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ABSTRACT: Motors that can convert different forms of energy into mechanical
work are of profound importance to the development of human societies. The
evolution of micromotors has stimulated many advances in drug delivery and
microrobotics for futuristic applications in biomedical engineering and
nanotechnology. However, further miniaturization of motors toward the
nanoscale is still challenging because of the strong Brownian motion of
nanomotors in liquid environments. Here, we develop light-driven opto-
thermocapillary nanomotors (OTNM) operated on solid substrates where the
interference of Brownian motion is effectively suppressed. Specifically, by
optically controlling particle—substrate interactions and thermocapillary
actuation, we demonstrate the robust orbital rotation of 80 nm gold
nanoparticles around a laser beam on a solid substrate. With on-chip operation
capability in an ambient environment, our OTNM can serve as light-driven engines to power functional devices at the
nanoscale.
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INTRODUCTION

Micromotors have attracted tremendous interest because of

. . . . . . 12 .
their promising applications in microrobotics, ’~ nanofabrica- ] : ) -
.34 . . . . 5-8 . molecular machines in solid-state devices. To overcome these
tion,”" and biomedical engineering.””~ They can be driven by

chemical reactions”'® and external stimuli, including elec- limitations, na%nlo'rn({)t(?:‘is .Wlthhthe SlZ; ranging from 10 to 102
tric,n’n magnetic,13’14 light,15_19 and acoustic fiel ds.20’21 nm are essential in bridging the gap between micromotors an

Among them, light is regarded as an attractive stimulus for molecula.r motors. D iff.erent fr(_)m opti_cal tweezers that trap
on-demand control of micromotors in a reversible and remote nanopartlclgs at a specific location, optical nanomotors move
manner with excellent temporal and spatial resolution. For along a designed P‘?th' Thus, at such a small scale, precise
instance, photocatalytic reactions, which occur at the surface of control of the motion of nanomotors becomes challenging

scale.’” However, the strong reliance on molecular chemistry,
the extremely localized motion, and the difficulty of real-time
monitoring and control limit the broader applications of

a particle, can power asymmetric micromotors through self-
diffusiophoresis,”>** self-electrophoresis,”** and bubble pro-
pulsion.””*® In addition, optical forces and torques are widely
exploited to drive micromotors. The spin angular momentum
or orbital angular momentum carried by circularly polarized
light or structured li§ht can induce an optical torque to drive
rotary micromotors.”’ " The optical torque can also stem
from the asymmetric scattering of exotically shaped nanostruc-
tures with linearly polarized light.”' In addition, optothermal
micromotors have been realized via laser-heating-induced
thermophoresis,”** thermoelectricity,””** and demixing of
critical mixtures.*®

Despite the tremendous progress in light-driven micro-
motors, the miniaturization of motors toward the nanoscale,
especially with all dimensions below 100 nm, remains
challenging. Molecular machines have been proposed to
control mechanical forces and motions at the molecular
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because of the dominance of random Brownian motion in the

o . 2,38
liquid environments.”

RESULTS AND DISCUSSION

Working mechanisms of OTNM. Herein, we develop an
opto-thermocapillary nanomotor (OTNM) in which the
interference of Brownian motion is significantly suppressed.
OTNM is operated on a solid substrate under ambient
conditions, which is enabled by the rational optical modulation
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Figure 1. General concept of OTNM. (a) Schematic of OTNM on a solid substrate. (b) Time-resolved dark-field optical images showing the
orbital rotation of an 80 nm AuNP. Laser power: 6 mW. Scale bar: 1 ym. (c) Centroid tracking and (d) displacement of the rotating AuNP in
(b). The origin of the coordinates is at the center of the laser beam. The curved arrows in (a)—(c) indicate the rotation direction of the
nanomotor. The solid lines in (d) correspond to the sinusoidal fitting curves.

of particle—substrate interactions (see Figure S1 for the
experimental setup). A thermally responsive layer of solid
cetyltrimethylammonium chloride (CTAC) is sandwiched
between the glass substrate and gold nanoparticles (AuNPs)
as the nanomotors. When the laser is on, optical heating of the
AuNP leads to a localized phase transition of CTAC from a
crystalline structure to a quasi-liquid phase,®”*’ which
generates the thermocapillary stress at the AuNP-CTAC
interface to enable the rotary motion (Figure la). Figure 1b
shows the real-time rotation of an 80 nm AuNP under laser
excitation (Movie S1). An off-resonance laser wavelength at
660 nm was selected to avoid strong optical scattering forces to
push the AuNP away from the laser beam. The AuNP rotates
stably in a circular orbit around the laser beam (Figure 1c), as
further indicated by the sinusoidal curve fitting of the laser—
particle displacement along the X and Y axes (Figure 1d). It
should be noted that the phase transition of CTAC is
reversible, which leaves no trace of the motion on the CTAC
film. This result contrasts with the light-driven, self-traced
motion of AuNPs through optothermal milling of polymer
films*' or photocatalytic etching of silicon surfaces.*

To understand the working mechanisms of OTNM, we
analyzed the in-plane forces in both radial and tangential
directions (see Note S2 for ruling out the out-of-plane rolling).
It should be noted that light sources used in this work are
linearly polarized without additional optics for wavefront
shaping. Thus, the angular momentum of light is not a viable
driving force for the rotation of nanoparticles. We first took the
scanning transmission electron microscope (STEM) images of

the 80 nm Au nanomotors to gain their geometrical
information (Figure 2a and Figure S2). The AuNPs were
not in a perfectly spherical shape, and multifaceted asymmetry
could be clearly observed. This asymmetry is essential in the
origin of driving forces for the nanomotors, which will be
discussed in detail in the following contents. As a control
example, we also conducted experiments with ultrauniform
gold nanospheres (diameter ~100 nm) and no rotation
behaviors were observed (see Movie S2). To better understand
the role of asymmetry, we developed a three-dimensional (3D)
reconstruction method to build asymmetric AuNPs from
STEM images and implemented the 3D asymmetric models in
numerical simulations (Figure 2b, also see Figure S3 and
Figure S4). Instead of retrieving the geometry of an individual
nanoparticle, this approach enables the construction of
multiple morphologies to resemble a batch of nanoparticles
(see Note S1).

We then simulated the optical forces exerted on the AuNP
using a finite-difference time-domain (FDTD) method (see
Note S3). The tangential component of the in-plane optical
force arising from the geometric asymmetry is too small to
drive the rotation (Figure SS). Here, we ascribe the driving
force of OTNM to the thermocapillary forces. Under laser
excitation, optical heating of the AuNP leads to a localized
temperature increase (Figure 2d). The elevated temperature is
higher than the phase transition temperature of CTAC (~80
°C),* which results in a local phase transition of CTAC from
the solid phase to a quasi-liquid structure. Because of the
multifaceted asymmetry of the AuNP, a temperature gradient
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Figure 2. Working principle of OTNM. (a) STEM image of 80 nm AuNPs used in experiments. Scale bar: 100 nm. (b) 3D reconstructed
asymmetric AuNP based on STEM images, which is used for numerical simulations. (c) In-plane force analysis of OTNM. F,, is optical
force, Fy refers to resistant drag force, and Fyc, and Frc, are the tangential and radial components of thermocapillary forces, respectively.
(d) Simulated temperature distribution for an 80 nm AuNP under 660 nm laser illumination. Scale bar: 50 nm. (e) Close view of the
temperature distribution at the AuNP surface. The laser power is 10 mW, and the laser—particle distance is 400 nm. (f) Simulated
temperature gradient mapping (bottom view) on the surface of the AuNP under 660 nm laser irradiation (10 mW). The arrows indicate the
in-plane temperature gradient parallel to the surface. (g) Calculated total in-plane torques as a function of the orientation angle of the AuNP.
The red arrows show two equilibrium orientation angles where the torque equals zero. The black and green arrows indicate the orientation
of the AuNP and the rotation direction at a certain orientation, respectively. (h) Calculated total forces in the radial direction (F,),
thermocapillary force in the tangential direction (Fyc,) that is balanced by the resistant drag force, and the potential in the radial direction

(P,) as a function of laser—particle distance.

exists at the interface between the AuNP and quasi-liquid
CTAC (Figure 2e). This nonuniform temperature results in an
interfacial surface tension gradient (Figure S6), which
generates localized nonzero thermocapillary stress at the
AuNP-CTAC interface and a net thermocapillary force along
the tangential direction of the AuNP (see Note S4 for more
details).** The thermocapillary stress arises from the minuscule
temperature variation on the AuNP surface with a multifaceted
geometry (arrows in Figure 2f, also see Figure S7). In contrast,
for a perfectly spherical AuNP, this thermocapillary stress
vanishes in the in-plane direction because of the uniform
temperature distribution, causing no rotation of the AuNP (see
Movie S2). The direction of the local temperature gradient
depends strongly on the surface asymmetry of the AuNP.
Therefore, the direction of the asymmetry-induced thermoca-
pillary forces is mainly dependent on the orientation of the
AuNP, whereas the magnitude depends on both the

orientation of the particle and the laser—particle distance
(Figure S8).

As shown in the force analysis (Figure 2c), OTNM is
enabled by the synergy of optical forces and thermocapillary
forces. During the steady rotation, the radial components of
optical and thermocapillary forces are balanced as the net
centripetal force is orders of magnitude smaller because of low
inertia of AuNPs. The radial optical force on the AuNP is only
determined by the radial position, whereas the radial
thermocapillary force also varies with the particle orientation.
Thus, the AuNP continuously orients itself with respect to the
laser—particle line to maintain a stable orientation throughout
the circular rotation. To understand this self-orientation
behavior, we calculated the total in-plane torques acting on
the AuNP that is responsible for the orientational change. As
shown in Figure 2g, there are two equilibrium orientations
(indicated by the red arrows) where the total torque is zero
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Figure 3. Modeling of the motion of OTNM. (a) At the initial time, an asymmetric AuNP with a random orientation was placed at a laser—
particle distance of 550 nm. All forces and torques based on numerical simulations were exerted on the AuNP. The green arrow indicates the
orientation of the AuNP. r is the laser—particle distance, and @ defines the orientation angle of the AuNP with respect to radial direction
(gray dashed arrow). (b, c) The AuNP approached the circular orbit with reorientation at (b) ¢ = 60.6 ms and (c) t = 160.6 ms. v is the
instant velocity of the AuNP, and the black dot line shows the trajectory of the AuNP. (d) Steady rotation state of the AuNP.

and restoring torques exist once the orientation changes. It
should be noted that only one orientation angle could lead to
rotation of the AuNP whereas the other drives the AuNP away
from the orbital track (Figure S9a).

Next, we evaluated the total radial and tangential forces
exerted on the AuNP at the equilibrium orientation (Figure
2h). In the radial direction, the repelling thermocapillary force
and the attractive optical force are balanced (Figure S9b),
leading to an equilibrium laser—particle distance at ~420 nm,
which is consistent with the experimental rotation radius
(Figure 1c). The calculated energy potential (red curve) in the
radial direction also indicates that the AuNP could be confined
at the equilibrium position. It should be noted that although
the width of the potential is large, the localized phase transition
and high viscosity of quasi-liquid CTAC can effectively reduce
the Brownian motion to retain stable orbital rotation. In the
tangential direction, a thermocapillary driving force of ~15 fN
is obtained, which is consistent with the magnitude of resistant
drag forces (Note SS).

Modeling of OTNM. To validate the proposed working
mechanisms, we developed a physical model to numerically
analyze the motion of the AuNP (Note S6). We considered an
asymmetric AuNP interacting with a 660 nm laser. The AuNP
experienced thermocapillary forces, optical forces, resistant
drag forces, and torques as a function of the position and
orientation of the AuNP, which were obtained from numerical
simulations and analytical methods. At the initial time, the
AuNP was placed at a random position with random

orientation (Figure 3a). Because of the large restoring torque
acting on the particle, the AuNP reoriented itself toward the
equilibrium orientation during the first couple of milliseconds.
Then, within 0.3 s, the AuNP was dragged toward the circular
orbital while simultaneously maintaining at the equilibrium in-
plane orientation induced by the restoring torques (Figure
3b,c). Subsequently, the AuNP started to stably rotate along
the laser beam in a circular orbit (Figure 3d, also see Movie
S3). The trajectory and velocity of the AuNP matched well
with the experimental results in Figure lc. In the real case,
there exist perturbations in the system caused by the
fluctuation of laser power, nonuniformity in the CTAC layer,
and the vibration of the stage. To better represent the actual
experimental behavior, we added noise in the model to mimic
the experimental fluctuations (see Note S6). In the presence of
noise, the AuNP rotated in the circular orbit with some
position fluctuations, which is similar to the experimental
results (Figure S10 and Movie S4). The replication of
experimental rotation behaviors in our physical model
indicates the reliability and effectiveness of our proposed
mechanisms. In addition to 80 nm AuNPs, we also
demonstrated the orbital rotation of 80 nm silver nanoparticles
(Figure S11 and Movie SS) and 200 nm AuNPs (Movie S6),
showing the general applicability of OTNM. We further
studied asymmetric nanoparticles with different geometries,
such as gold nanocubes, gold nanorods, and Janus nano-
particles. However, light-driven rotation of these particles with
a much higher asymmetry cannot be achieved because of the
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Figure 4. Power-dependent rotation behaviors of OTNM. (a) Rotation radius and (b) rotation rate of OTNM as a function of laser power.
The shaded areas correspond to the ranges obtained via the calculated theoretical values from different asymmetric AuNPs.

strong dependence of optical heating and the resultant forces
on the particle orientation (Figure S12), which makes the
restoration of particle orientation challenging.

Power Dependence of OTNM. Last, we investigated the
dependence of laser power on the rotation behaviors of
OTNM (Figure 4). As discussed in Figure 2f, the rotation
radius is the equilibrium position determined by the balance of
optical force and thermocapillary force in the radial direction,
which is independent of the laser power. Therefore, the
experimental rotation radius of OTNM was in the range
~0.4—0.6 ym for a power range of ~1—10 mW (Figure 4a).
The angular velocity of OTNM is dependent on the
thermocapillary driving forces, which are related to the laser
power, asymmetric geometry, and the equilibrium orientation
of the AuNP. The experimental rotation rate was weakly
correlated to the laser power with a slightly increasing trend
(Figure 4b). This weak correlation arises from the different
asymmetry of AuNPs, which causes a significant variation in
the net thermocapillary driving force. To understand this
correlation, we analyzed the theoretical rotation radius and
angular velocity for different asymmetric AuNPs to account for
the geometrical variations (Figure SS). The calculation results
for all AuNPs are consistent with the experimental results, as
indicated by the shaded areas in Figure 4. In addition, it should
be noted that because of the random asymmetric geometries,
there are large variations in the rotational behaviors of AuNPs.
For example, some AuNPs with certain geometries cannot
stably rotate along the laser beam, which is also confirmed by
numerical simulations. Meanwhile, the rotation of OTNM is
randomly in the clockwise or counterclockwise direction (see
Movie S7). Future studies on the statistics of the rotational
behaviors of AuNPs are desired to further understand the
underlying physics of OTNM.

CONCLUSIONS

In summary, we have developed opto-thermocapillary nano-
motors that are operated on a solid substrate with suppressed
Brownian motion. OTNM is driven by the synergy of optical
forces and thermocapillary forces, in which the geometry of the
nanoparticle plays an important role. We have further
established a physical model to understand the origin of
driving forces induced by the asymmetry of nanomotors, which
sheds light on the rational design and optimization of optical
nanomotors. In addition, the OTNM platform is promising for
realization of light-driven rotation of more photothermal
nanoparticles (e.g., silver and silicon) on other thermores-
ponsive substrates beyond CTAC films.

The OTNM provides many exciting possibilities in nano-
technological applications. It presents a design of nanoscale
motors to fill the scale gap between molecular machines and
microengines. OTNM can serve as fuel-free and gear-free
rotary nanoengines for nanoelectro-mechanical systems to
produce mechanical energy and perform work. The light-to-
energy conversion efficiency of OTNM was estimated to be
~107"* at a laser power of 5—10 mW (see Note S7), which is
comparable with the state-of-the-art microscopic optical
engines.36 In comparison to other micro/nanomotors on
solid substrates based on liquid-crystal films,**~** OTNM has
no specific requirements for the solid substrate, making it
compatible with current complementary metal-oxide-semi-
conductor technologies. Operating on solid substrates,
OTNM can be integrated with solid-state nanoelectronics for
the development of on-chip active nanodevices and applica-
tions in photonics, optoelectronics, and optomechanics.

METHODS

Materials Preparation. CTAC (in powder form) was purchased
from Chem-Impex. AuNPs (80 nm) and silver nanoparticles (AgNPs,
80 nm) were purchased from Sigma-Aldrich. To prepare the sample,
40 mL of CTAC solution (0.5 M) in isopropyl alcohol (IPA) was
spin-coated onto a glass substrate. A thin layer of CTAC solid film
with a thickness of ~200 nm was rapidly formed after IPA
evaporation. Then, diluted AuNPs or AgNPs solution in ethanol
was spin-coated on the as-prepared CTAC film for optical
manipulation experiments.

Optical Setup. The optical nanomotors experiments were
conducted on an inverted microscope (Nikon TiE) with a X100 oil
objective (Nikon, numerical aperture: 0.5—1.3). A 660 nm laser
(Laser Quantum) or a 532 nm laser (Coherent, Genesis MX STM-1
W) was expanded with a 5X beam expander (Thorlabs, GBE0S-A)
and directed to the microscope. An oil dark-field condenser (NA
1.20—1.43) and a color charge-coupled device (CCD, from Nikon)
were used for dark-field optical imaging. A fast monochromic CCD
camera (Andor) was used to track the nanoparticles.

Characterizations. All STEM images were taken with the Hitachi
§5500 SEM/STEM system.

Measurement of Surface Tension. The surface tension of quasi-
liquid CTAC was measured using a high-sensitivity force-based
tensiometer (Dataphysics DCAT 25). The measurement is based on a
well-established Wilhelmy plate method.” An iridium—platinum plate
(PT 11, length, 10 mm; width, 19.9 mm; thickness, 0.2 mm) was used
as the Wilhelmy plate.
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