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2014; Rau et al., 2017; Tapley and Waylen, 1990). 

2.3. Ecological effects of ENSO on NW South America 

We limit our discussion here to the effects of eastern Pacific (EP) 
ENSO-positive conditions on arid northwestern South America. The ef
fects of ENSO are particularly acute here as this region is proximate to 
core areas of ENSO development (Fig. 2). Most attention has emphasized 
the adverse effects of positive/el Niño phases. Warm NINO 1–4 SSTA 
and suppression of cold Antarctic currents in NINO1+2 on marine biota 
during el Niño phases result in a deepening thermocline and decreased 
nutrient upwelling. This contributes to collapses of cold-adapted 
benthic, pelagic, and neritic communities and their replacement by 
cosmopolitan or warm-adapted species (Castilla and Camus, 1992; 
Chavez et al., 2003; Ñiquen and Bouchon, 2004). Negative terrestrial 
impacts including mass wasting and river avulsion/flooding that 
contribute to lost life, property, economic productivity, socio-economic 
stress, and increased infectious disease have been widely discussed 
(Garnica, 1997; Martinez-Urtaza et al., 2008; Ward et al., 2014). 

These dramatic impacts do not include vegetation responses to ENSO 
moisture dynamics, which remain poorly understood. These ENSO- 
vegetation interactions are critical, however, as they affect land sur
face dynamics and primary productivity, providing a foundation for 
other ecological responses to ENSO regimes. Botanical surveys in Peru’s 
coastal dry lands following very strong el Niños in 1982–1983 and 
1997–1998 documented enhanced herbaceous and woody growth; 
increased diversity, leafy biomass, and seed production; lengthened 
growing periods; and expansions of ruderal species (Cano et al., 1999; 
Dillon and Rundel, 1990; Erdmann et al., 2008; Ferreyra, 1993; Richter, 
2005; Richter and Ise, 2005; Tovar et al., 2018). Increased growth 
cascade through dryland trophic levels, supporting higher trophic level 
consumers (Erdmann et al., 2008; Richter, 2005). Both increased and 
decreased green growth are recorded in moist- and dry-tropical forests 
during ENSO-positive phases due to variations in plant-available mois
ture (PAW) and insolation rates (Condit et al., 2004; Nagai et al., 2007; 
Poveda and Salazar, 2004). Vegetation response consequently is not 
uniform, but is sensitive to edaphic, orographic, and hydrographic 
variables (Erdmann et al., 2008; Ferreyra, 1993). 

3. Methods 

We evaluate changing dryland productivity due to ENSO-positive 
conditions using a multimethod approach. The influence of ENSO on 
the study area’s climate was evaluated as statistical relationships be
tween meteoric precipitation and NINO SSTA indices. We measure 
vegetation response to increased precipitation during the 2016–2017 EP 
el Niño using a GPP time series spanning May 2016–July 2018 derived 
from the European Space Agency’s Copernicus Sentinel 2A and 2B high 
resolution multispectral satellite imagery (Copernicus, 2017). To eval
uate the hypotheses that arid regions became ecologically and agricul
turally productive during ENSO-positive phases, we compare GPP trends 
in endemic dry land vegetation to adjacent agricultural areas that were 
cultivated using various strategies. These are small-scale polyculture, 
fertigation monoculture (Saccharum), and flood-irrigation monoculture 
(Oryza) intermixed with Saccharum fertigation (see above). This direct 
comparison allows us to evaluate whether increased vegetation poten
tial could offset adverse impacts given different productive strategies. 

3.1. Analysis of ENSO-driven precipitation in the study region 

Statistical relationships between precipitation in the study region 
and SSTA indices in NINO regions 1 + 2, 3, 3.4, and 4 (Fig. 3) were 
evaluated using monthly indices downloaded from the National Center 
for Atmospheric Research (NCAR) climate data portals (Trenberth, 
2021). Instrumental records for the Casa Grande and San Benito plu
viometric stations were accessed from SENAMHI data repositories using 

the R package, senamhiR (Anderson, 2020). San Benito provides the 
more complete record spanning 1964–2019. Data gaps of more than 2 
weeks out of a one-month period were filled using a normal-ratio esti
mation method (Linsley et al., 1988) with concurrent SENAMHI pre
cipitation data from the Cospan, Sinsicap, and Monte Grande stations. 
The resulting fifty-five year record was used to calculate mean monthly 
and December–February, (DJF) and March–May (MAM) trimester pre
cipitation throughout the austral thermal year (July–June). The DJF and 
MAM trimesters characterize the austral wet season in Chicama and are 
important for evaluating ENSO precipitation anomalies. Monthly pre
cipitation accumulations are plotted against NINO SSTA for 
ENSO-positive periods during 1982–1983, 1997–1998, and 2016–2017 
in Fig. 3. Also shown are the average MODIS NDVI for the matorral 
subregion and a harmonic fitted curve (Shumway and Stoffer 2017) 
during the most recent ENSO neutral – positive years derived using 
Google Earth Engine. These plots show the strong relationship between 
SST warming, precipitation increases, and increased vegetation green 
growth in the study region. 

Statistical relationships between NINO 1 + 2 and 3.4 SSTA reported 
by NCAR and precipitation recorded at the SENAMHI San Benito station 
were evaluated using online tools available through the Koninklijk 
Nederlands Meteorologisch Instituut Climate Explorer (KNMI-CE, 
Trouet and Van Oldenborgh, 2013) San Benito monthly precipitation 
totals were uploaded and anomalies were calculated as increases/de
creases from monthly means. NINO region 1 + 2 monthly SST anomalies 
for the period 1964–2019 were similarly uploaded into KNMI-CE. 
Detrended precipitation anomalies from San Benito from Decem
ber–May (the wet season) were correlated to detrended NINO 1 + 2 SST 
anomalies with a 1-month lag to allow SST trends to propagate. 

3.2. Estimation of gross primary productivity from optical remote sensing 

We quantify the vegetation response to enhanced 2016–2017 el Niño 
rainfall as gross primary productivity (GPP) rather than use a dimen
sionless vegetation index. GPP is the amount of energy photochemically 
stored by plants per unit area per unit time and is a measure of pro
ductivity that is critical for estimating Net Primary Productivity (NPP, 
the amount of biomass available to consumers as plant starches and 
sugars). However, NPP is a function of autotrophy and stored biomass 
(including below-ground) rates and cannot be reliably estimated from 
remotely-sensed data without plant community-specific parameters. In 
lieu of these parameters for our study region, we rely on estimated GPP 
to evaluate plant dynamics. 

GPP can be readily estimated from remote sensing data as a function 
of (1) plant photosynthetic activity, (2) amount of incident 
photosynthetically-active radiation (PARin) available to plants for 
photosynthesis, and (3) carbon transfer rates (Running et al., 2000). 
Canopy-level chlorophyll content is the strongest predictor of photo
synthetic activity while accounting for phenology, stress, or 
species-dependent photosynthetic capacity (Gitelson et al., 2006). 
Chlorophyll-sensitive vegetation indices (VIc) and fractional Photosyn
thetically Active Radiation (fPAR) are the most reliable remote sensing 
measures of plant photosynthetic activity from which to estimate GPP, 
consequently (Gitelson et al., 2006; Lin et al., 2019). PARin is deter
mined by solar incidence and environmental variables including cloud 
cover and shade (Lin et al., 2019). Dense canopy and/or canopy ge
ometry, which can also affect PARin diurnally, is not a factor in the study 
region. Consequently, the most significant factors affecting PARin are 
seasonal variations in solar incidence and daily variations in cloud 
cover. Environmental variables that influence carbon transfer rates, 
including temperature, atmospheric vapor, and nutrient availability 
(Running et al., 2000), are nearly constant within the study region, 
given its coastal/tropical location, the spatial scale of analysis, and 
elevational range. 

Gitelson et al. (2006) calculate GPP from remote sensing data as a 
function of VIc and PARin as: 
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