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Abstract

Objective: Compared to mechanical signals that are used for estimating human limb motion
intention, non-invasive surface electromyography (sEMG) is a preferred signal in human-robotic
systems. However, noise interference, crosstalk from adjacent muscle groups, and an inability to
measure deeper muscle tissues are disadvantageous to sSEMG’s reliable use. In this work, we
hypothesize that a fusion between sEMG and in vivo ultrasound (US) imaging will result in more
accurate detection of ankle movement intention.

Methods: Nine young able-bodied participants were included to volitionally perform isometric
plantarflexion tasks with different fixed-end ankle postures, while the sEMG and US imaging data
of plantarflexors were synchronously collected. We created three dominant feature sets, sole
SEMG feature set, sole US feature set, and sEMG-US feature fusion set, to calibrate and validate
a support vector machine regression model (SVR) and a feedforward neural network model
(FFNN) with labeled net moment measurements.

Results: The results showed that, compared to the sole SEMG feature set, the SEMG-US fusion
set reduced the average net moment prediction error by 35.7% (p<0.05), when using SVR, and
by 21.5% (p<0.05), when using FFNN. In SVR, the sole US feature set reduced the prediction error
by 24.9% (p<0.05) when compared to the sole sEMG feature set. In FFNN, the sEMG-US fusion
set reduced the prediction error by 28.2% (p<0.05) when compared to the sole US feature set.
Conclusion: These findings indicate that the combination of SEMG signals and US imaging is a
superior sensing modality for predicting human plantarflexion intention and can enable future

clinical rehabilitation devices.
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Abbreviations and Acronyms

SEMG Surface electromyography

us Ultrasound

LG Lateral gastrocnemius

MG Medial gastrocnemius

SOoL Soleus

PA Pennation angle

FL Fascicle length

SVM Support vector machine

SVR Support vector machine regression
FFNN Feedforward neural network

IRB Institutional Review Board

MVIC Maximum volitional isometric contraction
RMSE Root mean square error

PCC? Squared Pearson correlation coefficient
MAV Mean absolute value

ZC Zero crossing

SSC Slope sign change

WL Waveform length

MRMS Moving root mean square

ROI Region of interest

ANOVA Analysis of variance

Tukey’s HSD post-hoc Tukey’s honestly significant difference tests
np Effect sizes

d Cohen’s d

GAS Gastrocnemius

HNM Hill-type neuromuscular model



1 Introduction

The human ankle plantar flexor muscles generate a large burst of mechanical power
during “push-off” to propel the body’s center of mass during locomotor tasks. Weakness or
dysfunction of the plantar flexor muscles, for example, due to neurological disorders or injuries,
causes dramatic reductions in this “push-off” power, thereby impairing normal walking and
increased metabolic energy costs [1]. Recent neurorehabilitation techniques to improve the
diminished ankle plantar flexors function mainly focus on using powered ankle exoskeletons [2]-
[4] and functional electrical stimulation [5], [6]. To maximize patient benefits from
neurorehabilitation, the wearers need to be actively involved in the training and effectively
engaged with the robotic devices. Thereafter, intuitive human-in-the-loop control strategies are
required to generate efficient and effective assistance for the wearers to optimize specific task
performance. One representative control strategy, known as assist-as-needed control [7], [8],
depends on accurately determining volitional human motion intention. Conventional means to
approximate limb motion intention include mechanical sensors (e.g., force, torque) installed on
a rigid frame. These exoskeletal sensors are subject to inaccuracies due to an inevitable
misalignment between the exoskeletal and biological joint centers, thus inducing undesired
interaction forces [9], [10].

In recent decades, non-invasive neuromuscular signals have been investigated to
estimate human limb motion intention. As a widely used neuromuscular signal, surface
electromyography (sEMG) measures electrical potentials arising from activated alpha motor
neurons. The amplitude and frequency of sEMG signals are positively related to the intended
muscle activation level [11]. For example, neuromuscular model-based methods or model-free
calibrations to associate sEMG signals with joint mechanical function (e.g., joint moment [11]-
[13] or angular position [14]) can estimate limb movement intention. This neuromuscular signals-
based limb movement intention detection approach could minimize the interaction between the
wearable sensor and human joint, avoid the misalignment issue mentioned above, and provide
the physiological response when investigating volitional limb movement. However, there are
several shortcomings for sEMG-based human intention detection, such as interference from

adjacent muscles when capturing EMG signals and an inability to measure deeply-located



muscles [15], [16]. Alternatively, two-dimensional B-mode ultrasound (US) imaging is another
non-invasive methodology that overcomes the aforementioned sEMG shortcomings of electrical
noise and interference due to the direct visualization of the targeted skeletal muscles measured
from US imaging. US imaging's structural and functional features have been studied to
understand measured muscle activities and predict human volitional muscle contraction force or
joint moment. The most frequently used structural features from US images include pennation
angle (PA) [13], [17], fascicle length (FL) [18], muscle thickness [19], and cross-sectional area [20].
Apart from these structural features from US imaging, functional features, including static and
dynamic image pixel analysis (known as echogenicity and speckle tracking), have also been
investigated to correlate with muscle or joint mechanical functions [11], [21]-[23].

Most of the aforementioned sEMG and/or US imaging-related contributions focused on
a single superficial skeletal muscle, and few studies have investigated the application to
synergistic superficial and deep skeletal muscles to estimate human joint volitional effort.
Besides, although neuromuscular signals from sEMG and US imaging have been fused to predict
ankle joint volitional dorsiflexion moments [11], [13], few studies have investigated ankle joint
plantarflexion volitional effort by using SEMG and US imaging fusion. The potential benefits of
combining different neuromuscular signals from plantar flexor muscles, like the improvement of
human motor intention prediction accuracy, the mitigation of the sEMG-induced interference,
and the reduction of US imaging-derived feature drift during cyclic muscle contraction, remain
unexplored. In the current work, our primary goal was to investigate the performance of human
volitional net plantarflexion moment prediction by using a fusion between personalized sEMG
dominant features and personalized US imaging dominant features. We used support vector
machine (SVM) analysis, a popular non-parametric machine learning tool for both classification
and regression [24], to build the mapping between neuromuscular feature sets and net
plantarflexion moment. The support vector machine regression (SVR) model with a linear kernel
function was employed due to its simplicity, computational efficiency, and unique optimal
solution. We hypothesized that using the calibrated SVR model, the sEMG-US imaging feature
fusion would reduce the prediction error of the volitional net plantarflexion moment, compared

to the dominant feature sets from sole SEMG or sole US imaging. We collected synchronized



SEMG signals and US images from individual plantar flexor muscles that operate at different
depths (e.g., LG, MG, and SOL). We determined the dominant features from the sEMG signal and
US images from the correlation analysis between each feature and measured net plantarflexion
moment. Specifically, three feature sets were established for the SVR model calibration and net
plantarflexion moment prediction, including an sSEMG-US imaging feature fusion set, a sole SEMG
feature set, and a sole US imaging feature set. Furthermore, the prediction results by using an

SVR model were compared with those by using a feedforward neural network (FFNN) model.

2 Materials and Methods

2.1 Subjects and experimental protocol

The study was approved by the Institutional Review Board (IRB) at the University of North
Carolina at Chapel Hill (16-0379). An a priori power analysis of the repeated-measure analysis of
variance (ANOVA) determined that at n = 9 subjects would have 86.8 % power to detect (p<0.05)
a difference in the isometric ankle joint moment prediction by using different neuromuscular
feature sets (i.e., with an moderate effect size of 0.3). This study uses data from nine participants,
five males and four females (Age: 25.3+5.8 years, Height: 1.74+0.08 m, Mass: 66.8+8.2 kg),
without any neuromuscular or orthopedic disorders within the last six months. Every participant
was familiarized with the experimental procedures and signed an informed consent form before
participating in the experiments.

The experimental setup for this study is illustrated in Fig. 1 (a). Each participant sat
comfortably on a dynamometer (Biodex, Shirly, NY, USA), with the right foot secured to the
dynamometer pedal. A supporting frame stabilized the right thigh to eliminate the contributions
from proximal muscle groups while performing plantarflexion. The knee flexed to replicate that
near the push-off phase of walking (~20°). The participants performed three ramped volitional
isometric plantarflexion at each of five ankle joint postures (from 10° dorsiflexion to 30°
plantarflexion in 10° increments). The order of those five ankle joint postures was randomly
chosen for each participant. To elicit a symmetric loading-unloading profile, participants started
from rest and increased their net plantarflexion moment until the maximum effort to determine

the maximum volitional isometric contraction (MVIC) within the first 2-second duration. After



the MVIC, participants returned to rest within the second 2-second duration. Participants
performed the ramp loading procedure following verbal encouragement to reach MVIC. Before
data collection, participants briefly practiced the isometric plantarflexion tasks using a real-time
display of their net ankle moment. The MVIC moment was defined as the peak across the three
repetitions. We provided the participants with at least one minute for rest between two
successive contraction trials to avoid muscle fatigue.

During all trials, a 60 mm linear array US transducer (Echoblaster 128, 7 MHz, Telemed,
Vilnius, Lithuania) placed over the mid-belly of the right MG recorded B-mode US images at 61
frames per second through an image depth of 65 mm. This Telemed transducer placement and
depth also enabled the imaging of the soleus muscle in the same image plane. We attached two
differential sSEMG sensors (Trigno TM Avanti Platform, DELSYS, MA, USA) to the LG and SOL
muscles to non-invasively measure sEMG signals during plantarflexion. Since the relatively large
US probe was attached to the MG, the remaining free space was very limited for the sSEMG sensor
setup, so we recorded LG sEMG signals. We recorded the ankle joint net plantarflexion moment

from the Biodex dynamometer.
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Figure 1: Summary of experimental protocol, measurements, and support vector machine regression (SVR) model
calibration and net plantarflexion moment prediction. (a) Schematic of the experimental setup at five different ankle
postures where participants performed isometric plantarflexion tasks. A single ultrasound (US) transducer was used
to image both medial gastrocnemius (MG) and soleus (SOL) muscles with the appropriate probe placement. Two
surface electromyography (sEMG) sensors recorded the electrical signals from LG and soleus (SOL) muscles. (b)
Diagram of machine learning models (SVR and FFNN) calibration and evaluation with the calculation of root mean
squared error (RMSE) and squared Pearson correlation coefficient (PCC?). (c) Diagram of net plantarflexion moment

prediction and evaluation based on machine learning models.



2.2 Data Acquisition and Processing

We synchronized signals from the Biodex and sEMG sensors at 1000 Hz using a real-time
system programmed in LabVIEW (NI PCI 7352, National Instruments, TX, USA). Signals from the
SEMG sensors were processed by an input module and the main amplifier (Trigno TM Avanti
Platform, DELSYS, MA, USA) and filtered to the bandwidth between 20 Hz and 450 Hz. Signals
from the dynamometer torque sensor were filtered using 4" order low-pass Butterworth filter
with a cutoff frequency of 100 Hz. Besides, we synchronized binary ultrasound signals (i.e., signals
indicating the start and stop of the collection) from the transducer at 1000 Hz using a waveform
generator (SDG1025, SIGLENT, Shenzhen, China).

Five classic time-domain features were extracted from the filtered sSEMG signals from
both GS and SOL muscles, including mean absolute value (MAV), zero crossings (ZC), slope sign
changes (SSC), waveform length (WL) [16], and moving root mean square (MRMS) [13], and their

calculations are given by:
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where L is the moving window length and x; is the filtered sEMG signal at each sampling instant.
The window length L is one essential parameter that affects the shapes of sSEMG time-domain
features thus affects the correlation between sEMG time-domain features and net plantarflexion

moment. For each experimental trial, L was determined by maximizing the squared Pearson



correlation coefficients (PCC?) between the sEMG time-domain features and the net
plantarflexion moment. Since the sampling frequency of the SEMG signal is 1000 Hz, we selected
L increasing from 2 ms to 1000 ms, and the corresponding PCC? values between each sEMG
feature and plantarflexion moment were compared for each trial at each ankle joint posture on
each participant. To balance the variation of L across different SEMG features, different ankle
postures, different trials, and different participants, a consistent approximation of L for all
participants was selected as 400 ms.

Following previously outlined techniques [25], the same investigator tracked all muscle
PA and FL temporal data using an open-source MATLAB routine that employs an affine extension
to an optical flow algorithm [26]. As shown in Fig. 2, we defined the fascicle length for one
representative fascicle in the mid-belly of MG (FLug) and SOL (FLso.) from the superficial to the
deep aponeurosis of each muscle. We defined PA of MG and SOL (PAwmc and PAsoL) as the angle
between each muscle fascicle and its corresponding deep aponeurosis. Additionally, we
determined the echogenicity of the selected MG and SOL muscles by taking the mean echo
intensity of corresponded ROIs (between 0 to 255, black = 0, white = 255), noted as Echomg and
Echosol. Echogenicity, as a functional feature of US imaging using static pixel information without
dynamic tracking performance, represents an averaged visualization change of the ROIs during

the isometric plantarflexion process.
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Figure 2: A typical US imaging B-mode frame for the MG and SOL muscles. Please note that this image is

cropped to better view muscle features.



To summarize the data processing section, for both the gastrocnemius (GAS) and SOL
muscles, temporal sEMG features and US imaging features were derived as MAV (t), ZC(ty),
SSC(t), WL(t,), MRMS(t,,), FL(t;), PA(t;), and Echo(t;). A correlation analysis between each
temporal neuromuscular feature and the temporal net plantarflexion moment was used to
determine two dominant features from both sEMG and US imaging signals, then to reduce the
input dimensions and increase the calculation speed of the SVR model. Before that, the temporal
US imaging features were linearly interpolated to 1000 Hz, thus guaranteeing the synchronization
between each temporal neuromuscular feature and the temporal net plantarflexion moment.
Finally, three feature sets were determined, e.g., sSEMG dominant feature set, US imaging

dominant feature set, and sSEMG-US imaging feature fusion set.

2.3 Model calibration, prediction, evaluation, and statistical analysis

Although the Hill-type neuromuscular model has been well applied for the biomechanics
community, it requires many physiological assumptions, complex system optimization, and
model parameters identification when encountering muscle synergy or co-contraction problems.
To avoid the physiology-based modeling procedures, both SVR and FFNN models were applied in
this work. The SVR is, in essence, a non-parametric machine learning method especially aiming
at samples with limited sizes. Based on the structural risk minimization, the SVR model is believed
to obtain a globally optimal solution, instead of a local extremum and poor explanation ability
behind the black box-like in an FFNN model. As shown in Fig. 3, the structure of the applied SVR
model is similar to a multi-layer FFNN model with three hidden layers, where the number and
function of each hidden layer are equal to those of the support vectors. The input layers from the
left to right represent the sSEMG dominant feature sets from GAS and SOL muscles, x{* and x5,
the US imaging dominant feature sets from GAS and SOL muscles, x? and xZ, and the SEMG-US
imaging feature fusion set, x%, x¢, x?, and x2. It should be noted that the entire model structure
of each SVR is adaptively generated directly, which means the number of support vectors is
determined automatically by the adaptive SVR algorithm.

Naturally, the complexity of the SVR algorithm is independent of each input layer

dimension and it is only related to the number of “support vectors” and also the kernel function



@ (), which is selected as a linear kernel in this work for simplification. As described in Fig. 3, the
input layers of SVR models realize the nonlinear mapping with the help of kernel function, and
the linear mapping of the output T(+) is achieved also based on the kernel function. The
searching procedure of an optimal solution is equivalent to solving the quadratic programming
problem, which was solved by quadprog function in MATLAB. Parameters of W(., and B, are the
weight and polarization bias matrices from the feature space to output T'(+), respectively, as

described in Fig. 3.
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Figure 3. Support vector machine regression structure with three dominant feature sets from GAS and SOL.

Correspondingly, the deep FFNN was designed with three hidden layers and one output
layer with neuron numbers of 5, 10, 5, and 1. The calibration was based on the Levenberg-
Marquardt algorithm to get the optimized weight matrices and bias between every two layers.
More detailed parameters and calibration procedure settings of the SVR and FFNN models can
be found in the supplementary file. For each ankle joint posture, the SVR and FFNN models were
calibrated by the three feature sets separately with data from randomly selected two
plantarflexion trials. Data of the three feature sets from the remaining trial was used for net
moment prediction based on the calibrated models. Three performance criteria were used to
evaluate the SVR or FFNN model-based calibration and prediction of the net plantarflexion
moment, including root mean square error (RMSE), normalized root mean square error (NRMSE),

and PCC?, as given below:
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where T; denotes each measured net plantarflexion moment, and T; denotes each estimated moment
with different feature sets in the calibration/prediction procedure, respectively. T denotes the average
measured net moment, and % denotes the average estimated net moment with different feature sets in
the calibration/prediction procedure, respectively. Due to the MVIC deviation among individual
participants, the NRMSE value can be used to compare the calibration and prediction results showing
different ranges of fluctuation across individuals. The PCC? measures the extent of a linear relationship
between the measured and estimated net moment in both calibration and prediction procedures.
Shapiro-Wilk parametric hypothesis test was used to determine the normality of the 45
NRMSE (PCC?) values (1 trial X 5 ankle postures X 9 participants) in both calibration and
prediction by applying those three feature sets, respectively. We performed statistical tests on
the three groups of NRMSE (PCC?) values in calibration and prediction. According to the Shapiro-
Wilk test results, a one-way repeated-measure analysis of variance (ANOVA) or a Kruskal-Wallis
test was used to determine if there was a significant difference among those three group’s
NRMSE (PCC?) values either in calibration or prediction. When the significant main effects were
identified, post-hoc Tukey’s honestly significant difference tests (Tukey’s HSD) were applied to
determine the significant difference between every two NRMSE (PCC?) groups out of three. The
significant difference level was chosen as p<0.05 for all statistical tests. Effect sizes are reported
as r)f, and Cohen’s d for main effects from ANOVA or Kruskal-Wallis test and pairwise

comparisons from Tukey’s HSD, respectively.

3 Results

3.1 Plantarflexion moment at MVIC as a function of ankle posture



We observed significant ankle posture-dependent variations in net plantarflexion MVIC
moment for all participants, as shown in Fig. 4. The results indicate for each individual, the net
plantarflexion MVIC moment is largest at 10° of dorsiflexion and smallest at 30° of plantarflexion.
Compared to the neutral ankle posture, plantarflexion MVIC moment averaged between 7.7%
and 48.8% larger at 10° dorsiflexion and averaged between 5.1% and 26.5%, 7.5% and 40.1%,
and 12.5% and 62.8% smaller at 10°, 20°, and 30° plantarflexion, respectively.
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3.2 Dominant neuromuscular features determination

The results from correlation analysis are shown in Table 1, where the PCC? between each
US imaging feature and net plantarflexion moment was calculated 15 times (3 trials x 5 ankle
postures) for each participant. The reported values represent the average and standard deviation
among those 15 PCC? values. The dominant features with the two highest averaged PCC? values
are labeled as the bold numbers in Table 1. Apart from FLme on Sub02 and PAso. on Sub08, all
other dominant US imaging features on each participant exhibit strong correlations with the net
plantarflexion moment, with averaged PCC? values higher than 0.8.

Table 1: Squared Pearson correlation coefficient (PCC?) values (average + standard deviation) between each

US imaging-derived feature and net plantarflexion moment across postures and trials on each participant.



Bold numbers represent the two selected dominant US features for each participant with the two highest

PCC2values.
Squared Pearson correlation coefficients (PCC?) with net plantarflexion moment
Participant

PCC?-FLme | PCC?-Flso. | PCC?-PAmG | PCC?-PAso. |PCC? - Echowmg | PCC? - Echosor
Sub01 [0.890 (0.076) | 0.956 (0.025) | 0.460 (0.250) | 0.958 (0.026) | 0.531 (0.249) | 0.841 (0.050)
Sub02 [0.799 (0.134) | 0.891 (0.089) | 0.405 (0.346) | 0.755 (0.119) | 0.392 (0.281) | 0.733 (0.186)
Sub03  [0.903 (0.073)|0.961 (0.021) | 0.431 (0.335) | 0.949 (0.044) | 0.476 (0.352) | 0.872 (0.129)
Sub04 [0.880 (0.084)|0.921 (0.090) | 0.749 (0.150) | 0.870 (0.128) | 0.246 (0.295) | 0.359 (0.308)
Sub05  [0.585 (0.242) | 0.869 (0.127) | 0.715 (0.152) | 0.919 (0.047) | 0.469 (0.247) | 0.711 (0.216)
Sub06 |0.854 (0.084)|0.892 (0.057)|0.527 (0.262)|0.889 (0.078) | 0.766 (0.135) | 0.932 (0.054)
Sub07 |0.825(0.197)|0.635 (0.348)|0.587 (0.179)| 0.659 (0.210) | 0.724 (0.171) | 0.866 (0.118)
Sub08 |0.586 (0.251)|0.863 (0.155)|0.649 (0.294)|0.775 (0.202)| 0.389 (0.309) | 0.578 (0.324)
Sub09 |0.491 (0.355)|0.718 (0.261) | 0.231 (0.222) | 0.805 (0.228) | 0.467 (0.274) | 0.917 (0.083)

For sEMG signals, using the moving window length as 400 ms, the correlation analysis
between each time-domain feature and net plantarflexion moment was conducted 15 times (3
trials x 5 ankle postures) for each participant. By comparing the averaged value from the 15 PCC?
values related to each sEMG time-domain feature, the two dominant features were determined
as the ZCic and ZCso.. The average and standard deviation of those 15 PCC? values between
dominant sEMG features and net plantarflexion moment are listed in Table 2. We observed that
apart from Sub02 and Sub03, all averaged PCC? values between ZCi or ZCso. and net
plantarflexion moment were higher than 0.8. Besides, the difference between the averaged PCC?2
- ZCig and the averaged PCC? - ZCso. for each participant was modest, which indicates a consistent
dominant sEMG time-domain feature among different participants. The results from Table 1 and

Table 2 reveal strong linear correlations between the dominant neuromuscular features and net

plantarflexion moment.



Table 2: PCC? values (Average + Standard deviation) between each sEMG dominant feature and net
plantarflexion moment across postures and trials on each participant. Bold numbers represent the two

selected dominant sSEMG time-domain features for each participant with the two highest PCC?values.

Participant Sub01 Sub02 Sub03 Sub04 Sub05 Sub06 Sub07 Sub08 Sub09

0.885 0.693 0.775 0.825 0.867 0.887 0.901 0.914 0.931

PCC2 - ZCio
(0.040) | (0.132) | (0.111) | (0.072) | (0.079) | (0.041) | (0.037) | (0.044) | (0.020)

0.885 0.693 0.774 0.826 0.869 0.887 0.900 0.914 0.931

PCC? - ZCsoL
(0.040) | (0.131) | (0.112) | (0.072) | (0.078) | (0.041) | (0.037) | (0.043) | (0.019)

From the above results, three feature sets, including the sEMG set (two dominant
features), US imaging set (two dominant features), and sEMG-US imaging fusion set (four
dominant features), were determined. The sSEMG dominant time-domain features, US imaging
dominant features, and net plantarflexion moment measurement from one representative trial
for Sub05 are shown in Fig. 5. The curves in Fig. 5 represent a positive correlation between net
plantarflexion moment and ZCs, ZCso,, and PAmg, respectively, and a negative correlation
between net plantarflexion moment and FLso.. Results from other participants also show a
positive correlation between net plantarflexion moment and PAso, and a negative correlation

between net plantarflexion moment and FLws, Echomg, or Echosol, respectively.
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Figure 5: The temporal net plantarflexion moment measurements, dominant sSEMG time-domain features,

and dominant US imaging features at 10° dorsiflexion posture in trial 1 on Sub05.

3.3 Results of the ankle joint net moment prediction

From the above results, we could potentially anticipate that more accurate net
plantarflexion moment prediction could be achieved by fusing dominant features from both
SEMG signals and US imaging. When evaluating the SVR or FFNN model-based net moment

prediction, for convenient notation, the RMSE between sEMG feature set-based calibration (or



prediction) and measured moment, between US imaging feature set-based calibration (or
prediction) and measured moment, and between sEMG-US imaging fusion-based calibration (or
prediction) and measured moment were denoted by RMSEstms, RMSEyus, and RMSEgysion,
respectively. Similarly, we also denote PCC%gms, PCC%ys, and PCC?%musion for their respective
calibration and prediction procedures.

All calibration results are attached to the supplementary file, and the following results
show prediction performance by using both SVR and FFNN models. Due to the space limitation,
Fig. 6 only shows the SVR model-based net moment prediction and measured net moment in the
remaining trial out of those three at the neutral ankle joint posture for all nine participants
(results at other joint postures are in the supplementary file). In each subplot, the lateral axis
represents the cycle percentage of the loading and unloading on the dynamometer in the
prediction trial, while the axial axis represents the net plantarflexion moment. Prediction results
from other ankle joint postures are similar to those summarized in Fig. 6. In prediction, RMSEsemg,
RMSEys, and RMSErusion at the five ankle joint postures across all nine participants are
summarized in Fig. 7. After calculating the PCC? values and the normalized RMSE values at each
posture to the corresponded net plantarflexion MVIC moment as shown in Fig. 4 (known as
NRMSE), the Shapiro-Wilk test results showed that the NRMSE values and PCC? values across
ankle postures and participants were normally distributed by using three neuromuscular feature
sets. The results of ANOVA indicated the NRMSE values in prediction were significantly affected
by feature sets (main effect, p<0.05, nf,=0.22), as well as the PCC? values (main effect, p<0.05,
n§=0.38). The statistical results of the prediction NRMSE values across the different ankle joint
postures and participants are presented in Fig. 8 (a). By using the sEMG-US feature fusion set and
US feature set, the net plantarflexion moment prediction NRMSE values were significantly
reduced by 35.7% (p<0.05, d=-1.48) and 24.9% (p<0.05, d=-0.91), respectively, compared to that
by using sole sEMG feature set. However, we did not observe a statistically significant difference
between NRMSE values by using the sEMG-US fusion set and sole US feature set, although the
mean NRMSE value was reduced (p=0.182, d=-0.49). Statistical results in Fig. 8 (b) show that by
using the sEMG-US feature fusion set and the US feature set, the PCC? values between the

moment prediction and moment measurement are 15.5% (p<0.05, d=0.88) and 14.9% (p<0.05,



d=0.76) larger than that using sole sEMG feature set, respectively. However, we did not observe
a statistically significant difference between PCC? values by using the sSEMG-US feature fusion set

and sole US feature set, although the mean PCC? value was improved (p=0.932, d=0.05).
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Figure 6: Net plantarflexion moment measurements and one trial prediction from the SVR model by using three

dominant neuromuscular feature sets at the ankle joint neutral posture for all nine participants.
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Figure 7: Net plantarflexion moment RMSE values in SVR prediction by using the three neuromuscular feature

sets at five ankle joint postures across all nine participants.
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Figure 8: Average and standard deviation of NRMSE values between the SVR prediction and net plantarflexion
moment measurement in the left figure (a). Average and standard deviation of PCC? values between the
prediction and net plantarflexion moment measurement in the right figure (b). Scattered data are collected
from prediction procedures at all ankle joint postures across all participants. Asterisks (*) represents significant
difference is at p<0.05.

Similarly, when the FFNN model was applied, the Shapiro-Wilk test results showed that
the NRMSE values and PCC? values of each of the neuromuscular feature sets were normally
distributed across ankle postures and participants. The results of ANOVA indicated that the
NRMSE values in prediction were significantly affected by feature sets (main effect, p<0.05,
nf,=0.20), as well as the PCC? values (main effect, p<0.05, r),2,=0.36). The statistical results of the
prediction NRMSE values across the different ankle joint postures and participants are presented
in Fig. 9 (a). By using the sEMG-US feature fusion set, the net plantarflexion moment prediction
NRMSE values were significantly reduced by 21.5% (p<0.05, d=-1.02) and 28.2% (p<0.05, d=-
1.22), respectively, compared to that by using the sole SEMG feature set and sole US feature set.
However, we did not observe a statistically significant difference between NRMSE values by using
the sole sEMG feature set and sole US imaging feature set (p=0.388, d=0.35). Statistical results
in Fig. 9 (b) show that by using the SEMG-US feature fusion set, the PCC? values between the
predicted and measured moments are 13.1% (p<0.05, d=0.91) and 12.4% (p<0.05, d=0.86) larger
than that using the sole sEMG feature set and US feature set, respectively. However, we did not
observe a statistically significant difference between PCC? values by using the sole SEMG fusion

set and sole US imaging feature set (p=0.953, d=0.07).
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Figure 9: Average and standard deviation of NRMSE values between the FFNN prediction and net plantarflexion
moment measurement in the left figure (a). Average and standard deviation of PCC? values between the
prediction and net plantarflexion moment measurement in the right figure (b). Scattered data are collected

from prediction procedures at all ankle joint postures across all participants.

By comparing the calibration and prediction performance of the SVR and FFNN models,
we observed that in calibration, FFNN significantly reduced the NRMSE values compared to SVR,
when using the sEMG feature set (p<0.05), US imaging feature set (p<0.05), and sEMG-US
imaging fusion set (p<0.05). Also, FFNN significantly increased the PCC? values compared to SVR,
when using the sEMG feature set (p<0.05), US imaging feature set (p<0.05), and sEMG-US
imaging fusion set (p<0.05). However, we observed that in prediction, SVR significantly reduced
the NRMSE values compared to FFNN, when using the US imaging feature set (p<0.05), and the
SsEMG-US imaging feature fusion set (p<0.05). Also, SVR significantly increased the PCC? values
compared to FFNN, when using the sEMG feature set (p<0.05), US imaging feature set (p<0.05),
and sEMG-US imaging feature fusion set (p<0.05). Therefore, the results indicate the FFNN model

may be more vulnerable to an over-fitting issue than the SVR model.

4 Discussion

This study investigated the benefits of using non-invasive neuromuscular signals fusion to
predict volitional net plantarflexion moment based on the SVR and FFNN models. Our basic
objective was to determine, on a personalized basis, the most appropriate SEMG time-domain

feature and US imaging feature for predicting net plantarflexion moment. Our secondary



objective was to investigate whether the fusion of SEMG and US imaging features can improve
the prediction accuracy. We determined the personalized dominant SEMG time-domain features
and US imaging features from GAS and SOL muscles by using correlation analysis. We compared
the net plantarflexion moment prediction performance with the sEMG-US imaging feature fusion
set to sole sEMG feature set and sole US imaging feature set. The experimental results from nine
able-bodied participants demonstrated the superior prediction performance by using the feature
fusion set than using a sole sEMG feature set — an outcome that supported our hypothesis.
However, we did not observe statistically significant improvement by using the feature fusion set
over a sole US imaging feature set.

The neuromuscular signal features from sEMG and US imaging have been shown to
correlate with measured joint kinetics and kinematics during isometric and non-isometric joint
motion by using machine learning algorithms [27]-[29] or Hill-type neuromuscular model (HNM)
approaches [11], [13], [30]. For machine learning algorithms, apart from SVR applied in this study,
linear regression [11], [20], [31], artificial neural network [32]—[35], and Gaussian process
regression [27], [36] are also well investigated. Compared to physics-based personalized
neuromusculoskeletal models, such as in [11], [13], [30], machine learning is undoubtedly a
powerful tool for identifying relationships between joint function and underlying neuromuscular
signals, especially for the circumstance that multiple muscles co-contraction exists in the same
muscle group. Moreover, machine learning approaches assume no underlying mechanistic
representation of the physiological system, and it is always considered as a 'black box' of arbitrary,
but sophisticated, organization [37], which simplifies the model calibration procedure given less
requirement of physiological measures like mentioned in Hill-type neuromusculoskeletal model.

The five time-domain features extracted from the sEMG signal in this study are commonly
used in the literature to understand and/or estimate joint moment/muscle force and joint
movement [14], [38]. One critical parameter when extracting SEMG time-domain features is the
window length. A longer window length could reduce the time domain feature’s noise and make
the feature’s time sequence smoother, but it could also cause signal lag and fidelity loss. The
choice of window length is a balance between sEMG feature smoothness and fidelity. Suitable

window lengths from previously published studies ranged from 150 ms [39] to 500 ms [40]. The



mean correlation coefficients between each dominant sSEMG time-domain feature and ankle net
plantarflexion moment in this work ranged from 0.83 to 0.97. This range is within that previously
reported in [41] (i.e., 0.77 to 0.99). In the current study, we applied the sEMG time-domain
analysis [11], [13], [16], to simplify the signal processing procedures and make an emphasis on
the benefit of fusing SEMG and US feature sets when predicting net plantarflexion moment. In
future work, for sSEMG signal processing, more nonlinear correlations will be considered and
investigated, like cross-fuzzy entropy in [42]-[44]. The mean absolute correlation coefficients
between each dominant US imaging feature and net plantarflexion moment ranged from 0.88 to
0.98, which is consistent with findings in prior publications [25], [29], [45], [46]. Compared to the
aforementioned correlation coefficients between sEMG and net plantarflexion moment, the US
imaging indicates a stronger linear correlation with the net plantarflexion moment. However, the
results in Table 1 indicate that the dominant US imaging features are personalized among
different participants, and it is hard to determine one or two general dominant US imaging
feature(s) by using the correlation analysis.

Ankle posture-dependent variations in net plantarflexion MVIC moment reported here
are consistent with muscle length-tension behavior [47]-[50]. Indeed, the selected ankle joint
postures would elicit fascicle shortening from dorsiflexion to plantarflexion for both the
biarticular GAS and uniarticular SOL, which likely explains the progressively smaller net
plantarflexion MVIC moments shown in Fig. 4 across all participants. Also, the net plantarflexion
MVIC moment varied from person to person, and this resulted in the higher variations of the SVR
model-based prediction RMSE values in Fig. 7 across ankle joint postures and participants. So,
the RMSE values normalized to the net plantarflexion moment at corresponding MVIC (NRMSE)
would be beneficial for compromising those variations. Prediction results were considered
excellent if the NRMSE value was smaller than 15% [33]. As shown in Fig. 8 and Fig. 9, in SVR
(FFNN) model-based prediction, the mean NRMSE values using those three feature sets were all
less than 13.5% (14.6%), especially the mean NRMSE value using the sSEMG-US imaging feature
fusion set is less than 8.5% (10.1%). These results indicate successful net plantarflexion moment
prediction performance with the proposed sEMG-US imaging feature fusion set based on SVR

and FFNN machine learning models.



During volitional joint movement, both an sEMG signal and a US imaging signal can be
used to reflect the movement intent at the neuromuscular level and they provide complementary
information [13]. Specifically, sSEMG signals measure electric potentials generated by muscle
motor units when neurally activated. The amplitude and density of sEMG signals linearly
correlate with the number of firing neurons, which offers an indirect electrical measurement of
action potential during the skeletal muscle contraction from a micro perspective [51]. Conversely,
US imaging signals directly visualize skeletal muscle contractions from a morphological
perspective [52]. Thus, the fusion between them can 1) mitigate unexpected cross-talk from
neighboring muscles; and 2) lower the structural or functional feature drift caused by
accumulated pixel displacements using the optimal flow tracking algorithms.

As a preliminary study with fused SEMG and US imaging dominant features for isometric
plantarflexion, our results are promising. They can help overcome the challenges in volitional
control of assistive devices, including FES and powered ankle exoskeleton. Since only able-bodied
participants were included in the current study, future experiments on patients with plantar
flexor impairment are needed to verify the implementations of the proposed neuromuscular
model-free ankle joint moment prediction approach. In addition, the features extraction from
SEMG signal and US imaging, SVR or FFNN model calibration, and prediction were performed
offline in this study, however, due to the intensive computation for US imaging feature extraction,
online implementation needs more advanced techniques, such as deep neural networks in [53],
which needs more investigation in future work. One limitation in the current study is that the
SEMG signal and US imaging signal of the GAS muscle did not come from the same head, although
evidence suggests that sSEMG signals from MG and LG are comparable [54]. Therefore, when
performing the dominant neuromuscular feature fusion on the GAS muscle, we fused the US
imaging dominant feature from MG and sEMG time-domain dominant feature from LG. Thus, we
cannot exclude the possibility of higher than anticipated net plantarflexion moment calibration

and prediction errors.



5 Conclusion

In this paper, we investigated the feasibility of using SVR and FFNN machine learning
models and fused neuromuscular signals from sEMG and US imaging to predict ankle net
plantarflexion moment during isometric contractions. The SVR model-based prediction results
showed that using the sEMG-US feature fusion set and sole US feature set, the NRMSE values
were significantly smaller, and the PCC? values were significantly larger than that using the sole
SEMG feature set. However, we did not observe statistically significant improvement using the
feature fusion set over the sole US imaging feature set. The FFNN model-based prediction results
showed that using the sSEMG-US feature fusion set, the NRMSE values were significantly smaller,
and the PCC? values were significantly larger than that using the sole SEMG feature set and sole
US feature set. However, we did not observe a statistically significant difference using the sole
SEMG feature set and sole US imaging feature set. The improved ankle net plantarflexion
moment prediction precision can be potentially applied to dynamic locomotor tasks such as
walking. Ultimately, this work could lead to improvements in volitional control of assistive devices,
including human ankle joint motion intent detection, improved intuitiveness, and assist-as-

needed control.
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