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Abstract: Functional electrical stimulation (FES) is a potential neurorehabilitative intervention
to enable functional movements in persons with neurological conditions that cause mobility
impairments. However, the quick onset of muscle fatigue during FES is a significant challenge for
sustaining the desired functional movements for more extended periods. Therefore, a considerable
interest still exists in the development of sensing techniques that reliably measure FES-induced
muscle fatigue. This study proposes to use ultrasound (US) imaging-derived echogenicity signal
as an indicator of FES-induced muscle fatigue. We hypothesized that the US-derived echogenicity
signal is sensitive to FES-induced muscle fatigue under isometric and dynamic muscle contraction
conditions. Eight non-disabled participants participated in the experiments, where FES electrodes
were applied on their tibialis anterior (TA) muscles. During a fatigue protocol under either
isometric and dynamic ankle dorsiflexion conditions, we synchronously collected the isometric
dorsiflexion torque or dynamic dorsiflexion angle on the ankle joint, US echogenicity signals
from TA muscle, and the applied stimulation intensity. The experimental results showed an
exponential reduction in the US echogenicity relative change (ERC) as the fatigue progressed
under the isometric (RZ = 0.891 + 0.081) and dynamic (R? = 0.858 + 0.065) conditions. The
experimental results also implied a strong linear relationship between US ERC and TA muscle
fatigue benchmark (dorsiflexion torque or angle amplitude), with R? values of 0.840 + 0.054
and 0.794 £ 0.065 under isometric and dynamic conditions, respectively. The findings in this
study indicate that the US echogenicity signal is a computationally efficient signal that strongly
represents FES-induced muscle fatigue. Its potential real-time implementation to detect fatigue
can facilitate an FES closed-loop controller design that considers the FES-induced muscle fatigue.

Keywords: Muscle fatigue; Electrical stimulation; Ankle joint; Biomechanical Phenomena; Ultra-
sonography; Linear models; Nonlinear dynamics

1. Introduction

! Neurological injuries, like a spinal cord injury (SCI) [2] and stroke [3], usually
result in paraplegia or hemiplegia, disrupting both physical and emotional well-beings
[4]. Without physical assistance from mobility aids or a neuroprosthetic intervention,

1

Note that preliminary results have been published in [1]; however, those results employed US echogenicity post-processing as an offline manner

and contained experimental data from only three participants.
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the mobility impairment increases social isolation, anxiety, and depression. Functional
electrical stimulation (FES), an artificial technique that applies low-amplitude electrical
potentials across the paralyzed skeletal muscle belly or peripheral nerve, can reanimate
the walking function and help restore mobility. Since the earlier demonstrations of FES
to correct drop foot [5] and [6], recent studies [7-12] investigated its orthotic effects
on a larger clinical population. Additionally, FES can provide supplementary benefits,
including the improvement in muscle tone and size, muscle strength, blood flow, and a
reduction in muscle spasticity and disuse osteoporosis. Despite the efficacy and benefits
of FES, the rapid onset of muscle fatigue is a major limitation. Due to the non-selective
stimulation nature of FES, peripheral motor units are synchronously activated and
discharged, causing the stimulated muscle to fatigue easily. The induced fatigue results
in the deterioration of the muscle contraction force generation, causing a rapid loss of
FES control effectiveness [13].

To reduce the FES-induced muscle fatigue, multiple studies have investigated the
spatially distributed sequential stimulation pattern [14-16], where a single stimulation
site distributes the center of the electrical field over a wide area by using an array
of surface electrodes. In addition, Downey et al. [17] showed that the use of multi-
channel asynchronous stimulation reduced muscle fatigue compared to conventional
single-channel stimulation. Later in [18], a closed-loop controller for asynchronous FES
was shown to extend the duration of functional movements. Despite the advances in
stimulation protocols and new closed-loop FES controllers, non-invasive evaluation and
characterization of the FES-induced muscle fatigue are lacking. Fatigue measurement
methods are important for quantifying the fatigue effects on the neuromusculoskeletal
dynamics and for an effective FES control design.

Efforts in indirectly measuring fatigue include, but are not limited to, tetanic con-
traction force measurement [19], electromyography (EMG) / surface electromyography
(sEMG) [20-22], mechanomyography [23], near-infrared spectroscopy [24-26], and phos-
phorus nuclear magnetic resonance [27]. Among these technologies, sEMG is the most
well-developed and convenient non-invasive methodology to assess peripheral muscle
fatigue. Although [28-30] report successful extraction of volitional or evoked sEMG dur-
ing FES, the analysis and evaluation of the EMG signals during FES is still challenging.
The challenges are mainly due to the FES-induced contractions cluttering and masking
the pure sEMG signals [31,32], interference and cross talk from adjacent muscles [21],
and the inability to measure the sSEMG signals from deeply seated muscles [33]. Recently,
ultrasound (US) imaging technique, know as sonomyography, has been investigated
to qualitative or quantitatively assess muscle fatigue for volitional and FES-induced
muscle contraction as an alternative methodology to sEMG. Due to a relatively high
spatial and temporal resolution, the US images provide direct visualization of the muscle
deformations during the implementation of FES. These muscle deformations can be
quantified to obtain a comprehensive measure that reflects the fatigue effect. Shi et al.
[34] used muscle thickness, extracted from cross-sectional US images, to characterize
the volitionally induced fatigue in the biceps brachii muscles. Similarly, Witte et al. [35]
applied US strain imaging to capture the elastic and viscoelastic-like modifications in
the 3™ flexor digitorum superficialis muscle after a voluntary fatiguing exercise. Sheng
et al. [36,37] investigated an adaptive speckle tracking algorithm for determining strain
changes in the quadriceps muscle during the FES-induced muscle fatigue protocol under
isometric knee extensions.

The aforementioned US imaging-related studies for assessing muscle fatigue pri-
marily investigated isometric muscle contractions. Few studies have investigated FES-
induced muscle fatigue characteristics under dynamic joint movement conditions. Ad-
ditionally, the aforementioned studies reported their results based on offline processed
US imaging data, since deriving fatigue-relevant features from US imaging is generally
computationally intensive. The high computation cost significantly limits the use of US
imaging to evaluate muscle fatigue in real-time.
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Inspired by recent studies in US imaging-derived echogenicity signals to predict
motion intent or voluntary effort in the forearm and ankle muscles [38,39], prelimi-
nary results of using post-processed US echogenicity signal to assess the FES-induced
muscle fatigue have been reported in [1]. In this work, we extended the preliminary
results in [1] to a larger participant group and investigated the feasibility of using the
online-processed US echogenicity to quantitatively assess FES-induced muscle fatigue.
Specifically, the tibialis anterior (TA) muscle was selected to reveal the fatigue-indicating
performance of US echogenicity under both isometric and dynamic ankle dorsiflexion
movements, where we synchronously collected dorsiflexion force/angular position (iso-
metric/dynamic conditions), TA muscle’s US echogenicity, and FES intensity during the
muscle fatigue progression. A comprehensive correlation analysis between the temporal
US echogenicity relative change (ERC) and TA muscle fatigue progression (decay of
dorsiflexion force or angle during isometric or dynamic conditions) was performed to
assess the muscle contractility during fatigue progression. It was hypothesized that there
exists a nonlinear relationship between the US ERC and the FES duration (contraction
cycles), as well as a linear relationship between the US ERC and the decay of dorsiflexion
force or angle. Furthermore, the performance of US ERC as a surrogate metric of muscle
fatigue was compared to the US tissue strain as reported in [36,37].

2. Materials and Methods
2.1. Subjects

The study was approved by the Institutional Review Board (IRB) at North Carolina
State University (IRB approval number: 20602). The study is also in accordance with the
ethical standards of the Helsinki Declaration. Eight participants without any neuromus-
cular disorders (age: 26.0+2.2 years, height: 173.7+5.9 cm, weight: 72.6+11.2 kg, 3F/5M)
were recruited to complete FES-elicited ankle dorsiflexion experiments during isometric
and dynamic conditions. Every participant signed an informed consent form before
taking part in the experiments. The participants were identified as Sub01, Sub02,...,
Sub08. The current study was a pilot-designed study or a proof-of-concept study with a
relatively small sample size. We applied an a priori sample size estimation before the
experiments. The hypotheses of this paper are that there exists a nonlinear relationship
between the US ERC and the FES duration, as well as a linear relationship between the
US ERC and the decay of dorsiflexion torque/angle. So, the null hypotheses would be
that no obvious nonlinear or linear relationships exist between the US ERC and the FES
duration or between the US ERC and the decay of dorsiflexion torque/angle. To control
the risk of accepting a false hypothesis, the probability of rejecting the null hypothesis
when it is true, a, was set as 0.05, and the probability of accepting the null hypothesis
when it is wrong, 8, was set as 0.10. Then the minimum sample size N, is calculated
below for the one-sided test of hypothesis with standard deviation s assumed to be
known and equal to the shift é.

S
N = (t1_g/n+ tl_ﬁ)Z(E)2 = (1.64 +1.28)* ~ 8. 1)

2.2. Experimental protocol and data collection

The isometric and dynamic experimental setup is illustrated in Fig. 1a. Detailed
descriptions of the isometric setup, including the load cell platform (C) and US imaging
transducer (B) and processing machine (G), can be found in [39,40]. In the dynamic
experimental setup, the participant’s foot was suspended to ensure the full range of
motion for both dorsiflexion and plantarflexion. A wearable ankle brace connected with
an incremental encoder (D) (1024 pulses per revolution, TRD-MX1024BD, AutomationDi-
rect, GA, USA) was inserted into the participant’s shoes, and two pieces of free movable
components were stamped to the shank. Thus, the ankle motion was constrained in
the sagittal plane and measured by the encoder. The seated posture in Fig. la was
maintained throughout isometric and dynamic experimental procedures. Two electrodes
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(A) (size: 2"x2") were placed on the fibular head and the distal belly of the TA muscle,
respectively. The electrodes applied bi-phasic stimulation pulse trains from a commercial
stimulator (E) (Rehastim 2, HASOMED GmbH, Germany). A region approximately
30% to 50% of individual shank length distal from the rotation central line of the knee
joint was chosen as the location for the US transducer placement. The depth of US
imaging was set at 40 mm to include the entire TA muscle area. A monitoring screen (F)
that displayed B-mode US images was used to adjust the US transducer location and
orientation to guarantee good visualization and resolution of the TA muscle.

Data synchronization and collection

1kHz

|
: | Base time line |
UL L I
) | 1s :
g |
2| 13s ‘ 13s FES sequence :
|
| 1s 3s |
| 1kHz |
| 15 [ PP —> Load cell (Isometric |
' 4—’HI'"II‘HI"'H'!H"'H| case 120 seconds) :
| : 1kHz |
| 15 [ PlE—>j¢—> Encoder (Dynamic |
‘IR et 11 S AT case 240 seconds) |
| 1s 2s 3s :
- : 1s 78FPS _T8FPS ZOH US imaging data |
IO | ey it | <_’|W | collection |
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Load cell MATLAB (1000 Hz)

(1000 Hz) SIMULINK® - : 8s |
— — » Command flow Experimenta | Fatigue progression duration |
—— Signal flow m e e e I

(a) (b)

Figure 1. (a) Experimental setup of the isometric (left) and dynamic (dynamic) ankle joint dorsi-
flexion by using FES. A - FES electrode pads, B - Prodigy US transducer, C - Load cell platform, D -
Incremental encoder, E - FES stimulator, F - Monitor showing B-mode US imaging, G - Prodigy US
machine, H - Safety stop button. (b) Data synchronization and collection among multiple channels.

There were three separate experimental tasks performed on three different days.
At least 72 hours were provided for two successive tasks to ensure a full recovery and
mitigate muscle fatigue effects from the last task. For each experimental task, participants
were instructed to avoid any volitional TA muscle contraction. Throughout those three
experimental tasks, the FES current amplitude was set as 25 mA and the stimulation
frequency as 33 Hz for all participants. The first task was conducted under the isometric
condition to determine subject-specific FES pulse width threshold and saturation values,
following the procedures described in [41]. The second and third sets were conducted
randomly over two days to analyze muscle fatigue in both isometric and dynamic
conditions. The threshold pulse width amplitude of each individual was taken as the
amplitude that produced the first significant increase of the dorsiflexion torque. The
pulse width saturation was taken as the amplitude that no longer generated a significant
increase in the dorsiflexion torque. During the first task, the pulse width was increased
from 0 us to 600 us with an increment of 20 ys and with an activation period of 1 s
every 5 s. After the personalized pulse width saturation was determined from the first
experimental task, 80% of individual pulse width saturation was applied for the second
and third tasks to facilitate the isometric and dynamic fatigue protocols. Fig. 1b presents
the protocol for FES-induced TA muscle fatigue progression, data synchronization, and
collection. The first second was left blank to initialize all channels for data collection.
A time base of 1000 Hz was run in a Simulink (R2019b, MathWorks Inc., MA, USA)
real-time program on a target machine (Speedgoat Inc., Liebefeld, Switzerland).

The participants felt stronger muscle deformations under the isometric condition
than the dynamic condition, even with the same stimulation intensity. Therefore, the
time periods of those two fatigue progressions were set differently. With respect to
the aforementioned time base, two fatigue progression periods of 120 s and 240 s were
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applied for the isometric and dynamic conditions, respectively. FES was activated every
2 s with a duty cycle of 65%. Under the isometric and dynamic fatigue progressions,
the dorsiflexion force signal and dorsiflexion angle signal were collected at 1000 Hz
throughout the entire period.

The US echogenicity signal was acquired offline in our previous studies [1,39],
where the plane-wave US imaging radio frequency (RF) data were collected and saved
on the US machine at a frame rate of 1000 frames per second. A delay-and-sum beam-
forming method was applied offline to generate the US image time sequence and the
US echogenicity signal time sequences were calculated post-hoc. The RF data collection
was triggered by signals from the target machine for synchronizing with the collection
of dorsiflexion torque or dorsiflexion angle. Although that approach makes it extremely
suitable for applications where fast phenomena and tiny deformations need to be ob-
served, this plane wave imaging at high temporal resolution (1000 Hz) significantly
degrades the spatial resolution (image quality), thus resulting in more noise when
calculating US echogenicity. In addition, the offline beamforming and echogenicity
calculation are not feasible for FES closed-loop control with the US imaging-derived
signal as feedback in real-time.

In the current study, we developed and implemented the online US image beam-
forming and echogenicity calculations on the US machine according to the series steps
of “line-by-line beamforming — image cropping — US echogenicity calculation — data
transfer to Simulink”, which required a lot of computational capability and time to make
this online US echogenicity stream available. During the muscle fatigue progression,
while the US echogenicity transmission was running online, raw RF data were also
saved for US imaging visualization in a post-hoc way. To reduce the computation and
data storage burden of the US machine, during both isometric and dynamic fatigue pro-
gressions, US echogenicity signals and raw RF data were collected synchronously with
signals from the load cell or the encoder during the first second of every 4 stimulation
cycles, as illustrated in Fig. 1b. Preliminary results showed the above online steps could
run around 7.8 times per second, so the online US echogenicity was sent out from the
US machine at a frequency of 7.8 Hz. Due to the use of a zero-order-hold function in
Simulink, the US echogenicity data collection was still sampled and collected at 1000 Hz,
but without changes during two successively generated values from the US machine.
The details of the US echogenicity calculation are explained in the following subsection.
The aforementioned experimental and data collection procedures were applied on the
left ankle joint of each participant.

2.3. Data processing and analysis

The ankle dorsiflexion torque and angle measurements were low-pass filtered by
a 4"-order Butterworth filter with a cutoff frequency of 6 Hz. According to the data
synchronization in Fig. 1b, the dorsiflexion torque signal during the isometric condition
and dorsiflexion angle during the dynamic condition were aligned with the period
when FES was on, and the last data point from each stimulation cycle was selected and
normalized to the peak value across all stimulation cycles for further analysis. Similarly,
the dorsiflexion torque or dorsiflexion angle signals were aligned with the period when
the US imaging trigger was on, and the last data point from each trigger cycle was
selected and normalized to the peak value across all US imaging trigger cycles for
further analysis. The detailed data processing diagram is presented in Fig. 2.

Here are the procedures for US imaging data processing. First, the raw RF data
were beamformed online through the line-and-line beamforming algorithm. Then the
logarithmic imaging intensity compression was performed to get the envelope of the
demodulated RF data. By normalizing the envelope of each pixel between 0 to 255, the
B-mode US image at the current frame was generated. A median filter and non-local
means denoising [42] were applied to spatially filter each B-mode image. At last, the
averaged gray-scaled echo intensity within the region of interest (ROI) of 400 pixel x400
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Figure 2. Diagram of data processing, including US imaging echogenicity, load cell, and encoder
measurements under both isometric and dynamic conditions.

pixel was calculated as the echogenicity value for the current US image frame [38].
Therefore, the sequential US echogenicity signal was calculated as

1 NA NL
Echoy, = —— I 2
C Otk NANL x;ly;l tk(x/ y)/ ( )

where Ny, N represent the pixel numbers along with axial and lateral directions, re-
spectively. I, (x, y) represents the US intensity information at the pixel location (x, y)
on the image at f; instant from the normalized logarithmic imaging intensity compres-
sion signals. As a consequence, the 2D image time sequence was transferred to a 1D
signal time sequence. Visually, each I;, (x, y) presents the brightness of that pixel at the
location of (x, y) on the 2D map. Thus, the calculated echogenicity signal presents an
overall brightness within the ROI. Note that although the US imaging beamforming
and echogenicity calculation were based on the online manner, the updating frequency
was fairly low (7.8 Hz from preliminary results) due to the computation time and com-
munication delay between the US machine and Simulink real-time program. Therefore,
a zero-order-hold function was used in the real-time program to collect the online cal-
culated US echogenicity at 1000 Hz. The echogenicity time sequence within the same
stimulation cycle was subtracted by the echogenicity of the first image from the same
cycle, which was defined as the ERC within the same cycle. Similarly, the last data point
of ERC in each trigger cycle was selected and normalized to the peak ERC throughout
all trigger cycles. Given the FES-induced fatigue progression protocol, the last point of
ERC corresponded to a sub-maximal dorsiflexion force or dorsiflexion angle; therefore,
the aligned last data point of dorsiflexion force or angle during each FES cycle and the
aligned last data point of ERC during each US imaging trigger cycle were selected to
characterize the muscle contractility during fatigue progressions. As a consequence,
during the isometric fatigue progression, 60 samples from dorsiflexion forces and 15
samples from ERC were obtained, while during the dynamic fatigue progression, 120
samples from the dorsiflexion angles and 30 samples from ERC were obtained.
According to the muscle fatigue dynamics and its solution mentioned in [13],
an exponential regression model was used to fit the curve between the normalized
sub-maximal dorsiflexion force or angle and the index number of contractions (i =
1,2,..,60/i =1, 2,..., 120), as well as the curve between the normalized sub-maximal
ERC and the index number of contractions (i = 4, 8, ..., 60/i = 4, 8, ..., 120). The coeffi-
cients of the exponential regression models were determined by using the Levenberg-
Marquardt nonlinear least squares algorithm [43]. A linear regression model was used to
fit the line between the normalized sub-maximal dorsiflexion torque/angle and the nor-
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malized sub-maximal US ERC. To evaluate the goodness of curve fittings, the coefficient
of determination (R?) of each regression model was also calculated as

o (ELm-D(F -7))° o
o (1 - TP (- 1)

where T; and T; denote each measured sub-maximal variable point and output from the

regression model, respectively. T and T denote the average of the measured sub-maximal
variable and the average of the output from regression model, respectively.

2.4. Statistical analysis

The normality of the targeted data sets was tested based on the Shapiro-Wilk
parametric hypothesis test (SW test). Those data sets include coefficients and R? values
of each exponential regression model and linear regression model under either isometric
or dynamic conditions across all eight participants, as well as the computation times
of the US echogenicity and axial strain per image frame. According to the results from
SW test, a paired t-test (normal distribution) or a Wilcoxon signed rank test (not normal
distribution) was applied to analyze if there was significant difference between two
independent groups. To be more specific, for the exponential and linear regression
models, the optimal coefficient values were compared to zero, and R? values were
compared under isometric and dynamic conditions.

As a comparative study, the R? values between the normalized ERC and normalized
sub-maximal torque under the isometric condition were compared to the results reported
in [36] between the normalized maximal axial strain and normalized sub-maximal torque.
In addition, the computation times of the US echogenicity and axial strain per image
frame were also compared to determine if there was a significant difference between
these two muscle fatigue indicators. For all statistical analysis, the significant difference
level was set as p<0.05.

3. Results
3.1. Individual FES pulse width threshold and saturation determination

The experimental results from the first task on Sub01 are presented in Fig. 3,
where the monotonically increasing FES pulse width and ankle dorsiflexion torque are
normalized to their corresponding peak values during the entire task. The threshold
pulse width amplitude of each individual was taken as the amplitude that produced the
first significant increase of the dorsiflexion torque, while the pulse width saturation was
taken as the amplitude that no longer generated a significant increase of dorsiflexion
torque. According to the dorsiflexion torque increase in Fig. 3, the pulse width threshold
and saturation for Sub01 are around 100 s and 420 us, respectively. Similarly, the
same determination approach was applied to all other participants, and the pulse width
threshold and saturation values are summarized in Table 1.

3.2. TA muscle fatigue effects on isometric and dynamic ankle dorsiflexion

Taking the FES-induced TA muscle fatigue under the dynamic condition on Partici-
pant Sub03 as an example, the qualitative evaluation of muscle contractility characteris-

Table 1: FES pulse width threshold and saturation values from each participant (Unit:
)

Participant Sub01 Sub02 Sub03 Sub04 Sub05 Sub06 Sub07 Sub08

Threshold 100 40 20 20 60 80 60 40
Saturation 420 580 520 500 520 500 400 560
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Figure 3. The normalization of FES pulse width that applied on the TA muscle and the normaliza-
tion of ankle dorsiflexion torque measurements on Participant Sub01 during the first task.

tics during the fatigue progression can be visualized in Fig. 4. The first and last frames of
US imaging from every 4 stimulation cycles were selected and compared in each subplot
of Fig. 4. According to the negative correlation between the echogenicity signals and
muscle contraction levels in [39], the hyperechogenic (with higher gray-scaled values)
and hypoechogenic (with lower gray-scaled values) US images represent less and more
muscle contraction force, respectively. It is observed that with the increase of stimulation
cycles, the last frame of US imaging becomes more hyperechogenic, which indicates the
TA muscle force generation ability decreases. The 2D correlation coefficient between
the presented two frames in each stimulation cycle was also calculated and shown in
each subplot. A higher correlation coefficient represents smaller deformation of the
targeted muscle, indicating less muscle contraction force generation. It is observed that
the correlation coefficient increases along with the stimulation cycles, representing the
reduced muscle force generation due to FES-induced muscle fatigue. A similar changing
pattern of US imaging was also observed under the isometric and dynamic conditions of
other participants.

To evaluate the FES-induced fatigue, the reduction of dorsiflexion torque or angle
was considered as the benchmark. Corresponding to the benchmark, we observed the
reduction of ERC during the muscle fatigue progression. The representative results of TA
muscle fatigue progression from Sub03 are shown in Fig. 5, where each curve on the top
subplot represents dorsiflexion torque (a) or angle normalization (b) continuous change
during each recorded contraction cycle. Each curve on the bottom subplot represents the
corresponding ERC normalization change during the first recorded contraction cycle
every 4 stimulation cycles. As mentioned in the last section, the last data point of each
variable curve was selected, which represents the sub-maximal value for each variable
during each recorded contraction cycle. The scattered plots between the last data point
of each variable and TA muscle stimulation cycle are presented in Fig. 6. Remarkably,
all signals show a monotonic decay trend with the muscle fatigue progression. In Fig.
6a, the sub-maximal dorsiflexion torque reduces to 50% of the pre-fatigue capability
after about 35 contraction cycles, while the sub-maximal dorsiflexion angle reduces to
50% of the pre-fatigue capability after about 30 contraction cycles. Additionally, after
60 stimulation cycles, the dorsiflexion torque and angle decayed to 39.2% and 31.2%
of the pre-fatigue capacity under isometric and dynamic conditions, respectively. The
results indicate that, with the same FES intensity and same muscle stimulation cycles,
the fatigue levels of the TA muscle are similar under isometric and dynamic conditions.
However, the participants reported that they feel more comfortable during the fatigue
progression under the dynamic condition. Under both conditions, as the increase of
muscle contraction cycles, the isometric dorsiflexion torque and dynamic dorsiflexion
angle present a strong exponential decay. The exponential regression equations and
R? values are labeled on upper plots of Fig 6.a and Fig 6.b. On lower plots of Fig.
6, although with even sparser measurement points, a strong exponential relationship
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Figure 4. The first and last frames of US imaging from every 4 stimulation cycles under the dynamic fatigue progression on Participant

Sub03.

is still observed between the ERC normalization and the stimulation cycles for both
isometric and dynamic conditions. The exponential regression equations and R? values
are labeled in Fig. 6. For other participants, the coefficients of exponential regression
models and corresponding R? values are listed in Table 2, where the upper (lower) half
represents the regression model between dorsiflexion torque/angle normalization (ERC
normalization) and contraction cycles.

Table 2: Coefficients of exponential regression models (y = a exp(bx) + c) and R? values
between each variable and the TA muscle contraction cycles.

Coefficients and R” of exponential regression models

Participants Isometric condition Dynamic condition
a b c R? a b c R?
Sub01 0.955 | -0.022 | 0.015 | 0.929 | 0.952 | -0.016 | 0.115 | 0.923
Sub02 0.948 | -0.018 | 0.098 | 0.919 | 0.600 | -0.020 | 0.405 | 0.904
Sub03 0.931 | -0.019 | 0.005 | 0.876 | 0.894 | -0.034 | 0.186 | 0.965
Sub04 0.515 | -0.020 | 0.502 | 0.942 | 0.732 | -0.048 | 0.453 | 0.940
Sub05 0.616 | -0.019 | 0.760 | 0.957 | 0.733 | -0.037 | 0.377 | 0.926
Sub06 0.981 | -0.011 | 0.428 | 0.803 | 0.478 | -0.037 | 0.526 | 0.888
Sub07 0.824 | -0.018 | 0.301 | 0.904 | 0.518 | -0.049 | 0.567 | 0.911
Sub08 0.835 | -0.031 | 0.165 | 0.925 | 0.457 | -0.053 | 0.631 | 0.907
Sub01 0.581 | -0.082 | 0.598 | 0.967 | 0.634 | -0.025 | 0.436 | 0.919
Sub02 0.390 | -0.036 | 0.193 | 0.772 | 0.751 | -0.013 | 0.119 | 0.763
Sub03 0.643 | -0.073 | 0.497 | 0.899 | 0.867 | -0.062 | 0.350 | 0.857
Sub04 0.695 | -0.060 | 0.452 | 0.966 | 0.622 | -0.026 | 0.449 | 0.919
Sub05 0.730 | -0.036 | 0.193 | 0.771 | 0.751 | -0.013 | 0.119 | 0.763
Sub06 0.665 | -0.055 | 0.455 | 0.966 | 0.642 | -0.046 | 0.408 | 0.919
Sub07 0.618 | -0.057 | 0.398 | 0.891 | 0.691 | -0.038 | 0.309 | 0.863
Sub08 0.724 | -0.046 | 0.344 | 0.895 | 0.685 | -0.039 | 0.308 | 0.865
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(a) Normalization of dorsiflexion torque and ERC in each recorded stimulation cycle due to
TA muscle fatigue under the isometric condition.
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(b) Normalization of dorsiflexion angle and ERC in each recorded stimulation cycle due to TA
muscle fatigue under the dynamic condition.

Figure 5. The representative effects of FES-induced TA muscle fatigue on each recorded stimulation
cycle of the isometric dorsiflexion torque normalization, dynamic dorsiflexion angle normalization,
and US ERC normalization on Participant Sub03.
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Figure 6. Results of the last data point of each recorded stimulation cycle, including the isometric

dorsiflexion torque normalization, dynamic dorsiflexion angle normalization, and US ERC nor-

malization on Participant Sub03. Also, this figure includes the exponential regression equations

and R? values of each variable decay curve along with the muscle contraction number.
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316

Usually, a standard criterion to evaluate the goodness of the regression performance
is that the R? value is higher than or equal to 0.8. For the exponential regression model
between the dorsiflexion torque/angle normalization and muscle contraction cycles,
R? values are higher than 0.8 across all participants and both conditions from Table
2. For the exponential regression model between the ERC normalization and muscle
contraction cycles, R? values are higher than 0.8 except for Sub02 and Sub05 under both
conditions. Furthermore, Fig. 7 shows comparison results of the R? values between
the isometric and dynamic conditions. No significant difference is observed between
R? values of torque-contraction cycle-regression (mean =+ standard deviation: 0.907 =+
0.048) and R? values of angle-contraction cycle-regression (mean + standard deviation:
0.921 4 0.024). However, R? values of ERC-contraction cycle-regression during the
isometric condition (mean =+ standard deviation: 0.891 £ 0.081) are significantly higher
(p < 0.001) than these during the dynamic condition (mean + standard deviation: 0.858
=£ 0.065). The results in this subsection present the promising potential of the US ERC
normalization as an alternative and commonly effective muscle fatigue indicator.

1 Fhk

(a) (b),

0.9 0.9

0.8 0.8

Coefficient of determination
Coefficient of determination

0.7 0.7

Isometric Dynamic Isometric Dynamic

Figure 7. The comparison results of the coefficients of determination under isometric and dynamic
conditions. (a) Exponential regression model between the dorsiflexion torque/angle normalization
and muscle contraction cycles, (b) Exponential regression model between the ERC normalization
and muscle contraction cycles. % % x represents the significant difference level of p < 0.001.

3.3. Implication of US echogenicity as a fatigque indicator

Figure 8 presents the representative scatter plots between the TA muscle’s sub-
maximal US ERC normalization and the sub-maximal dorsiflexion torque normaliza-
tion/angle normalization under isometric/dynamic fatigue progression conditions,
where the data were collected from Participant Sub05. The direction of decreasing dor-
siflexion torque or angle corresponds to the fatigue progression direction, as labeled
in Fig. 8. Through the linear regression model (the equations and R? values as shown
in Fig. 8), strong linear relationships between the sub-maximal US ERC and the sub-
maximal dorsiflexion torque/angle were observed with the p-value of each slope from
the F-statistic less than 10~#, which indicates that US ERC is a reliable alternative fatigue
indicator for each participant. A summary of R, slope with p-value, and y-intercept
with p-value from the linear regression analysis under isometric and dynamic fatigue
progression conditions on all eight participants is given in Table 3. The results show
that the mean slope values under isometric and dynamic conditions are both close to 1,
while the mean y-intercept values are close to 0. Overall, the R? values are 0.8404-0.054
and 0.794+£0.065 under the isometric and dynamic conditions. The statistical analysis
shows that the R? values under the isometric condition are significantly higher than
those under the dynamic condition (p-value = 0.024). Therefore, the results imply that
when using US ERC as the secondary fatigue indicator, the isometric scenario is likely to
show significantly better fatigue-indicating performance than the dynamic scenario.
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Table 3: Coefficients of linear regression models (y = ax + b) and R? values between dorsiflexion torque/angle normal-

ization and ERC normalization.

Coefficients and R of linear regression models
Participants Isometric condition Dynamic condition
a p—value b p—value | R* a p—value b p—value | R*
Sub01 0.895 | 1.30e © | 0.245 0.091 | 0.889 | 1.009 | 2.22¢~™ [ -0.014 | 0.773 | 0.879
Sub02 0.894 | 2.81e™> | -0.118 | 0.025 | 0.852 | 1.036 | 1.92¢ % | -0.155 | 0.079 | 0.682
Sub03 0.879 | 3.44e 10 | 0.124 0.002 | 0.879 | 0.752 | 6.55¢=7 | 0.161 0.003 | 0.827
Sub04 1.475 | 3.30e® | -0555 | 1.17¢* | 0.911 | 0.900 | 6.14¢ 13 | 0.126 | 5.90e3 | 0.847
Sub05 0928 | 1.65¢> | -0.168 | 0.117 | 0.763 | 0.800 | 5.80¢~% | 0.068 0274 | 0.756
Sub06 0.754 | 2.18¢=> | 0.206 0224 | 0.843 ] 1245 | 1.25¢7 12 | -0.144 | 0.036 | 0.839
Sub07 1.319 | 4.65¢° | -0248 | 0.026 | 0.811 | 1.019 | 1.35¢ 11 | 0.005 0261 | 0.763
Sub08 1.169 | 1.23¢> | -0234 | 0.083 | 0.771 | 0.955 | 1.34¢~7 | 0.133 0.155 | 0.755
Mean 1.039 — -0.094 — 0.840 | 0.965 — 0.023 — 0.794
Standard deviation | 0.253 — 0.271 — 0.054 | 0.154 — 0.123 — 0.065

¢ Measurement

Linear regression e

| y=0.928"%-0.168 Moxe‘a“‘f’, .
R%=0.763 .-

¢ Measurement
Linear regression
WO

Submaximal ERC
normalization
Submaximal ERC
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R? =0.756
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05 1.1
Figure 8. Linear relationships between the sub-maximal US ERC normalization and sub-maximal
dorsiflexion torque/angle normalization under isometric/dynamic muscle fatigue progression
conditions. Reported data are from Participant Sub05.

4. Discussion

The US echogenicity signal as an online FES-induced muscle fatigue indicator
was investigated for the first time under the isometric and dynamic ankle dorsiflexion
movements in this study. The experimental results on eight participants without any neu-
rological disorders showed that the US ERC normalization was exponentially decreasing
along with the muscle contraction cycles for both isometric (R?> = 0.891 4- 0.081) and
dynamic (R? = 0.858 + 0.065) conditions. Additionally, the results also showed strong
linear relationships between the US ERC normalization and dorsiflexion torque normal-
ization (R? = 0.840 + 0.054) or dorsiflexion angle normalization (R? = 0.794 + 0.065)
during the muscle fatigue progression. Interpretation of results, potential improvements,
and applications will be discussed in the following parts.

In the experimental protocol, a zero-order-hold function was used to enable the
data collection of the real-time US echogenicity signal at 1000 Hz. However, the US
echogenicity update frequency was determined by the online imaging beamforming,
processing, and gray-scaled analysis. In the current experimental setup and US imaging
machine configurations, the online US echogenicity generation time was 127.9+7.8
ms for a single image frame, which resulted in a US echogenicity updating frequency
of 7.8 Hz. Compared to the US strain imaging computation time per image frame,
368.7£7.2 ms [37], the computational load is significantly reduced by 65.3% (p <0.001)
by using the US echogenicity as the FES-induced muscle fatigue indicator. Regarding
the FES-induced muscle fatigue-indicating performance, the findings in [37] showed
that under the isometric condition, the R? value of the linear regression model between
sub-maximal mean (maximal) axial tissue strain normalization and sub-maximal joint
torque normalization was 0.823 4 0.151 (0.850 & 0.165). A two-tail paired ¢-test did not
show any significant difference between the R? values of the linear model by using
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US echogenicity and the R? values of the linear model by using US strain imaging.
The advantages of using US echogenicity as a muscle fatigue indicator include (1) the
relatively robust selection of the ROI due to the static nature, (2) no requirement of US
image with higher resolution and clearly visualized architectural features, and (3) the
significant reduction of calculation time for easier real-time implementation. Therefore,
enough evidence implies that the US echogenicity has a comparable fatigue-indicating
performance of FES-induced muscle fatigue as US strain imaging, but with a much
lower computational intensity and a promising potential for online implementation for
functional tasks, like drop-foot correction by using FES during walking.

The muscle force’s, joint torque’s or joint motion’s decay during the FES-elicited
muscle contraction has always been taken as a gold standard indicator for peripheral
muscle fatigue, but measures of muscle force, joint torque, or joint motion usually
require sophisticated hardware setup and only provide mechanical-type signals without
showing any neuromuscular changes during the muscle fatigue progression. In addition,
switching between indicator platforms is required to evaluate muscle fatigue for both
isometric and dynamic conditions. Therefore, introducing an alternative non-invasive
FES-induced muscle fatigue indicator that can be easily implemented for both isometric
and dynamic tasks, with a simpler setup and in a real-time manner, is necessary. The
real-time US echogenicity measurement facilitates a simplistic evaluation of the current
muscle fatigue levels so that users can adjust the corresponding stimulation intensity
to increase the FES-related rehabilitative training period or terminate the rehabilitative
training if the muscle is too fatigued. Furthermore, the US echogenicity-indicated muscle
fatigue will also be beneficial to advanced closed-loop FES controller design with the
consideration of muscle fatigue. The US echogenicity signal is potentially sensitive to
several factors, including the elevation angle between the transducer arm and the skin
surface, the orientation angle between the transducer array and the skin surface, the
relative sliding between the transducer array and the skin surface, and the pressure
on the skin. To mitigate these factors, a customized 3D-printed US transducer holder,
detailed in [39,40], and elaborate experimental operations were utilized. First of all, the
US transducer beam was tightly bonded onto the arm of the rotation component of the
holder, which guaranteed the elevation angle to be approximately 90°, so the transducer
was always perpendicular to the skin surface. Secondly, the US transducer was rotated
to the cross-sectional direction to get a good view of the target TA muscle and then
rotated to the longitudinal direction for real-time echogenicity data collection. Once
the longitudinal direction was determined, no further rotation was conducted, so the
orientation angle was set as the location where the transducer was at the longitudinal
direction. Thirdly, Velcro straps were used to bond the base frame of the holder onto
the skin tightly to avoid significant sliding of the US transducer, although there might
be some squeezing of the TA muscle. Due to the compliant shape of the Velcro straps,
when the TA muscle was bulging due to the stimulation, minimal transducer-to-skin
pressure change was expected throughout each fatigue progression trial.

To evaluate the generalization of using US echogenicity as an FES-induced mus-
cle fatigue indicator, results from the individual participant as shown in Fig. 8 are
summarized in Fig. 9. There are 120 data points (15 points from each participant x 8
participants) and 240 data points (30 points from each participant x 8 participants) for
isometric and dynamic conditions, respectively. The linear regression equations and
correlation coefficients are also labeled on the corresponding plots. From the F-statistic,
the slope values for isometric and dynamic conditions are 0.843 and 0.576 with the
p—values of 5.52713 and 9.197%2, respectively, while the y-intercept values are 0.086
and 0.370 with the p—values of 0.38 and 1.76 1%, respectively. It is observed that the
correlation coefficient under the isometric condition is higher than that under the dy-
namic condition, which indicates the US echogenicity has a stronger correlation with
the fatigue benchmark and potentially is a more accurate fatigue indicator when FES is
applied under the isometric condition than the dynamic condition.
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Figure 9. Summarized results of using US echogenicity as the FES-induced muscle fatigue indicator
under both isometric and dynamic conditions. Reported data are from all eight participants.

The results in Fig. 9 showed a relatively high inter-subject variation of using US
echogenicity as a muscle fatigue indicator under the application of FES in the current
study. One possible reason is that the current work is a proof-of-concept study, which
is not to develop a very generalized interface to predict FES-induced muscle fatigue.
Instead, the purpose was to validate that the US echogenicity signal can be used as a
personalized muscle fatigue indicator when FES is applied. The diversity most likely
resulted from the personalized muscle contraction pattern and the personalized ultra-
sound echogenicity relative change during the FES-induced muscle fatigue protocol
under both isometric and dynamic conditions. Furthermore, due to the variations of
muscle size, recruitment pattern, FES electrode placement, and ultrasound transducer
placement among different participants, the same submaximal dorsiflexion torque/angle
change from different persons is likely to cause different submaximal ERC change. An-
other possible reason would be the relatively small population size in the current study;,
which will be further validated in a larger number of participants and multiple groups
of different muscle conditions in future work. In addition, the findings in the current
study indicate that the US echogenicity as an indicator of FES-induced muscle fatigue
behaves better under the isometric condition than the dynamic condition. This obser-
vation corresponds to the results related to evoked EMG (eEMG) as an indicator [44],
where the eEMG is effective at quantifying muscle force and fatigue during the isometric
contraction but may not be effective during dynamic contractions including cycling and
stepping. However, one limitation is that no muscle fatigue-indicating performance com-
parison between the use of US ERC and the use of sSEMG during the same FES-induced
muscle fatigue progression is presented in the current study. Inspired by the studies
in [39,40,45], future work will investigate the FES-induce muscle fatigue indicators by
using sole sEMG signal, sole US echogenicity signal, and the potential fusion of sSEMG
and US echogenicity signals.

5. Conclusions

In the current work, we investigated the use of temporal US echogenicity to quan-
titatively assess the muscle fatigue elicited by FES under both isometric and dynamic
ankle dorsiflexion functionalities. The results showed that the US ERC expressed an
exponential reduction along with the muscle contraction cycles both in isometric and
dynamic conditions. Also, the results of linear regression analysis showed strong linear
relationships between the US ERC normalization and the gold standard fatigue indica-
tors, namely, isometric dorsiflexion torque normalization or dynamic dorsiflexion angle
normalization. The comparison between the current work and existing studies verified
that the US ERC is a comparable fatigue indicator to axial tissue strain imaging during
the isometric fatigue progression, but with a realistic computation time for real-time
implementation. The findings in the current work indicate that the US echogenicity
is a promising non-invasive and computationally efficient measure for assessing FES-
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20 induced muscle fatigue, and potentially, it can be integrated into an advanced FES
a0 controller design that considers muscle fatigue in real-time.
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SCI spinal cord injury
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Us ultrasound
TA tibialis anteior
** ERC echogenicity relative change
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1D one-dimensional
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