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Abstract  

Objective: Compared to mechanical signals that are used for estimating human limb motion 

intention, non-invasive surface electromyography (sEMG) is a preferred signal in human-robotic 

systems. However, noise interference, crosstalk from adjacent muscle groups, and an inability to 

measure deeper muscle tissues are disadvantageous to sEMG’s reliable use. In this work, we 

hypothesize that a fusion between sEMG and in vivo ultrasound (US) imaging will result in more 

accurate detection of ankle movement intention.  

Methods: Nine young able-bodied participants were included to volitionally perform isometric 

plantarflexion tasks with different fixed-end ankle postures, while the sEMG and US imaging data 

of plantarflexors were synchronously collected. We created three dominant feature sets, sole 

sEMG feature set, sole US feature set, and sEMG-US feature fusion set, to calibrate and validate 

a support vector machine regression model (SVR) and a feedforward neural network model 

(FFNN) with labeled net moment measurements.  

Results: The results showed that, compared to the sole sEMG feature set, the sEMG-US fusion 

set reduced the average net moment prediction error by 35.7% (p<0.05), when using SVR, and 

by 21.5% (p<0.05), when using FFNN. In SVR, the sole US feature set reduced the prediction error 

by 24.9% (p<0.05) when compared to the sole sEMG feature set. In FFNN, the sEMG-US fusion 

set reduced the prediction error by 28.2% (p<0.05) when compared to the sole US feature set.  

Conclusion: These findings indicate that the combination of sEMG signals and US imaging is a 

superior sensing modality for predicting human plantarflexion intention and can enable future 

clinical rehabilitation devices. 
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Abbreviations and Acronyms 

sEMG Surface electromyography 

US Ultrasound 

LG Lateral gastrocnemius 

MG Medial gastrocnemius 

SOL Soleus 

PA Pennation angle 

FL Fascicle length 

SVM Support vector machine 

SVR Support vector machine regression 

FFNN Feedforward neural network 

IRB Institutional Review Board 

MVIC Maximum volitional isometric contraction 

RMSE Root mean square error 

PCC2 Squared Pearson correlation coefficient 

MAV Mean absolute value 

ZC Zero crossing 

SSC Slope sign change 

WL Waveform length 

MRMS Moving root mean square 

ROI Region of interest 

ANOVA Analysis of variance 

Tukey’s HSD post-hoc Tukey’s honestly significant difference tests 

𝜂𝜂𝑝𝑝2 Effect sizes 

𝑑𝑑 Cohen’s 𝑑𝑑 

GAS Gastrocnemius 

HNM Hill-type neuromuscular model 

 



1 Introduction 

The human ankle plantar flexor muscles generate a large burst of mechanical power 

during “push-off” to propel the body’s center of mass during locomotor tasks. Weakness or 

dysfunction of the plantar flexor muscles, for example, due to neurological disorders or injuries, 

causes dramatic reductions in this “push-off” power, thereby impairing normal walking and 

increased metabolic energy costs [1]. Recent neurorehabilitation techniques to improve the 

diminished ankle plantar flexors function mainly focus on using powered ankle exoskeletons [2]–

[4] and functional electrical stimulation [5], [6]. To maximize patient benefits from 

neurorehabilitation, the wearers need to be actively involved in the training and effectively 

engaged with the robotic devices. Thereafter, intuitive human-in-the-loop control strategies are 

required to generate efficient and effective assistance for the wearers to optimize specific task 

performance. One representative control strategy, known as assist-as-needed control [7], [8], 

depends on accurately determining volitional human motion intention. Conventional means to 

approximate limb motion intention include mechanical sensors (e.g., force, torque) installed on 

a rigid frame. These exoskeletal sensors are subject to inaccuracies due to an inevitable 

misalignment between the exoskeletal and biological joint centers, thus inducing undesired 

interaction forces [9], [10]. 

In recent decades, non-invasive neuromuscular signals have been investigated to 

estimate human limb motion intention. As a widely used neuromuscular signal, surface 

electromyography (sEMG) measures electrical potentials arising from activated alpha motor 

neurons.  The amplitude and frequency of sEMG signals are positively related to the intended 

muscle activation level [11]. For example, neuromuscular model-based methods or model-free 

calibrations to associate sEMG signals with joint mechanical function (e.g., joint moment [11]–

[13] or angular position [14]) can estimate limb movement intention. This neuromuscular signals-

based limb movement intention detection approach could minimize the interaction between the 

wearable sensor and human joint, avoid the misalignment issue mentioned above, and provide 

the physiological response when investigating volitional limb movement. However, there are 

several shortcomings for sEMG-based human intention detection, such as interference from 

adjacent muscles when capturing EMG signals and an inability to measure deeply-located 



muscles [15], [16]. Alternatively, two-dimensional B-mode ultrasound (US) imaging is another 

non-invasive methodology that overcomes the aforementioned sEMG shortcomings of electrical 

noise and interference due to the direct visualization of the targeted skeletal muscles measured 

from US imaging. US imaging's structural and functional features have been studied to 

understand measured muscle activities and predict human volitional muscle contraction force or 

joint moment. The most frequently used structural features from US images include pennation 

angle (PA) [13], [17], fascicle length (FL) [18], muscle thickness [19], and cross-sectional area [20]. 

Apart from these structural features from US imaging, functional features, including static and 

dynamic image pixel analysis (known as echogenicity and speckle tracking), have also been 

investigated to correlate with muscle or joint mechanical functions [11], [21]–[23].  

Most of the aforementioned sEMG and/or US imaging-related contributions focused on 

a single superficial skeletal muscle, and few studies have investigated the application to 

synergistic superficial and deep skeletal muscles to estimate human joint volitional effort. 

Besides, although neuromuscular signals from sEMG and US imaging have been fused to predict 

ankle joint volitional dorsiflexion moments [11], [13], few studies have investigated ankle joint 

plantarflexion volitional effort by using sEMG and US imaging fusion. The potential benefits of 

combining different neuromuscular signals from plantar flexor muscles, like the improvement of 

human motor intention prediction accuracy, the mitigation of the sEMG-induced interference, 

and the reduction of US imaging-derived feature drift during cyclic muscle contraction, remain 

unexplored. In the current work, our primary goal was to investigate the performance of human 

volitional net plantarflexion moment prediction by using a fusion between personalized sEMG 

dominant features and personalized US imaging dominant features. We used support vector 

machine (SVM) analysis, a popular non-parametric machine learning tool for both classification 

and regression [24], to build the mapping between neuromuscular feature sets and net 

plantarflexion moment. The support vector machine regression (SVR) model with a linear kernel 

function was employed due to its simplicity, computational efficiency, and unique optimal 

solution. We hypothesized that using the calibrated SVR model, the sEMG-US imaging feature 

fusion would reduce the prediction error of the volitional net plantarflexion moment, compared 

to the dominant feature sets from sole sEMG or sole US imaging. We collected synchronized 



sEMG signals and US images from individual plantar flexor muscles that operate at different 

depths (e.g., LG, MG, and SOL). We determined the dominant features from the sEMG signal and 

US images from the correlation analysis between each feature and measured net plantarflexion 

moment. Specifically, three feature sets were established for the SVR model calibration and net 

plantarflexion moment prediction, including an sEMG-US imaging feature fusion set, a sole sEMG 

feature set, and a sole US imaging feature set. Furthermore, the prediction results by using an 

SVR model were compared with those by using a feedforward neural network (FFNN) model.  

2 Materials and Methods 

2.1 Subjects and experimental protocol 

The study was approved by the Institutional Review Board (IRB) at the University of North 

Carolina at Chapel Hill (16-0379). An a priori power analysis of the repeated-measure analysis of 

variance (ANOVA) determined that at n = 9 subjects would have 86.8 % power to detect (p<0.05) 

a difference in the isometric ankle joint moment prediction by using different neuromuscular 

feature sets (i.e., with an moderate effect size of 0.3). This study uses data from nine participants, 

five males and four females (Age: 25.3±5.8 years, Height: 1.74±0.08 m, Mass: 66.8±8.2 kg), 

without any neuromuscular or orthopedic disorders within the last six months. Every participant 

was familiarized with the experimental procedures and signed an informed consent form before 

participating in the experiments.  

The experimental setup for this study is illustrated in Fig. 1 (a). Each participant sat 

comfortably on a dynamometer (Biodex, Shirly, NY, USA), with the right foot secured to the 

dynamometer pedal. A supporting frame stabilized the right thigh to eliminate the contributions 

from proximal muscle groups while performing plantarflexion. The knee flexed to replicate that 

near the push-off phase of walking (~20°). The participants performed three ramped volitional 

isometric plantarflexion at each of five ankle joint postures (from 10° dorsiflexion to 30° 

plantarflexion in 10° increments). The order of those five ankle joint postures was randomly 

chosen for each participant. To elicit a symmetric loading-unloading profile, participants started 

from rest and increased their net plantarflexion moment until the maximum effort to determine 

the maximum volitional isometric contraction (MVIC) within the first 2-second duration. After 



the MVIC, participants returned to rest within the second 2-second duration. Participants 

performed the ramp loading procedure following verbal encouragement to reach MVIC. Before 

data collection, participants briefly practiced the isometric plantarflexion tasks using a real-time 

display of their net ankle moment. The MVIC moment was defined as the peak across the three 

repetitions. We provided the participants with at least one minute for rest between two 

successive contraction trials to avoid muscle fatigue. 

During all trials, a 60 mm linear array US transducer (Echoblaster 128, 7 MHz, Telemed, 

Vilnius, Lithuania) placed over the mid-belly of the right MG recorded B-mode US images at 61 

frames per second through an image depth of 65 mm. This Telemed transducer placement and 

depth also enabled the imaging of the soleus muscle in the same image plane. We attached two 

differential sEMG sensors (Trigno TM Avanti Platform, DELSYS, MA, USA) to the LG and SOL 

muscles to non-invasively measure sEMG signals during plantarflexion. Since the relatively large 

US probe was attached to the MG, the remaining free space was very limited for the sEMG sensor 

setup, so we recorded LG sEMG signals. We recorded the ankle joint net plantarflexion moment 

from the Biodex dynamometer. 

 

Figure 1: Summary of experimental protocol, measurements, and support vector machine regression (SVR) model 

calibration and net plantarflexion moment prediction. (a) Schematic of the experimental setup at five different ankle 

postures where participants performed isometric plantarflexion tasks. A single ultrasound (US) transducer was used 

to image both medial gastrocnemius (MG) and soleus (SOL) muscles with the appropriate probe placement. Two 

surface electromyography (sEMG) sensors recorded the electrical signals from LG and soleus (SOL) muscles. (b) 

Diagram of machine learning models (SVR and FFNN) calibration and evaluation with the calculation of root mean 

squared error (RMSE) and squared Pearson correlation coefficient (PCC2). (c) Diagram of net plantarflexion moment 

prediction and evaluation based on machine learning models. 

 



2.2 Data Acquisition and Processing 

We synchronized signals from the Biodex and sEMG sensors at 1000 Hz using a real-time 

system programmed in LabVIEW (NI PCI 7352, National Instruments, TX, USA). Signals from the 

sEMG sensors were processed by an input module and the main amplifier (Trigno TM Avanti 

Platform, DELSYS, MA, USA) and filtered to the bandwidth between 20 Hz and 450 Hz. Signals 

from the dynamometer torque sensor were filtered using 4th order low-pass Butterworth filter 

with a cutoff frequency of 100 Hz. Besides, we synchronized binary ultrasound signals (i.e., signals 

indicating the start and stop of the collection) from the transducer at 1000 Hz using a waveform 

generator (SDG1025, SIGLENT, Shenzhen, China).  

Five classic time-domain features were extracted from the filtered sEMG signals from 

both GS and SOL muscles, including mean absolute value (MAV), zero crossings (ZC), slope sign 

changes (SSC), waveform length (WL) [16], and moving root mean square (MRMS) [13], and their 

calculations are given by: 
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1
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where L is the moving window length and 𝑥𝑥𝑖𝑖  is the filtered sEMG signal at each sampling instant. 

The window length L is one essential parameter that affects the shapes of sEMG time-domain 

features thus affects the correlation between sEMG time-domain features and net plantarflexion 

moment. For each experimental trial, L was determined by maximizing the squared Pearson 



correlation coefficients (PCC2) between the sEMG time-domain features and the net 

plantarflexion moment. Since the sampling frequency of the sEMG signal is 1000 Hz, we selected 

L increasing from 2 ms to 1000 ms, and the corresponding PCC2 values between each sEMG 

feature and plantarflexion moment were compared for each trial at each ankle joint posture on 

each participant. To balance the variation of L across different sEMG features, different ankle 

postures, different trials, and different participants, a consistent approximation of L for all 

participants was selected as 400 ms. 

Following previously outlined techniques [25], the same investigator tracked all muscle 

PA and FL temporal data using an open-source MATLAB routine that employs an affine extension 

to an optical flow algorithm [26]. As shown in Fig. 2, we defined the fascicle length for one 

representative fascicle in the mid-belly of MG (FLMG) and SOL (FLSOL) from the superficial to the 

deep aponeurosis of each muscle. We defined PA of MG and SOL (PAMG and PASOL) as the angle 

between each muscle fascicle and its corresponding deep aponeurosis. Additionally, we 

determined the echogenicity of the selected MG and SOL muscles by taking the mean echo 

intensity of corresponded ROIs (between 0 to 255, black = 0, white = 255), noted as EchoMG and 

EchoSOL. Echogenicity, as a functional feature of US imaging using static pixel information without 

dynamic tracking performance, represents an averaged visualization change of the ROIs during 

the isometric plantarflexion process. 

 
Figure 2: A typical US imaging B-mode frame for the MG and SOL muscles. Please note that this image is 

cropped to better view muscle features. 



 To summarize the data processing section, for both the gastrocnemius (GAS) and SOL 

muscles, temporal sEMG features and US imaging features were derived as 𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡𝑘𝑘), 𝑍𝑍𝑍𝑍(𝑡𝑡𝑘𝑘), 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡𝑘𝑘), 𝑊𝑊𝑊𝑊(𝑡𝑡𝑘𝑘), 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡𝑘𝑘), 𝐹𝐹𝐹𝐹(𝑡𝑡𝑘𝑘), 𝑃𝑃𝑃𝑃(𝑡𝑡𝑘𝑘), and 𝐸𝐸𝐸𝐸ℎ𝑜𝑜(𝑡𝑡𝑘𝑘). A correlation analysis between each 

temporal neuromuscular feature and the temporal net plantarflexion moment was used to 

determine two dominant features from both sEMG and US imaging signals, then to reduce the 

input dimensions and increase the calculation speed of the SVR model. Before that, the temporal 

US imaging features were linearly interpolated to 1000 Hz, thus guaranteeing the synchronization 

between each temporal neuromuscular feature and the temporal net plantarflexion moment. 

Finally, three feature sets were determined, e.g., sEMG dominant feature set, US imaging 

dominant feature set, and sEMG-US imaging feature fusion set.  

2.3 Model calibration, prediction, evaluation, and statistical analysis 

Although the Hill-type neuromuscular model has been well applied for the biomechanics 

community, it requires many physiological assumptions, complex system optimization, and 

model parameters identification when encountering muscle synergy or co-contraction problems. 

To avoid the physiology-based modeling procedures, both SVR and FFNN models were applied in 

this work. The SVR is, in essence, a non-parametric machine learning method especially aiming 

at samples with limited sizes. Based on the structural risk minimization, the SVR model is believed 

to obtain a globally optimal solution, instead of a local extremum and poor explanation ability 

behind the black box-like in an FFNN model. As shown in Fig. 3, the structure of the applied SVR 

model is similar to a multi-layer FFNN model with three hidden layers, where the number and 

function of each hidden layer are equal to those of the support vectors. The input layers from the 

left to right represent the sEMG dominant feature sets from GAS and SOL muscles, 𝑥𝑥1𝑎𝑎 and 𝑥𝑥2𝑎𝑎, 

the US imaging dominant feature sets from GAS and SOL muscles, 𝑥𝑥1𝑏𝑏 and 𝑥𝑥2𝑏𝑏, and the sEMG-US 

imaging feature fusion set, 𝑥𝑥1𝑎𝑎, 𝑥𝑥2𝑎𝑎, 𝑥𝑥1𝑏𝑏, and 𝑥𝑥2𝑏𝑏. It should be noted that the entire model structure 

of each SVR is adaptively generated directly, which means the number of support vectors is 

determined automatically by the adaptive SVR algorithm.  

Naturally, the complexity of the SVR algorithm is independent of each input layer 

dimension and it is only related to the number of “support vectors” and also the kernel function 



𝜑𝜑(∙), which is selected as a linear kernel in this work for simplification. As described in Fig. 3, the 

input layers of SVR models realize the nonlinear mapping with the help of kernel function, and 

the linear mapping of the output 𝑇𝑇(∙)  is achieved also based on the kernel function. The 

searching procedure of an optimal solution is equivalent to solving the quadratic programming 

problem, which was solved by quadprog function in MATLAB. Parameters of 𝑊𝑊(∙) and 𝐵𝐵(∙) are the 

weight and polarization bias matrices from the feature space to output 𝑇𝑇(∙), respectively, as 

described in Fig. 3.  

 
Figure 3. Support vector machine regression structure with three dominant feature sets from GAS and SOL. 

Correspondingly, the deep FFNN was designed with three hidden layers and one output 

layer with neuron numbers of 5, 10, 5, and 1. The calibration was based on the Levenberg-

Marquardt algorithm to get the optimized weight matrices and bias between every two layers. 

More detailed parameters and calibration procedure settings of the SVR and FFNN models can 

be found in the supplementary file. For each ankle joint posture, the SVR and FFNN models were 

calibrated by the three feature sets separately with data from randomly selected two 

plantarflexion trials. Data of the three feature sets from the remaining trial was used for net 

moment prediction based on the calibrated models. Three performance criteria were used to 

evaluate the SVR or FFNN model-based calibration and prediction of the net plantarflexion 

moment, including root mean square error (RMSE), normalized root mean square error (NRMSE), 

and PCC2, as given below:  
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where 𝑇𝑇𝑖𝑖 denotes each measured net plantarflexion moment, and 𝑇𝑇�𝑖𝑖 denotes each estimated moment 

with different feature sets in the calibration/prediction procedure, respectively. 𝑇𝑇�  denotes the average 

measured net moment, and 𝑇𝑇�  denotes the average estimated net moment with different feature sets in 

the calibration/prediction procedure, respectively. Due to the MVIC deviation among individual 

participants, the NRMSE value can be used to compare the calibration and prediction results showing 

different ranges of fluctuation across individuals. The PCC2 measures the extent of a linear relationship 

between the measured and estimated net moment in both calibration and prediction procedures.  

Shapiro-Wilk parametric hypothesis test was used to determine the normality of the 45 

NRMSE (PCC2) values (1 trial ×  5 ankle postures ×  9 participants) in both calibration and 

prediction by applying those three feature sets, respectively. We performed statistical tests on 

the three groups of NRMSE (PCC2) values in calibration and prediction. According to the Shapiro-

Wilk test results, a one-way repeated-measure analysis of variance (ANOVA) or a Kruskal-Wallis 

test was used to determine if there was a significant difference among those three group’s 

NRMSE (PCC2) values either in calibration or prediction. When the significant main effects were 

identified, post-hoc Tukey’s honestly significant difference tests (Tukey’s HSD) were applied to 

determine the significant difference between every two NRMSE (PCC2) groups out of three. The 

significant difference level was chosen as p<0.05 for all statistical tests. Effect sizes are reported 

as 𝜂𝜂𝑝𝑝2  and Cohen’s 𝑑𝑑  for main effects from ANOVA or Kruskal-Wallis test and pairwise 

comparisons from Tukey’s HSD, respectively.  

3 Results 

3.1 Plantarflexion moment at MVIC as a function of ankle posture 



We observed significant ankle posture-dependent variations in net plantarflexion MVIC 

moment for all participants, as shown in Fig. 4. The results indicate for each individual, the net 

plantarflexion MVIC moment is largest at 10° of dorsiflexion and smallest at 30° of plantarflexion. 

Compared to the neutral ankle posture, plantarflexion MVIC moment averaged between 7.7% 

and 48.8% larger at 10° dorsiflexion and averaged between 5.1% and 26.5%, 7.5% and 40.1%, 

and 12.5% and 62.8% smaller at 10°, 20°, and 30° plantarflexion, respectively. 

  

 

3.2 Dominant neuromuscular features determination 

The results from correlation analysis are shown in Table 1, where the PCC2 between each 

US imaging feature and net plantarflexion moment was calculated 15 times (3 trials × 5 ankle 

postures) for each participant. The reported values represent the average and standard deviation 

among those 15 PCC2 values. The dominant features with the two highest averaged PCC2 values 

are labeled as the bold numbers in Table 1. Apart from FLMG on Sub02 and PASOL on Sub08, all 

other dominant US imaging features on each participant exhibit strong correlations with the net 

plantarflexion moment, with averaged PCC2 values higher than 0.8.  

Table 1: Squared Pearson correlation coefficient (PCC2) values (average ± standard deviation) between each 

US imaging-derived feature and net plantarflexion moment across postures and trials on each participant. 



Bold numbers represent the two selected dominant US features for each participant with the two highest 

PCC2 values.    

Participant 
Squared Pearson correlation coefficients (PCC2) with net plantarflexion moment 

PCC2 - FLMG PCC2 - FLSOL PCC2 - PAMG PCC2 - PASOL PCC2 - EchoMG PCC2 - EchoSOL 

Sub01 0.890 (0.076) 0.956 (0.025) 0.460 (0.250) 0.958 (0.026) 0.531 (0.249) 0.841 (0.050) 

Sub02 0.799 (0.134) 0.891 (0.089) 0.405 (0.346) 0.755 (0.119) 0.392 (0.281) 0.733 (0.186) 

Sub03 0.903 (0.073) 0.961 (0.021) 0.431 (0.335) 0.949 (0.044) 0.476 (0.352) 0.872 (0.129) 

Sub04 0.880 (0.084) 0.921 (0.090) 0.749 (0.150) 0.870 (0.128) 0.246 (0.295) 0.359 (0.308) 

Sub05 0.585 (0.242) 0.869 (0.127) 0.715 (0.152) 0.919 (0.047) 0.469 (0.247) 0.711 (0.216) 

Sub06 0.854 (0.084) 0.892 (0.057) 0.527 (0.262) 0.889 (0.078) 0.766 (0.135) 0.932 (0.054) 

Sub07 0.825 (0.197) 0.635 (0.348) 0.587 (0.179) 0.659 (0.210) 0.724 (0.171) 0.866 (0.118) 

Sub08 0.586 (0.251) 0.863 (0.155) 0.649 (0.294) 0.775 (0.202) 0.389 (0.309) 0.578 (0.324) 

Sub09 0.491 (0.355) 0.718 (0.261) 0.231 (0.222) 0.805 (0.228) 0.467 (0.274) 0.917 (0.083) 

 

For sEMG signals, using the moving window length as 400 ms, the correlation analysis 

between each time-domain feature and net plantarflexion moment was conducted 15 times (3 

trials × 5 ankle postures) for each participant. By comparing the averaged value from the 15 PCC2 

values related to each sEMG time-domain feature, the two dominant features were determined 

as the ZCLG and ZCSOL. The average and standard deviation of those 15 PCC2 values between 

dominant sEMG features and net plantarflexion moment are listed in Table 2. We observed that 

apart from Sub02 and Sub03, all averaged PCC2 values between ZCLG or ZCSOL and net 

plantarflexion moment were higher than 0.8. Besides, the difference between the averaged PCC2 

- ZCLG and the averaged PCC2 - ZCSOL for each participant was modest, which indicates a consistent 

dominant sEMG time-domain feature among different participants. The results from Table 1 and 

Table 2 reveal strong linear correlations between the dominant neuromuscular features and net 

plantarflexion moment.  



Table 2: PCC2 values (Average ± Standard deviation) between each sEMG dominant feature and net 

plantarflexion moment across postures and trials on each participant. Bold numbers represent the two 

selected dominant sEMG time-domain features for each participant with the two highest PCC2 values. 

Participant Sub01 Sub02 Sub03 Sub04 Sub05 Sub06 Sub07 Sub08 Sub09 

PCC2 - ZCLG 
0.885 

(0.040) 

0.693 

(0.132) 

0.775 

(0.111) 

0.825 

(0.072) 

0.867 

(0.079) 

0.887 

(0.041) 

0.901 

(0.037) 

0.914 

(0.044) 

0.931 

(0.020) 

PCC2 - ZCSOL 
0.885 

(0.040) 

0.693 

(0.131) 

0.774 

(0.112) 

0.826 

(0.072) 

0.869 

(0.078) 

0.887 

(0.041) 

0.900 

(0.037) 

0.914 

(0.043) 

0.931 

(0.019) 

From the above results, three feature sets, including the sEMG set (two dominant 

features), US imaging set (two dominant features), and sEMG-US imaging fusion set (four 

dominant features), were determined. The sEMG dominant time-domain features, US imaging 

dominant features, and net plantarflexion moment measurement from one representative trial 

for Sub05 are shown in Fig. 5. The curves in Fig. 5 represent a positive correlation between net 

plantarflexion moment and ZCLG, ZCSOL, and PAMG, respectively, and a negative correlation 

between net plantarflexion moment and FLSOL. Results from other participants also show a 

positive correlation between net plantarflexion moment and PASOL, and a negative correlation 

between net plantarflexion moment and FLMG, EchoMG, or EchoSOL, respectively. 

 
Figure 5: The temporal net plantarflexion moment measurements, dominant sEMG time-domain features, 

and dominant US imaging features at 10° dorsiflexion posture in trial 1 on Sub05. 

3.3 Results of the ankle joint net moment prediction 

From the above results, we could potentially anticipate that more accurate net 

plantarflexion moment prediction could be achieved by fusing dominant features from both 

sEMG signals and US imaging. When evaluating the SVR or FFNN model-based net moment 

prediction, for convenient notation, the RMSE between sEMG feature set-based calibration (or 



prediction) and measured moment, between US imaging feature set-based calibration (or 

prediction) and measured moment, and between sEMG-US imaging fusion-based calibration (or 

prediction) and measured moment were denoted by RMSEsEMG, RMSEUS, and RMSEFusion, 

respectively. Similarly, we also denote PCC2sEMG, PCC2US, and PCC2Fusion for their respective 

calibration and prediction procedures. 

All calibration results are attached to the supplementary file, and the following results 

show prediction performance by using both SVR and FFNN models. Due to the space limitation,  

Fig. 6 only shows the SVR model-based net moment prediction and measured net moment in the 

remaining trial out of those three at the neutral ankle joint posture for all nine participants 

(results at other joint postures are in the supplementary file). In each subplot, the lateral axis 

represents the cycle percentage of the loading and unloading on the dynamometer in the 

prediction trial, while the axial axis represents the net plantarflexion moment. Prediction results 

from other ankle joint postures are similar to those summarized in Fig. 6. In prediction, RMSEsEMG, 

RMSEUS, and RMSEFusion at the five ankle joint postures across all nine participants are 

summarized in Fig. 7. After calculating the PCC2 values and the normalized RMSE values at each 

posture to the corresponded net plantarflexion MVIC moment as shown in Fig. 4 (known as 

NRMSE), the Shapiro-Wilk test results showed that the NRMSE values and PCC2 values across 

ankle postures and participants were normally distributed by using three neuromuscular feature 

sets. The results of ANOVA indicated the NRMSE values in prediction were significantly affected 

by feature sets (main effect, p<0.05, 𝜂𝜂𝑝𝑝2=0.22), as well as the PCC2 values (main effect, p<0.05, 

𝜂𝜂𝑝𝑝2=0.38). The statistical results of the prediction NRMSE values across the different ankle joint 

postures and participants are presented in Fig. 8 (a). By using the sEMG-US feature fusion set and 

US feature set, the net plantarflexion moment prediction NRMSE values were significantly 

reduced by 35.7% (p<0.05, 𝑑𝑑=-1.48) and 24.9% (p<0.05, 𝑑𝑑=-0.91), respectively, compared to that 

by using sole sEMG feature set. However, we did not observe a statistically significant difference 

between NRMSE values by using the sEMG-US fusion set and sole US feature set, although the 

mean NRMSE value was reduced (p=0.182, 𝑑𝑑=-0.49). Statistical results in Fig. 8 (b) show that by 

using the sEMG-US feature fusion set and the US feature set, the PCC2 values between the 

moment prediction and moment measurement are 15.5% (p<0.05, 𝑑𝑑=0.88) and 14.9% (p<0.05, 



𝑑𝑑=0.76) larger than that using sole sEMG feature set, respectively. However, we did not observe 

a statistically significant difference between PCC2 values by using the sEMG-US feature fusion set 

and sole US feature set, although the mean PCC2 value was improved (p=0.932, 𝑑𝑑=0.05).  

 
Figure 6: Net plantarflexion moment measurements and one trial prediction from the SVR model by using three 

dominant neuromuscular feature sets at the ankle joint neutral posture for all nine participants.  

 
Figure 7: Net plantarflexion moment RMSE values in SVR prediction by using the three neuromuscular feature 

sets at five ankle joint postures across all nine participants.  
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(a)                                              (b) 

Figure 8: Average and standard deviation of NRMSE values between the SVR prediction and net plantarflexion 

moment measurement in the left figure (a). Average and standard deviation of PCC2 values between the 

prediction and net plantarflexion moment measurement in the right figure (b). Scattered data are collected 

from prediction procedures at all ankle joint postures across all participants. Asterisks (*) represents significant 

difference is at p<0.05. 

Similarly, when the FFNN model was applied, the Shapiro-Wilk test results showed that 

the NRMSE values and PCC2 values of each of the neuromuscular feature sets were normally 

distributed across ankle postures and participants. The results of ANOVA indicated that the 

NRMSE values in prediction were significantly affected by feature sets (main effect, p<0.05, 

𝜂𝜂𝑝𝑝2=0.20), as well as the PCC2 values (main effect, p<0.05, 𝜂𝜂𝑝𝑝2=0.36). The statistical results of the 

prediction NRMSE values across the different ankle joint postures and participants are presented 

in Fig. 9 (a). By using the sEMG-US feature fusion set, the net plantarflexion moment prediction 

NRMSE values were significantly reduced by 21.5% (p<0.05, 𝑑𝑑=-1.02) and 28.2% (p<0.05, 𝑑𝑑=-

1.22), respectively, compared to that by using the sole sEMG feature set and sole US feature set. 

However, we did not observe a statistically significant difference between NRMSE values by using 

the sole sEMG feature set and sole US imaging feature set (p=0.388, 𝑑𝑑=0.35). Statistical results 

in Fig. 9 (b) show that by using the sEMG-US feature fusion set, the PCC2 values between the 

predicted and measured moments are 13.1% (p<0.05, 𝑑𝑑=0.91) and 12.4% (p<0.05, 𝑑𝑑=0.86) larger 

than that using the sole sEMG feature set and US feature set, respectively. However, we did not 

observe a statistically significant difference between PCC2 values by using the sole sEMG fusion 

set and sole US imaging feature set (p=0.953, 𝑑𝑑=0.07).  
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(a)                                              (b) 

Figure 9: Average and standard deviation of NRMSE values between the FFNN prediction and net plantarflexion 

moment measurement in the left figure (a). Average and standard deviation of PCC2 values between the 

prediction and net plantarflexion moment measurement in the right figure (b). Scattered data are collected 

from prediction procedures at all ankle joint postures across all participants.  

By comparing the calibration and prediction performance of the SVR and FFNN models, 

we observed that in calibration, FFNN significantly reduced the NRMSE values compared to SVR, 

when using the sEMG feature set (p<0.05), US imaging feature set (p<0.05), and sEMG-US 

imaging fusion set (p<0.05). Also, FFNN significantly increased the PCC2 values compared to SVR, 

when using the sEMG feature set (p<0.05), US imaging feature set (p<0.05), and sEMG-US 

imaging fusion set (p<0.05). However, we observed that in prediction, SVR significantly reduced 

the NRMSE values compared to FFNN, when using the US imaging feature set (p<0.05), and the 

sEMG-US imaging feature fusion set (p<0.05). Also, SVR significantly increased the PCC2 values 

compared to FFNN, when using the sEMG feature set (p<0.05), US imaging feature set (p<0.05), 

and sEMG-US imaging feature fusion set (p<0.05). Therefore, the results indicate the FFNN model 

may be more vulnerable to an over-fitting issue than the SVR model. 

 

4 Discussion 

This study investigated the benefits of using non-invasive neuromuscular signals fusion to 

predict volitional net plantarflexion moment based on the SVR and FFNN models. Our basic 

objective was to determine, on a personalized basis, the most appropriate sEMG time-domain 

feature and US imaging feature for predicting net plantarflexion moment. Our secondary 
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objective was to investigate whether the fusion of sEMG and US imaging features can improve 

the prediction accuracy. We determined the personalized dominant sEMG time-domain features 

and US imaging features from GAS and SOL muscles by using correlation analysis. We compared 

the net plantarflexion moment prediction performance with the sEMG-US imaging feature fusion 

set to sole sEMG feature set and sole US imaging feature set. The experimental results from nine 

able-bodied participants demonstrated the superior prediction performance by using the feature 

fusion set than using a sole sEMG feature set – an outcome that supported our hypothesis. 

However, we did not observe statistically significant improvement by using the feature fusion set 

over a sole US imaging feature set.  

The neuromuscular signal features from sEMG and US imaging have been shown to 

correlate with measured joint kinetics and kinematics during isometric and non-isometric joint 

motion by using machine learning algorithms [27]–[29] or Hill-type neuromuscular model (HNM) 

approaches [11], [13], [30]. For machine learning algorithms, apart from SVR applied in this study, 

linear regression [11], [20], [31], artificial neural network [32]–[35], and Gaussian process 

regression [27], [36] are also well investigated. Compared to physics-based personalized 

neuromusculoskeletal models, such as in [11], [13], [30], machine learning is undoubtedly a 

powerful tool for identifying relationships between joint function and underlying neuromuscular 

signals, especially for the circumstance that multiple muscles co-contraction exists in the same 

muscle group. Moreover, machine learning approaches assume no underlying mechanistic 

representation of the physiological system, and it is always considered as a 'black box' of arbitrary, 

but sophisticated, organization [37], which simplifies the model calibration procedure given less 

requirement of physiological measures like mentioned in Hill-type neuromusculoskeletal model. 

The five time-domain features extracted from the sEMG signal in this study are commonly 

used in the literature to understand and/or estimate joint moment/muscle force and joint 

movement [14], [38]. One critical parameter when extracting sEMG time-domain features is the 

window length. A longer window length could reduce the time domain feature’s noise and make 

the feature’s time sequence smoother, but it could also cause signal lag and fidelity loss. The 

choice of window length is a balance between sEMG feature smoothness and fidelity. Suitable 

window lengths from previously published studies ranged from 150 ms [39] to 500 ms [40]. The 



mean correlation coefficients between each dominant sEMG time-domain feature and ankle net 

plantarflexion moment in this work ranged from 0.83 to 0.97. This range is within that previously 

reported in [41] (i.e., 0.77 to 0.99). In the current study, we applied the sEMG time-domain 

analysis [11], [13], [16], to simplify the signal processing procedures and make an emphasis on 

the benefit of fusing sEMG and US feature sets when predicting net plantarflexion moment. In 

future work, for sEMG signal processing, more nonlinear correlations will be considered and 

investigated, like cross-fuzzy entropy in [42]–[44]. The mean absolute correlation coefficients 

between each dominant US imaging feature and net plantarflexion moment ranged from 0.88 to 

0.98, which is consistent with findings in prior publications [25], [29], [45], [46]. Compared to the 

aforementioned correlation coefficients between sEMG and net plantarflexion moment, the US 

imaging indicates a stronger linear correlation with the net plantarflexion moment. However, the 

results in Table 1 indicate that the dominant US imaging features are personalized among 

different participants, and it is hard to determine one or two general dominant US imaging 

feature(s) by using the correlation analysis.  

Ankle posture-dependent variations in net plantarflexion MVIC moment reported here 

are consistent with muscle length-tension behavior [47]–[50]. Indeed, the selected ankle joint 

postures would elicit fascicle shortening from dorsiflexion to plantarflexion for both the 

biarticular GAS and uniarticular SOL, which likely explains the progressively smaller net 

plantarflexion MVIC moments shown in Fig. 4 across all participants. Also, the net plantarflexion 

MVIC moment varied from person to person, and this resulted in the higher variations of the SVR 

model-based prediction RMSE values in Fig. 7 across ankle joint postures and participants. So, 

the RMSE values normalized to the net plantarflexion moment at corresponding MVIC (NRMSE) 

would be beneficial for compromising those variations. Prediction results were considered 

excellent if the NRMSE value was smaller than 15% [33]. As shown in Fig. 8 and Fig. 9, in SVR 

(FFNN) model-based prediction, the mean NRMSE values using those three feature sets were all 

less than 13.5% (14.6%), especially the mean NRMSE value using the sEMG-US imaging feature 

fusion set is less than 8.5% (10.1%). These results indicate successful net plantarflexion moment 

prediction performance with the proposed sEMG-US imaging feature fusion set based on SVR 

and FFNN machine learning models.  



During volitional joint movement, both an sEMG signal and a US imaging signal can be 

used to reflect the movement intent at the neuromuscular level and they provide complementary 

information [13]. Specifically, sEMG signals measure electric potentials generated by muscle 

motor units when neurally activated. The amplitude and density of sEMG signals linearly 

correlate with the number of firing neurons, which offers an indirect electrical measurement of 

action potential during the skeletal muscle contraction from a micro perspective [51]. Conversely, 

US imaging signals directly visualize skeletal muscle contractions from a morphological 

perspective [52]. Thus, the fusion between them can 1) mitigate unexpected cross-talk from 

neighboring muscles; and 2) lower the structural or functional feature drift caused by 

accumulated pixel displacements using the optimal flow tracking algorithms. 

As a preliminary study with fused sEMG and US imaging dominant features for isometric 

plantarflexion, our results are promising. They can help overcome the challenges in volitional 

control of assistive devices, including FES and powered ankle exoskeleton. Since only able-bodied 

participants were included in the current study, future experiments on patients with plantar 

flexor impairment are needed to verify the implementations of the proposed neuromuscular 

model-free ankle joint moment prediction approach. In addition, the features extraction from 

sEMG signal and US imaging, SVR or FFNN model calibration, and prediction were performed 

offline in this study, however, due to the intensive computation for US imaging feature extraction, 

online implementation needs more advanced techniques, such as deep neural networks in [53], 

which needs more investigation in future work. One limitation in the current study is that the 

sEMG signal and US imaging signal of the GAS muscle did not come from the same head, although 

evidence suggests that sEMG signals from MG and LG are comparable [54]. Therefore, when 

performing the dominant neuromuscular feature fusion on the GAS muscle, we fused the US 

imaging dominant feature from MG and sEMG time-domain dominant feature from LG. Thus, we 

cannot exclude the possibility of higher than anticipated net plantarflexion moment calibration 

and prediction errors. 

 

 

 



5 Conclusion 

In this paper, we investigated the feasibility of using  SVR and FFNN machine learning 

models and fused neuromuscular signals from sEMG and US imaging to predict ankle net 

plantarflexion moment during isometric contractions. The SVR model-based prediction results 

showed that using the sEMG-US feature fusion set and sole US feature set, the NRMSE values 

were significantly smaller, and the PCC2 values were significantly larger than that using the sole 

sEMG feature set. However, we did not observe statistically significant improvement using the 

feature fusion set over the sole US imaging feature set. The FFNN model-based prediction results 

showed that using the sEMG-US feature fusion set, the NRMSE values were significantly smaller, 

and the PCC2 values were significantly larger than that using the sole sEMG feature set and sole 

US feature set. However, we did not observe a statistically significant difference using the sole 

sEMG feature set and sole US imaging feature set. The improved ankle net plantarflexion 

moment prediction precision can be potentially applied to dynamic locomotor tasks such as 

walking. Ultimately, this work could lead to improvements in volitional control of assistive devices, 

including human ankle joint motion intent detection, improved intuitiveness, and assist-as-

needed control. 
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