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Abstract: Functional electrical stimulation (FES) is a potential neurorehabilitative intervention1

to enable functional movements in persons with neurological conditions that cause mobility2

impairments. However, the quick onset of muscle fatigue during FES is a significant challenge for3

sustaining the desired functional movements for more extended periods. Therefore, a considerable4

interest still exists in the development of sensing techniques that reliably measure FES-induced5

muscle fatigue. This study proposes to use ultrasound (US) imaging-derived echogenicity signal6

as an indicator of FES-induced muscle fatigue. We hypothesized that the US-derived echogenicity7

signal is sensitive to FES-induced muscle fatigue under isometric and dynamic muscle contraction8

conditions. Eight non-disabled participants participated in the experiments, where FES electrodes9

were applied on their tibialis anterior (TA) muscles. During a fatigue protocol under either10

isometric and dynamic ankle dorsiflexion conditions, we synchronously collected the isometric11

dorsiflexion torque or dynamic dorsiflexion angle on the ankle joint, US echogenicity signals12

from TA muscle, and the applied stimulation intensity. The experimental results showed an13

exponential reduction in the US echogenicity relative change (ERC) as the fatigue progressed14

under the isometric (R2 = 0.891 ± 0.081) and dynamic (R2 = 0.858 ± 0.065) conditions. The15

experimental results also implied a strong linear relationship between US ERC and TA muscle16

fatigue benchmark (dorsiflexion torque or angle amplitude), with R2 values of 0.840 ± 0.05417

and 0.794 ± 0.065 under isometric and dynamic conditions, respectively. The findings in this18

study indicate that the US echogenicity signal is a computationally efficient signal that strongly19

represents FES-induced muscle fatigue. Its potential real-time implementation to detect fatigue20

can facilitate an FES closed-loop controller design that considers the FES-induced muscle fatigue.21

Keywords: Muscle fatigue; Electrical stimulation; Ankle joint; Biomechanical Phenomena; Ultra-22

sonography; Linear models; Nonlinear dynamics23

1. Introduction24

1 Neurological injuries, like a spinal cord injury (SCI) [2] and stroke [3], usually25

result in paraplegia or hemiplegia, disrupting both physical and emotional well-beings26

[4]. Without physical assistance from mobility aids or a neuroprosthetic intervention,27

1 Note that preliminary results have been published in [1]; however, those results employed US echogenicity post-processing as an offline manner
and contained experimental data from only three participants.
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the mobility impairment increases social isolation, anxiety, and depression. Functional28

electrical stimulation (FES), an artificial technique that applies low-amplitude electrical29

potentials across the paralyzed skeletal muscle belly or peripheral nerve, can reanimate30

the walking function and help restore mobility. Since the earlier demonstrations of FES31

to correct drop foot [5] and [6], recent studies [7–12] investigated its orthotic effects32

on a larger clinical population. Additionally, FES can provide supplementary benefits,33

including the improvement in muscle tone and size, muscle strength, blood flow, and a34

reduction in muscle spasticity and disuse osteoporosis. Despite the efficacy and benefits35

of FES, the rapid onset of muscle fatigue is a major limitation. Due to the non-selective36

stimulation nature of FES, peripheral motor units are synchronously activated and37

discharged, causing the stimulated muscle to fatigue easily. The induced fatigue results38

in the deterioration of the muscle contraction force generation, causing a rapid loss of39

FES control effectiveness [13].40

To reduce the FES-induced muscle fatigue, multiple studies have investigated the41

spatially distributed sequential stimulation pattern [14–16], where a single stimulation42

site distributes the center of the electrical field over a wide area by using an array43

of surface electrodes. In addition, Downey et al. [17] showed that the use of multi-44

channel asynchronous stimulation reduced muscle fatigue compared to conventional45

single-channel stimulation. Later in [18], a closed-loop controller for asynchronous FES46

was shown to extend the duration of functional movements. Despite the advances in47

stimulation protocols and new closed-loop FES controllers, non-invasive evaluation and48

characterization of the FES-induced muscle fatigue are lacking. Fatigue measurement49

methods are important for quantifying the fatigue effects on the neuromusculoskeletal50

dynamics and for an effective FES control design.51

Efforts in indirectly measuring fatigue include, but are not limited to, tetanic con-52

traction force measurement [19], electromyography (EMG) / surface electromyography53

(sEMG) [20–22], mechanomyography [23], near-infrared spectroscopy [24–26], and phos-54

phorus nuclear magnetic resonance [27]. Among these technologies, sEMG is the most55

well-developed and convenient non-invasive methodology to assess peripheral muscle56

fatigue. Although [28–30] report successful extraction of volitional or evoked sEMG dur-57

ing FES, the analysis and evaluation of the EMG signals during FES is still challenging.58

The challenges are mainly due to the FES-induced contractions cluttering and masking59

the pure sEMG signals [31,32], interference and cross talk from adjacent muscles [21],60

and the inability to measure the sEMG signals from deeply seated muscles [33]. Recently,61

ultrasound (US) imaging technique, know as sonomyography, has been investigated62

to qualitative or quantitatively assess muscle fatigue for volitional and FES-induced63

muscle contraction as an alternative methodology to sEMG. Due to a relatively high64

spatial and temporal resolution, the US images provide direct visualization of the muscle65

deformations during the implementation of FES. These muscle deformations can be66

quantified to obtain a comprehensive measure that reflects the fatigue effect. Shi et al.67

[34] used muscle thickness, extracted from cross-sectional US images, to characterize68

the volitionally induced fatigue in the biceps brachii muscles. Similarly, Witte et al. [35]69

applied US strain imaging to capture the elastic and viscoelastic-like modifications in70

the 3rd flexor digitorum superficialis muscle after a voluntary fatiguing exercise. Sheng71

et al. [36,37] investigated an adaptive speckle tracking algorithm for determining strain72

changes in the quadriceps muscle during the FES-induced muscle fatigue protocol under73

isometric knee extensions.74

The aforementioned US imaging-related studies for assessing muscle fatigue pri-75

marily investigated isometric muscle contractions. Few studies have investigated FES-76

induced muscle fatigue characteristics under dynamic joint movement conditions. Ad-77

ditionally, the aforementioned studies reported their results based on offline processed78

US imaging data, since deriving fatigue-relevant features from US imaging is generally79

computationally intensive. The high computation cost significantly limits the use of US80

imaging to evaluate muscle fatigue in real-time.81
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Inspired by recent studies in US imaging-derived echogenicity signals to predict82

motion intent or voluntary effort in the forearm and ankle muscles [38,39], prelimi-83

nary results of using post-processed US echogenicity signal to assess the FES-induced84

muscle fatigue have been reported in [1]. In this work, we extended the preliminary85

results in [1] to a larger participant group and investigated the feasibility of using the86

online-processed US echogenicity to quantitatively assess FES-induced muscle fatigue.87

Specifically, the tibialis anterior (TA) muscle was selected to reveal the fatigue-indicating88

performance of US echogenicity under both isometric and dynamic ankle dorsiflexion89

movements, where we synchronously collected dorsiflexion force/angular position (iso-90

metric/dynamic conditions), TA muscle’s US echogenicity, and FES intensity during the91

muscle fatigue progression. A comprehensive correlation analysis between the temporal92

US echogenicity relative change (ERC) and TA muscle fatigue progression (decay of93

dorsiflexion force or angle during isometric or dynamic conditions) was performed to94

assess the muscle contractility during fatigue progression. It was hypothesized that there95

exists a nonlinear relationship between the US ERC and the FES duration (contraction96

cycles), as well as a linear relationship between the US ERC and the decay of dorsiflexion97

force or angle. Furthermore, the performance of US ERC as a surrogate metric of muscle98

fatigue was compared to the US tissue strain as reported in [36,37].99

2. Materials and Methods100

2.1. Subjects101

The study was approved by the Institutional Review Board (IRB) at North Carolina102

State University (IRB approval number: 20602). The study is also in accordance with the103

ethical standards of the Helsinki Declaration. Eight participants without any neuromus-104

cular disorders (age: 26.0±2.2 years, height: 173.7±5.9 cm, weight: 72.6±11.2 kg, 3F/5M)105

were recruited to complete FES-elicited ankle dorsiflexion experiments during isometric106

and dynamic conditions. Every participant signed an informed consent form before107

taking part in the experiments. The participants were identified as Sub01, Sub02,...,108

Sub08. The current study was a pilot-designed study or a proof-of-concept study with a109

relatively small sample size. We applied an a priori sample size estimation before the110

experiments. The hypotheses of this paper are that there exists a nonlinear relationship111

between the US ERC and the FES duration, as well as a linear relationship between the112

US ERC and the decay of dorsiflexion torque/angle. So, the null hypotheses would be113

that no obvious nonlinear or linear relationships exist between the US ERC and the FES114

duration or between the US ERC and the decay of dorsiflexion torque/angle. To control115

the risk of accepting a false hypothesis, the probability of rejecting the null hypothesis116

when it is true, α, was set as 0.05, and the probability of accepting the null hypothesis117

when it is wrong, β, was set as 0.10. Then the minimum sample size N, is calculated118

below for the one-sided test of hypothesis with standard deviation s assumed to be119

known and equal to the shift δ.120

N = (t1−α/2 + t1−β)
2(

s
δ
)2 = (1.64 + 1.28)2 ≈ 8. (1)

2.2. Experimental protocol and data collection121

The isometric and dynamic experimental setup is illustrated in Fig. 1a. Detailed122

descriptions of the isometric setup, including the load cell platform (C) and US imaging123

transducer (B) and processing machine (G), can be found in [39,40]. In the dynamic124

experimental setup, the participant’s foot was suspended to ensure the full range of125

motion for both dorsiflexion and plantarflexion. A wearable ankle brace connected with126

an incremental encoder (D) (1024 pulses per revolution, TRD-MX1024BD, AutomationDi-127

rect, GA, USA) was inserted into the participant’s shoes, and two pieces of free movable128

components were stamped to the shank. Thus, the ankle motion was constrained in129

the sagittal plane and measured by the encoder. The seated posture in Fig. 1a was130

maintained throughout isometric and dynamic experimental procedures. Two electrodes131
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(A) (size: 2"×2") were placed on the fibular head and the distal belly of the TA muscle,132

respectively. The electrodes applied bi-phasic stimulation pulse trains from a commercial133

stimulator (E) (Rehastim 2, HASOMED GmbH, Germany). A region approximately134

30% to 50% of individual shank length distal from the rotation central line of the knee135

joint was chosen as the location for the US transducer placement. The depth of US136

imaging was set at 40 mm to include the entire TA muscle area. A monitoring screen (F)137

that displayed B-mode US images was used to adjust the US transducer location and138

orientation to guarantee good visualization and resolution of the TA muscle.139

Figure 1. (a) Experimental setup of the isometric (left) and dynamic (dynamic) ankle joint dorsi-
flexion by using FES. A - FES electrode pads, B - Prodigy US transducer, C - Load cell platform, D -
Incremental encoder, E - FES stimulator, F - Monitor showing B-mode US imaging, G - Prodigy US
machine, H - Safety stop button. (b) Data synchronization and collection among multiple channels.

There were three separate experimental tasks performed on three different days.140

At least 72 hours were provided for two successive tasks to ensure a full recovery and141

mitigate muscle fatigue effects from the last task. For each experimental task, participants142

were instructed to avoid any volitional TA muscle contraction. Throughout those three143

experimental tasks, the FES current amplitude was set as 25 mA and the stimulation144

frequency as 33 Hz for all participants. The first task was conducted under the isometric145

condition to determine subject-specific FES pulse width threshold and saturation values,146

following the procedures described in [41]. The second and third sets were conducted147

randomly over two days to analyze muscle fatigue in both isometric and dynamic148

conditions. The threshold pulse width amplitude of each individual was taken as the149

amplitude that produced the first significant increase of the dorsiflexion torque. The150

pulse width saturation was taken as the amplitude that no longer generated a significant151

increase in the dorsiflexion torque. During the first task, the pulse width was increased152

from 0 µs to 600 µs with an increment of 20 µs and with an activation period of 1 s153

every 5 s. After the personalized pulse width saturation was determined from the first154

experimental task, 80% of individual pulse width saturation was applied for the second155

and third tasks to facilitate the isometric and dynamic fatigue protocols. Fig. 1b presents156

the protocol for FES-induced TA muscle fatigue progression, data synchronization, and157

collection. The first second was left blank to initialize all channels for data collection.158

A time base of 1000 Hz was run in a Simulink (R2019b, MathWorks Inc., MA, USA)159

real-time program on a target machine (Speedgoat Inc., Liebefeld, Switzerland).160

The participants felt stronger muscle deformations under the isometric condition161

than the dynamic condition, even with the same stimulation intensity. Therefore, the162

time periods of those two fatigue progressions were set differently. With respect to163

the aforementioned time base, two fatigue progression periods of 120 s and 240 s were164
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applied for the isometric and dynamic conditions, respectively. FES was activated every165

2 s with a duty cycle of 65%. Under the isometric and dynamic fatigue progressions,166

the dorsiflexion force signal and dorsiflexion angle signal were collected at 1000 Hz167

throughout the entire period.168

The US echogenicity signal was acquired offline in our previous studies [1,39],169

where the plane-wave US imaging radio frequency (RF) data were collected and saved170

on the US machine at a frame rate of 1000 frames per second. A delay-and-sum beam-171

forming method was applied offline to generate the US image time sequence and the172

US echogenicity signal time sequences were calculated post-hoc. The RF data collection173

was triggered by signals from the target machine for synchronizing with the collection174

of dorsiflexion torque or dorsiflexion angle. Although that approach makes it extremely175

suitable for applications where fast phenomena and tiny deformations need to be ob-176

served, this plane wave imaging at high temporal resolution (1000 Hz) significantly177

degrades the spatial resolution (image quality), thus resulting in more noise when178

calculating US echogenicity. In addition, the offline beamforming and echogenicity179

calculation are not feasible for FES closed-loop control with the US imaging-derived180

signal as feedback in real-time.181

In the current study, we developed and implemented the online US image beam-182

forming and echogenicity calculations on the US machine according to the series steps183

of “line-by-line beamforming – image cropping – US echogenicity calculation – data184

transfer to Simulink”, which required a lot of computational capability and time to make185

this online US echogenicity stream available. During the muscle fatigue progression,186

while the US echogenicity transmission was running online, raw RF data were also187

saved for US imaging visualization in a post-hoc way. To reduce the computation and188

data storage burden of the US machine, during both isometric and dynamic fatigue pro-189

gressions, US echogenicity signals and raw RF data were collected synchronously with190

signals from the load cell or the encoder during the first second of every 4 stimulation191

cycles, as illustrated in Fig. 1b. Preliminary results showed the above online steps could192

run around 7.8 times per second, so the online US echogenicity was sent out from the193

US machine at a frequency of 7.8 Hz. Due to the use of a zero-order-hold function in194

Simulink, the US echogenicity data collection was still sampled and collected at 1000 Hz,195

but without changes during two successively generated values from the US machine.196

The details of the US echogenicity calculation are explained in the following subsection.197

The aforementioned experimental and data collection procedures were applied on the198

left ankle joint of each participant.199

2.3. Data processing and analysis200

The ankle dorsiflexion torque and angle measurements were low-pass filtered by201

a 4th-order Butterworth filter with a cutoff frequency of 6 Hz. According to the data202

synchronization in Fig. 1b, the dorsiflexion torque signal during the isometric condition203

and dorsiflexion angle during the dynamic condition were aligned with the period204

when FES was on, and the last data point from each stimulation cycle was selected and205

normalized to the peak value across all stimulation cycles for further analysis. Similarly,206

the dorsiflexion torque or dorsiflexion angle signals were aligned with the period when207

the US imaging trigger was on, and the last data point from each trigger cycle was208

selected and normalized to the peak value across all US imaging trigger cycles for209

further analysis. The detailed data processing diagram is presented in Fig. 2.210

Here are the procedures for US imaging data processing. First, the raw RF data
were beamformed online through the line-and-line beamforming algorithm. Then the
logarithmic imaging intensity compression was performed to get the envelope of the
demodulated RF data. By normalizing the envelope of each pixel between 0 to 255, the
B-mode US image at the current frame was generated. A median filter and non-local
means denoising [42] were applied to spatially filter each B-mode image. At last, the
averaged gray-scaled echo intensity within the region of interest (ROI) of 400 pixel×400
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Figure 2. Diagram of data processing, including US imaging echogenicity, load cell, and encoder
measurements under both isometric and dynamic conditions.

pixel was calculated as the echogenicity value for the current US image frame [38].
Therefore, the sequential US echogenicity signal was calculated as

Echotk =
1

NANL

NA

∑
x=1

NL

∑
y=1

Itk (x, y), (2)

where NA, NL represent the pixel numbers along with axial and lateral directions, re-211

spectively. Itk (x, y) represents the US intensity information at the pixel location (x, y)212

on the image at tk instant from the normalized logarithmic imaging intensity compres-213

sion signals. As a consequence, the 2D image time sequence was transferred to a 1D214

signal time sequence. Visually, each Itk (x, y) presents the brightness of that pixel at the215

location of (x, y) on the 2D map. Thus, the calculated echogenicity signal presents an216

overall brightness within the ROI. Note that although the US imaging beamforming217

and echogenicity calculation were based on the online manner, the updating frequency218

was fairly low (7.8 Hz from preliminary results) due to the computation time and com-219

munication delay between the US machine and Simulink real-time program. Therefore,220

a zero-order-hold function was used in the real-time program to collect the online cal-221

culated US echogenicity at 1000 Hz. The echogenicity time sequence within the same222

stimulation cycle was subtracted by the echogenicity of the first image from the same223

cycle, which was defined as the ERC within the same cycle. Similarly, the last data point224

of ERC in each trigger cycle was selected and normalized to the peak ERC throughout225

all trigger cycles. Given the FES-induced fatigue progression protocol, the last point of226

ERC corresponded to a sub-maximal dorsiflexion force or dorsiflexion angle; therefore,227

the aligned last data point of dorsiflexion force or angle during each FES cycle and the228

aligned last data point of ERC during each US imaging trigger cycle were selected to229

characterize the muscle contractility during fatigue progressions. As a consequence,230

during the isometric fatigue progression, 60 samples from dorsiflexion forces and 15231

samples from ERC were obtained, while during the dynamic fatigue progression, 120232

samples from the dorsiflexion angles and 30 samples from ERC were obtained.233

According to the muscle fatigue dynamics and its solution mentioned in [13],
an exponential regression model was used to fit the curve between the normalized
sub-maximal dorsiflexion force or angle and the index number of contractions (i =
1, 2, ..., 60/i = 1, 2, ..., 120), as well as the curve between the normalized sub-maximal
ERC and the index number of contractions (i = 4, 8, ..., 60/i = 4, 8, ..., 120). The coeffi-
cients of the exponential regression models were determined by using the Levenberg-
Marquardt nonlinear least squares algorithm [43]. A linear regression model was used to
fit the line between the normalized sub-maximal dorsiflexion torque/angle and the nor-
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malized sub-maximal US ERC. To evaluate the goodness of curve fittings, the coefficient
of determination (R2) of each regression model was also calculated as

R2 =

(
∑N

i=1(Ti − T̄)
(

T̂i − ¯̂T
))2

∑N
i=1(Ti − T̄)2 ∑N

i=1

(
T̂i − ¯̂T

)2 , (3)

where Ti and T̂i denote each measured sub-maximal variable point and output from the234

regression model, respectively. T̄ and ¯̂T denote the average of the measured sub-maximal235

variable and the average of the output from regression model, respectively.236

2.4. Statistical analysis237

The normality of the targeted data sets was tested based on the Shapiro-Wilk238

parametric hypothesis test (SW test). Those data sets include coefficients and R2 values239

of each exponential regression model and linear regression model under either isometric240

or dynamic conditions across all eight participants, as well as the computation times241

of the US echogenicity and axial strain per image frame. According to the results from242

SW test, a paired t-test (normal distribution) or a Wilcoxon signed rank test (not normal243

distribution) was applied to analyze if there was significant difference between two244

independent groups. To be more specific, for the exponential and linear regression245

models, the optimal coefficient values were compared to zero, and R2 values were246

compared under isometric and dynamic conditions.247

As a comparative study, the R2 values between the normalized ERC and normalized248

sub-maximal torque under the isometric condition were compared to the results reported249

in [36] between the normalized maximal axial strain and normalized sub-maximal torque.250

In addition, the computation times of the US echogenicity and axial strain per image251

frame were also compared to determine if there was a significant difference between252

these two muscle fatigue indicators. For all statistical analysis, the significant difference253

level was set as p<0.05.254

3. Results255

3.1. Individual FES pulse width threshold and saturation determination256

The experimental results from the first task on Sub01 are presented in Fig. 3,257

where the monotonically increasing FES pulse width and ankle dorsiflexion torque are258

normalized to their corresponding peak values during the entire task. The threshold259

pulse width amplitude of each individual was taken as the amplitude that produced the260

first significant increase of the dorsiflexion torque, while the pulse width saturation was261

taken as the amplitude that no longer generated a significant increase of dorsiflexion262

torque. According to the dorsiflexion torque increase in Fig. 3, the pulse width threshold263

and saturation for Sub01 are around 100 µs and 420 µs, respectively. Similarly, the264

same determination approach was applied to all other participants, and the pulse width265

threshold and saturation values are summarized in Table 1.266

3.2. TA muscle fatigue effects on isometric and dynamic ankle dorsiflexion267

Taking the FES-induced TA muscle fatigue under the dynamic condition on Partici-268

pant Sub03 as an example, the qualitative evaluation of muscle contractility characteris-269

Table 1: FES pulse width threshold and saturation values from each participant (Unit:
µs)

Participant Sub01 Sub02 Sub03 Sub04 Sub05 Sub06 Sub07 Sub08

Threshold 100 40 20 20 60 80 60 40
Saturation 420 580 520 500 520 500 400 560
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Figure 3. The normalization of FES pulse width that applied on the TA muscle and the normaliza-
tion of ankle dorsiflexion torque measurements on Participant Sub01 during the first task.

tics during the fatigue progression can be visualized in Fig. 4. The first and last frames of270

US imaging from every 4 stimulation cycles were selected and compared in each subplot271

of Fig. 4. According to the negative correlation between the echogenicity signals and272

muscle contraction levels in [39], the hyperechogenic (with higher gray-scaled values)273

and hypoechogenic (with lower gray-scaled values) US images represent less and more274

muscle contraction force, respectively. It is observed that with the increase of stimulation275

cycles, the last frame of US imaging becomes more hyperechogenic, which indicates the276

TA muscle force generation ability decreases. The 2D correlation coefficient between277

the presented two frames in each stimulation cycle was also calculated and shown in278

each subplot. A higher correlation coefficient represents smaller deformation of the279

targeted muscle, indicating less muscle contraction force generation. It is observed that280

the correlation coefficient increases along with the stimulation cycles, representing the281

reduced muscle force generation due to FES-induced muscle fatigue. A similar changing282

pattern of US imaging was also observed under the isometric and dynamic conditions of283

other participants.284

To evaluate the FES-induced fatigue, the reduction of dorsiflexion torque or angle285

was considered as the benchmark. Corresponding to the benchmark, we observed the286

reduction of ERC during the muscle fatigue progression. The representative results of TA287

muscle fatigue progression from Sub03 are shown in Fig. 5, where each curve on the top288

subplot represents dorsiflexion torque (a) or angle normalization (b) continuous change289

during each recorded contraction cycle. Each curve on the bottom subplot represents the290

corresponding ERC normalization change during the first recorded contraction cycle291

every 4 stimulation cycles. As mentioned in the last section, the last data point of each292

variable curve was selected, which represents the sub-maximal value for each variable293

during each recorded contraction cycle. The scattered plots between the last data point294

of each variable and TA muscle stimulation cycle are presented in Fig. 6. Remarkably,295

all signals show a monotonic decay trend with the muscle fatigue progression. In Fig.296

6a, the sub-maximal dorsiflexion torque reduces to 50% of the pre-fatigue capability297

after about 35 contraction cycles, while the sub-maximal dorsiflexion angle reduces to298

50% of the pre-fatigue capability after about 30 contraction cycles. Additionally, after299

60 stimulation cycles, the dorsiflexion torque and angle decayed to 39.2% and 31.2%300

of the pre-fatigue capacity under isometric and dynamic conditions, respectively. The301

results indicate that, with the same FES intensity and same muscle stimulation cycles,302

the fatigue levels of the TA muscle are similar under isometric and dynamic conditions.303

However, the participants reported that they feel more comfortable during the fatigue304

progression under the dynamic condition. Under both conditions, as the increase of305

muscle contraction cycles, the isometric dorsiflexion torque and dynamic dorsiflexion306

angle present a strong exponential decay. The exponential regression equations and307

R2 values are labeled on upper plots of Fig 6.a and Fig 6.b. On lower plots of Fig.308

6, although with even sparser measurement points, a strong exponential relationship309
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Figure 4. The first and last frames of US imaging from every 4 stimulation cycles under the dynamic fatigue progression on Participant
Sub03.

is still observed between the ERC normalization and the stimulation cycles for both310

isometric and dynamic conditions. The exponential regression equations and R2 values311

are labeled in Fig. 6. For other participants, the coefficients of exponential regression312

models and corresponding R2 values are listed in Table 2, where the upper (lower) half313

represents the regression model between dorsiflexion torque/angle normalization (ERC314

normalization) and contraction cycles.315

Table 2: Coefficients of exponential regression models (y = a exp(bx) + c) and R2 values
between each variable and the TA muscle contraction cycles.

Participants
Coefficients and R2 of exponential regression models
Isometric condition Dynamic condition

a b c R2 a b c R2

Sub01 0.955 -0.022 0.015 0.929 0.952 -0.016 0.115 0.923
Sub02 0.948 -0.018 0.098 0.919 0.600 -0.020 0.405 0.904
Sub03 0.931 -0.019 0.005 0.876 0.894 -0.034 0.186 0.965
Sub04 0.515 -0.020 0.502 0.942 0.732 -0.048 0.453 0.940
Sub05 0.616 -0.019 0.760 0.957 0.733 -0.037 0.377 0.926
Sub06 0.981 -0.011 0.428 0.803 0.478 -0.037 0.526 0.888
Sub07 0.824 -0.018 0.301 0.904 0.518 -0.049 0.567 0.911
Sub08 0.835 -0.031 0.165 0.925 0.457 -0.053 0.631 0.907
Sub01 0.581 -0.082 0.598 0.967 0.634 -0.025 0.436 0.919
Sub02 0.390 -0.036 0.193 0.772 0.751 -0.013 0.119 0.763
Sub03 0.643 -0.073 0.497 0.899 0.867 -0.062 0.350 0.857
Sub04 0.695 -0.060 0.452 0.966 0.622 -0.026 0.449 0.919
Sub05 0.730 -0.036 0.193 0.771 0.751 -0.013 0.119 0.763
Sub06 0.665 -0.055 0.455 0.966 0.642 -0.046 0.408 0.919
Sub07 0.618 -0.057 0.398 0.891 0.691 -0.038 0.309 0.863
Sub08 0.724 -0.046 0.344 0.895 0.685 -0.039 0.308 0.865
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(a) Normalization of dorsiflexion torque and ERC in each recorded stimulation cycle due to
TA muscle fatigue under the isometric condition.
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(b) Normalization of dorsiflexion angle and ERC in each recorded stimulation cycle due to TA
muscle fatigue under the dynamic condition.

Figure 5. The representative effects of FES-induced TA muscle fatigue on each recorded stimulation
cycle of the isometric dorsiflexion torque normalization, dynamic dorsiflexion angle normalization,
and US ERC normalization on Participant Sub03.
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(a) Last data point of normalized dorsiflexion torque and ERC in each recorded stimulation
cycle under the isometric condition.

(b) Last data point of normalized dorsiflexion angle and ERC in each recorded stimulation
cycle under the dynamic condition.

Figure 6. Results of the last data point of each recorded stimulation cycle, including the isometric
dorsiflexion torque normalization, dynamic dorsiflexion angle normalization, and US ERC nor-
malization on Participant Sub03. Also, this figure includes the exponential regression equations
and R2 values of each variable decay curve along with the muscle contraction number.
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Usually, a standard criterion to evaluate the goodness of the regression performance316

is that the R2 value is higher than or equal to 0.8. For the exponential regression model317

between the dorsiflexion torque/angle normalization and muscle contraction cycles,318

R2 values are higher than 0.8 across all participants and both conditions from Table319

2. For the exponential regression model between the ERC normalization and muscle320

contraction cycles, R2 values are higher than 0.8 except for Sub02 and Sub05 under both321

conditions. Furthermore, Fig. 7 shows comparison results of the R2 values between322

the isometric and dynamic conditions. No significant difference is observed between323

R2 values of torque-contraction cycle-regression (mean ± standard deviation: 0.907 ±324

0.048) and R2 values of angle-contraction cycle-regression (mean ± standard deviation:325

0.921 ± 0.024). However, R2 values of ERC-contraction cycle-regression during the326

isometric condition (mean ± standard deviation: 0.891 ± 0.081) are significantly higher327

(p < 0.001) than these during the dynamic condition (mean ± standard deviation: 0.858328

± 0.065). The results in this subsection present the promising potential of the US ERC329

normalization as an alternative and commonly effective muscle fatigue indicator.330

Figure 7. The comparison results of the coefficients of determination under isometric and dynamic
conditions. (a) Exponential regression model between the dorsiflexion torque/angle normalization
and muscle contraction cycles, (b) Exponential regression model between the ERC normalization
and muscle contraction cycles. ? ? ? represents the significant difference level of p < 0.001.

3.3. Implication of US echogenicity as a fatigue indicator331

Figure 8 presents the representative scatter plots between the TA muscle’s sub-332

maximal US ERC normalization and the sub-maximal dorsiflexion torque normaliza-333

tion/angle normalization under isometric/dynamic fatigue progression conditions,334

where the data were collected from Participant Sub05. The direction of decreasing dor-335

siflexion torque or angle corresponds to the fatigue progression direction, as labeled336

in Fig. 8. Through the linear regression model (the equations and R2 values as shown337

in Fig. 8), strong linear relationships between the sub-maximal US ERC and the sub-338

maximal dorsiflexion torque/angle were observed with the p-value of each slope from339

the F-statistic less than 10−4, which indicates that US ERC is a reliable alternative fatigue340

indicator for each participant. A summary of R2, slope with p-value, and y-intercept341

with p-value from the linear regression analysis under isometric and dynamic fatigue342

progression conditions on all eight participants is given in Table 3. The results show343

that the mean slope values under isometric and dynamic conditions are both close to 1,344

while the mean y-intercept values are close to 0. Overall, the R2 values are 0.840±0.054345

and 0.794±0.065 under the isometric and dynamic conditions. The statistical analysis346

shows that the R2 values under the isometric condition are significantly higher than347

those under the dynamic condition (p-value = 0.024). Therefore, the results imply that348

when using US ERC as the secondary fatigue indicator, the isometric scenario is likely to349

show significantly better fatigue-indicating performance than the dynamic scenario.350



Version December 10, 2021 submitted to Sensors 13 of 18

Table 3: Coefficients of linear regression models (y = ax + b) and R2 values between dorsiflexion torque/angle normal-
ization and ERC normalization.

Participants
Coefficients and R2 of linear regression models

Isometric condition Dynamic condition
a p−value b p−value R2 a p−value b p−value R2

Sub01 0.895 1.30e−6 0.245 0.091 0.889 1.009 2.22e−14 -0.014 0.773 0.879
Sub02 0.894 2.81e−5 -0.118 0.025 0.852 1.036 1.92e−8 -0.155 0.079 0.682
Sub03 0.879 3.44e−10 0.124 0.002 0.879 0.752 6.55e−9 0.161 0.003 0.827
Sub04 1.475 3.30e−8 -0.555 1.17e−4 0.911 0.900 6.14e−13 0.126 5.90e−3 0.847
Sub05 0.928 1.65e−5 -0.168 0.117 0.763 0.800 5.80e−8 0.068 0.274 0.756
Sub06 0.754 2.18e−5 0.206 0.224 0.843 1.245 1.25e−12 -0.144 0.036 0.839
Sub07 1.319 4.65e−6 -0.248 0.026 0.811 1.019 1.35e−11 0.005 0.261 0.763
Sub08 1.169 1.23e−5 -0.234 0.083 0.771 0.955 1.34e−7 0.133 0.155 0.755
Mean 1.039 — -0.094 — 0.840 0.965 — 0.023 — 0.794

Standard deviation 0.253 — 0.271 — 0.054 0.154 — 0.123 — 0.065

Figure 8. Linear relationships between the sub-maximal US ERC normalization and sub-maximal
dorsiflexion torque/angle normalization under isometric/dynamic muscle fatigue progression
conditions. Reported data are from Participant Sub05.

4. Discussion351

The US echogenicity signal as an online FES-induced muscle fatigue indicator352

was investigated for the first time under the isometric and dynamic ankle dorsiflexion353

movements in this study. The experimental results on eight participants without any neu-354

rological disorders showed that the US ERC normalization was exponentially decreasing355

along with the muscle contraction cycles for both isometric (R2 = 0.891 ± 0.081) and356

dynamic (R2 = 0.858 ± 0.065) conditions. Additionally, the results also showed strong357

linear relationships between the US ERC normalization and dorsiflexion torque normal-358

ization (R2 = 0.840 ± 0.054) or dorsiflexion angle normalization (R2 = 0.794 ± 0.065)359

during the muscle fatigue progression. Interpretation of results, potential improvements,360

and applications will be discussed in the following parts.361

In the experimental protocol, a zero-order-hold function was used to enable the362

data collection of the real-time US echogenicity signal at 1000 Hz. However, the US363

echogenicity update frequency was determined by the online imaging beamforming,364

processing, and gray-scaled analysis. In the current experimental setup and US imaging365

machine configurations, the online US echogenicity generation time was 127.9±7.8366

ms for a single image frame, which resulted in a US echogenicity updating frequency367

of 7.8 Hz. Compared to the US strain imaging computation time per image frame,368

368.7±7.2 ms [37], the computational load is significantly reduced by 65.3% (p <0.001)369

by using the US echogenicity as the FES-induced muscle fatigue indicator. Regarding370

the FES-induced muscle fatigue-indicating performance, the findings in [37] showed371

that under the isometric condition, the R2 value of the linear regression model between372

sub-maximal mean (maximal) axial tissue strain normalization and sub-maximal joint373

torque normalization was 0.823 ± 0.151 (0.850 ± 0.165). A two-tail paired t-test did not374

show any significant difference between the R2 values of the linear model by using375
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US echogenicity and the R2 values of the linear model by using US strain imaging.376

The advantages of using US echogenicity as a muscle fatigue indicator include (1) the377

relatively robust selection of the ROI due to the static nature, (2) no requirement of US378

image with higher resolution and clearly visualized architectural features, and (3) the379

significant reduction of calculation time for easier real-time implementation. Therefore,380

enough evidence implies that the US echogenicity has a comparable fatigue-indicating381

performance of FES-induced muscle fatigue as US strain imaging, but with a much382

lower computational intensity and a promising potential for online implementation for383

functional tasks, like drop-foot correction by using FES during walking.384

The muscle force’s, joint torque’s or joint motion’s decay during the FES-elicited385

muscle contraction has always been taken as a gold standard indicator for peripheral386

muscle fatigue, but measures of muscle force, joint torque, or joint motion usually387

require sophisticated hardware setup and only provide mechanical-type signals without388

showing any neuromuscular changes during the muscle fatigue progression. In addition,389

switching between indicator platforms is required to evaluate muscle fatigue for both390

isometric and dynamic conditions. Therefore, introducing an alternative non-invasive391

FES-induced muscle fatigue indicator that can be easily implemented for both isometric392

and dynamic tasks, with a simpler setup and in a real-time manner, is necessary. The393

real-time US echogenicity measurement facilitates a simplistic evaluation of the current394

muscle fatigue levels so that users can adjust the corresponding stimulation intensity395

to increase the FES-related rehabilitative training period or terminate the rehabilitative396

training if the muscle is too fatigued. Furthermore, the US echogenicity-indicated muscle397

fatigue will also be beneficial to advanced closed-loop FES controller design with the398

consideration of muscle fatigue. The US echogenicity signal is potentially sensitive to399

several factors, including the elevation angle between the transducer arm and the skin400

surface, the orientation angle between the transducer array and the skin surface, the401

relative sliding between the transducer array and the skin surface, and the pressure402

on the skin. To mitigate these factors, a customized 3D-printed US transducer holder,403

detailed in [39,40], and elaborate experimental operations were utilized. First of all, the404

US transducer beam was tightly bonded onto the arm of the rotation component of the405

holder, which guaranteed the elevation angle to be approximately 90°, so the transducer406

was always perpendicular to the skin surface. Secondly, the US transducer was rotated407

to the cross-sectional direction to get a good view of the target TA muscle and then408

rotated to the longitudinal direction for real-time echogenicity data collection. Once409

the longitudinal direction was determined, no further rotation was conducted, so the410

orientation angle was set as the location where the transducer was at the longitudinal411

direction. Thirdly, Velcro straps were used to bond the base frame of the holder onto412

the skin tightly to avoid significant sliding of the US transducer, although there might413

be some squeezing of the TA muscle. Due to the compliant shape of the Velcro straps,414

when the TA muscle was bulging due to the stimulation, minimal transducer-to-skin415

pressure change was expected throughout each fatigue progression trial.416

To evaluate the generalization of using US echogenicity as an FES-induced mus-417

cle fatigue indicator, results from the individual participant as shown in Fig. 8 are418

summarized in Fig. 9. There are 120 data points (15 points from each participant × 8419

participants) and 240 data points (30 points from each participant × 8 participants) for420

isometric and dynamic conditions, respectively. The linear regression equations and421

correlation coefficients are also labeled on the corresponding plots. From the F-statistic,422

the slope values for isometric and dynamic conditions are 0.843 and 0.576 with the423

p−values of 5.52−13 and 9.19−22, respectively, while the y-intercept values are 0.086424

and 0.370 with the p−values of 0.38 and 1.76−19, respectively. It is observed that the425

correlation coefficient under the isometric condition is higher than that under the dy-426

namic condition, which indicates the US echogenicity has a stronger correlation with427

the fatigue benchmark and potentially is a more accurate fatigue indicator when FES is428

applied under the isometric condition than the dynamic condition.429
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Figure 9. Summarized results of using US echogenicity as the FES-induced muscle fatigue indicator
under both isometric and dynamic conditions. Reported data are from all eight participants.

The results in Fig. 9 showed a relatively high inter-subject variation of using US430

echogenicity as a muscle fatigue indicator under the application of FES in the current431

study. One possible reason is that the current work is a proof-of-concept study, which432

is not to develop a very generalized interface to predict FES-induced muscle fatigue.433

Instead, the purpose was to validate that the US echogenicity signal can be used as a434

personalized muscle fatigue indicator when FES is applied. The diversity most likely435

resulted from the personalized muscle contraction pattern and the personalized ultra-436

sound echogenicity relative change during the FES-induced muscle fatigue protocol437

under both isometric and dynamic conditions. Furthermore, due to the variations of438

muscle size, recruitment pattern, FES electrode placement, and ultrasound transducer439

placement among different participants, the same submaximal dorsiflexion torque/angle440

change from different persons is likely to cause different submaximal ERC change. An-441

other possible reason would be the relatively small population size in the current study,442

which will be further validated in a larger number of participants and multiple groups443

of different muscle conditions in future work. In addition, the findings in the current444

study indicate that the US echogenicity as an indicator of FES-induced muscle fatigue445

behaves better under the isometric condition than the dynamic condition. This obser-446

vation corresponds to the results related to evoked EMG (eEMG) as an indicator [44],447

where the eEMG is effective at quantifying muscle force and fatigue during the isometric448

contraction but may not be effective during dynamic contractions including cycling and449

stepping. However, one limitation is that no muscle fatigue-indicating performance com-450

parison between the use of US ERC and the use of sEMG during the same FES-induced451

muscle fatigue progression is presented in the current study. Inspired by the studies452

in [39,40,45], future work will investigate the FES-induce muscle fatigue indicators by453

using sole sEMG signal, sole US echogenicity signal, and the potential fusion of sEMG454

and US echogenicity signals.455

5. Conclusions456

In the current work, we investigated the use of temporal US echogenicity to quan-457

titatively assess the muscle fatigue elicited by FES under both isometric and dynamic458

ankle dorsiflexion functionalities. The results showed that the US ERC expressed an459

exponential reduction along with the muscle contraction cycles both in isometric and460

dynamic conditions. Also, the results of linear regression analysis showed strong linear461

relationships between the US ERC normalization and the gold standard fatigue indica-462

tors, namely, isometric dorsiflexion torque normalization or dynamic dorsiflexion angle463

normalization. The comparison between the current work and existing studies verified464

that the US ERC is a comparable fatigue indicator to axial tissue strain imaging during465

the isometric fatigue progression, but with a realistic computation time for real-time466

implementation. The findings in the current work indicate that the US echogenicity467

is a promising non-invasive and computationally efficient measure for assessing FES-468
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induced muscle fatigue, and potentially, it can be integrated into an advanced FES469

controller design that considers muscle fatigue in real-time.470
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2D two-dimensional
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