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Quantum register of fermion pairs

Thomas Hartke1 ✉, Botond Oreg1, Ningyuan Jia1 & Martin Zwierlein1 ✉

Quantum control of motion is central for modern atomic clocks1 and 
interferometers2. It enables protocols to process and distribute quantum 
information3,4, and allows the probing of entanglement in correlated states of matter5. 
However, the motional coherence of individual particles can be fragile to maintain, as 
external degrees of freedom couple strongly to the environment. Systems in nature 
with robust motional coherence instead often involve pairs of particles, from the 
electrons in helium, to atom pairs6, molecules7 and Cooper pairs. Here we 
demonstrate long-lived motional coherence and entanglement of pairs of fermionic 
atoms in an optical lattice array. The common and relative motion of each pair realize 
a robust qubit, protected by exchange symmetry. The energy difference between the 
two motional states is set by the atomic recoil energy, is dependent on only the mass 
and the lattice wavelength, and is insensitive to the noise of the confining potential. 
We observe quantum coherence beyond ten seconds. Modulation of the interactions 
between the atoms provides universal control of the motional qubit. The methods 
presented here will enable coherently programmable quantum simulators of 
many-fermion systems8, precision metrology based on atom pairs and molecules9,10 
and, by implementing further advances11–13, digital quantum computation using 
fermion pairs14. 

The Pauli principle lends stability to matter, from the shell structure 
of nuclei and the periodic system of elements to Pauli pressure pro-
tecting a neutron star from gravitational collapse. In search of robust 
coherence in many-body quantum mechanical systems, one may strive 
to emulate the particular stability of noble gases and magic nuclei, 
provided by fully filled shells of fermions. Interactions between fer-
mions can further enhance stability, for example, via the formation 
of Cooper pairs in nuclear matter and superconductors, which opens 
energy gaps and thereby creates protected subspaces for fermion 
pairs. Thus fermion anti-symmetry and strong interactions, the core 
challenges for classical computations of many-fermion behaviour15, 
may offer decisive solutions for protecting and processing quantum 
information.

Recent advances in quantum gas microscopy8,11 have enabled ana-
logue quantum simulations of fermionic systems at the resolution of 
individual atoms. These platforms thus offer clear prospects towards 
coherent control utilizing fermionic hardware.

Here we create and control an array of fermion pairs featuring 
long-lived vibrational coherence, and demonstrate its potential for 
robust encoding and manipulation of quantum information. Start-
ing with a many-fermion system in a Hubbard-regime optical lattice, 
we leverage fermionic statistics to initialize16–18 a low-entropy array of 
spin-singlet fermion pairs, and to restrict the fermion dynamics to a 
symmetry-protected subspace. Quantum information is encoded in 
the motional state19–23 of the atom pair by forming superpositions of 
the centre-of-mass (COM) and relative vibrational motion. Working 
in a subspace of pairs of atoms decouples the quantum information 
from environmental noise14,24,25. Strong interactions are induced via 
a Feshbach resonance26–29, allowing for tunability of the two-fermion 
motional qubit frequency over several orders of magnitude.

To initialize the quantum register, we cool a two-state mixture of 
fermionic neutral 40K atoms into the lowest band of a two-dimensional 
(2D) optical lattice. Increasing the lattice potential creates a large array 
of hundreds of fermion pairs in isolated wells, with each fermion occu-
pying the three-dimensional (3D) motional ground state of its well 
(Fig. 1a). Pauli exclusion is crucial in this preparation step: it energeti-
cally freezes out triply occupied sites and it forces the spin wavefunc-
tion of each fermion pair to be a spin singlet, thereby protecting the 
two-particle spatial wavefunction r rΨ( , )1 2  to remain symmetric under 
exchange of the atomic positions r1 and r2 at all times, Ψ( , ) = Ψ( , )1 2 2 1r r r r . 
Motion in each well occurs in the quasi-one-dimensional (1D) regime, 
with in-plane (x–y) confinement much stronger than in the out-of-plane 
(z) direction (angular frequencies ωx,y ≈ 4ωz). The quantum information 
is encoded in the subspace of vibrational states with two units of har-
monic energy along z (2ħωz, with ħ the reduced Planck constant), where 
exactly two symmetric two-particle states exist. In the first state 1, 1 , 
each atom carries one excitation, whereas in the second state 
0, 2 = ( 0, 2 + 2, 0 )/ 2s , one atom carries both quanta, leaving the 
other in the ground state. These two states differ in only how vibration 
is distributed within the atom pair, and are thus immune to fluctuations 
in ħωz. In general, single-particle perturbations can only couple the 
pair states at second order. As the singlet spin wavefunction is a 
bystander to the pair motion, pairs are also immune against magnetic 
field noise.

To access this symmetry-protected subspace, we make use of a Fesh-
bach resonance26 caused by an avoided crossing of the atom pair with 
a molecular state (Fig. 1b). Sweeping the magnetic field across the 
resonance injects 2ħωz energy into the relative motion of the fermion 
pair27–29 promoting it to the state 2 rel, while leaving the COM motion 
in the harmonic ground state, 0 COM. At the magnetic field B0 where 
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interactions vanish, this atom pair in relative motion becomes degen-
erate with the state 2 0COM rel where the two atoms instead have two 
units of COM motion30,31. The latter emerges from a molecular state 
with that same excited COM motion existing at B < B0.

Control of the fermion pair qubit is achieved via tunable interactions 
and the anharmonicity of the lattice potential, which couples the inter-
acting states32–35. Figure 1c shows a schematic of the energy spectrum 
and two-particle spatial wavefunctions Ψ(z1, z2) of the fermion pair 
qubit states as interactions are tuned from attractive to vanishing to 

repulsive using the magnetic field. For each fermion pair state, Ψ(z1, z2) 
is reflection symmetric about the line z1 = z2.

At vanishing interactions, the degeneracy of the two pair qubit states 
is lifted by the anharmonicity of the lattice (centre of Fig. 1c). Each atom 
experiences an identical periodic potential VERsin(πz/az)2, where the 
lattice depth V is given in units of the recoil energy E ħ ma= π /(2 )zR

2 2 2 , 
with mthe atomic mass and az the lattice periodicity. For V ≫ 1 (in the 
experiment, V ≈ 8,000), atoms experience a deep lattice and are local-
ized near the potential minima. To first order, the trap is harmonic with 
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Fig. 1 | Spatial qubit encoding in a pair of entangled fermions. a, An array of 
fermion pairs prepared from a two-component, fermionic quantum gas in an 
optical lattice. Each lattice site (dashed box) initially contains two fermionic 
atoms in the spatial ground state of a 3D anisotropic harmonic trap, forming a 
spin singlet. Information is stored in the spatial wavefunction in the z direction, 
which must remain exchange symmetric Ψ(z1, z2) = Ψ(z2, z1) (blue spheres).  
b, Injection of 2ħωz vibrational energy via a magnetic field sweep across a 
Feshbach resonance with a molecular state (red dashed line) brings the fermion 
pair (red solid line) to the qubit subspace. For vanishing interatomic interactions, 
at field B0, there are two degenerate two-particle states of harmonic motion 
along z, with atoms either both in the first excited state 1, 1  or with one atom 
carrying two excitations 0, 2 s (dashed box). The latter state is adiabatically 
connected to a molecular state in COM motion (blue line). c, Full control over the 
fermion pair qubit via trap anharmonicity and tunable interatomic interactions. 
At vanishing interactions (centre), anharmonicity nonlinearly reduces the 
energy of excited harmonic states (left schematic). States 1, 1  (upper box) and 
0, 2 s (lower box) are split by the recoil energy E ħ ma= π /(2 )R

2 2
z
2 , determined 

solely by geometry (lattice spacing az) and the atomic mass m. Strong 
interactions (|U| ≫ ER, left and right side) fully mix the anharmonic eigenstates. 
The fermion pair stores the 2ħωz vibrational energy in either COM motion 
z z z= ( + )/ 2c 1 2  (upper right box) or relative motion z z z= ( − )/ 2r 1 2  (lower right 
box). This avoided crossing enables universal control of fermion pair qubits.
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Fig. 2 | Simultaneous coherent manipulation and parallel readout of 
hundreds of motional fermion pair qubits. a, Modulation of interactions at 
the recoil gap drives a Rabi oscillation between fermion pair states 1, 1  and 
0, 2 s, measured via the number n 1,1  of pairs in state 1, 1  in a central region of 
the 2D array (Methods). b, Readout proceeds by converting each fermion pair 
to either a molecule (lower panel) or repulsive pair (upper panel) using the 
Feshbach resonance. Application of a superlattice then splits repulsive pairs 
into their fermionic constituents for fluorescence imaging, whereas tightly 
bound molecules are ejected and appear dark37. c, A single fluorescence image 

reveals each of the fermion pair qubits in parallel, with single-site resolution. 
The field of view displayed is 20 × 20 lattice sites, with the lower right insets 
showing the entire atomic cloud. d, Measured Rabi frequency fRabi versus the 
measured magnetic field modulation ΔB, and corresponding calculated 
interaction energy modulation ΔU/4. The dashed line shows the predicted Rabi 
frequency fRabi = ΔU/4h, in good agreement with experiment. Here, and 
elsewhere, error bars on n 1,1  show the standard deviation from two or three 
repetitions. Error bars representing the fit error for fRabi are smaller than the 
datapoints.
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energy ħω E V= 2z R , and the pair states 1, 1  and 0, 2 s are degenerate, 
removing dependence of their energy difference on V. At second order, 
the quartic corrections proportional to VER(z/az)4 have two crucial 
effects. First, the characteristic size of the wavepacket scales with the 
harmonic oscillator length ħ mω a V/ = ( /π)z z

−1/4 , leading to quartic 
corrections on the scale of the recoil energy ER, independent of the 
potential depth. Second, because n z n4  grows as n2 for states with n 
excitations, the single-particle energy spectrum becomes nonlinear 
En − E0 ≈ nħωz − n(n + 1)ER/2, which breaks the degeneracy of the atom 
pair states. As a result, 0, 2 s shifts below 1, 1  by ER, which we call the 
recoil gap. The relative fluctuations of this gap with V, due to the next-
order (Methods) corrections E V(9/8) /R , are strongly suppressed by 

≫V 1, highlighting the advantages of atom-pair states compared with 
encoding information in single-particle harmonic states19–23. Moreover, 
the existence and inherent stability of the recoil gap are not specific to 
a lattice potential, and are a general feature of any anharmonic potential 
with rigid shape, with the role of az replaced by another geometric scale.

When repulsive interactions dominate (right side of Fig. 1c), the  
fermion pair behaves like two pendula coupled by a spring, and the 
atoms oscillate with two quanta in either common or relative motion. 
Indeed, the higher-energy pair state, when viewed along the COM and 
relative axes, is simply 2 0 = ( 0, 2 + 1, 1 )/ 2 ,COM rel s whereas the 
lower-energy state is 0 2 = ( 0, 2 − 1, 1 )/ 2 .COM rel s In the relative 
ground state 0 rel, atoms overlap maximally and experience a repulsive 
energy shift U U≡ ⟨0| ^ |0⟩rel rel from two-particle interactions Û, whereas 
in 2 rel they less strongly overlap, leading to a weaker shift (Methods) 
rel U U2 ˆ 2 = /2rel . The resulting energy separation between the pair 
states is U/2, which is set by the interaction strength and is experimen-
tally controlled via the magnetic field.

In Fig. 2a, we demonstrate universal control of the fermion pair qubit 
by driving a Rabi oscillation between the recoil gap eigenstates 1, 1  
and 0, 2 s. Analogous to any two-level system, Rabi oscillations are 
produced by modulating an off-diagonal matrix element, the interac-
tion energy U U1, 1 ˆ 0, 2 = /4,s at the frequency of the recoil gap36 
(Methods). The oscillation is observed by counting the number n 1, 1  of 
fermion pairs in state 1, 1  in a central region of the 2D array (Methods). 
To detect the state of each pair qubit, we engineer state 1, 1  to fluoresce 
when imaged, and state 0, 2 s to appear dark (Fig. 2b). This is achieved 
by coherently splitting exclusively fermion pairs in 1, 1  via a double 
well into two separate, spin-entangled fermions, which are subse-
quently imaged. With a single image of separated atom pairs under a 
quantum gas microscope37, parallel readout of all fermion pair qubits 
in the 2D array is achieved with single-site resolution. Figure 2c shows 
the first complete Rabi cycle, as the 2D register array Rabi oscillates 
from 1, 1  (bright) to 0, 2 s (dark) and returns to 1, 1 .

The measured Rabi frequency fRabi of the interaction-driven pair qubit 
agrees well, for moderate driving, with the interaction modulation 
ΔU/4, calculated from the calibrated trap parameters and scattering 
properties (Methods, Fig. 2d). The robust energy separation between 
the pair qubit states and other symmetry-protected states of the fer-
mion pair allows increasing the Rabi coupling to values at and beyond 
the recoil gap. In this non-perturbative regime of strong driving, the 
fermion pair exhibits a non-sinusoidal response (Methods), which 
can be used for quantum control at rates exceeding the energy gap38.

We now demonstrate that the fermion pair qubit can coherently 
crossover into the molecular regime26 of tightly bound fermion pairs. 
This enables wide tunability of the pair qubit frequency and enables 
applications for molecular clocks9,10 and molecule-based quantum 
information protocols. Figure 3a shows the calculated energy spectrum 
of the fermion pair in the molecular crossover30,31. For every state of 
COM motion, there is an identical ladder of states of relative motion, 
starting with the molecular state34. The pair qubit states approach 
degeneracy for vanishing interactions, at the zero of the scattering 
length a3D (ref. 35). There, the approximate 1D two-particle spatial wave-
functions (insets) approach the eigenstates 1, 1  and 0, 2 s of the recoil 

gap. For increasing attraction, moving towards the Feshbach resonance, 
the lower-energy state first evolves into 2 0COM rel  and then into a 
deeply bound molecular state with COM motion, with the two atoms 
therefore strongly bound to each other, as seen by their wavefunction 
being concentrated near the diagonal z1 ≈ z2. In stark contrast, the 
higher-energy state evolves into 0 2COM rel and then into a strongly 
repulsive ‘fermionized’ pair27,29, with largely reduced probability for 
the two atoms to be at the same location. Near the point of 
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Fig. 3 | Crossover from fermion pair to molecule qubit. a, Theoretical energy 
spectrum of an interacting fermion pair in the crossover to a molecular state. 
Pairs in the ground (second excited) COM state are shown in red (blue), with the 
qubit states highlighted (thick lines). The insets show the approximate 1D pair 
qubit wavefunctions Ψ(z1, z2) with a small trap anharmonicity. Energies E are 
calculated for an anisotropic 3D harmonic trap with ωx = ωy = 3.853ωz (ref. 31; 
Methods). Eg is the energy of the non-interacting ground state. b, Ramsey 
interferometry measures the fermion pair qubit energy splitting, ranging  
from |ΔE| = h × 140.76(3) Hz at vanishing interactions (left panel) to |ΔE| = h ×  
36.00(3) kHz near the strongest explored interactions (right panel, 
B ≈ 202.5 G). c, Measured energy splitting versus magnetic field, from 
vanishing to strongly attractive and repulsive interactions. The solid line is the 
theoretical prediction, using the measured recoil gap as an input, without fit 
parameters. The inset shows the energy splitting at the recoil gap, 
demonstrating insensitivity to doubling the harmonic frequency from 
ωz/2π = 25.09(4) kHz (black) and ωz/2π = 38.50(1) kHz (green) to 
ωz/2π = 51.8(1) kHz (orange). The error bars for |ΔE| represent sinusoidal fitting 
error, and are smaller than the datapoints in the main figure.
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fermionization, additional, narrow anharmonicity-mediated reso-
nances exist with molecules in excited transverse COM states39, where 
coherent interconversion has been demonstrated33.

To probe the energy spectrum of the fermion pair qubit, we perform 
Ramsey interferometry of the register states (Fig. 3b). At vanishing 
interactions (left panel) anharmonicity interferes with the pair states 
1, 1  and 0, 2 s at the recoil gap frequency ER/h = 140.76(3) Hz, with h the 
Planck constant. In contrast, at strong interactions (right panel) the 
molecular binding energy drives a much faster Ramsey oscillation at 
36.00(3) kHz between a 2D array of strongly repulsive fermion pairs 
and a lattice of tightly bound molecules36,40,41. Ramsey measurements 
across the Feshbach resonance (Fig. 3c) demonstrate the ability to tune 
the frequency of the fermion pair qubit, and thus the entangling speed 
of the motion of fermion pairs, over multiple orders of magnitude.

A key feature of the recoil gap is suppressed sensitivity to laser 
intensity noise. The inset of Fig. 3c shows the energy gap near zero 
interactions at different lattice depths. As the trap depth is increased 
fourfold, the harmonic energy ħωz doubles, whereas the recoil gap 
energy changes by only 2.40(6)%. Moving away from the avoided cross-
ing, the energy difference begins to be determined by interactions. In 
this regime, increasing the trapping depth confines the atomic wave-
function more tightly and enhances interactions, thus enabling local 
manipulation of the pair qubit frequency with targeted laser beams11.

Finally, we explore the coherence of the fermion pair qubit, beginning 
in Fig. 4a with the properties of the recoil gap states. The decay envelope 
of various experimental sequences (upper schematics) provides insight 
into existing noise sources, guiding methods to improve coherence. 
As a first measurement, we perform a Ramsey experiment that detects 
intrinsic phase noise. The superposition decays in τ = 300(10) ms after 
40 recoil oscillations, with random spatial structure. In contrast, if an 
echo π pulse is inserted into the Ramsey oscillation to cancel static 
noise, coherence is extended to τEcho = 3.2(1) s, corresponding to 450 
recoil oscillations and 105 harmonic oscillator periods. In combination, 
these observations indicate the presence of a near-static spatial vari-
ation of recoil gap energies on the order of approximatley 0.75 Hz, or 
0.5% ER, within the 2D array.

We eliminate the effects of static noise at the recoil gap by modu-
lating interactions at the recoil gap frequency. This dressing scheme 
preserves the quantum information in an arbitrary qubit state for over 
4 s. The method is analogous to applying an oscillating transverse mag-
netic field to stabilize an ensemble of dephasing spins42. In the frame 
rotating with the drive, the applied static field is perpendicular to and 
much larger than any residual dephasing fields, leading to a uniform 
quantization energy across the ensemble, thereby preserving arbitrary 
state superpositions. Here, interaction dressing extends coherence 
to τ = 4.0(3) s for a state prepared perpendicular to the drive, corre-
sponding to a Rabi oscillation. If the pair qubit is instead first rotated 
to align with the drive, in spin-locked operation, a further extension 
of coherence to τ = 8.5(5) s is observed, and oscillations are still visible 
after 12 s with good signal to noise. As expected for this driven opera-
tion42, which increases the coherence from the dephasing time T2 to 
the population decay time T1, these decoherence rates approach the 
natural limits provided by the measured bit-flip rates and loss rates for 
the two pair qubit states (Methods).

To characterize the coherence of the fermion pair qubit in the molec-
ular crossover, we measure the quality factor Q = |ΔE|τEcho/h as a func-
tion of interaction strength and thus of the fermion pair qubit energy 
splitting |ΔE| (Fig. 4b). Remarkably, near the scattering resonance, a 
superposition of a repulsive fermion pair and a tightly bound molecule 
remains coherent for 25,000 Ramsey oscillations. The dominant source 
of decoherence at strong interactions is the underlying curvature of 
the optical lattice beams, which leads to a radial variation of the local 
well depth, and a corresponding reduction of the interaction energy by 
about 0.2% at 10 sites from the centre of the array. This can be observed 
as spatial rings in a Ramsey experiment near the Feshbach resonance, 
as in Fig. 4c, taken after 500 oscillations. With an echo pulse (Fig. 4d), 
these rings refocus spatially even after 12,500 oscillations.

In summary, we have demonstrated a quantum register based on 
fermion pairs in a 2D optical lattice. Our method provides a route 
towards quantum simulation and computation by leveraging Pauli 
exclusion for high-fidelity preparation and control of spin- and motion-
ally entangled states of fermions. Local control of fermion pairs can be 
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Fig. 4 | Second-scale coherence of the fermion pair qubit. a, A Ramsey 
oscillation at the recoil gap has a Gaussian envelope (black triangles) with 1/e 
timescale τ = 300(10) ms (time series shown below). Inserting an echo π-pulse 
in a Ramsey oscillation (green squares) extends coherence to τEcho = 3.2(1) s 
(Gaussian fit), indicating that the phase noise is static. Dressing the pair qubit at 
the recoil gap with modulated interactions suppresses static noise, extending 
the coherence time to τ = 4.0(3) s for a state that is prepared perpendicular to 
the drive (Rabi oscillation, blue circles, Gaussian fit) and to τ = 8.5(5) s for a state 
that is prepared parallel to the drive (spin-locked oscillation, red diamonds, 
exponential fit). Uosc,⊥ denotes a Rabi drive with coupling fRabi = 23.902(4) Hz, 
whereas Uosc,|| denotes the same drive preceded by a quarter period of free 
evolution (Methods). b, The number of coherent oscillations of the fermion 

pair qubit per decay time, given by the quality factor Q = |ΔE|τEcho/h, grows in the 
molecular crossover of the fermion pair, from Q ≈ 450 at vanishing interactions 
(green square) to Q ≈ 25,000 at B = 202.091(8) G, near the Feshbach resonance 
(purple diamond, τEcho = 0.49(2) s) (Methods). c, Small interaction energy 
variations owing to the curvature of the lattice beams produce rings in a 
Ramsey oscillation at B = 202.091(8) G after 10 ms (about 500 oscillations).  
d, A 250-ms echo sequence (about 12,500 oscillations) unwinds these rings to 
recover spatial coherence. The envelope data in a, except for the echo data, are 
the extreme values of an independent sinusoidal fit over several cycles at each 
time. The echo data directly obtain the contrast. The shaded regions and decay 
times τ are extracted from simultaneous fits to all data. The error bars from fit 
error in a, b are generally smaller than the datapoints. 
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achieved using optical tweezers11,43 to alter the confinement or change 
the anharmonicity on a lattice site. Alternatively, localized Raman lasers 
allow for rapid (about 1 μs (ref. 44)) variation of the interaction strength. 
Shorter-wavelength lattices and lighter mass fermions18 will allow 
increasing the speed of the recoil gate by over two orders of magnitude.

Extensions to full gate-based control of entangled many-body states 
may be realized via locally induced cold collisions14,45–49, or Rydberg exci-
tation12,13,50 of pairs51; however, these advances will require precise posi-
tional control and pristine stability of optical potentials, and mitigation 
of loss from Rydberg states52. Allowing for tunnelling between adjacent 
sites enables the exploration of extended Fermi–Hubbard models with 
additional orbital degrees of freedom53–55. Furthermore, the accurate 
simultaneous control of hundreds of molecules in superposition with 
free atom pairs allows for site-resolved detection of many-body states 
of dipolar molecules56, for tests of fundamental symmetries57,58, and 
metrology based on molecular clocks9,10.
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Methods

Experimental setup
Fermion pair qubits are composed of atoms in the two lowest hyperfine 
states of 40K: |F = 9/2, mF = −9/2⟩ and |F = 9/2, mF = −7/2⟩, with F the hyper-
fine quantum number and mF the magnetic quantum number. These 
states have an approximately 7-G-wide s-wave Feshbach resonance at 
B∞ ≈ 202.1 G and a zero crossing of interactions at B0 = 209.094(8) G 
(measured). The spatial potential experienced by each atom is formed 
by two 1,064-nm lattice beams reflecting off a superpolished substrate 
forming the first facet of the microscope objective37,59. Each beam 
propagates near-horizontally in either the x or y direction (Fig. 1a), 
with a shallow angle of incidence to the x–y plane of about 10.2°, and 
is polarized in the x–y plane. The two beams reflect off the (horizontal) 
substrate of the quantum gas microscope at this angle to form a long 
wavelength lattice in the z direction (az ≈ 3 μm), before being directly 
retro-reflected to form a short wavelength lattice in the x and y direc-
tions (ax ≈ ay ≈ 541 nm). The net potential in the z direction on each 
lattice site is the sum of the two potentials formed by the two lattice 
beams. After initialization, the potential is kept sufficiently deep to 
prevent all tunnelling between sites on relevant timescales.

In a typical experiment, atoms are prepared near 151 G at repulsive inter-
actions. To initialize fermion pairs in the qubit subspace, the magnetic 
field is ramped across the Feshbach resonance to 208 G in about 80 ms, 
which is sufficiently fast to avoid narrow resonances between fermion 
pairs and molecules in higher COM states, either in transverse33 or 
z-directional motion, that all occur at fields below about 202 G (ref. 31).  
A further field ramp to zero interactions at 209.094 G, in another 
aprroximately 100 ms, initializes fermion pairs in the state 1, 1 , the 
upper of the two recoil eigenstates. At the recoil gap, the measured 
loss rates for the two pair qubit states 1, 1  and 0, 2 s are 0.00(2) Hz 
and 0.08(3) Hz, respectively, and the measured bit-flip rates are 
0.06(1) Hz and 0.05(3) Hz, respectively.

To drive Rabi oscillations between 1, 1  and 0, 2 s at the recoil gap, 
interactions are modulated from repulsive to attractive at 140.65 Hz 
using the magnetic field (Fig. 2a). State 1, 1  is converted to 0, 2 s and 
vice versa with a probability of 99.9973(3)%, as calculated from the decay 
of the contrast of Rabi oscillations (fRabi = 23.902(4) Hz, τ = 4.0(3) s, Gauss-
ian fit). Some fermion pairs in excited vibrational states give spurious, 
but constant, contributions to the signal, reducing oscillation contrast 
to 92(1)%. A route to improve this contrast through better sample prep-
aration techniques has been demonstrated in recent experiments18 that 
achieve low-entropy arrays with fermion pair densities exceeding 99.5%.

For readout, an additional 1,064-nm superlattice that is directly 
retro-reflected in the z direction (532-nm lattice spacing) coherently 
separates the long wavelength z lattice into a double well60, as described 
in Fig. 2b37. This superlattice remains off except during readout. 
Through this process, only lattice sites with two atoms originally in 
state 1, 1  appear bright, whereas sites with two atoms initially in 0, 2 s 
appear fully dark. Imperfect preparation of pair qubits can lead to some 
sites that are occupied by fluorescent single atoms. To more easily 
distinguish state 1, 1  from these single atoms, the applied double well 
is tilted during the splitting process to move all singly occupied sites 
into a specific layer, which can then be made dark by tuning the relative 
fluorescence of the two vertical layers, as demonstrated in previous 
work37. The variable n 1,1  counts the bright sites in a circle of radius ten 
sites at the centre of the atomic cloud. Repeated images of the same 
cloud reveal an imaging loss of n 1,1  of about 12%. Improved imaging 
loss rates near 2% have been demonstrated61.

Energy spectrum calculation
The energy spectrum of two identical atoms in a 3D anisotropic har-
monic trap interacting via a delta function potential can be calculated 
exactly, given the 3D scattering length and the harmonic trap frequen-
cies31,62. The trap frequencies ωx/2π = 96.84(4) kHz, ωy/2π = 96.55(4) kHz 

and ωz/2π = 25.09(4) kHz are measured via lattice intensity modulation 
spectroscopy. The 3D scattering length a3D of the lowest two hyperfine 
states of 40K as a function of magnetic field is provided by a theoretical 
calculation (private communication with A. Simoni, calculations based 
on the model in ref. 63), adjusted for the new precise measurement 
reported here (Fig. 3c, inset) on the location of the scattering length 
zero: B0 = 209.094(8) G. The scattering length is well approximated by 
the formula a3D = abg(1 − (B0 − B∞)/(B − B∞)) with B∞ = 202.1 G and back-
ground scattering length abg = 167.6a0, where a0 is the Bohr radius. 
The mean value of ωx and ωy, which differ by less than 0.4%, is used to 
obtain a trap ratio ωx/ωz = ωy/ωz = 3.853(6) for input to the theory for an 
anisotropic 3D harmonic trap in Fig. 3a31. This energy spectrum is also 
used to calculate the energy difference |ΔU/2| for display in Fig. 2d. For 
the theoretical energy difference in Fig. 3c (main panel), the measured 
recoil gap frequency of 140.76(3) Hz at zero interactions is added as 
a Rabi coupling to the spectrum of Fig. 3a, likewise for other lattice 
depths reported in the inset.

Recoil gap calculation
The magnitude of the recoil gap at vanishing interactions in a 1D lattice 
potential can be derived using perturbation theory. Corrections pro-
portional to z4 in the potential are included up to second order in per-
turbation theory, and corrections proportional to z6 are included to 
first order in perturbation theory. The resulting energy of vibrational 
state n  in a lattice potential VERsin2(πz/az) to this order is
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The exact energies can be obtained from solutions to Mathieu’s 
equation64.

Interacting energy gap calculation
The two atoms interact via a delta function potential Û  = (4πħ2a3D/m)
δ(3)(r1 − r2) (refs. 30,31). The first-order perturbative energy shift Û  for 
a given state is more easily evaluated in the basis of suitably normalized 
COM and relative coordinates, R r r≡ ( + )/ 21 2  and r r r≡ ( − )/ 21 2 , 
respectively.

We first calculate Û  for the ground state. At vanishing interactions, 
in the absence of anharmonicity, the ground state of the trap is the 
harmonic oscillator ground state in x, y and z for both atoms
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where l ħ mω= /i i is the harmonic oscillator length for coordinate rμ,i of 
atom μ in direction i. To evaluate Û , one can transform to R and r 
coordinates. The form of the wavefunction is identical
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and the form of Û  is (4πħ2a3D/m)(δ(3)(r)/23/2). The operator Û  does not 
affect the coordinate R, and the wavefunctions of R are already normal-
ized. Thus, the ground-state energy shift at weak interactions is
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In a quasi-1D geometry, the transverse wavefunction (that is, for 
motion along x and y) remains in the harmonic ground state for weak 
interactions. One can then work in the basis of normalized harmonic 
oscillatorstates of the rotated z coordinates, z z z= ( + )/ 2c 1 2   
and z z z= ( − )/ 2r 1 2 , with the understanding that the transverse state 
is the ground state. The two pair qubit states can be written as 
2 0 = ( 0, 2 + 1, 1 )/ 2COM rel s  a n d  0 2 = ( 0, 2 − 1, 1 )/ 2 .COM rel s   
The interaction energy shift depends solely on the magnitude of the 
relative wavefunction at zr = 0, which is a factor of 2  smaller in state 
2 rel than in state 0 rel. Thus, the energy shift is U/2 for 0 2COM rel , 
whereas it is U for 2 0COM rel.

Qubit control protocols
Extended Data Fig. 1 describes in more detail the experimental meth-
ods used to control the fermion pair qubit by tuning the interaction 
strength via the magnetic field.

To achieve population transfer between 1, 1  and 0, 2 s (Fig. 2 data), 
pairs are initialized at the recoil gap. Aside from an overall offset, the 
static effective Hamiltonian near the recoil gap is
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R

in the basis ( 1, 1 , 0, 2 s), where σz and σx are the Pauli matrices. A Rabi 
oscillation is driven (Extended Data Fig. 1a) by modulating the interac-
tion energy U by ΔU about vanishing interactions at the recoil gap 
frequency
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This Hamiltonian is produced by sinusoidal modulation of the magnetic 
field in time t, B(t) = B0 + ΔBsin(ERt/ħ), with B0 = 209.094 G being the field 
where the interactions vanish. The resulting frequency of Rabi oscillation 
is fRabi = ΔU/4h. Each drive operation begins as a sine wave, and the applied 
amplitude ΔB is varied to achieve a π/2 pulse (left panel of Extended Data 
Fig. 1a, fRabi = ER/12h, ΔBπ/2 ≈ 50 mG) or π pulse (right panel of Extended Data 
Fig. 1a, fRabi = ER/6h, ΔBπ ≈ 100 mG) in exactly 3 drive cycles.

In a Ramsey measurement (Fig. 3 data), a π/2 pulse creates a super-
position of 1, 1  and 0, 2 s, the two states acquire a relative phase due 
to their energy difference, and a π/2 pulse re-interferes the superposi-
tion (Extended Data Fig. 1b, upper panel). A Ramsey measurement at 
finite interactions proceeds analogously, with the addition of magnetic 
field ramps to and from a test field BR (lower panel). The ramps between 
B0 and BR are adiabatic and have a fixed shape and timing. They thus 
prepare a precise superposition at field BR with a fixed initial relative 
phase. Varying the intermediate hold time tRamsey at BR then drives addi-
tional relative phase accumulation, determined only by the qubit 
energy splitting at BR, which is detected via re-interference.

Protocols for measuring coherence (Fig. 4 data) are shown in 
Extended Data Fig. 1c. A π pulse is added to the midpoint of the Ramsey 
protocol to perform an echo sequence (upper panel). Echo coherence 
measurements at finite interactions proceed identically, with two addi-
tional sets of field ramps to allow phase evolution at a desired field. In 
the ⊥ dressed state protocol (lower left panel), a Rabi drive is continu-
ally applied at the π-pulse amplitude. In the || dressed state protocol 
(lower right panel), a π/2 pulse is followed by a delay by a quarter of 
the recoil gap period, sinusoidal dressing and a final π/2 pulse. Viewed 
in the frame rotating with the drive, each pulse provides a static 

quantization on the Bloch sphere of states 1, 1  and 0, 2 s. The first π/2 
pulse is along the x axis, and rotates the state from the z axis to the y 
axis. The h/4ER delay then leaves the state unchanged, but ensures that 
the subsequent applied dressing is along the y axis, aligned with the 
state vector. The final π/2 pulse lies in the x–y plane of the rotating 
frame. The orientation of this pulse rotates with the dressing time, 
leading to oscillation.

Strong driving
Extended Data Fig. 2 shows the fermion pair qubit dynamics under 
strong driving, with a Rabi coupling comparable to the energy splitting 
of the effective two-level system. The observed multiple frequencies 
in the response are analogous to the transition frequencies between 
eigenstates of a two-level atom dressed by light at strong driving. Initial-
izing a specific state where the atom and field are not coupled prepares 
a superposition of more than two eigenstates of the strongly coupled 
system, leading to multifrequency interference65,66.

Coherence at strong interactions
An echo sequence (see schematic in Fig. 4a) measures the decay of 
fermion pair qubit coherence at strong interactions (Extended Data 
Fig. 3). For each repeated experiment at a fixed total time tEcho, a random 
extra phase from 0 to 2π is added to the fermion pair qubit by redis-
tributing evolution time before and after the echo π pulse. The stand-
ard deviation of the signal n 1,1  then decays owing to loss of coherence 
within the register array, from which the coherence time is obtained, 
shown in Fig. 4b.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request. Source data are pro-
vided with this paper.
 
59.	 Cheuk, L. W. et al. Quantum-gas microscope for fermionic atoms. Phys. Rev. Lett. 114, 

193001 (2015).
60.	 Murmann, S. et al. Two fermions in a double well: exploring a fundamental building block 

of the Hubbard model. Phys. Rev. Lett. 114, 080402 (2015).
61.	 Mitra, D. et al. Quantum gas microscopy of an attractive Fermi–Hubbard system. Nat. 

Phys. 14, 173–177 (2018).
62.	 Chen, Y., Xiao, D.-W., Zhang, R. & Zhang, P. Analytical solution for the spectrum of two 

ultracold atoms in a completely anisotropic confinement. Phys. Rev. A 101, 053624 
(2020).

63.	 D’Errico, C. et al. Feshbach resonances in ultracold 39K. New J. Phys. 9, 223–223 (2007).
64.	 Daniel, D. J. Exact solutions of Mathieu’s equation. Prog. Theor. Exp. Phys. 2020, 043A01 

(2020).
65.	 Laucht, A. et al. Breaking the rotating wave approximation for a strongly driven dressed 

single-electron spin. Phys. Rev. B 94, 161302 (2016).
66.	 Wang, G., Liu, Y.-X. & Cappellaro, P. Observation of the high-order Mollow triplet by 

quantum mode control with concatenated continuous driving. Phys. Rev. A 103, 022415 
(2021).

Acknowledgements We thank C. Robens for discussions. This work was supported by the NSF 
through the Center for Ultracold Atoms and Grant PHY-2012110, ONR (grant number N00014-
17-1-2257), AFOSR (grant number FA9550-16-1-0324), AFOSR-MURIs on Quantum Phases of 
Matter (grant number FA9550-14-1-0035) and on Full Quantum State Control at Single 
Molecule Levels (grant number FA9550-21-1-0069), the Gordon and Betty Moore Foundation 
through grant GBMF5279, and the Vannevar Bush Faculty Fellowship. M.Z. acknowledges 
support from the Alexander von Humboldt Foundation.

Author contributions The experiment was designed by all authors. T.H., B.O. and N.J. collected 
and analysed the data. All authors contributed to the manuscript.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-021-04205-8.
Correspondence and requests for materials should be addressed to Thomas Hartke or Martin 
Zwierlein.
Peer review information Nature thanks the anonymous reviewers for their contribution to the 
peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.1038/s41586-021-04205-8
http://www.nature.com/reprints


Article

Extended Data Fig. 1 | Qubit control protocols. a, Protocol to transfer 
population between the fermion pair qubit eigenstates at the recoil gap via a 
Rabi drive of interactions using the magnetic field (Fig. 2 data). b, Protocols for 

Ramsey measurements of the qubit energy splitting |ΔE| (Fig. 3 data). c, 
Protocols for measuring coherence at the recoil gap (Fig. 4 data).



Extended Data Fig. 2 | Strong driving. A strongly driven Rabi oscillation at  
the avoided crossing of Fig. 1c exhibits non-sinusoidal response. The predicted 
Rabi coupling ΔU/4 = h × 151.98 Hz (see Fig. 2d), which is driven at a modulation 
frequency of 140.65 Hz, is comparable to the recoil energy gap 
ER = h × 140.76(3) Hz. The solid line shows a phenomenological guide to the  
eye composed of three sinusoids with frequencies near ER/h, 2ER/h and 3ER/h.
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Extended Data Fig. 3 | Coherence at strong interactions. The standard 
deviation of the fermion pair qubit state in an echo sequence with randomized 
extra phase (standard deviation of n 1,1 ) quantifies the coherence of the 
register array at strong interactions. A fitted exponential without offset has  
1/e time constant τ = 2.3(1) s at |ΔE| = h × 1.594(7) kHz (orange), τ = 0.84(5) s at 
|ΔE| = h × 8.98(7) kHz (red) and τ = 0.49(2) s at |ΔE| = h × 50.7(4) kHz (purple), 
corresponding to magnetic fields B = 206.976(8) G, B = 204.235(8) G and 
B = 202.091(8) G, respectively. Error bars of τ represent fit error. These data  
are used in Fig. 4b.
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