 1 in p3, τ , and σ1(·), σ2(·) are homogeneous of
degree 1 in τ .

We now show that C is a folded cross cap in the sense of Def. 5.3, except
possibly on a set of codimension four. In terms of the above coordinates on C
and the standard canonical coordinates (x, ξ) on T ∗R3, we can write πR as a map
πR : R7 → R6, given by

πR(x1, x2, r, p3, α1, α2, τ) =
(
x1, x2, f(x1, x2, r, p3),

−τ
(
c−1
0 (x1, x2, f (x1, x2, r, p3))α1 + g1(x1, x2, r, p3)

)
,

−τ
(
c−1
0 (x1, x2, f (x1, x2, r, p3))α2 + g2(x1, x2, r, p3)

)
,

−τ
(
c−1
0 (x1, x2, f (x1, x2, r, p3))

√
1− |α|2 + p3

) )
.

Thus,

dπR =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
∂f
∂x1

∂f
∂x2

∂f
∂r

∂f
∂p3

0 0 0

A1 A2 A3 A4 −τc−1
0 0 −(c−1

0 α1 + g1)
B1 B2 B3 B4 0 −τc−1

0 −(c−1
0 α2 + g2)

C1 C2 C3 C4 τc−1
0

α1√
1−|α|2

τc−1
0

α2√
1−|α|2

−(c−1
0

√
1− |α|2 + p3)




(42)
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for some Aj , Bj , Cj . The lower right 3× 3 submatrix



−τc−1
0 0 −(c−1

0 α1 + g1)
0 −τc−1

0 −(c−1
0 α2 + g2)

τc−1
0

α1√
1−|α|2

τc−1
0

α2√
1−|α|2

−(c−1
0

√
1− |α|2 + p3)




is nonsingular, since its determinant

−τ2c−2
0 (1− |α|)− 1

2

[
c−1
0 + α1g1 + α2g2 + p3(1− |α|) 1

2

]

is nonzero: (g1, g2, p3) = ξ|Γc0 and by Assumption 3.2, any scattering over π has
been filtered out, i.e.,

(
α1, α2, (1− |α|) 1

2

)
· (p1, p2, p3) 6= −c−1

0 .

It follows that

rank (dπR) =
{ 5, if ∂f

∂p3
= ∂f

∂r = 0,

6, if ∂f
∂p3

6= 0 or ∂f
∂r 6= 0.

(43)

Now, kerdπR = {(0, 0, δr, δp3, δα1, δα2, δτ)}, where δα1, δα2, δτ depend on δp3,
δr. On the other hand, the tangent space to Σ(πR) is

TΣ(πR) = ker

(
dx1,x2,r,p3,α1,α2,τ

(
∂f

∂p3

))⋂
ker

(
dx1,x2,r,p3,α1,α2,τ

(
∂f

∂r

))
,

where

dx1,x2,r,p3,α1,α2,τ

(
∂f

∂p3

)
=

(
∂2f

∂x1∂p3
,

∂2f

∂x2∂p3
,

∂2f

∂r∂p3
,
∂2f

∂p23
, 0, 0, 0

)

and

dx1,x2,r,p3,α1,α2,τ

(
∂f

∂r

)
=

(
∂2f

∂x1∂r
,

∂2f

∂x2∂s
,
∂2f

∂r2
,

∂2f

∂p3∂r
, 0, 0, 0

)
.

Combining this with (41), one sees that ker (dπR) is transverse to TΣ(πR) and
thus, πR is a submersion with folds. One can also check that, off an exceptional set,
the image of the critical set is nonradial, i.e., ξ ·dx 6= 0 on Σ(πR). Since T (Σ(πR)) is
the span of the columns of the matrix in (42) representing dπR, while τ

−1ξ consists

of the last three entries in its last column, and ∂f
∂p3

= ∂f
∂r = 0 at Σ(πR), we see that

(ξ · dx)(W ) = 0 for all W ∈ T (Σ(πR)) if and only if

c−1
0 αj + gj + c−1

0 fxj

√
1− |α|2 + fxj

p3 = 0, j = 1, 2,

which defines a codimension 2 submanifold in Σ(πR) and hence codimension 4 in
C.

We next need to show that πL is a cross cap. As for any canonical relation,
Σ(πL) = Σ(πR). Similar to the analysis for πR, the projection πL : C → T ∗D can
be treated as mapping R7 → R8, with (reordering the variables for convenience)

πL(r, x1, x2, α1, α2, p3, τ)

=
(
r, s1(x1, x2, f(x1, x2, r, p3), α), s2(x1, x2, f(x1, x2, r, p3), α),

tref (x1, x2, r, p3) + tinc(x1, x2, f(x1, x2, r, p3), α),

ρ (x1, x2, f(x1, x2, r, p3), p3, τ) ,

σ1(x1, x2, f(x1, x2, r, p3), α, τ),

σ2(x1, x2, f(x1, x2, r, p3), α, τ), τ
)

and thus dπL =
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



































1 0 0 0 0 0 0
∂s1
∂x3

∂f
∂r

∂s1
∂x1

+
∂s1
∂x3

∂f
∂x1

∂s1
∂x2

+
∂s1
∂x3

∂f
∂x2

∂s1
∂α1

∂s1
∂α2

∂s1
∂x3

∂f
∂p3

0

∂s2
∂x3

∂f
∂r

∂s2
∂x1

+
∂s2
∂x3

∂f
∂x1

∂s2
∂x2

+
∂s2
∂x3

∂f
∂x2

∂s2
∂α1

∂s2
∂α2

∂s2
∂x3

∂f
∂p3

0

∂tref
∂r

+
∂tinc
∂x3

∂f
∂r

∂tref
∂x1

+
∂tinc
∂x3

∂f
∂x1

∂tref
∂x2

+
∂tinc
∂x3

∂f
∂x2

∂tinc
∂α1

∂tinc
∂α2

∂tref
∂p3

+
∂tinc
∂x3

∂f
∂p3

0

∂ρ
∂r

∂ρ
∂x1

+
∂ρ
∂x3

∂f
∂x1

∂ρ
∂x2

+
∂ρ
∂x3

∂f
∂x2

0 0
∂ρ
∂x3

∂f
∂p3

+
∂ρ
∂p3

∂ρ
∂τ

∂σ1
∂x3

∂f
∂r

∂σ1
∂x1

+
∂σ1
∂x3

∂f
∂x1

∂σ1
∂x2

+
∂σ1
∂x3

∂f
∂x2

∂σ1
∂α1

∂σ1
∂α2

∂σ1
∂x3

∂f
∂p3

∂σ1
∂τ

∂σ2
∂x3

∂f
∂r

∂σ2
∂x1

+
∂σ2
∂x3

∂f
∂x1

∂σ2
∂x2

+
∂σ2
∂x3

∂f
∂x2

∂σ2
∂α1

∂σ2
∂α2

∂ρ2
∂x3

∂f
∂p3

∂σ2
∂τ

0 0 0 0 0 0 1





































.

Since corank(dπL) = corank(dπR), it follows from (43) that dπL is injective

except where it has a one-dimensional kernel above caustic points, where ∂f
∂p3

=
∂f
∂r = 0. We will use these two conditions, plus one more, in order to simplify this
matrix. Namely, by rotation about the borehole, we can assume that, for the point
of interest, the tangent plane Π = πX (Tλ0Λ

c0
r ) from Sec. 5.1 is the graph of x3 as

a linear function independent of x2. As a consequence, fx2 = 0 at this point. The
matrix for dπL then becomes

dπL =




1 0 0 0 0 0 0

0 ∂s1
∂x1

+ ∂s1
∂x3

∂f
∂x1

∂s1
∂x2

∂s1
∂α1

∂s1
∂α2

0 0

0 ∂s2
∂x1

+ ∂s2
∂x3

∂f
∂x1

∂s2
∂x2

∂s2
∂α1

∂s2
∂α2

0 0
∂tref
∂r

∂tref
∂x1

+ ∂tinc

∂x3

∂f
∂x1

∂tref
∂x2

∂tinc

∂α1

∂tinc

∂α2

∂tref
∂p3

0
∂ρ
∂r

∂ρ
∂x1

+ ∂ρ
∂x3

∂f
∂x1

∂ρ
∂x2

0 0 ∂ρ
∂p3

∂ρ
∂τ

0 ∂σ1

∂x1
+ ∂σ1

∂x3

∂f
∂x1

∂σ1

∂x2

∂σ1

∂α1

∂σ1

∂α2
0 ∂σ1

∂τ

0 ∂σ2

∂x1
+ ∂σ2

∂x3

∂f
∂x1

∂σ2

∂x2

∂σ2

∂α1

∂σ2

∂α2
0 ∂σ2

∂τ

0 0 0 0 0 0 1




. (44)

Writing a spanning element VL ∈ ker (dπL) as (δr, δx1, δx2, δα1, δα2, δp3, δτ), we
see from (44) that δr = δτ = 0, so that the ∂σ1

∂τ , ∂σ2

∂τ terms in (44) can be ignored.
Furthermore, under the assumption that the rays from the sources are transverse

to the caustic surface (see [28]), the determinant

∣∣∣∣∣∣∣∣∣

∂s1
∂x1

∂s1
∂x2

∂s1
∂α1

∂s1
∂α2

∂s2
∂x1

∂s2
∂x2

∂s2
∂α1

∂s2
∂α2

∂σ1

∂x1

∂σ1

∂x2

∂σ1

∂α1

∂σ1

∂α2
∂σ2

∂x1

∂σ2

∂x2

∂σ2

∂α1

∂σ2

∂α2

∣∣∣∣∣∣∣∣∣
6= 0. (45)

The matrix in (45) is almost a minor of (44): they differ only in the first column,
by

fx1
· [(s1)x3

, (s2)x3
, (σ1)x3

, (σ2)x3
]
T
. (46)

Thus, if we make the small slope assumption that

|fx1
| is sufficiently small, (47)

which, since the x1 direction was chosen for convenience, can only be ensured if we
assume |dx1,x2f | is small, i.e., the normal to the fold caustic surface is sufficiently
close to vertical, then the corresponding minor of (44) is nonsingular, which implies
that δx1 = δx2 = δα1 = δα2 = 0. (A “small dip” assumption such as (47) could
be conceivably verified from a sufficiently accurate background velocity model, but
is included here in order for the mathematical analysis to be valid.) Thus, δp3 is

the only nonzero entry in VL; note also that this then implies that
∂tref
∂p3

= ∂ρ
∂p3

= 0

at caustics. It then follows from (39) that (iii) below Def. 7.4 is satisfied, and (i),
(ii) follow from this analysis as well. Hence, πL is a cross cap. Again, one can
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check that, away from a set of high codimension, the image of the cross cap points

is nonradial in T ∗D. A point is radial if and only if (ρ, σ1, σ2, τ)
T · W = 0 for all

W ∈ T (πL(Σ(πL))), i.e., for W in the span of the columns of the upper 4 × 7
submatrix of dπL, this becomes

ρ = −(tref )rτ

((s1)x1
+ ε1)σ1 + (s2)x1

σ2 = −(tref )x1
τ

((s1)x2
+ ε2)σ1 + (s2)x2

σ2 = −(tref )x2
τ

((s1)α1
+ ε3)σ1 + (s2)α1

σ2 = −(tinc)α1
τ

((s1)α2
+ ε4)σ1 + (s2)α2

σ2 = −(tinc)α2
τ,

for some small εj , 1 ≤ j ≤ 4. The first equation imposes one condition. On the
other hand, the last four equations impose two more, since the coefficient matrix is
the upper 2×4 submatrix of the matrix in (45) and thus has rank two, meaning that
the right hand sides of these last four equations must satisfy two linear conditions
in order for the equations to be solvable. Thus, the set of possibly radial points of
πL (Σ(πL)) is of codimension at least three in the critical set, and thus codimension
5 in C. Combined with the codimension 4 set of possible radial points of πR, we
see that the nonradiality conditions of Def. 5.3 are satisfied away from a set of
codimension at least 4 in C.

In summary, we have shown that if the ray geometry of the background sound
speed c0 has at most fold caustics with respect to the borehole, and the small slope
assumption (47) holds, then away from a codimension 4 set the canonical relation
C is a folded cross cap, finishing the proof of Thm. 5.2.

Theorem 5.2 then implies that Theorem 5.4 applies to the composition forming
the normal operator F ∗F (away from the possible bad set microlocally), with the
consequences for artifacts as described above.

6. Crosswell and walkaway geometries. As for the dense array in Sec. 3,
for the crosswell and walkaway geometries we compute F = dF at the constant
background sound speed c0 = 1 by restricting the basic phase function (10) to each
data set D.

6.1. Crosswell geometry. For the crosswell (CW) geometry, we assume that the
sources and receivers are located in parallel, vertical boreholes. For simplicity,
assume that the sources form an open interval along the line y1 = s0, y2 = 0, for
some s0 > 0,

ΣS = {(s0, 0, s) : s ∈ (smin, smax) =: IS},
and the receivers are similarly located, as for the other geometries, in the borehole
along the y3 axis, say

ΣR = {(0, 0, r) : r ∈ (rmin, rmax) =: IR},
and we identify D = DCW = (smin, smax)× (rmin, rmax)× (tmin, tmax).

The associated linearized scattering operator F is then a Fourier integral operator
with phase function obtained by restricting (10) to DCW :

φCW (s, r, t, y;ω) =

(
t−

√
(y1 − s0)2 + y22 + (y3 − s)2 −

√
y21 + y22 + (y3 − r)2

)
ω.
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The structure of the linearized scattering operator F for the crosswell geometry
is summarized by the following.

Theorem 6.1. The linearized scattering operator F for the crosswell imaging
geometry is a Fourier integral operator, F ∈ I−

1
2 (CCW ), whose canonical relation

CCW is singular on the union of two hypersurfaces, Σ1 ∪Σ2, with Σ1 and Σ2 inter-
secting transversally. On Σ1 \Σ2, πL has a fold singularity and πR is a blowdown,
while on Σ2 \ Σ1, both of the projections πL and πR have fold singularities.

Proof of Thm. 6.1. Let

A :=
√
(y1 − s0)2 + y22 + (y3 − s)2 , B :=

√
y21 + y22 + (y3 − r)2.

We calculate the canonical relation, CCW , parametrized by φCW , and classify
the singularities of the left and right projections. We have:

CCW =

{(
s, r, A+B,

y3 − s

A
ω,

y3 − r

B
ω, ω;

y1, y2, y3,

(
y1 − s0

A
+

y1
B

)
ω,

(y2
A

+
y2
B

)
ω,

(
y3 − s

A
+

y3 − r

B

)
ω
)

: y ∈ R
3, s ∈ IS , r ∈ IR, ω 6= 0

}
.

With respect to these coordinates, the left projection, πL : CCW → T ∗DCW , is

πL(y, s, r, ω) =
(
s, r, ω,A+B,

y3 − s

A
ω,

y3 − r

B
ω
)

and the right projection, πR : CCW → T ∗R3, is

πR(y, s, r, ω) =
(
y1, y2, y3,

(
y1 − s0

A
+

y1
B

)
ω,

(y2
A

+
y2
B

)
ω,

(
y3 − s

A
+

y3 − r

B

)
ω
)
.

We first study πL. Denote the variables dual to s, r, t by σ, ρ, τ , resp. Since πL

is the identity in the s, r, ω variables, det dπL equals det D(σ, ρ, τ)/Dy, i.e.,

det(dπL) =

∣∣∣∣∣∣∣

y1−s0
A + y1

B
y2

A + y2

B
y3−s
A + y3−r

B

− (y3−s)(y1−s0)
A3 ω − (y3−s)y2

A3 ω
(y1−s0)

2+y2
2

A3 ω

− (y3−r)y1

B3 ω − (y3−r)y2

B3 ω
y2
1+y2

2

B3 ω

∣∣∣∣∣∣∣

= − ω2

A3B3
s0y2

(y3 − s

A
+

y3 − r

B

)
.

Thus, det(dπL) = 0 on Σ1 ∪ Σ2, where

Σ1 := {y2 = 0} , Σ2 :=

{
y3 − s

A
+

y3 − r

B
= 0

}
.

Note that points in Σ1 ∩ Σ2 correspond to unbroken rays from ΣS to ΣR,
not undergoing any scattering, and thus are first arrival events. One can thus
filter the data away from Σ1 ∩ Σ2 by multiplying d(s, r, t) by a smooth cutoff
χ (c0t− |S(s)−R(r)|), where supp (χ) ⊆ {t ≥ ε} for some ε > 0. Hence, we do
not need to consider the more singular structure of CCW at Σ1 ∩ Σ2.

Along each of Σ1 \ Σ2 and Σ2 \ Σ1, det (dπL) vanishes simply, and thus dπL

drops rank by 1. One easily sees that, along Σ1 \ Σ2, ker (dπL) =
∂

∂y2
and hence

(cf. Def. 7.2) πL has a fold singularity at points of Σ1 \Σ2. Similarly, ker (dπL) =
∂

∂y2
at points of Σ2 \ Σ1, and hence πL has a fold singularity there as well.
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Next, we consider πR. As for any canonical relation, dπR also drops rank by the
same amount as dπL, and hence by 1 on

(
Σ1 \ Σ2

)
∪
(
Σ2 \ Σ1

)
. We find its kernel

by computing

Dη

D(s, r, ω)
=




(y1−s0)(y3−s)
A3 ω y1(y3−r)

B3 ω y1−s0
A + y1

B
y2(y3−s)

A3 ω y2(y3−r)
B3 ω y2

A + y2

B

− (y1−s0)
2+y2

2

A3 ω −y2
1+y2

2

B3 ω y3−s
A + y3−r

B


 . (48)

The kernel of dπR is contained in span
{

∂
∂s ,

∂
∂r ,

∂
∂ω

}
, which when applied to the

defining function y2 of Σ1 gives 0. Hence, along
(
Σ1 \ Σ2

)
, ker(dπR) ⊂ TΣ1 and

thus (cf. Def. 7.1) πR has a blowdown singularity along Σ1 \ Σ2. On the other
hand, along Σ2 \Σ1, the first 2 entries of the last row are nonzero while the last one
is 0. Hence the kernel of dπR is spanned by ∂

∂s or ∂
∂r , which is transverse to Σ2,

and so πR has a fold singularity.

6.2. Walkaway geometry. For the walkaway geometry, the set of sources is as-
sumed to be an open subset of the y1 axis,

ΣS = {(s, 0, 0) : s ∈ IS = (smin, smax)}
and the set of receivers is as throughout an open subset of the y3 axis,

ΣR = {(0, 0, r) : r ∈ IR = (rmin, rmax)},
so that D = DWA = IS × IR × IT . Restricting (10) to DWA, the phase function of
F is

φWA(s, r, t, y;ω) =

(
t−

√
(y1 − s)2 + y22 + y23 −

√
y21 + y22 + (y3 − r)2

)
ω.

Let

A :=
√

(y1 − s)2 + y22 + y23 ; (49)

B :=
√

y21 + y22 + (y3 − r)2. (50)

The structure of the linearized scattering operator F for the walkaway geometry
is summarized by the following.

Theorem 6.2. The linearized scattering operator F for the walkaway geometry is a
Fourier integral operator, F ∈ I−

1
2 (CWA), whose canonical relation CWA is singu-

lar at the union of two smooth hypersurfaces Σ1 and Σ2, which intersect transver-
sally. At Σ1\Σ2, πL has a fold singularity and πR has a blowdown singularity, while
at Σ2 \ Σ1, πL is a fold at all points and πR is a fold away from a hypersurface.

Proof of Thm. 6.2. The canonical relation CWA of F is

CWA =

{(
s, r, A+B,

y1 − s

A
ω,

y3 − r

B
ω, ω;

y1, y2, y3,

(
y1 − s

A
+

y1
B

)
ω,

(y2
A

+
y2
B

)
ω,

(
y3
A

+
y3 − r

B

)
ω
)

: y ∈ R
3, s ∈ IS , r ∈ IR, ω 6= 0

}
.
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The right projection πR : CWA → T ∗R3 is

πR(y, s, r, ω) =

(
y1, y2, y3,

(
y1 − s

A
+

y1
B

)
ω,

(y2
A

+
y2
B

)
ω,

(
y3
A

+
y3 − r

B

)
ω

)
.

(51)
Since πR is the identity in the y variables, to compute det(dπR) we only need to

compute the Jacobian in the remaining variables s, r, ω, which (in this order) is

D(η1, η2, η3)

D(s, r, ω)
=



−y2

2+y2
3

A3 ω y1(y3−r)
B3 ω y1−s

A + y1

B
y2(y1−s)

A3 ω y2(y3−r)
B3 ω y2

A + y2

B
y3(y1−s)

A3 ω −y2
1+y2

2

B3 ω y3

A + y3−r
B


 . (52)

A calculation yields that

det (dπR) = − ω2y2
A2B2

(
y1(y1 − s) + y22 + y23

A
+

y21 + y22 + y3(y3 − r)

B

)
;

the expression in the parentheses can be written as y ·
(

y−S
A + y−R

B

)
. If we let

Σ1 := {f1 := y2 = 0} , Σ2 :=

{
f2 := y ·

(
y − S

A
+

y −R

B

)
= 0

}
, (53)

then Σ1, Σ2 intersect transversally. Furthermore, on
(
Σ1 \ Σ2

)
∪
(
Σ2 \ Σ1

)
, det (dπR)

vanishes simply, and thus dπR drops rank by 1 there; by general principles concern-
ing canonical relations, the same facts hold for det (dπL) = det (dπR) and rank(dπL),
resp.

Σ1 \Σ2: From (51) we see that kerdπR ⊂ span
{

∂
∂s ,

∂
∂r ,

∂
∂ω

}
, which is contained

in TΣ1, and is one-dimensional at points of Σ1 \ Σ2; hence, πR has a blowdown
singularity there. Next consider πL : CWA → T ∗DWA,

πL(y, s, r, ω) =

(
s, r, A+B,

y1 − s

A
ω,

y3 − r

B
ω, ω

)
. (54)

As noted above, dπL drops rank by the same amount as dπR and so also has a one-
dimensional kernel along Σ1 \ Σ2. Since πL is the identity in the s, r, ω variables,
we only need compute the differential in the remaining variables, y,

D(t, σ, ρ)

D(y1, y2, y3)
=




(y1−s)
A + y1

B
y2

A + y2

B
y3

A + y3−r
B

y2
2+y2

3

A3 ω −y2(y1−s)
A3 ω −y3(y1−s)

A3 ω

−y1(y3−r)
B3 ω −y2(y3−r)

B3 ω
y2
1+y2

2

B3 ω


 , (55)

and kerdπL is contained in span { ∂
∂y1

, ∂
∂y2

, ∂
∂y3

}. Since the entries in the mid-

dle column are multiples of y2, which vanishes on Σ1, one sees that, on Σ1 \ Σ2,
ker (dπL) = span{ ∂

∂y2
}, which is transverse to Σ1 = {y2 = 0}. Thus, πL has a fold

singularity along Σ1 \ Σ2.
Σ2 \ Σ1: We show that all the singularities of πL are of fold type, while πR has

fold singularities on the complement of a subset defined by a polynomial equation.
At points of Σ2 \ Σ1, as was the case on Σ1 \ Σ2, ker (dπL) ⊂ { ∂

∂y1
, ∂
∂y2

, ∂
∂y3

} and

is one-dimensional. If VL 6= 0 spans ker (dπL), then it is annihilated by all of the
rows of (55), in particular the first row, and thus 〈dy(A+B), VL〉 = 0.

There is a geometric interpretation of this last fact: for fixed s, r, the family
of level surfaces of A + B, Es,r,t := {y : A + B = t}, indexed by t >

√
s2 + t2,

are ellipsoids with foci at s and r, and outward pointing (nonunit) normal ν :=
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dy(A+B). Then, since 〈ν, VL〉 = 0, we see that VL is tangent to Es,r,t; on the other
hand, by (53), y (considered as a vector) is also tangent to Es,r,t.

Notice that, with f2 = y · ν as in (53), dyf2 = ν + ytdyν. One has

〈dyf2, VL〉 = 〈ν, VL〉+ yt(dyν)VL. (56)

The first term on the right hand side of (56) is zero and the second one is positive
since the ellipsoid Es,r,t has positive curvature (for every V, V ′ ∈ TyEs,r,t, V

t(dyν)V
′

> 0) and y, ν ∈ TyEs,r,t. Thus πL has a fold singularity along Σ2.

For πR, ker (dπR) ⊂ span
{

∂
∂s ,

∂
∂r ,

∂
∂ω

}
is one-dimensional, and thus spanned by

a VR = δs ∂
∂s +δr ∂

∂r +δω ∂
∂ω . From the matrix (52) representing the essential part of

dπR, we use the second row to solve for δω in terms of δs and δr (the value of which
will be irrelevant below), and the first row to solve for δs in terms of δr, namely
δs = −δrA

B
s
r . Thus, VR = −δrA

B
s
r

∂
∂s + δr ∂

∂r + δω ∂
∂ω ; applying this to f2 (which is

independent of ω), a calculation gives the critical set

Σ
(
πR|Σ2\Σ1

)
=

{
s2B2(y22 + y23)− r2A2(y21 + y22) = 0

}
. (57)

We can see that the polynomial defining function in (57) is nonzero at some points,
e.g., by taking s or r → ∞ and considering the leading coefficient in s or r, resp.
Therefore, Σ

(
πR|Σ2\Σ1

)
is a lower dimensional variety, whose complement in Σ2\Σ1

is dense; on that set, VRf2 6= 0 so that πR has a fold singularity at those points.
This finishes the proof of Thm. 6.2.

6.3. Artifacts for crosswell and walkaway. A canonical relation similar to CCW

described in Thm. 6.1, with similar geometry for Σ1, Σ2, and singularities types of
the projections from them, was shown to appear in the context of synthetic aperture
radar and analyzed in [2]. The open dense subset of CWA described in Thm. 6.2 has
a similar structure. It was shown in [2] that, if A is an FIO of order m associated
with such a canonical relation, then

A∗A ∈ I2m,0(∆, C1) + I2m,0(∆, C2) + I2m,0(C1, C2), (58)

where C1 is the graph of a canonical involution χ, and C2 is a two-sided fold. It
follows from (6) that the order of A∗A is the same (namely 2m) on all three of ∆, C1

and C2, away from their intersections, and hence the artifacts created by C1 and C2

when attempting imaging by backprojection are as strong as the true image, and
thus are nonremovable.

Due to the presumed absence of normal forms for canonical relations with this
structure, the results of [2], and thus (58), cannot be applied directly to the lin-

earized scattering map F ∈ I−
1
2 (CCW ), but the negative implications for artifacts

are nevertheless relevant here, as can be seen by microlocalizing to Σ1 \ Σ2 and
Σ2 \ Σ1, strongly indicating but not proving the presence of strong, nonremovable
artifacts in reconstructions from crosswell and walkaway data. However, the pres-
ence of strong artifacts can definitely be deduced from the microlocal structure of
CCW and CWA near points where both πL and πR are folds. Folding canonical
relations, for which both πL and πR are folds, were first studied in the context of
scattering by obstacles [25], and then for linearized seismics in [28, 8, 9]. It was
shown in [28, 8] that, if A ∈ Im(C), then A∗A ∈ I2m,0(∆, C1) where C1 is another
folding canonical relation. Since A∗A ∈ I2m(∆ \ C1) and A∗A ∈ I2m(C1 \ ∆) by
(6), the artifact created by C1 is as strong as the true image, again resulting in a
nonremovable artifact.
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7. Appendix: Singularity classes. Let V and W be smooth manifolds, ini-
tially of the same dimension, n, and let f : V → W be a smooth function. Let
Σ(f) := {x ∈ V : det(df(x)) = 0} be the set of critical points of f . (This and all of
the sets defined below are coordinate-independent.) The only singularities we will
be concerned with are those which are corank one, by which we mean points x0 ∈ V
such that

rank (df (x0)) = n− 1 and d (det(df)) (x0) 6= 0. (59)

If f only has corank one singularities, then Σ is a smooth hypersurface in V .

Definition 7.1. f : V → W is a blowdown if ker (df) ⊆ TΣ(f) at all points of
Σ(f).

Definition 7.2. f has singularities of (Whitney) fold type if, for every x ∈ Σ(f),
ker (df(x)) intersects TxΣ(f) transversally.

Now consider the non-equidimensional situation. There is some variation in the
literature in terms of how these singularities are denoted. The analogues of Whitney
folds are called submersions with folds (if dim (V ) > dim (W )) or cross caps (if
dim (V ) < dim (W )). Suppose that dim (V ) = N, dim (W ) = M , with N ≥ M.
For N = M , submersions with folds are Whitney folds, and are denoted by S1,0

(in the Thom theory of C∞ singularities [17]) and by Σ1,0 (in the Boardman-Morin
theory [27]) in the equidimensional case. In general,

Definition 7.3. f is a submersion with folds if the only singularities of f are of
type S1,0 (Thom) or ΣN−M+1,0 (Boardman-Morin).

For our purposes, we do not need to define the classes S1,0 or ΣN−M+1,0, but
simply recall that one can verify that f is a submersion with folds as follows. At
points where rank df ≥ M − 1, by [27], we can choose suitable adapted local coor-
dinates on V and W such that f has the form: f(x1, x2, . . . , xM−1, xM , . . . , xN ) =
(x1, x2, . . . xM−1, g(x)). The set Σ(f) where f drops rank (by 1, by assumption) is

described by Σ(f) = {x : ∂g
∂xi

= 0, M ≤ i ≤ N}. Then f is a submersion with folds

if, for all x ∈ Σ(f),

(i)
{
d
(

∂g
∂xi

)
: M ≤ i ≤ N)

}
is linearly independent (so that Σ(f) is a smooth

submanifold of V ); and

(ii) the (N − M + 1)-dimensional kernel of df(x) is transversal to the tangent
space of Σ(f) in TxV .

These conditions can be combined [27] into

det

[
∂2g

∂xi∂xj

]

M≤i,j≤N

6= 0, (60)

and this is independent of the choice of adapted coordinates.
For each N,M , there are a finite number of local normal forms for a submersion

with folds, determined by the signature of the Hessian of f [17]:

f(x1, x2, . . . , xN ) = (x1, x2, . . . , xM−1, x
2
M ± x2

M+1 ± · · · ± x2
N ).

In the case relevant here, N = 4 = M + 1 and the last entry is a quadratic form in
two variables.

We now define the final singularity class of interest, assuming that f : V → W ,
with dim (V ) = N < dim (W ) = M .
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Definition 7.4. f is a cross cap if the only singularities of f are of type S1,0 (Thom)
or Σ1,0 (Boardman-Morin).

One can identify a cross cap as follows [27]. At a point where df has rank ≥ N−1,
we can find suitable adapted coordinates such that

f(x1, x2, . . . , xN−1, xN ) = (x1, x2, . . . , xN−1, g1, g2, . . . gq),

where q = M − N + 1. The set Σ(f) where f drops rank by 1 from its maximal

possible value, N , is given by Σ(f) = {x : ∂gi
∂xN

= 0, 1 ≤ i ≤ q}. Assume that

there is an i0, such that
∂2gi0
∂x2

N

(0) 6= 0. Then, g has a cross cap singularity near 0

if the map χ : RN → Rq given by χ(x1, x2, . . . xN ) =
(

∂g1
∂xN

, ∂g2
∂xN

, . . . ,
∂gq
∂xN

)
satisfies

rank (dχ(0)) = q. (Notice that this forces N ≥ q, i.e., M ≤ 2N − 1.) These
conditions can be expressed as:

(i) Σ(f) is smooth and of codimension q;

(ii) the N ×N minors of df generate the ideal of Σ(f); and

(iii) ker(df) ∩ TΣ(f) = (0).

As for folds, there is a local normal form for cross caps, due to
Whitney [37] and Morin [27]:

f(x1, x2, . . . , xN ) = (x1, x2, . . . , xN−1, x1xN , . . . xM−NxN , x2
N ). (61)
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