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In brief

Fate decisions in developing tissues
involve cells transitioning between
discrete cell states. We developed an
approach to construct a dynamical
landscape from quantitative gene
expression data, in which the
development of a cell is represented by a
trajectory through the landscape.
Applying it to pluripotent stem cells
exposed to different combinations of
signaling factors accurately predicted cell
fate outcomes. This revealed two distinct
architectures for the way cells make a
binary choice between one of two fates.
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SUMMARY

Fate decisions in developing tissues involve cells transitioning between discrete cell states, each defined by
distinct gene expression profiles. The Waddington landscape, in which the development of a cell is viewed as
a ball rolling through a valley filled terrain, is an appealing way to describe differentiation. To construct and
validate accurate landscapes, quantitative methods based on experimental data are necessary. We com-
bined principled statistical methods with a framework based on catastrophe theory and approximate
Bayesian computation to formulate a quantitative dynamical landscape that accurately predicts cell fate out-
comes of pluripotent stem cells exposed to different combinations of signaling factors. Analysis of the land-
scape revealed two distinct ways in which cells make a binary choice between one of two fates. We suggest
that these represent archetypal designs for developmental decisions. The approach is broadly applicable for

the quantitative analysis of differentiation and for determining the logic of developmental decisions.

INTRODUCTION

Cell fate decisions in developing tissues involve gene regulatory
networks comprising multiple genes, many molecular compo-
nents, and elaborate signaling dynamics. Despite the complexity,
the outcome of cellular decisions is relatively simple: cells transi-
tion between a limited set of discrete cell fates, each defined by a
distinct gene expression profile (Enver et al., 2009; MacArthur
et al., 2009; Schiebinger et al., 2019). These transitions occur in
a characteristic sequence regulated by extrinsic signaling. While
quantitative models that describe signaling pathways and gene
regulatory networks in great detail have been used to investigate
cell differentiation and decision making, these suffer from a
plethora of parameters and their behavior is difficult to predict
without case-by-case simulation. Hence, quantitative methods
based on experimental data that represent and permit analysis
of developmental processes at the scale of cell fate decisions
would provide insight into the underlying principles and allow
quantitative and testable predictions.

A popular and intuitive metaphor for the process of develop-
mental decision making is the Waddington landscape, in which
the differentiation trajectory of a cell is conceived as a ball rolling
down a landscape of branching valleys, representing specific
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cell fates (Waddington, 1957). This can be mathematically
formalized, with only minor changes, using dynamical systems
theory (Camacho-Aguilar et al., 2021; Corson and Siggia,
2012, 2017, Corson et al., 2017; Huang, 2012; Mojtahedi et al.,
2016). In this formulation, the relevant dynamical systems are
gradient-like and the system’s trajectories, which represent the
developmental path of a cell, move downhill in this landscape.
Thus, Waddington’s valleys correspond to the attractors of the
system and sit at the minima of the landscape. Moreover, varia-
tion in the parameters of the dynamical system, caused by
changes in the signals the cell receives, alter the landscape
and give rise to bifurcations that destroy or create attractors.
The transition to a new fate is signified by a cell entering a new
basin of attraction, caused either by a signal-induced bifurcation
or by a stochastic fluctuation resulting in a cell jumping from one
attractor’s pull to another. In both cases, the route from the old to
the new cell state is defined by a saddle point in the landscape.
This approach enables a rigorous link between the dynamical
systems underlying gene regulatory networks and Waddington’s
landscapes.

There are several advantages to a geometrical viewpoint. First,
since motion is always downhill, it gives a hierarchical structure
to the dynamics and an intuitive understanding of eventual fates.
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Figure 1. Single-cell resolution analysis of the directed differentiation of ES cells to neural and mesodermal identities

(A) Schematic of mESC differentiation. Embryonic stem cells differentiated in defined FGF and WNT signaling regimes adopt either anterior neural (AN), posterior
neural (PN), or paraxial mesoderm (M) progenitor identities. Colored bars show the times at which cells were exposed to CHIR and/or FGF. The expected
dominant cell type at day 5 and associated marker protein expression is given on the right. CHIR, CHIRON99021; D, day.

(B) Representative immunofluorescence images of markers used to identify the different cell types. Progenitors differentiated for 2 days in FGF co-express the
early epiblast markers SOX2 and OTX2 (Ba) and adopt SOX1+ OTX2+ AN identity by day 4 (D4) following withdrawal of FGF (Bb). Activation of WNT signaling at D2
with CHIR results in the upregulation of the posterior marker CDX2 (Bc) and the downregulation of OTX2 (Bd) by (D3). Subsequent removal of CHIR at D3 leads to
differentiation of SOX1+/CDX2+ PN progenitors (Be), while sustained WNT signaling results in differentiation to TBX6+ early and FOXC2+ late paraxial mesoderm
progenitors.

(C) Flow-cytometry data. Flow-cytometry analysis of individual progenitors shows the progression from TBX6+ early paraxial mesoderm identity at D4 to FOXC2+
late paraxial mesoderm identity at D5 (Ca) under the sustained WNT signaling regime. At D4, OTX2 and SOX2 remain expressed at high levels in AN progenitors
differentiated in the absence of CHIR and are both reduced in PN progenitors induced by transient CHIR, whereas SOX1 expression is highest in PN pro-

genitors (Cb).

Second, a body of dynamical systems theory indicates that the
qualitative structure of the landscape can be described by a rela-
tively small corpus of universal normal forms (Zeeman, 1976). In
particular, Rene Thom’s catastrophe theory provides a powerful
classification scheme of the relevant bifurcations of such sys-
tems that is facilitated by the existence of the gradient-like
structure (Smale, 1961; Thom, 1969). This theory suggests that
although a system’s dimension might be large, the bifurcations
can be described by low-dimensional systems. For example, in
developmental systems, it is common that differentiating cells
transition from a progenitor state to one of two progeny fates.
Such a decision can be an all-or-nothing one in which all cells
make the same choice, or it can be one in which some cells
make one choice and some the other one, enabling the allocation
of a cell population to both fates. We introduce two 3-attractor
landscapes, the binary choice (all-or-nothing) and the binary
flip (allocation), that are the simplest archetypes underlying these
two decision types.

To transform a developmental process from a metaphorical
landscape description into a geometric model that allows quan-
titative and qualitative experimental predictions, quantitative
data are needed together with methods to connect experimental
measurements to a parameterized dynamical landscape. A
framework based on catastrophe theory and approximate
Bayesian computation (ABC) has been developed and applied
to experiments measuring the final outcome of a developmental
process (Camacho-Aguilar et al., 2021). However, to test the full
power of this approach and assess its general usefulness, quan-
titative measurements and perturbations during the differentia-
tion process are necessary. To this end, we took advantage of
the differentiation of neural and mesodermal cells from pluripo-
tent progenitors using mouse embryonic stem cells (ESCs)
exposed to different combinations and durations of signaling
factors (Figure 1A; Gouti et al., 2014; Tsakiridis et al., 2014; Wy-
meersch et al., 2021). ABC methods for parameter estimation
based on matching summary statistics of temporally ordered
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data to those produced from simulations of candidate models
naturally lend itself to our data and we use the proportion of cells
in cell states at different time points as the summary statistic.

Initiating the differentiation of ESCs, by withdrawing media
supplements that sustain pluripotency, results in cells adopting
a state that mimics the post-implantation epiblast. In the
absence of further signals, these cells differentiate into neural
progenitors with a molecular identity of the anterior nervous sys-
tem (Ying et al., 2008). However, exposure to WNT signaling at
the epiblast stage blocks ESCs from adopting an anterior neural
fate and instead cells acquire a caudal epiblast identity (Tsakiri-
disetal., 2014; Gouti et al., 2014). This cell type, which in the em-
bryo fuels axis elongation and the formation of trunk tissue, is
responsible for generating the progenitors of the spinal cord
and paraxial mesoderm (Wymeersch et al., 2021). Similarly,
in vitro, caudal epiblast-like cells differentiate into spinal cord
and mesoderm progenitors, with longer durations of WNT
signaling resulting in a higher proportion of mesodermal cells
at the expense of neural cells (Blassberg et al., 2020; Gouti
et al., 2017). Each of the cell states in this differentiation process
is recognizable from well-defined gene expression profiles that
can be assayed using representative marker proteins. Hence,
the differentiation of ES cells into neural and mesodermal deriv-
atives offers a well-characterized system in which to develop
and test a dynamical landscape model of developing tissues
and cellular decision making.

We used flow cytometry to measure the expression levels of
representative marker proteins in differentiating ESCs exposed
to different signaling dynamics. These data provided an informa-
tive low-dimensional representation of cell states from which we
developed a principled statistical approach to identify the attrac-
tors and the geometric form of the dynamical landscape. Using
the ABC approach based on summary statistics, we parameter-
ized and refined the landscape and its changes with extensive
training and validation datasets and tested it against specific ex-
periments prompted by predictions from the model. The result
was a quantitative model of the differentiation of neural and
mesodermal tissue from pluripotent progenitors. The data sug-
gested two distinct decision-making mechanisms—a “binary
choice” as a one-or-other decision that commits cells to either
anterior neural or caudal epiblast and a “binary flip” that simulta-
neously allocates cells to posterior neural and mesodermal fates.
These two mechanisms correspond to two fundamentally
different landscape geometries with distinct qualitative and
quantitative features. We discuss the biological relevance of
these different mechanisms and suggest that they represent
two dynamical archetypes that play a general role in differentia-
tion dynamics. Taken together, the approach is broadly appli-
cable for the quantitative analysis of cell fate dynamics and
determining the design logic of developmental decisions.

RESULTS

An in vitro system to quantify cell fate decisions

To develop a quantitative landscape model of cell fate decision
making, we took advantage of an in vitro system in which plurip-
otent mouse ESCs are directed to differentiate to distinct neural
and mesodermal fates in response to defined signaling dy-
namics (Figure 1A) (Gouti et al., 2014). ESCs removed from
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pluripotency conditions and grown in basal media containing
FGF2 (FGF) and an inhibitor of endogenous WNT secretion
(LGK974) adopt a post-implantation epiblast-like (EPI) identity
by day (D)2 of culture (Figure 1Ba) (Blassberg et al., 2020) and,
subsequently, following removal of exogenous FGF, adopt an
OTX2+/ SOX1+ molecular identity characteristic of anterior neu-
ral progenitors (AN) (Figure 1Bb). In contrast, if WNT signaling is
activated at D2 by the GSK3p antagonist CHIRON99021 (CHIR)
concurrently with FGF signaling, EPI cells no longer differentiate
to AN but instead, acquire a CDX2+ caudal epiblast (CE) identity
at D3 (Figure 1Bc). These differentiate to SOX1+ posterior neural
progenitors (PN) in response to withdrawal of FGF and WNT
signal activation (Figure 1Be), while sustained WNT signaling
drives the progressive differentiation of CE to TBX6+ early para-
xial mesoderm (EM) and FOXC2+ late paraxial mesoderm (LM)
identities (Figures 1Bf and 1Ca).

To develop a quantitative description of the differentiation
process, we developed a flow-cytometry assay to measure,
simultaneously, the expression of multiple marker proteins in in-
dividual cells. This enabled us to generate time-course data at
single-cell resolution in a manner that was sufficiently scalable
to explore the differentiation outcomes resulting from combina-
torial modulation of FGF and WNT signaling dynamics. By inhib-
iting endogenous WNT secretion in all culture conditions with
LGK974, we ensured that WNT signaling dynamics were entirely
dependent upon the timing and concentration of CHIR addition.
Moreover, as WNT signaling is known to induce FGF ligand pro-
duction in CE cells (Amin et al., 2016), we tightly controlled FGF
signaling dynamics through a combination of exogenous FGF
withdrawal and inhibition of downstream FGF signaling with
the small-molecule PD0325901 (PD). In total, we obtained 149
datasets in 4 experimental series, comprising 23 different
signaling conditions assayed at 7 timepoints each (supplemen-
tary Table S1).

Based on previous transcriptome analysis (Gouti et al., 2014,
2017), we first defined a minimal set of markers that are sufficient
to classify cells into distinct progenitor types. We employed the
anterior marker OTX2 to distinguish between AN and PN progen-
itors, both of which express the neural progenitor markers SOX2
and SOX1. As expected (Gouti et al., 2014), OTX2 expression
was permanently extinguished in SOX2+ SOX1+ PN progenitors
following combined activation of FGF and WNT signaling be-
tween D2 and D3, whereas its expression remained high in
SOX1+ AN progenitors (Figure 1Cb). Moreover, the level of
SOX1 was higher in PN cells, whereas SOX2 was higher in AN
(Figure 1Cb). We reasoned that SOX2 and SOX1 levels might
be sufficient for classification of AN and PN progenitors in the
absence of OTX2 measurement. This was subsequently
confirmed experimentally (see below). In addition, we confirmed
that exposure to WNT signaling induced CE markers T/BRA and
CDX2 in many cells at D3/D3.5 (Figure S1C). Continued expo-
sure to WNT signaling resulted in the loss of both T/BRA and
SOX2 expression from differentiating CE progenitors at D4 and
a high proportion of cells expressed TBX6, characteristic of
EM identity (Figure S1C), which itself began to decrease at D5
as cells acquired FOXC2+ LM identity (Figure 1Ca). As SOX2
expression is extinguished as cells commit to paraxial meso-
derm identity (Takemoto et al., 2011; Figure S1B) we reasoned
that either the presence of TBX6 and absence of SOX2
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Figure 2. Clustering using Gaussian mixture models defines cell identities

(A) Overview of the clustering method. Flow-cytometry data from the three reference conditions (no CHIR, CHIR 2-3, and CHIR 2-5) for a specific timepoint were
pooled and used to define a Gaussian mixture model such that each component corresponds to a cell identity. The model was used to cluster cells in samples
from the same timepoint and experimental series. The number of cells assigned to each cluster was used to quantify the population proportions. Axes correspond
to flow-cytometry measurements (units are in the order of ten thousand).

(B) Two-dimensional joint distributions of flow-cytometry data from the initial reference datasets illustrating the clusters identified in the pooled data. Colors
correspond to the label assigned to the cluster as in (D). If the same label is assigned to several clusters, different shades are used. Contours indicate cell density
in each cluster. Axes correspond to flow-cytometry measurements (units are in the order of ten thousand). At day 5, from the total volume of the 5-dimensional
cube that encompasses protein expression space, only 0.02% is occupied by the GMM that represents 90% of the cells.

(C) Number of cell types identified on each day of differentiation. Colors correspond to the assigned labels (D). If the same label is assigned to several clusters then

different shades are used.

(legend continued on next page)
Cell Systems 12, 12-28, January 19, 2022 15



¢? CellPress

expression, or the absence of both TBX6 and SOX2 was suffi-
cient to classify mesoderm progenitors (M).

Clustering flow-cytometry data identifies landscape
attractors

In order to quantify the differentiation process, we hypothesized
that each cell state represented an attractor of a dynamical
landscape and we set out to develop a principled procedure to
allocate cells to an identity. To this end, we used an algorithm
based on fitting a Gaussian mixture model (GMM) to the multi-
dimensional flow-cytometry data (McLachlan et al., 2003; Chan
et al., 2008) (fitgmdist in MATLAB). The GMM consists of a set
of weighted multivariate normal distributions. We regarded
each of these distributions as defining a cluster. A cell belonged
to a cluster if its probability for the corresponding distribution
was greater than a predefined threshold. Close to an attractor,
the state variables (levels of protein expression in this case) are
expected to have an approximately multivariate normal distribu-
tion since the dynamics near attractors are expected to be
approximately linear (Kurtz, 1981).

To mitigate batch effects, we included a reference set consist-
ing of the three signaling regimes comprising no CHIR, CHIR 2-3,
and CHIR 2-5 (Figure 1A) in each experimental series (initial, test,
and prediction; see Table S1), and used the corresponding
pooled data from these three conditions to fit and define the
GMM probability distributions at each timepoint (Figure 2A,
Methods S1 Section 2). To choose the number of distributions
in the GMM, m, we increased it sequentially from 1 until the sca-
lar distributions for each cluster were clearly unimodal in each of
the dimensions (Figure 2B). Cells from all other samples within
the experimental series were then classified by assigning them
to the clusters defined by the GMM model using a threshold
probability of p = 0.65. Otherwise, cells were considered to be
in transition between clusters (unclassified transitioning, UT).
The stochastic dynamic nature of the system implies that there
will always be some cells outside the attractors that cannot be
unequivocally classified by this method even when the system
is at equilibrium and especially when it is close to bifurcation.
The process was insensitive to the choice of threshold probabil-
ity p (Methods S1 Section 2).

Once cells had been allocated to clusters, we analyzed marker
proteins and assigned cell identity accordingly (Figures 2B and
2D). The clustering was unsupervised and unambiguous. There
was a good correspondence between the clusters found by
the algorithm and the cell-type-specific marker expression
known to be present at each day of the three reference signaling
regimes (Figure 1A). The number of clusters needed to obtain un-
imodal distributions was larger for D3-D4.5, where there was

Cell Systems

more than one cluster corresponding to the same cell identity
(Figure 2C). For example, at D3 and D3.5 there are two clusters
corresponding to CE cells: one defined by BRA+ and CDX2+
cells (so-called neuromesodermal progenitors, \Wymeersch
et al.,, 2021) and one with only CDX2+ cells (Figures 2B and
2C; Methods S1 Section 2).

The clustering algorithm identified the expected cell states in
each of the datasets (see Table S2). In line with our preliminary
analysis, we were able to assign FOXC2+ LM identity on the
basis of a SOX2-/TBX6- marker profile (Figures S1B and S2C).
Moreover, the clustering algorithm distinguished between
OTX2+ AN and OTX2- PN progenitors based on their distinct
levels of SOX1 and SOX2, as we had observed previously (Fig-
ure S2B). However, as neither OTX2 nor SOX1/SOX2 expression
levels were able to distinguish between anterior and posterior
neural progenitors at D4.5 and D5, we extrapolated the propor-
tions obtained at D4 to quantify their proportions in this case.

At D2.5 under FGF + CHIR signaling conditions, an additional
population of cells with intermediate levels of SOX2 and low
expression of BRA, CDX2, SOX1, and TBX6 was detected by
the clustering (Figure S2A). As these cells had begun to downre-
gulate SOX2, this indicated that they were transitioning from EPI
to CE but had yet to acquire CDX2+ posterior identity (Blassberg
et al., 2020). We considered them as a separate group and
labeled them transitioning (Tr). Thus, we were able to define clus-
ters, corresponding to the attractors in the landscape, represent-
ing epiblast (EPI), anterior neural (AN), CE, posterior neural (PN),
and mesoderm (M), and an additional transitioning population
(Tr) using a minimal set of 5 marker proteins (BRA, CDX2,
SOX1, SOX2, and TBX6) (Figure 2D).

To test the validity of our cluster assignments and check for
missed states, we examined the correlation of protein expres-
sion within a cluster and compared our clusters with the cell
types found in (Gouti et al., 2014, 2017). Principal component
analysis of individual clusters identified distinct associations of
proteins with principal components for each cluster (Figure 2E).
Each principal component was associated with one or two
proteins (for a full analysis see Methods S1 Section 2). To test
the hypothesis of multivariate normality, we calculated local pro-
tein-protein correlations within each cluster and found smoothly
varying patterns (Figure 2F) in the correlation for each cluster.
Correlations between protein expression reflect regulatory inter-
actions between the components of the underlying gene regula-
tory network. Hence, consistency of the correlation structure
across each cluster and differences in the structure in different
clusters is evidence that the clusters correspond to distinct bio-
logical states and that we are not missing any states since, in that
case, discontinuities in the correlation structure within clusters

(D) Table of cell type labels assigned to each cluster using marker protein expression: ++ denotes high levels of the markers, + denotes moderate levels of the
markers, (+) denotes marker expression is optional, due to transitioning populations. The populations are epiblast (EPI), transition from EPI to posterior identity
(Tr), anterior neural (AN), caudal epiblast (CE), posterior neural (PN), early paraxial mesoderm (EM), and late paraxial mesoderm (LM). The core set of markers used
are indicated in bold. The extra information on additional markers is included in the right-most columns.

(E) Principal component (PC) analysis of clusters at day 5 with variance explained by each of the first three PCs (Var) indicated. The highest weighted proteins in
each PC (HWP) are shown. The PCs comprise mainly one or two proteins only. When more than one weight is relevant (at least 40% of the largest PC), we order
them by magnitude. The relevant proteins in each cluster are different for different cell identities.

(F) Analysis of the local correlation structure in and between CE, LM, and EM clusters at day 5. The flow-cytometry data are rotated so that the first dimension
extends across the two clusters. We show an illustrative projection of the rotated data on the two top panels. A smoothing spline is fit through the data (top left).
The data are binned along the spline into 30 bins (top right) and protein-protein correlations in each bin computed (bottom). Correlations are maintained in bins

within a cluster but change abruptly in bins around the cluster boundaries.
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would be apparent. Moreover, the boundaries between adjacent
clusters were characterized by abrupt changes in this correlation
structure (Figure 2F; Methods S1 Section 2). This is consistent
with the idea that cell states represent high-dimensional attrac-
tors in protein expression space that are separated by saddle
points. Previously, hierarchical clustering of transcriptome data
during this differentiation produced five major groups represent-
ing distinct patterns of gene expression (Gouti et al., 2017). Even
though our choice of clusters was unsupervised, they mapped
onto these groups indicating that incorporation of a broader
set of genes does not identify any new states.

Two distinct binary decision landscapes

The data obtained in our initial experimental series (Figure 3A)
indicate that, in the absence of CHIR, EPI cells transition to AN
after removal of FGF on D3, suggesting that FGF withdrawal
causes a loss of the EPI attractor in such a way that cells escape
toward the AN attractor (Figure 3Ca, no CHIR). On the other
hand, if CHIR is added on D2 a substantial proportion of cells
transition to CE by D3 (Figure 3Ca, CHIR 2-3). This suggests
that, with the addition of CHIR, the disappearance of the EPI at-
tractor allows cells to escape toward the CE attractor. The
distinct fate outcomes associated with these decisions suggests
that each is caused by the bifurcation of the EPI attractor but with
escape routes in different directions. In both cases, all cells
escape in the same direction toward the same attractor.

Our approach to model selection used the mathematical clas-
sification of the simplest generic 3-attractor landscapes (Rand
et al., 2021; Methods S1 Section 3) and the assumption that
the system should be part of one of these archetypal land-
scapes. These can each be modeled by relatively simple two-
dimensional dynamical systems that will capture high-dimen-
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sional transition dynamics (Rand et al., 2021). Only one of these
is compatible with the above observations. This is related to
Thom’s butterfly catastrophe (Thom, 1969): the three attractors,
AN, EPI, and CE, are separated by two saddle points (Figure 3D)
with one of them in the middle, EPI. We call this the binary choice
landscape. Changing levels of signal cause bifurcations: cells in
the central attractor EPI can transition to either CE or AN (Figures
3Da and 3Dc) but those in states CE and AN are only able to
transition to EPI (Figure 3Db). This models an one-or-other/all-
or-nothing decision where a population of cells in EPI chooses
between the fates CE or AN. If cells commence the transition
from EPI to CE and signals change pushing them toward AN,
they need to return to EPI first before transitioning to AN. This
last feature is observed in our data when CHIR is removed after
24 h (Figure 3Ca).

Following the transition to CE, the data suggest a second de-
cision associated with cells leaving the CE attractor adopting a
mixture of M and PN fates. The ratio of M:PN cells increases
with the length of CHIR exposure and is not an all-or-nothing
response as in the previous decision (Figure 3Cb). Moreover,
the way in which cells leave the CE state appears markedly
different from the way that they leave the EPI state (Figure 3Cb,
CHIR 2-5). Cells appear to leave the CE state at an approxi-
mately constant rate in CHIR induction conditions. This raises
the possibility that transitions are caused not by bifurcation but
by fluctuation driven escape from the CE attractor basin.

Among the archetypal landscapes (Rand et al., 2021), two
contain a part that is compatible with these data and these two
parts are equivalent (Figure 3E). We call this the binary flip land-
scape because it allows signals to flip the escape route of cells
leaving the CE state, tipping them into either state M or PN (Fig-
ures 3Ea and 3Ec). When combined with stochastic noise, this

(B) Summary of the different cell types and transitions identified in the system. These define five attractors (with contour line) in the landscape together with a well-
defined intermediate transition from epiblast to caudal epiblast (no contour line). Thick arrows indicate the differentiation routes between cell types and the signals
that drive them.

(C) The subset of fate proportions from the initial experimental series data that inform the geometry of the landscape: (a) informs the first decision from EPI to AN
and CE; (b) informs the second decision from CE to PN and M. Colors correspond to cell identities (B). Cells with a low probability of belonging to any cell type
were considered transitioning cells (UT) and labeled in light yellow.

(D and E) Contour maps for three parameter sets (a, b, and c) of two distinct three-attractor potentials corresponding to the two archetypal landscapes for binary
cell fate decisions. The black lines denote contour curves passing through saddles, colored dots are attractors, purple curves indicate the separatrices of the
basins of attraction (stable manifolds of the saddles with the downhill direction indicated), and red curves are skeleton trajectories (unstable manifolds of the
saddles with the downhill direction indicated).

(D) Binary choice landscape. Attractor EPI remains the central attractor for all three parameter sets (D abc). The curve defined by the unstable manifolds can be
both smooth or cusp-like, as in the figure. Changes in parameters can result in a bifurcation either between attractor EPI and the saddle point separating AN and
EPI (Da) or between attractor EPI and the saddle point separating EPI and CE (Dc). These bifurcations leave the remaining saddle point intact. Hence, this
landscape models an all-or-nothing decision.

(E) Binary flip landscape. In this landscape, a saddle point separates attractor CE from a basin that contains both attractors M and PN. The escape route (unstable
manifold) emanating from the saddle associated with attractor CE can lead to either attractor M or PN. Varying parameters result in a swap (flip) in the attractor
favored by the escape route (Ea and Ec). This landscape models a decision in which cells differentiating from state CE can be flexibly distributed to either M or PN.
(F) The model was constructed from two binary decision landscapes smoothly connected through the common CE attractor. The first landscape is indicated in
gray, the second in ochre. The two landscapes are different in character and allow different types of transitions. The model produces a gradient dynamical system
with each part of the landscape defined by a parametrized height function that, with the addition of noise, determines the flow of the cells in the landscape. The
two parts of the model each depend on 3 parameters (1 for velocity of cells and 2 for the shape of the landscape) for a total of 6 parameters. These parameters are
functions of the signals in the medium as indicated in (G).

(G) Schematic of the effect of signals on model parameters. The effect of the signal concentration on the landscape is linear. Amemory effect was incorporated for
the effect of CHIR. Exposure to CHIR for longer than a threshold (Thr) activates a memory term that triggers the persistence of the CHIR effect after its removal for
a time proportional to the period of CHIR exposure (memory = CHIRTime-Thr). The w’s are the weights of these effects and are 6 dimensional (wo determines the
landscape if there is no CHIR and PD). Noise amplitude is also a model parameter, in total the model comprises 20 parameters, these were estimated using ABC
SMC with the training data.

(H) Example of the memory effect for different CHIR durations. If the duration of CHIR exposure is greater than the threshold (18 h), the landscape will take
CHIRTime-Thr to change after removal of CHIR. Thus, the total time CHIR affects the landscape is 2-CHIRTime-Thr.
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Figure 4. Comparison of model simulations to experimental data

(A) For each condition at each time point, the proportions of cells assigned to each cell identity by the clustering method (experiment) were compared with the
proportion predicted by the model (simulations). A detailed analysis of the goodness of fit is provided in Methods S1 Section 5. For the simulated data the
proportions of each cell type were obtained by averaging the proportions of cell types obtained by simulating the model using all 10,000 parameter sets found by
the fitting algorithm. Colors correspond to cell identities (B). Cells with a low probability of belonging to any cell type were considered transitioning cells (UT) and
labeled in light yellow.

(B) Qualitative form of the global landscape model used in the fitting. Cell identities correspond to attractors in the landscape. Different signaling regimes change
the particular form of the landscape.

(C) Experimental conditions not used in the fitting were compared with model simulations. For each validation condition at each time point, the proportions of cells
assigned to each cell identity by the clustering method (experiment) were compared with the proportion predicted by the model (simulations). For the simulated
data, the proportions of each cell type were obtained by averaging the proportions of cell types obtained by simulating the model using all the parameter sets
found by the fitting algorithm. Colors correspond to cell identities as detailed. Overall, the model performed well at predicting the experimental results. We note
that when CHIR is removed after 12 h (CHIR 2-2.5) many cells that were in transition (Tr; orange) at D2.5 were recaptured by the EPI attractor both in the
experiments and the simulations at D3. However, the simulations underestimated the CE the proportion of cells that remained CE at D3.

(legend continued on next page)
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allows cells leaving CE to be distributed with different ratios
between M and PN (Figure 3Eb). Finally, we connect the two
landscapes using the common CE attractor (Figure 3F). This is
done using a transition function to allow the cell’s trajectory to
transition smoothly from one landscape to the other (Methods
S1 Section 3).

To construct models, we took advantage of the normal forms of
these two landscapes provided by catastrophe and dynamical
systems theory (Arnold et al., 1994; Zeeman, 1976) as these mini-
mize the number of parameters and state variables needed to
capture the changing geometries. In addition, we postulated a
linear relationship between the signals and model parameters
and later validated this using the data (Figure 3G). All cells in a
sample were assumed to be affected by the same landscape,
determined by independent effects of each signal (CHIR and
FGF). To fit the data, we found it necessary to add a memory ef-
fect to this relationship (Figure 3H). The data showed that
removing CHIR at D3 or D3.5 gave different PN:M balances, while
the PN:M balance remained near invariant if CHIR was removed
at D4 or kept until D5 (Figure 3Cb, CHIR 2—-4 and CHIR 2-5).
This indicated that the effect of CHIR persisted for some time after
its removal. To account for this memory effect, we maintained a
CHIR signal in the model for a period of time proportional to the
time CHIR had been in the system longer than a time threshold
which was estimated in the fitting (Video S2). For FGF, since
FGF signaling has been shown to generate a positive feedback
and induce expression of FGF ligands (Amin et al., 2016; Blass-
berg et al., 2020), we maintained a level of 90% FGF when exog-
enous FGF was withdrawn, unless the inhibitor PD0325901 was
added, in which case FGF signaling was set to 0.

The resulting system depends on 20 parameters: 3 X 6 for the
relationship from the 3 signal changes. No signaling (no CHIR +
PD), addition of CHIR, and addition of FGF: the parameters w in
Figure 3G) to the 6 landscape model parameters, a memory
threshold and a noise level (Methods S1 Section 3). In order to fit
these, we used a training dataset of 7 treatment regimens (see
Figures 3A and 4A) measured at 7 time points that distinguish 7
populations: EPI, Tr, AN, CE, PN, M, and UT (a total of 343
measurements of cell fate proportions). We kept separate, for vali-
dation, a dataset of 4 experimental conditions with a total of 196
measurements (see Figures 3A and 4C). We took advantage of
the ABC framework (Camacho-Aguilar et al., 2021; Toni et al.,
2009) to generate posterior distributions of the parameters (see
Methods S1 Section 4). Assessing correlation between the param-
eters indicated that there were few redundancies between them.

Fitted landscape captures cell fate decisions
By extensive sampling from the resulting posterior parameter
distribution for each signal combination, we obtained simula-
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tion time series for cells in the landscape using the flow defined
by the stochastic dynamical system (Figure 4D). We computed
the proportion of cells around each attractor and compared
these with the corresponding experimental proportions (see
Methods S1 Section 5 for details). For each timepoint and
signal combination, this produced a distribution of cell states
and resulted in a 2x3 table of landscapes (Figure S3) corre-
sponding to the different signal combinations used in the
training experiments: CHIR on/off and FGF on/off or inhibited
by PD.

Even though the parameters come from a distribution, the dis-
tribution of cell states was relatively tight about their mean with
an average coefficient of variation of 7%. The larger size of
some coefficients of variation was due to misidentification of
clusters for a small number of experimental conditions. To
compare simulated and experimental proportions we, therefore,
used the mean simulated proportion. Comparison with the
training datasets showed excellent overall agreement (Figure 4A;
see Methods S1 for a detailed analysis). The largest differences
tended to be associated with situations with a significant number
of unclassified cells in the experimental data (UT), which we
reasoned were cells transitioning between states. The simula-
tions reproduced subtle features of the data such as the constant
rate at which cells leave the CE state in response to CHIR.

We next examined simulations using signal combinations from
the validation datasets computed with the model parameter ob-
tained from the fitting to the training data. Again, there was good
overall agreement (Figure 4C). The simulations showed that the
cells transitioning at D2.5 were “recaptured” by the EPI attractor
after removal of CHIR (Video S1), as observed in the experi-
mental data, where a proportion of cells transitioning to CE at
D2.5 return to an epiblast state at D3. Since the data used to
fit the model did not contain any conditions in which the EPI at-
tractor was repopulated after cells had left it, these simulations
provide a non-trivial validation of the geometry of the landscape
and its parameterization.

Closer inspection, however, revealed some differences be-
tween simulations and experimental data. Most notably, there
was an underestimation of the CE population in some CHIR con-
ditions (CHIR 2-2.5, CHIR 2-3, CHIR 2-3.5), together with an un-
derestimation of M and overestimation of PN. Taking the results
together, there was good agreement between the simulations
and experimental data with the model accurately replicating
the key decision processes in the differentiation pathway, this
included the recapturing of cells by the EPI attractor after short
CHIR exposure and the leakage of CE cell into M. Nevertheless,
discrepancies in the exact proportions of cells between simula-
tions and experiment prompted us to investigate further refine-
ment to the model fit.

(D) Example of a simulation time series of the model for the signaling regime CHIR 2-3.5. Red points represent the location of cells in the landscape at the specified
time points. Cells are initialized in the EPI attractor at D2. Their location evolves as given by the stochastic dynamical system defined by the landscape in (B),
which precise geometry is determined by the signaling regime. Three changes in the landscape are apparent. The addition of CHIR at D2 results in the bifurcation
of the EPI attractor and cells follow the unstable manifold toward the location of the newly available CE attractor. At D2.5, many cells are still transitioning between
EPI and CE. At later time points, noise causes cells to abandon the CE attractor and follow the corresponding unstable manifold toward the M attractor. At D3, the
removal of FGF has small effect in the landscape. At D3.5, CHIR is removed but the memory effect causes the landscape to remain the same. The termination of
the CHIR memory effect (dotted purple line) results in the bifurcation of the CE attractor and the flip of the unstable manifold so that cells from the CE attractor
transition into the PN attractor. Video S2 shows the complete time series. To compare simulations with experimental data, simulated cells were clustered and

compared with the experimental data at corresponding timepoints.
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Figure 5. A refined model improves the accuracy of predictions
(A) Details for the 2 experimental conditions designed to refine the model.
removed from the medium.

(B) Comparison between the mean proportions of cell types predicted by
proportions of cell types obtained experimentally (Test Exp) for the conditi

Colored bars show the times at which the CHIR (purple) or FGF (red) were added and

simulations of the initial model (Initial Sim) and the refined model (refined Sim) and the
ons in (A). Colors correspond to cell identities as detailed. For the pulsing experiments,
(legend continued on next page)
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Refined model accurately recapitulates

experimental data

To test the model and determine the value of refining the fit, we
took advantage of the model to design experiments. Simulations
testing the effect of alternating periods of CHIR induction with
periods of no CHIR suggested that the most informative results
were obtained when cells were induced into the transition state
by exposure to CHIR for 12 h at D2 and then subjected to either
1 or 2 pulses comprising 3 h with no CHIR followed by 3 h CHIR.
After the pulses, cells were kept in continuous CHIR (Figure 5A).
Simulations of the single pulse predicted a mixture of anterior
and posterior fates at D5 (Figure 5B, Initial Sim). By contrast, sim-
ulations of the double pulse predicted approximately 50% of the
cells would adopt an AN identity and almost no cells would
remain CE at D5 (Figure 5B, Initial Sim). That is, the model pre-
dicted that 3 h of no CHIR and no FGF would be sufficient for
cells to become AN and that two 3 h pulses of no CHIR condi-
tions would be sufficient for CE cells to become PN. Moreover,
the model predicted that the transitioning population (Tr) would
be present at day 3 under both pulsing conditions.

We performed these two experiments (Figure 5B, Test Exp) as
part of the test experimental series. As expected, we observed
that the transitioning population was present at D3 in both con-
ditions. At later days the experimental data differed from our pre-
dictions. First, few cells adopted an AN identity, and second, a
substantial CE population remained throughout D3.5 to D5.
The continued presence of CE cells at D5 was consistent with
the idea that CE represents an attractor in the dynamical land-
scape and it pointed to the initial fitting underestimating its sta-
bility. The discrepancy between simulations and experiments
prompted us to refine the model fit.

To this end, we included the data from the pulsing conditions
together with the reference set of conditions to retrain the model
(see Methods S1 Section 6 for details). Adjusting these parame-
ters markedly improved the performance of the model (Figures
5B and 5D, Refined Sim). The AN population under the two pulse
conditions was almost non-existent and the CE population was
increased, matching the experimental data. Data from CHIR 2-
2.5 condition that was not used in the training was used as a vali-
dation and showed a good agreement with the experimental
data. Comparison of the refined landscape (Figure 5E) with the
initially fitted landscape (Figure S3) revealed that the CE attractor
did not bifurcate under no CHIR + FGF conditions and was very
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close to bifurcation under no CHIR + No FGF conditions allowing
cells to remain in that area for longer. Moreover, the saddle point
separating the AN attractor from the rest of the landscape had
moved closer to the AN attractor, increasing the amount of
time necessary for cells to commit to the AN fate under no
CHIR + No FGF conditions.

We conclude that in all conditions, the CE attractor is close to
its bifurcation point. As a result, when it is a genuine attractor, its
basin is shallow, hence it is easy for noise driven fluctuations to
allow a cell’s trajectory to escape and proceed downhill to the
PN or M attractors (Video S2). Thus, we see a gradual loss of
CE cells at a roughly constant rate per unit time.

The fitted parameterized landscape provides insight into the
capacity for cells to revert to a previous state: in developmental
biology terminology the commitment of cells (Waddington,
1957). The model parameters determined by the fit mean that
combinations of FGF and WNT signaling produce a constrained
set of landscapes. This applies not just to the signal combina-
tions used in the experiments but other reasonably conceivable
combinations. This constraint means that certain transitions are
not possible. For example, once cells have transitioned to the AN
state, this is irreversible, as this attractor is deep and no bifurca-
tion is allowed that destroys this state, thus cells are committed
to AN and can no longer become CE in response to WNT
signaling (Video S4) (Metzis et al., 2018). Similarly, the bifurcation
of the EPI attractor in response to CHIR provides insight into the
inability of CHIR + FGF inhibition with PD to revert epiblast cells
to the ESC state (Video S3) (Guo et al., 2009; Ying et al., 2008).

Moreover, the model predicted a landscape for no CHIR with
PD (Figure 5E, top right), a condition not used in the experiments
(Figure 7). The model can also be used to predict the effect of
different timings of signal changes (Figure 5) and extrapolated
to different concentrations of signals (Figure 6).

Identification of the dose-response curve for CHIR
concentration

To investigate how the balance between M and PN was
controlled in the second decision, we performed dose-response
experiments with CHIR after D3. We first simulated the model
assuming a linear relationship between the effective CHIR signal
level and CHIR concentrations (Figure 6). Experimental results
suggested a good correspondence for the low concentration
(0.5 uM, 10% of saturated), but larger differences were evident

substantial differences were observed between the predictions of the initially fitted model and the experimental data. After using these experimental data together
with the reference set to refine the model, the agreement between simulation results and experimental data was improved.

(C) Details for the 3 experimental conditions used to compare the accuracy between the initial model and the refined model. Colored bars show the times at which
the CHIR (purple) or FGF (red) were added and removed from the medium.

(D) Comparison of simulations from the initial model and refined model. The refined model performed better at predicting the outcome of short CHIR duration
experiments (C). This panel shows the experimental variation between the initial and test experimental series with, for example, a higher proportion of anterior
cells in CHIR 2-2.5. A detailed analysis of the goodness of fit is provided in Methods S1 Section 6.

(E) The landscapes produced by different combinations of signals are portrayed in the table. The changes in the landscape that result from different signal
combinations arise by bifurcations of attractors and flips in dynamical trajectories (unstable manifolds) of the parameterized landscape family. Note that the
landscape corresponding to no CHIR+PD (top right) is an extrapolation of the fitting and not based directly on data, it therefore represents an untested prediction
of the model (see Figure 7). Comparison with the initially fitted landscape (Figure S3) revealed that the CE attractor did not bifurcate under no CHIR + FGF
conditions and was closer to the bifurcation point under no CHIR + No FGF conditions. In general, the CE attractor was more stable after the refitting. Moreover,
the saddle point separating the AN attractor from the rest of the landscape had moved closer to the AN attractor, increasing the amount of time necessary for cells
to commit to the AN fate under no CHIR + No FGF conditions. Colors correspond to cell identities as detailed. Average values from parameter distributions were
used for the plot: no CHIR + FGF (—0.32, 0.92, —1.48, 0.18), CHIR + FGF (0.60, 0.64, —1.3, —0.51), CHIR + PD (—1.95, —4.81, —1.4, —0.0017), and corresponding
linear combinations.
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Figure 6. Incorporating the dose response to WNT signaling
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(A) Three experimental conditions were designed to assess how the balance between PN and M fates are affected by CHIR concentration. Colored bars indicate
the times at which cells were exposed to CHIR (purple) and FGF (red). The CHIR concentration between day (D)2-3 was saturated (5pM). The intensity of shading
indicates the concentration of CHIR used between D3-D5: high (2.5uM, 50% of saturated), medium (1.7uM, 30% of saturated), or low (0.5uM, 10% of saturated).
(B and C) Comparison between the mean proportions of cell types predicted by simulations of the unrefined model (Sim [Line DR]) and the model refitted to the
CHIR dose-response data (Sim [Fit DR]), with the proportions of cell types obtained experimentally (experiment). A detailed analysis of the goodness of fit is
provided in Methods S1 Section 6. Colors correspond to cell identities as detailed.

(D) Landscapes for different CHIR concentrations. The stability of the CE attractor increases with CHIR concentration and the unstable manifold from the CE

saddle flips from PN to M at ~1.7uM CHIR.

(E) Fitted sigmoidal dose-response curve compared with the linear effect used before refinement.

for higher concentrations (2.5 uM, 50% of saturated) with a dif-
ference of 40% in PN, overestimating the CE and M proportions.

These results suggested that the model needed to be further
refined to account for the dose-response effects of CHIR concen-
tration. We tested whether the addition of a sigmoidal dose-
response curve improved the model performance. For the fitting
of the dose-response effect, we kept the distribution of all other
parameters the same and fit the parameters of the sigmoidal
curve. This substantially improved model performance. Although
the half-response parameter did not produce a clear distribution,
suggesting that additional concentrations would be necessary for
a precise estimation of the dose-response curve, the estimation
of cell fates in response to both 1.7 uM (30% of saturated) and
2.5 uM were close to the empirical data.

Testing the geometry of the landscape

Having fit, refined, and validated the landscape, we set out to
test its accuracy and investigate its implications by identifying
predictions for which we had not previously analyzed experi-
mental data.

First, we noted that, in contrast to the EPI attractor that bifur-
cates with the saddle connected to the CE attractor in response
to FGF + CHIR, the AN attractor was not destroyed by the addi-
tion of FGF + CHIR—a saddle remains separating AN and CE
(Figure 5E). This predicted that once cells had committed to
the AN identity, they would remain anterior and not adopt a CE
identity after the addition of CHIR (Figure 7Ba). We tested this
hypothesis by adding FGF + CHIR at D4 to cells that had adop-
ted an AN identity. In the standard AN condition (no CHIR + FGF
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Figure 7. Quantitative predictions test the accuracy of the landscape

(A) Details of the experimental condition used to assess the bifurcation of the AN attractor. WNT and FGF are introduced at later time points to challenge the
commitment to AN.

(B) (Ba) Mean proportions of cell types predicted by simulations for the condition indicated in (A). Colors correspond to cell identities as detailed. The model
predicts that cells that have reached AN identity remain in this state if subsequently exposed to CHIR and FGF. (Bb) Experimental data supports the prediction as
AN cells retain high levels of OTX2 after CHIR induction ([Bb] and Methods S1 Section 7). Colors correspond to cell identities (Figure 3B). Cells with a low
probability of belonging to any cell type were considered transitioning cells (UT) and labeled in yellow.

(C) Part of the landscape being tested in (A) and (B).

(D) Details of three experimental conditions used to assess the destabilization of CE by the effect of PD with no CHIR.

(E) Comparison between the mean proportions of cell types predicted by the model (simulation) and the experimentally observed proportions of cell types
(experiment). A detailed analysis of the model performance is provided in Methods S1 Section 7. The data confirm the destabilization of the CE attractor in PD
conditions compared with control conditions and supports the memory effect of CHIR showing more CE cells for longer CHIR induction durations. Moreover, the

effect of retinoic acid (RA; CHIR2-4 RA4-5) is also accurately recapitulated by simulating the inhibition of FGF signaling in the model.

(F) Part of the landscape being tested in (D) and (E).

D0-3), cells remained anterior in response to addition of FGF +
CHIR at D4 as indicated by the high levels of expression of the
marker OTX2 at D5 (Figure 7Bb). These results were consistent
with the constructed landscape, confirming that the saddle
separating AN from CE does not bifurcate away in response to
FGF + CHIR, and indicated that once EPI cells are committed,
they remain anterior.

Second, because the landscapes define a family parametrized
by two signals (CHIR and FGF) they include a hypothesized land-
scape for no CHIR + PD conditions, even though none of the
datasets used to construct the model corresponded to this con-
dition (Figure 5E, top right). In this case, the model predicts that,
in the absence of WNT, the inhibition of FGF signaling results in a
further destabilization of the CE attractor and an expansion of the
PN attractor (Figure 7F). We tested this by removing CHIR and
adding the FGF inhibitor, PD, to cells that had adopted a CE
identity in response to different durations of CHIR exposure.
The prediction was that cells in the CE attractor at the time of
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CHIR removal would transition to PN, while cells that had already
adopted an M identity would remain in this state. Consistent with
these predictions, the removal of CHIR and inhibition of FGF
signaling after 24h (CHIR 2—3 + PD 3-4) resulted in a moderate
increase in the PN population compared with control conditions.
Maintaining the CHIR for 36h (CHIR 2—3.5 + PD 3.5-4.5) resulted
in a marked increase in PN population at the expense of CE iden-
tity compared with control conditions (Figure 7D), whereas the M
population was less affected. This observation supports the idea
that the CE represents a relatively shallow attractor that is main-
tained by CHIR signaling and destabilized by the removal or inhi-
bition of FGF.

In the embryo, retinoic acid (RA) emanating from the somites,
is proposed to inhibit FGF signaling in differentiating CE cells to
promote neural differentiation (Diez del Corral et al., 2003). We,
therefore, compared the effect of RA addition with the effect of
FGF inhibition. The addition of RA after 24 h of CHIR (CHIR
2-3 + RA 3-4) or 36 h (CHIR 2—-3.5 + RA 3.5-4.5) resulted in
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almost identical proportions of cell types as obtained for the
equivalent experiments with PD (Figure S4). Moreover, we also
predicted that if cells were exposed to CHIR from D2-4, the
memory effect of CHIR would result in the maintenance of a
CE population at D5 even after the addition of PD or RA. Indeed,
exposure of cells to RA after 48 h of CHIR induction (CHIR 2—4 +
RA 4-5) agreed with model predictions, with a large number of
cells adopting M identity by D5. In these experiments a substan-
tial proportion of cells remains CE at 24 h after removal of CHIR
and addition of RA, consistent with the memory effect of CHIR
hypothesized for the construction of the model.

Taken together, the results provide a quantitative model for the
differentiation of neural and mesodermal cells from pluripotent
progenitors that accurately predicts the effect of signals on the
proportions of cell types generated. Moreover, the quantified
landscape offers an intuitive visualization of the differentiation
process that highlights the distinctions between two types of de-
cisions (binary choice and binary flip) that would be obscured in
more complex gene-centric models.

DISCUSSION

It has become increasingly easy to control cell fate and to
generate quantitative data, raising the prospect of predictive en-
gineering of organs and tissues (Kim et al., 2020; Shiet al., 2017).
To support this endeavor, quantitative models that assimilate
data and represent the successive steps in development are
needed. Models are commonly constructed around genes and
their interactions, typically defined with mass action kinetics,
but their complexity and the large number of parameters
involved can limit the scope of such models and obscure under-
lying decision mechanisms. The Waddington landscape meta-
phor is an appealing simplification (Waddington, 1957), yet until
recently it lacked both a mathematical foundation and
meaningful engagement with data. We demonstrate an
approach to construct, parameterize, and analyze dynamical
landscapes applicable to any system with discrete quantifiable
states (see Methods S1 Section 8 for a description of the general
procedure). We show that it makes specific and testable
quantitative predictions as well as providing a visualization of
the developmental process that offers insight into the underlying
mechanisms. We emphasize that the modeling strategy we have
developed allows the targeted exploration of specific features of
a cellular differentiation process allowing the design of an
optimized combination of experimental conditions. This work re-
vealed two distinct strategies by which cells decide between one
of two fates. We propose that they represent archetypes for
developmental decisions that play a general role in develop-
mental dynamics.

Developmental transitions are represented by low-
dimensional dynamics

Gene network models and real cellular systems develop by suc-
cessive transitions among a small panel of fates, so the mathe-
matics of dynamical systems and catastrophe theory can be
applied (Arnold et al., 1994; Guckenheimer et al., 2013; Thom,
1969). Moreover, there is formal mathematical theory for such
systems that reflects, extends, and clarifies Waddington’s pic-
ture (Rand et al., 2021). This theory indicates that even when

¢? CellPress

the state space (gene or protein expression) is high dimensional,
developmental transitions comprise the simplest saddles (those
with one-dimensional unstable manifolds) and their attractors.
Consequently, the topology and behavior of such models can
be represented in two dimensions, so that it is conceptually
meaningful to work in the low-dimensional space and assert
that relevant biology takes place on a two-dimensional manifold
(Corson and Siggia, 2017). The final crucial step is to make the
model quantitative by fitting a rich set of its summary statistics
to those of the data. This links the powerful qualitative theories
to quantitative models and provides an intuitive but rigorous
means to analyze developmental dynamics.

We applied these ideas to the differentiation of ESCs in
response to two signals, WNT and FGF, that together direct dif-
ferentiation into precursors of neural and mesodermal tissues via
intermediates that have received prior study (Blassberg et al.,
2020; Gouti et al., 2014; Tsakiridis et al., 2014; Wymeersch
et al.,, 2021). This system has the virtue that cell identity is
controlled by external signals, hence can be modeled without
the complexity of cell interactions. Landscape models describe
the cells as they transition between valleys in the Waddington
metaphor and the most informative data are obtained during
transitions. We show that quantitative data using just five molec-
ular markers and a carefully designed array of conditions and
times was sufficient to define the cellular states and obtain infor-
mative summary statistics: the proportions of cells of a given
type at each time point. This information was sufficient to identify
the underlying geometrical model. The fixed points of the model
were abstract and acquired meaning when gene expression pat-
terns were related to in vivo experiments. The morphogens con-
trol the basins of attraction of the fixed points and ultimately the
saddle node bifurcations or flips that define cellular decisions. All
the relevant cellular decisions could be captured in two dimen-
sions. This strategy for constructing models of cellular differenti-
ation is also compatible with single-cell transcriptome analyses
of tissue development that simultaneously profile thousands of
genes (Schiebinger et al., 2019; Tanay and Regev, 2017) as
long as the data are sufficient to identify the discrete cell states
and cell fate transitions of the developmental process.

Quantitative descriptions of experimental embryology

The results support the notion that cell states correspond to
attractors of a dynamical system. For the EPI, AN, PN, and M
states, their assignment as attractors was unambiguous and
the differentiation of cells between states involved bifurcations
of attractors. For CE, the results were more subtle and revealing.
For some morphogen combinations, the CE state appeared as
an attractor, albeit a shallow one with a relatively small basin of
attraction close to bifurcation, while for other morphogen combi-
nations, the CE state had bifurcated away. The consequence of
the shallowness of the attractor is a gradual leakage of cells from
the CE state and this, in contrast to the bifurcation of an attractor,
explains the transitory nature of the CE state. Cells leave the CE
attractor by jumping over a saddle into the basin of a different at-
tractor. This observation not only illustrates the subtlety of the
method but also provides an explanation for the progressive
elaboration of the anterior-posterior axis of vertebrate embryos
(Henrique et al., 2015; Wymeersch et al., 2021). This process in-
volves the production of trunk mesoderm and spinal cord over an
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extended period of developmental time from bipotential progen-
itors (CE) located at the tail end of the elongating body. Ensuring
the CE state is poised close to bifurcation allows the constant
differentiation of a fraction of cells to neural and mesodermal tis-
sue while retaining an uncommitted progenitor population.

The model we constructed terminates in one of three fates:
mesoderm, AN, or PN. Cells in these states are committed,
they cannot leave these attractors and remerge on our fate
plane, but they are not endpoints as cells continue to differen-
tiate. We envision that longer differentiation trajectories could
be constructed, branch by branch, with the modular and hierar-
chical property of the models facilitating the gradual elaboration
of the full differentiation tree. By fitting and refining the saddles
and attractors as they move in response to extrinsic signals,
such models generate quantitative predictions and suggest
complex temporal stimuli that might stabilize or disrupt popula-
tions of cells in the dynamical landscape. In this way, landscape
models delineate phenomenological features of experimental
embryology in quantitative form.

Two archetypal decision mechanisms

The landscape that resulted from our analysis comprises two
sub-landscapes. These are generic in the sense that they occur
naturally in dynamical systems without any special conditions
and when they occur, they are structurally stable and robust to
misspecification or perturbation of the dynamical system. Each
encodes a fundamentally different type of binary decision. For
the AN-EPI-CE decision, the data support the notion that the
EPI state is destabilized by collision of a saddle point between
it and either the CE or AN attractor. After either bifurcation, the
saddle separating the EPI attractor from the alternative fate re-
mains intact. The result is an all-or-nothing choice that commits
cells to a fate. This agrees with previous experimental observa-
tions that epiblast cells commit to an anterior or posterior identity
prior to acquiring a neural fate (Metzis et al., 2018). Since the
overall effect of this landscape is that signaling results in all cells
in the EPI state choosing and committing to either the CE or AN
state, we call this landscape the binary choice landscape.

The decision for the differentiation of CE to either PN or M is
different. The landscape indicates that the proportion of PN
and M cells generated in response to different amounts of
WNT signaling is a consequence of the location of the unstable
manifold of the saddle that separates the CE attractor from PN
and M. For prolonged and high CHIR conditions, the escape
route connects to the M attractor, whereas in the absence of
WNT signaling it flips to PN. For intermediate conditions sto-
chasticity produces a mixed outcome with a progressive in-
crease in the ratio of M to PN as WNT signaling increases.
Because the flip in the unstable manifold is the essential dynam-
ical phenomena controlling the allocation of cells, we call this the
binary flip landscape. Previously, a pitchfork bifurcation had
been postulated for this transition (Steventon and Martinez Arias,
2017). However, in contrast to our landscapes, this is not generic
but only occurs with an additional constraint equivalent to sym-
metry between M and PN and it is reversible such that cell states
are only maintained if signaling is maintained.

The results help clarify the idea of cell commitment (Barresi
and Glibert, 2020; Waddington, 1957), by explaining when cells
that have escaped a basin of a bifurcated attractor can or cannot
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be recaptured by reversing the signal and reintroducing the at-
tractor. For the EPI to CE transition, recapture is possible for a
limited time after which they are committed to the transition.
For the EPI to AN transition, once cells have entered the AN state
they cannot escape because the AN attractor never bifurcates
away. In this view, therefore, commitment becomes a dynamical
property of the landscape.

Theoretical considerations (Rand et al., 2021) indicate that
there are relatively few generic three-attractor landscapes.
Thus, the binary choice and binary flip landscapes are likely to
be encountered repeatedly in developmental decisions, in
particular, in the common situation where a progenitor chooses
between two alternative fates (Wagner and Klein, 2020). More-
over, as we show here, these landscapes can be linked together
to provide an ordered hierarchy that accounts for a differentia-
tion pathway comprising multiple decisions. Together this leads
us to suggest that the binary choice and binary flip landscapes
represent design archetypes that underpin cellular decisions
throughout embryonic development.

Outlook

In our approach, we did not fit flow-cytometry data directly to the
dynamical variables but instead relied on the assignment of cells
to discrete fates. This assignment is non-trivial and may be
ambiguous in some systems. We sampled the population
frequently in time to capture the transitions among the fates in
the topological model and, thus, obtained quantitative predic-
tions about what matters most, the discrete cell states. A future
goal will be to develop tools that directly link gene expression
measurements and detailed gene centered models to landscape
models especially in order to detect the transitions in detail. The
minimal spatial organization in the differentiating stem cell col-
onies, meant only the response of individual cells to exogenous
signals needed to be considered. To apply these models to cells
of an intact embryo, we would surmise that the cell intrinsic land-
scape remains the same, but the spatial-temporal behavior of
the morphogens would need to be measured or inferred. To
probe such models, it will be necessary to perturb signaling
pathways with sufficient temporal resolution to catch cell fate
transitions, experimental manipulations that do not control time
are manifestly less useful. Thus, one can hope to reconstruct
development in space-time analogous to the reconstruction of
differentiation from single-cell expression data (e.g., Karaiskos
et al. 2017; Nitzan et al. 2019) but in a way that provides quanti-
tative predictions and insight into the underlying mechanisms.
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Antibodies

Mouse monoclonal anti-SOX2
Goat polyclonal anti-OTX2
Rabbit monoclonal anti-CDX2
Goat polyclonal anti-TBX6
Sheep polyclonal anti-FOXC2
Mouse monoclonal anti-SOX1,
Alexa Fluor 647 conjugated
Mouse monoclonal anti-SOX2,
BD Horizon V450 conjugated
Mouse monoclonal anti-SOX1,
PerCP-Cy5.5 conjugated
Mouse monoclonal anti-CDX2,
PE conjugated

Goat polyclonal anti-Brachyury,
APC conjugated

Santa Cruz Biotechnology

R and D Systems
Abcam

R and D Systems
R and D Systems
BD Biosciences

BD Biosciences

BD Biosciences

BD Biosciences

R and D Systems

Cat# sc-365823, RRID:AB_10842165
Cat# AF1979, RRID:AB_2157172
Cat# ab76541, RRID:AB_1523334
Cat# AF4744, RRID:AB_2200834
Cat# AF6989, RRID:AB_10973139
Cat# 562224, RRID:AB_11154034

Cat# 561610, RRID:AB_10712763

Cat# 561549, RRID:AB_10694879

Cat# 563428, RRID:AB_2738198

Cat# IC2085A, RRID:AB_2891298

Chemicals, peptides, and recombinant proteins

LIF

LGK974

CHIR99021

bFGF

PD0325901

Retinoic Acid

Alexa Fluor 647 Antibody Labelling Kit
Alexa Fluor 488 Antibody Labelling Kit

Merck

Cayman

Axon Medchem
Peprotech
Axon Medchem
Merck
ThermoFisher
ThermoFisher

ESG1107
14072
1386
100-18B
1408
R2625
A20186
A20181

Experimental models: Cell lines

HM1-TetON

ECACC

Serafimidis et al., 2008

Software and algorithms

Fiji Schindelin et al., 2012 http://fiji.sc/

FACSDiva Becton Dickinson https://www.bdbiosciences.com/
en-eu/products/software/instrument-
software/bd-facsdiva-
software#Overview

R R Foundation https://www.R-project.org/.

flowCore Hahne et al., 2009 https://www.bioconductor.org/
packages/release/bioc/html/
flowCore.html

MATLAB The MathWorks Inc. https://mathworks.com/products/
matlab.html

Other

Fortessa flow cytometer

High-throughput sampler
Clustering and fitting Code

Becton Dickinson

Becton Dickinson
This paper

https://www.bdbiosciences.com/
en-in/products/instruments/flow-
cytometers/research-cell-
analyzers/bd-Isrfortessa

N/A

https://github.com/meritxellsaez/
VTD_Landscape_Model
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, James
Briscoe (James.Briscoe@crick.ac.uk).

Materials availability
This study did not generate new unique reagents

Data and code availability
® The data reported in this paper will be shared by the lead contact upon request.
@ All original code has been deposited at https://github.com/meritxellsaez/VTD_Landscape_Model and is publicly available.
® Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
The XY mouse ES HM1 TetON line (Serafimidis et al., 2008) was used for all experiments. ES cells were maintained at 37°C with 5%
carbon dioxide (CO,) and routinely tested for mycoplasma.

METHOD DETAILS

ES cell culture and differentiation

All mouse ESCs were propagated on mitotically inactivated mouse embryonic fibroblasts (feeders) in DMEM knockout medium sup-
plemented with 1000U/ml LIF (Chemicon), 10% cell-culture validated fetal bovine serum, penicillin/streptomycin, 2mM L-glutamine
(GIBCO). To obtain EPI and CE, ESCs were differentiated as previously described (Gouti et al., 2014) with the addition of the porcu-
pine inhibitor LGK974 (Cayman) in all culture medium. Briefly, ESCs were dissociated with 0.05% trypsin, and plated on tissue-cul-
ture treated plates for two sequential 20-minute periods in ESC medium to separate them from their feeder layer cells which adhere to
the plastic. To start the differentiation, cells remaining in the supernatant were pelleted by centrifugation, counted, and resuspended
in N2B27 medium containing 10ng/ml bFGF (Peprotech) + 5uM LGK974, and 50,000 cells per 35mm gelatin-coated CELLBIND dish
(Corning) were plated. N2B27 medium contained at 1:1 ratio of DMEM/F12:Neurobasal medium (GIBCO) supplemented with 1xN2
(GIBCO), 1xB27 (GIBCO), 2mM L-glutamine (GIBCO), 40mg/ml BSA (Sigma), penicillin/streptomycin and 0.1mM 2-mercaptoethanol.
To generate epiblast (Epi) cells, the cells were grown for 72 hrs in N2B27 + 10ng/ml bFGF + 5uM LGK974. To generate caudal epiblast
(CE), cells were cultured with N2B27 + 10ng/ml bFGF + 5uM LGK974 for 48 hrs, then N2B27 + 10ng/ml bFGF + 5uM LGK974 + 5uM
CHIR99021 (Axon) (FLC-medium) for a further 24hrs. CE were differentiated to posterior neural progenitors (NP) by removal of bFGF
and CHIR from culture medium at 72hrs, and to paraxial mesoderm (M) by removal of bFGF and maintenance of 5uM CHIR from
72hrs onwards. When investigating the role of endogenous FGF production either the MEK inhibitor PD0325901 (500nM) was em-
ployed to inhibit downstream FGF signalling or retinoic acid (10nM) was added to inhibit expression of FGF. For all experiments
described, cells were cultured for 48hrs before changing medium. Medium changes were then made every 12 hours.

Immunofluorescence

Cells were washed in PBS and fixed in 4% paraformaldehyde in PBS for 15min at 4 C, followed by two washes in PBS and one wash
in PBST (0.1% Triton X-100 diluted in PBS). Primary antibodies were applied overnight at 4°C diluted in filter-sterilized blocking so-
lution (1% BSA diluted in PBST). Cells were washed 3x in PBST and incubated with secondary antibodies at room temperature, for
1hr. Cells were washed 3x in PBST, incubated with DAPI for 5 min in PBS and washed twice before mounting with Prolong Gold
(Invitrogen). Cells were imaged on a Zeiss Imager.Z2 microscope using the ApoTome.2 structured illumination platform. Z stacks
were acquired and represented as maximum intensity projections using Fiji software (Schindelin et al., 2012). The same settings
were applied to all images. Immunofluorescence was performed on a minimum of 2 biological replicates, from independent exper-
iments. Primary antibodies used: SOX2 (Mouse, Santa Cruz sc-365823), OTX2 (Goat, R&D AF1979), CDX2 (Rabbit, Abcam ab76541),
TBX6 (Goat, R&D AF4744), FOXC2 (Sheep, R&D AF6989). Secondary antibodies raised in donkey coupled to AlexaFluor- 488, 568, or
647 fluorophores (Molecular Probes) were used at 1:1000 dilution throughout. SOX1 was labelled with AlexaFluor-647 conjugated
antibody (Mouse, BD 562224).

Intracellular flow cytometry

Cells were washed in PBS and dissociated with minimal accutase (GIBCO). Once detached cells were collected into 1.5mL Eppen-
dorf tubes by dissociating in N2B27 and pelleted. Cells were resuspended in PBS, pelleted and resuspended in 4% paraformalde-
hyde in PBS. Following 15min incubation at 4 C, cells were centrifuged, resuspended in PBS, and stored at 4'C for future analysis.
On the day of flow cytometry, cells were counted and equal cell numbers were transferred for staining in v-bottom 96 well plates.
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Samples were pelleted and resuspended in 50uL FACS block (PBS + 0.2% Triton + 3% BSA). After 10min incubation at room tem-
perature antibodies were added to the sample and incubated overnight at 4 C. Cells were pelleted at 700rcf for 5min and resus-
pended in 50uL FACS block. One additional wash was performed before acquisition on a Fortessa flow cytometer (BD) equipped
with a high-throughput sampler using FACSDiva software. Control samples were labelled with individual fluorophore-conjugated an-
tibodies to compensate for fluorescence spillover. Commercially available antibodies used were SOX2-V450 (Mouse, BD-561610),
SOX1-PerCP-Cy.5.5 (Mouse, BD 561549), CDX2-PE (Mouse, BD 563428), BRA-APC (Goat, R&D IC2085A). Anti TBX6 (Goat, R&D
AF4744) was conjugated to AlexaFluor-488, and anti FOXC2 (Goat, R&D AF6989) was conjugated to AlexaFluor-647 using Molecular
Probes Antibody Labelling Kit (Invitrogen/ ThermoFisher). When labelling OTX2, samples were incubated with unconjugated OTX2
antibody (Goat, R&D AF1979) for 1 hour at room temperature in FACS block. Following 2 washes with FACS block AlexaFluor-
488 anti-goat antibody (1:1000) was included in overnight incubations with fluorescently conjugated mouse antibodies.

Flow cytometry data pre-processing

Compensation was performed prior to data acquisition in FACSDiva. FCS files were imported into the R programming environment
using the ‘flowCore’ package (Hahne et al., 2009). Individual cells were gated using a standard two-step gating strategy with an addi-
tional gate to remove outlier events with especially low fluorescence values as shown in (Figure S5). A custom R script was used to
remove outlier events with fluorescent values exceeding a 3-sigma threshold from the mean of the average calculated across all sam-
ples of a given experiment. Raw fluorescence-intensity values were used in all downstream analysis and graphical representations of
the data.

Landscape models
See Methods S1

Clustering
See Methods S1

Details of the mathematical model
See Methods S1

Fitting algorithm
See Methods ST

Fitting results
See Methods S1

Refining the model
See Methods S1

Predictions
See Methods S1

General procedure
See Methods S1

Cell Systems 12, 12-28.e1-€3, January 19, 2022 e3




	Statistically derived geometrical landscapes capture principles of decision-making dynamics during cell fate transitions
	Introduction
	Results
	An in vitro system to quantify cell fate decisions
	Clustering flow-cytometry data identifies landscape attractors
	Two distinct binary decision landscapes
	Fitted landscape captures cell fate decisions
	Refined model accurately recapitulates experimental data
	Identification of the dose-response curve for CHIR concentration
	Testing the geometry of the landscape

	Discussion
	Developmental transitions are represented by low-dimensional dynamics
	Quantitative descriptions of experimental embryology
	Two archetypal decision mechanisms
	Outlook

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Cell lines

	Method details
	ES cell culture and differentiation
	Immunofluorescence
	Intracellular flow cytometry
	Flow cytometry data pre-processing
	Landscape models
	Clustering
	Details of the mathematical model
	Fitting algorithm
	Fitting results
	Refining the model
	Predictions
	General procedure




