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Abstract 

Despite the increasingly documented occurrence of individual specialization, the relationship 

between individual consumer interactions and diet-related microbial communities in wild 

populations is still unclear. Using data from nests of the bee Ceratina australensis from three 

different wild populations, we combine metabarcoding and network approaches to explore the 

existence of individual variation in resource use within and across populations, and whether dietary 

specialization affects the richness of pollen-associated microbes. We reveal the existence of 

marked dietary specialization. In the most specialized population, we also show that individuals' 

diet breadth was positively related to the richness of fungi, but not bacteria. Overall, individual 

specialization appeared to have a weak or negligible effect on the microbial richness of nests, 

suggesting that different mechanisms beyond environmental transmission may be at play regarding 

microbial acquisition in wild bees. 

Introduction 

Community ecology has traditionally studied species’ niches under the assumption that generalist 

species are composed of generalist populations, which in turn are composed of generalist 

individuals. The underlying mechanism behind this assumption is that individuals within a species 

are ecologically equivalent. However, the occurrence of individual specialization has been 

increasingly documented, illustrating that populations are in fact composed of ecologically 

heterogeneous individuals (Bolnick et al. 2010, 2011; Araújo et al. 2011; Ingram et al. 2018; 

Cecala and Wilson Rankin 2020). Although studies of individual variation in resource use have 

focused primarily on vertebrate species (Bolnick et al. 2003), such variation has also been 
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documented in several invertebrate species, including social bees (Heinrich 1976; Dupont et al. 

2011, 2014; Tur et al. 2014). 

Individual-level specialization may affect consumers beyond resource acquisition, as different 

resource species harbor different non-resource species. For example, diet breadth can affect 

exposure and acquisition of microbes—both beneficial and pathogenic—which can affect several 

life-history aspects (Egerton et al. 2018; Kartzinel et al. 2019). Dietary breadth can therefore affect 

the composition and function of the gut microbiome across diverse hosts, including vertebrates 

and insects (Bolnick et al. 2014; Sanders et al. 2017; Douglas 2018; Egerton et al. 2018; Youngblut 

et al. 2019).  At the species level, wider diet breadth in bees has been linked to lower pathogen 

prevalence (Figueroa et al. 2020), but how individual diet breadth affects the acquisition of fungal 

and bacterial associates remains unstudied. The link between consumer interactions of individuals 

and microbial transmission is therefore still unclear, especially in wild communities (Daszak et al. 

2000). Given that managed and wild bees are essential pollinators (Klein et al. 2007; Garibaldi et 

al. 2013), understanding the patterns behind microbial transmission across populations would help 

ensure the maintenance of essential ecosystem services.  

Flowers harbor a diversity of microbes (Herrera et al. 2008; McArt et al. 2014; Vannette 2020) 

and by foraging on different flowers, pollinators act as vectors, transporting microbes from flower 

to flower (McArt et al. 2014). For example, flowers commonly visited by pollinators harbor more 

microbes than unvisited flowers (Aizenberg-Gershtein et al. 2013), and floral microbes emit 

volatiles that affects pollinator visitation (Rering et al. 2018). Shared microbes between flowers 

and wild bee nests show signatures of selection on genes that could be beneficial to the host (Vuong 

and McFrederick 2019) and pollen-borne microbes appear to be essential for the development of 

some bees (Dharampal et al. 2019). Thus, by visiting flowers, bees may be acting as microbial 
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transmission vectors  (Graystock et al. 2015; McFrederick et al. 2017), suggesting the existence of 

a link between dietary breadth, plant-bee interactions, and microbial transmission. 

Foraging patterns in wild bee populations are mainly studied through active sampling of 

interactions or by analyzing pollen samples from collected specimens (Otterstatter and Thomson 

2007; Dupont et al. 2011, 2014; Tur et al. 2014), resulting in data from the specimens’ last 

interaction or last foraging bout, respectively. A comparatively underemployed approach is to use 

the pollen provisions within bee nests (McFrederick and Rehan 2016) to understand plant-

pollinator interactions. Nests harbor resources collected over several foraging bouts over multiple 

days, enabling us to explore individual variation in species’ diet breadths through repeated samples 

from the same individuals, providing a holistic estimate of an individual’s foraging history. The 

alfalfa leafcutter bee, for example, may visit 2,550 flowers to provision a single brood cell 

(Klostermeyer and Gerber 1969). While priority effects and filtering will likely affect bee-nest 

microbial community composition, foraging patterns may have strong effects on the microbes that 

are inoculated into the nests in the first place. Thus, analyzing the pollen samples of individual 

nests provides an ideal opportunity to test hypotheses about individual variation in foraging 

patterns. Because nests are difficult to locate (Sardiñas and Kremen 2014), studies using nest 

pollen samples to investigate variation in foraging patterns of bee individuals are scarce. 

The genus Ceratina comprises small carpenter bees present on all continents except Antarctica, 

and are composed of over 200 species that collect pollen and nectar from various plant species 

(Dew et al. 2020). Each individual female builds a nest composed of separate brood cells in which 

the female provisions a pollen ball resulting from several independent foraging bouts before laying 

a single egg (Rehan et al. 2010). Using a metabarcoding approach, we characterized the diet 

composition at the individual and population levels of Ceratina australensis from three different 
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populations, along with the fungal and bacterial composition of the nest-associated pollen. In 

previous work, McFrederick and Rehan (2019) showed that pollen, fungal, and bacterial 

communities varied across habitat types, and that plant communities were correlated with 

microbial communities, especially fungi. Here we tested three hypotheses about the relationship 

between individual variation and nest microbial composition. First, we explored (H1) whether 

Ceratina individuals differ in their resource use at the individual level, within and across 

populations. The existence of intraspecific variation would indicate that generalist individuals have 

wider niche breadths, potentially increasing microbial exposure. We then tested the prediction that 

(H2) pollen from nests of more generalized individuals would present more species-rich microbial 

communities than more specialized individuals. Finally, we addressed (H3) if dietary breadth and 

the richness of microbial communities are associated. 

  

Methods 

Study sites and data collection 

We reanalyzed data previously published in (McFrederick and Rehan 2019) from nests of Ceratina 

australensis collected in January 2015. We analyzed 87 pollen provisions from 38 nests from 

Ceratina australensis from three different populations in Australia (Oppenheimer et al. 2018):18 

from South Australia, 11 from Victoria, and nine from Queensland, representing all the nests for 

which pollen barcode data were reliably obtained (McFrederick and Rehan 2019). Each population 

was sampled for one week and all nests were in the active brood stage, with females actively 

collecting pollen for pollen balls and laying eggs. Ceratina australensis populations are composed 
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of predominantly solitary individuals (Rehan et al. 2010, 2011) and on the rare occasion of two 

females present in the nest, only one is responsible for reproduction and foraging (Rehan et al. 

2014). 

We extracted DNA from each pollen provision using protocols previously described in 

McFrederick and Rehan (2019) (see Online Supplement for details). We only considered 

sequences with high similarity (> 80% confidence using the scikit-learn or RDP classifiers) to the 

closest reference sequence. For each sample (i.e. pollen provision in a nest) we removed sequences 

that represented less than 1% of averaged reads, a commonly used threshold (Bison et al., 2015; 

Pansu et al., 2019) under which sequences are considered as sequencing error or an occasional 

resource. We pooled all provisions within a nest as an independent measure of an individual’s 

resource use. We then randomly subsampled to the same number of reads across all samples, with 

different rarefaction depths for each taxa (McFrederick and Rehan 2019; Online Supplement). 

Because of the quality filtering and rarefying, data availability differs across individuals, resulting 

in a different number of data points for plants, bacteria, and fungi (Tables S1-S2). 

Calculating individual variation 

To explore the existence of individual specialization within and across populations (H1), we used 

the rarefied plant data at the genus level to calculate the proportional similarity index (PS) 

(Schoener 1968; Roughgarden 1979; Zaccarelli et al. 2013) of each i individual (Online 

Supplement). To test whether binning plants at the generic level affected individual specialization, 

we also performed all analyses using amplicon sequence variants (ASVs) and the results remain 

unchanged (Online Supplement). The PSi index ranges from 0 to 1, the smaller the value the greater 

individual specialization, indicating individuals that consume an item that no one else in the 
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population consumes (Bolnick et al. 2002). We used the R package RInSp (Zaccarelli et al. 2013) 

to calculate PSi.  

To evaluate whether individual variation in diet differs from the null expectation that each 

individual randomly chooses their resources (Bolnick et al. 2002), for each individual at each 

population, we randomly assigned interactions with plants to different bee individuals using a 

Monte Carlo sampling approach and recalculated PSi values. We created 9999 replicates for each 

population and computed p-values by calculating how many times the empirical PSi values were 

observed in the null communities. 

Calculating microbial richness 

From the rarefied nest-level data (see above), we calculated the richness of fungi and bacteria of 

each individual nest as the number of unique amplicon sequence variants (ASVs) present. It is 

worth pointing out that there were no differences in beta diversity on the fungi and bacterial 

communities associated with brood cells within each nest (McFrederick and Rehan 2019), 

suggesting that bacterial succession was not a main driver of community structure within a nest. 

Calculating resource overlap among individuals 

To test if dietary breadth and the richness of microbial communities are associated (H3), we used 

a network approach to characterize individuals’ resource overlap by calculating weighted-

closeness centrality (Blüthgen et al. 2006; Cirtwill et al. 2018). Weighted-closeness centrality 

(hereafter, centrality) measures the sum of the length of shortest paths between a focal individual 

and every other individual in the network. The larger an individual’s centrality, the closer they are 

to all other individuals in the network, and the more they interact with plants that other individuals 
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also interact with, thus increasing the potential of microbial transmission.  We used the bipartite 

package (Dormann et al. 2008) to calculate centrality. 

Statistical analyses 

To analyze if PSi values differed among populations (H1) we used analysis of variance (ANOVA) 

for which all assumptions were met. We used sequential ANOVA (Type I) and linear models to 

quantify the effects of individual specialization (H2) and centrality (H3) on microbial richness. 

Analyses on log-transformed microbial richness were qualitatively the same (Figs. S9 & S11). We 

conducted separate analyses for pollen-associated bacteria and fungi. To quantify the effects of 

bee specialization (H2), we included sample site as a covariate and tested for both main and site-

dependent effects of specialization. To quantify the effects of centrality, we included sample site 

and degree (number of plants each bee individual interacted with) and site-by-degree interaction 

as covariates, to isolate the effect of centrality on microbial richness. We also tested for site-

dependent effects of centrality. Here we report results from microbial richness rarefied to read 

depths used in McFrederick and Rehan (2019), but we also point out whether results were 

(in)consistent across different levels of rarefaction (lower read depth that enables us to include 

90% of the data, and without rarefying the data; Online Supplement). We performed all analyses 

in R (version 4.0.0) (R Core Team 2020). 

Results 

Bee individuals exhibited clear differences in resource use both within (PSi null model: all p-values 

<0.001; Fig. 1, Figs. S4-6), and across populations (ANOVA: F2,35 = 14.09, p<0.001; Fig. 1 & 

Fig. S5) (H1). The Victoria population was the most specialized, followed by South Australia, and 
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Queensland (Figs. 1, S4-6). These results were robust despite the small sample sizes (Figs. S2, 

S3).  

We expected a negative effect of specialization on microbial richness (H2), but we found little 

evidence for this hypothesis regardless of the read depth we rarefied our richness estimates to 

(Fig. S8 and Tables S1-S2). For example, after accounting for site-level differences in bacterial 

richness (F2,28 = 5.64, p = 0.009), there were no clear main or site-dependent effects of 

specialization (PSi; F1,28 = 1.52, p = 0.227, Fig. S8; Site*PSi: F2,28 = 0.61, p = 0.551). Similarly, 

for fungal richness we found clear differences among sites (F2,26 = 6.18, p = 0.006), but no clear 

main or site-dependent effects of specialization (PSi: F1,26 = 0.010, p = 0.920, Fig. S8; Site*PSi: 

F2,26 = 0.34, p = 0.716). While it is generally difficult to conclude that a biological factor has no 

effect, our estimates of uncertainty (SE and 95% CI) suggest that any effect of specialization is 

likely to be weak, especially for fungal richness (Fig. S8). 

We found mixed support for the hypothesis that dietary breadth (measured as centrality) and the 

richness of microbial communities were associated (H3; Figs. 2 and S10, Tables S3-S4). For 

example, after accounting for the effects of site and degree (and site*degree, Tables S3-S4), 

there was no evidence of main or site-dependent effects of centrality on bacterial richness 

(Centrality F1,25 = 0.91, p = 0.349; Site*Centrality F2,25 = 0.20, p = 0.817), and this result was 

consistent regardless of rarefaction method (Fig. S10 and Table S3; all p>0.210). But for fungal 

richness, we found that the effect of bee-individual centrality varied among sites, although the 

clarity of this effect depended on our rarefaction method (Table S4: Non-rarefied p = 0.002; 

High read depth p = 0.062; Low read depth p = 0.011). Specifically, we found consistent 

positive effects of centrality on fungal richness in the Victoria population (Figs. 2 and S10), 
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whereas there was no consistent evidence of centrality effects on fungal richness at the other 

sites (Fig. S10). 

Discussion 

The assemblage of pollen inside a solitary bee's nest provides a chronicle of an individual bee’s 

foraging history over the activity period of the nest. Pollen provisions are therefore a powerful tool 

for exploring the existence of individual dietary variation in wild populations and its associated 

consequences. Here, we leveraged the pollen provisioning behavior of a generalist bee species to 

understand the links between resource use and microbial associations. Our results are threefold. 

First, we revealed the existence of marked individual specialization in Ceratina australensis within 

and across populations. Second, we found that individual specialization had, at most, a biologically 

weak effect on fungal richness associated with pollen. Third, in the most specialized population, 

we found a strong, positive effect of individuals’ dietary breadth on fungal richness. While our 

wide estimates of uncertainty are less conclusive for bacteria (Figs. S8-S11), they nevertheless 

suggest that additional mechanisms beyond environmental transmission, such as microbial 

filtering (Keller et al. 2020), may be at play regarding microbial acquisition in wild populations. 

Our study highlights the microscopic variability of interaction networks and the existence of 

fluctuations of interaction patterns at a finer level (Trøjelsgaard and Olesen 2016). 

Plant-pollinator interaction networks suggest that species are more flexible in their interaction 

partners when temporal variability is taken into account (Spiesman and Gratton 2016; CaraDonna 

and Waser 2020) and that this flexibility has population-level ramifications (Gaiarsa et al. 2021). 

At a finer scale, by looking at repeated samples of the same individuals, our results suggest that 

populations are composed of a combination of highly specialized and generalized individuals, with 
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varying degrees of individual specialization even in the most specialized population (Victoria, Fig. 

1). This finding challenges the common practice of binning bee species into oligolectic and 

polylectic (i.e., pollen specialists or generalists) categories and instead suggests that more studies 

teasing out the importance of diet breadth at the species versus individual level are needed 

(Rothman et al. 2020). An exciting new research avenue is to explore whether this flexibility is 

intrinsic to individuals, related to intraspecific and interspecific competition, or reflects resource 

availability. 

The mechanisms for environmental transmission of microbes for solitary bees are very different 

from those of social bees. In the social corbiculate bee species, microbes are mostly transmitted 

via direct contact between individuals within the colony (Koch and Schmid-Hempel 2011; Powell 

et al. 2014), which results in high host specificity (Kwong and Moran 2015). In contrast, for 

solitary and social species with small colonies, environmental transmission through shared 

resources may represent the most important transmission mechanism (McFrederick et al. 2012, 

2013; Keller et al. 2020). Our results partially support this hypothesis. Although we found no clear 

effect of dietary specialization on the richness of microbial communities, we found a strong, 

positive effect of centrality on fungal richness only in the most specialized population. Using this 

dataset McFrederick and Rehan (2019) found a high clustering of fungi communities across sites, 

but a weaker clustering effect of bacterial communities. Taken together, these results suggest that 

individual resource sharing (centrality)  may be an important component in the pollen-associated 

richness of microbial communities in more specialized populations. This pattern further suggests 

that resources shared by individuals may potentially influence microbial transmission in 

populations formed predominantly by specialized individuals, regardless of the number of flowers 

each individual visits. In multispecies plant-pollinator networks pathogen prevalence was related 
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to the number of interactions in the network (connectance), but not to species centrality (Figueroa 

et al. 2020). Future studies connecting individual variation to multispecies networks are necessary 

to better understand the interplay between microbial transmission and interaction networks. 

While our study is the first to explicitly explore the role of individual-level specialization in 

microbial transmission and acquisition, it is not the only study to examine microbes in the context 

of plant-pollinator networks. Voulgari-Kokota et al. (2019) used pollen and bacteria 

metabarcoding to create interaction networks between flower and seven megachilid bee species. 

The floral composition of the bee’s pollen provisions significantly correlated with the bacteria 

found in these provisions and in larval guts, supporting the importance of floral transmission. 

Zemenick et al. (2021) showed that both pollinator identity and microbial species sorting in floral 

nectaries influenced nectar microbial community structure. Other studies that do not use an explicit 

network framework have also shown that floral transmission appears to be a major driver of pollen 

provision microbial communities (McFrederick et al. 2012, 2017; McFrederick and Rehan 2016; 

Rothman et al. 2019; Voulgari-Kokota et al. 2019). We further this body of work by showing the 

existence of individual-level specialization in populations of generalist bees. Taken together, these 

results highlight both the variability of a species' foraging behavior and the variability of ecological 

networks across space (Trøjelsgaard and Olesen 2016). 

Our study demonstrates that bee individuals of a widespread, common, carpenter bee vary in their 

level of dietary specialization both within and across populations. We also show that different 

mechanisms beyond environmental transmission may be at play regarding microbial acquisition 

given that an individual’s level of specialization did not affect microbial richness. We note that we 

focused on a single bee species and that we did not consider floral availability, thus the links 

between diet and microbe acquisition may be clearer when entire communities are considered. 
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Future work could investigate whether greater diversity in resource availability in an area leads to 

greater generalization in foraging behavior at the individual level. Connecting community 

structure to microbial transmission is crucial to understanding future trajectories of ecological 

communities and to guarantee ecosystem services such as pollination. It remains unclear how 

different fungi and bacteria affect solitary bee fitness and overall bee health. By combining 

metabarcoding and network approaches, our results contribute to the growing literature linking the 

structure of ecological communities to microbial transmission patterns. 
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Figure Legends 

Figure 1. Dietary specialization (PSi) varies within populations and across populations. Each point 

represents PSi values of individual nests, with brood cells combined. All empirical values were 

significantly smaller than expected by the null model. 

Figure 2. In the Victoria population, the centrality of bee individuals had a positive effect on the 

richness of fungi associated with the pollen of each nest after controlling for the degree of bee 

individuals (left panel, β = 305, SE = 125.5, t16 = 2.43, p = 0.027). The right panel shows the plants 

(same size, white nodes) and bee-individual (gray nodes) interaction network of the Victoria 

population. Bee individuals on the right panel are scaled according to their weighted closeness 

centrality. For visualization purposes, three bee individuals are highlighted with colors and shapes 

matching individuals across panels. 
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Calculating individual variation

This index considers the proportion of an individual’s diet item in comparison to the proportion

of that item in the population as a whole: PSi = 1 − 0.5 ∑j |pij − qj|. Thus, the proportional-

similarity index of individual i, PSi, is calculated based on pi j, the proportion of category j in the

diet of individual i (or the frequency of plant j in the bee individual i), and qj, the proportion of

category j in the population as a whole (Zaccarelli et al., 2013).

Molecular Analyses and Bioinformatics

Nests were collected at dawn or dusk and were kept chilled before being processed McFrederick

and Rehan (2019). They were then split lengthwise and the contents were transferred to sterile

cryovials with sterilized forceps. All samples were kept in liquid nitrogen before being trans-

ferred to a −80C freezer for storage until DNA extraction. DNA was extracted from each of the

87 pollen provisions using protocols previously described in McFrederick and Rehan (2019).

Briefly, first we prepared separate metabarcoding amplicon libraries for bacteria (the 16S

rRNA gene [16S]), fungi (the internal transcribed spacer [ITS]), and plants (RuBisCO large sub-

unit [rbcl]). For 16S and rbcl, we used previously described primers and previously described

PCR protocols (McFrederick and Rehan, 2016, 2019), while for fungi we used ITS1f and ITS2

primers (Smith and Peay, 2014). We then used DNA metabarcoding to characterize and quantify

the plants, fungi, and bacteria present in each pollen provision. We used QIIME2 (Caporaso

et al., 2010) to analyse metabarcoding data and DADA2 (Callahan et al., 2016) to bin reads into

exact sequence variants (ESV). For plants (rbcl), we used a database that was recently compiled

for metabarcoding studies of pollen (Bell et al., 2017) and the RDP classifier (Cole et al., 2009).

Briefly, for bacteria data (16S rRNA) we trained the SILVA 128 database (Quast et al., 2012)to the

section of the 16S rRNA gene that is amplified with the primers used, while for the fungi data

(ITS) we used the UNITE database (Abarenkov et al., 2010). We identified plants at the genus

2
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level, and used ESVs to conduct analysis for the bacteria and fungi.

We included in the analysis data from 38 different individual nests. Each nest had between

one and five pollen provisions (mean = 2.23, sd = 1.06). Plant diversity varied across sites, with

Victoria presenting the highest generic richness (37 genera), followed by Queensland (24 genera),

and South Australia (11 genera) (Fig. S1). These results were robust despite the small sample

sizes (Figs. S2 and S3).

The effect of sample size

We conducted rarefaction analyses to explore the properties of the different populations. By

subsampling the data without replacement in each population it is possible to evaluate how the

number of individuals sampled affected the plant species richness. Despite the variation in the

number of individuals sampled in each population, the diversity of plant species in the diet of

Ceratina, per population, is representative. Even though South Australia has the largest number

of individuals, if we were to randomly select nine individuals, plant richness would be similar

to that of the 18 individuals sampled.

We also explored how mean specialization (Psi) changed when we randomly subsampled

nine individuals from the South Australia and Victoria populations. For each population, we

randomly selected nine individuals 10.000 times, and calculated the mean Psi of the population.

We found that the average distribution of the subsampled population is similar to the average of

the whole population.

The effect of different read depths

We also explored the robustness of our results to different read depths: including all samples

regardless of the read depth (“NA”), following the read depths from the original paper (“High”;

bacteria = 153, fungi = 530; McFrederick and Rehan 2019), or using a read depth that enables us

to include 90% of the data (“Low”; bacteria = 95, fungi = 96). Results were consistent regardless

3
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of read depth (Figs. S9 and S11).

The effect of taxonomic resolution on specialization

We tested the effect of the taxonomic resolution of plant data at the genus level on the character-

ization of specialization in resource use and related results. To do that, we used the Amplicon

Sequence Variant (ASV) data to characterize plant interactions, which the same ”taxonomic unit”

used to access the richness of fungi and bacteria. This is the finest level of taxonomic resolution

possible given our data and a proxy for species-level or possibly even strain-level diversity in

this study. We found that proportional similarity index (PSi) using genus and ASV was highly

correlated (r = 0.99, p < 0.001), which strongly suggest that taxonomic resolution does not im-

pact our results. Similar to results presented in the main text, we found that bee individuals had

clear differences in resource use both within (PSi null model: all p − values < 0.001), and across

populations (ANOVA: F2,35 = 15.97, p < 0.001), and the Victoria population was the most spe-

cialized (mean PSi = 0.262, sd=0.06), followed by South Australia (mean PSi = 0.419, sd=0.14),

and Queensland (mean PSi = 0.590, sd=0.153).

As for the effect of specialization on microbial richness (H2), similar to the main text analysis

we found little evidence for this hypothesis. Here we focus on the results following the read

depths from the original paper (“High”; bacteria = 153, fungi = 530; McFrederick and Rehan

2019), but as in the main paper, results were qualitatively similar regardless of read depth used.

For example, after accounting for site-level differences in bacterial richness (F2,28 = 4.13, p =

0.029), there were no clear main or site-dependent effects of specialization (PSi; F1,28 = 0.19, p =

0.66; Site*PSi: F2,28 = 1.65, p = 0.21). Likewise, for fungal richness we found clear differences

among sites (F2,26 = 2.93, p = 0.078), but no clear main or site-dependent effects of specialization

(F1,26 = 0.04, p = 0.83; Site*PSi: F2,26 = 0.24, p = 0.79).

For the relationship between centrality and microbial richness we also found qualitatively

similar results to those presented in the main text. After accounting for the effects of site

4
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and degree and for the interaction between site and degree, we found no evidence of main

or site-dependent effects of centrality on bacterial richness (Centrality F1,25 = 3.29, p = 0.08

Site*Centrality F2,25 = 0.22, p = 0.79). But for fungal richness, we found that the effect of bee-

individual centrality varied among sites, although the clarity of this effect depended on our rar-

efaction method (Non-rarefied p = 0.015; High read depth p = 0.17; Low read depth p = 0.002).

Once again, we found consistent positive effects of centrality on fungal richness in the Victoria

population whereas there was no consistent evidence of centrality effects on fungal richness at

the other sites.

5
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Supplementary Figures and Tables

P
la

nt
s

All populations Queensland South Australia Victoria

Figure S1: Interaction network between plants genera (in green) and the different Ceratina aus-

traliensis individuals of each population: Queensland (blue), South Australia (red), and Victoria

(orange). The wider the circle, the greater the number of plants an individual bee interacts with.

The position of the nodes (circles) is fixed to facilitate comparison across populations.
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Figure S2: Rarefaction curve of the number of plant genera found as individuals are added to

the samples.
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Figure S3: Distribution of mean specialization (PSi) when randomly subsampling nine individ-

uals from the South Australia (blue) and Victoria (green) populations. Dotted lines indicate the

population average Psi when including all individuals and the dashed red line indicates the av-

erage PSi of the Queensland population.
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Figure S4: Variation in individual proportional similarity among individuals of the Victoria pop-

ulation. The red bar represents the empirical value and in black is the frequency distribution of

mean bootstrapped values across 9999 simulations.
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Figure S5: Variation in individual proportional similarity among individuals of the South Aus-

tralia population. The red bar represents the empirical value and in black is the frequency

distribution of mean bootstrapped values across 9999 simulations.
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Figure S6: Variation in individual proportional similarity among individuals of the Queensland

population. The red bar represents the empirical value and in black is the frequency distribution

of mean bootstrapped values across 9999 simulations.
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Figure S7: Frequency distribution of mean PSi values for each population. Red lines represent

the empirical PSi mean of each population, and the frequency distribution of the PSi values of

the null models. All populations presented empirical values much smaller than expected the a

null distribution.
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Figure S8: Biological effect of specialization (PSi) on microbial species richness after control-

ling for the effect of sampling site. Effect size corresponds to the predicted change in microbial

richness with an increase in specialization of 0.4units, which reflects the average range of special-

ization within individuals of each population. Points correspond to mean estimates, while thick

and thin lines correspond to standard error and 95% confidence intervals, respectively. Different

point shapes correspond to different read depths the data were rarefied to. Note that high and

low read depths differ for bacteria (high = 153, low = 95) and fungi (high = 530, low = 96).

13

This is the author’s accepted manuscript without copyediting, formatting, or final corrections. It will be published in its final form in an upcoming issue of 
The American Naturalist, published by The University of Chicago Press. Include the DOI when citing or quoting: https://doi.org/10.1086/721023  

Copyright 2022 The University of Chicago Press.



Supplement to Individual dietary specialization of bees across populations

−1.0

−0.5

0.0

0.5

Bacteria Fungi

∆l
og

(m
ic

ro
be

 s
pe

ci
es

 r
ic

hn
es

s)

Read depth

NA
High
Low

PSi range = 0.4

Figure S9: Biological effect of specialization (PSi) on log of microbial species richness after con-

trolling for the effect of sampling site. Effect size corresponds to the predicted change in microbial

richness with an increase in specialization of 0.4units, which reflects the average range of special-

ization within individuals of each population. Points correspond to mean estimates, while thick

and thin lines correspond to standard error and 95% confidence intervals, respectively. Different

point shapes correspond to different read depths the data were rarefied to. Note that high and

low read depths differ for bacteria (high = 153, low = 95) and fungi (high = 530, low = 96).
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Figure S10: Biological effect of centrality on microbial species richness after controlling for the

effect of sampling site and degree. Effect size corresponds to the predicted change in microbial

richness with an increase in centrality of 0.04 units, which reflects the average range of centrality

among individuals of each population. Points correspond to mean estimates, while thick and

thin lines correspond to standard error and 95% confidence intervals, respectively. Different

point shapes correspond to different read depths the data were rarefied to. Note that high and

low read depths differ for bacteria (high = 153, low = 95) and fungi (high = 530, low = 96).
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Figure S11: Biological effect of centrality on log microbial species richness after controlling for the

effect of sampling site and degree. Effect size corresponds to the predicted change in microbial

richness with an increase in centrality of 0.04 units, which reflects the average range of centrality

among individuals of each population. Points correspond to mean estimates, while thick and

thin lines correspond to standard error and 95% confidence intervals, respectively. Different

point shapes correspond to different read depths the data were rarefied to. Note that high and

low read depths differ for bacteria (high = 153, low = 95) and fungi (high = 530, low = 96).
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Table S1: Sequential ANOVA (Type I) of site and bee specialization (PSi) effects on bacterial

richness.

Source df SS MS F P

No rarefaction (NA)

Site 2 1333.4 666.72 2.86 0.072

PSi 1 60.8 60.81 0.26 0.613

Site × PSi 2 249.8 124.92 0.54 0.590

Residuals 32 7451.7 232.87

Rarefy to 153 reads (High)

Site 2 1021.01 510.50 4.05 0.031

PSi 1 29.72 29.72 0.24 0.632

Site × PSi 2 339.25 169.62 1.35 0.279

Residuals 24 3025.43 126.06

Rarefy to 95 reads (Low)

Site 2 881.40 440.70 5.64 0.009

PSi 1 119.26 119.26 1.53 0.227

Site × PSi 2 95.14 47.57 0.61 0.551

Residuals 28 2189.15 78.18
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Table S2: Sequential ANOVA (Type I) of site and bee specialization (PSi) effects on fungal rich-

ness.

Source df SS MS F P

No rarefaction (NA)

Site 2 627.12 313.56 6.64 0.004

PSi 1 2.71 2.71 0.06 0.812

Site × PSi 2 8.81 4.40 0.09 0.911

Residuals 30 1415.67 47.19

Rarefy to 530 reads (High)

Site 2 149.58 74.79 2.94 0.077

PSi 1 1.11 1.11 0.04 0.837

Site × PSi 2 14.42 7.21 0.28 0.756

Residuals 19 483.10 25.43

Rarefy to 96 reads (Low)

Site 2 105.15 52.58 6.18 0.006

PSi 1 0.09 0.09 0.01 0.920

Site × PSi 2 5.77 2.88 0.34 0.716

Residuals 26 221.15 8.51
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Table S3: Sequential ANOVA (Type I) of site, bee degree, and bee weighted-closeness centrality

effects on bacterial richness.

Source df SS MS F P

No rarefaction (NA)

Site 2 1333.4 666.72 2.86 0.073

Degree 1 12.0 11.95 0.05 0.822

Site × Degree 2 132.3 66.15 0.28 0.755

Centrality 1 101.3 101.32 0.44 0.515

Site × Centrality 2 767.2 383.60 1.65 0.210

Residuals 29 6749.6 232.74

Rarefy to 153 reads (High)

Site 2 1021.01 510.50 3.48 0.049

Degree 1 32.76 32.76 0.22 0.642

Site × Degree 2 31.43 15.71 0.11 0.899

Centrality 1 207.40 207.40 1.41 0.248

Site × Centrality 2 39.59 19.79 0.13 0.875

Residuals 21 3083.21 146.82

Rarefy to 95 reads (Low)

Site 2 881.40 440.70 4.84 0.017

Degree 1 6.87 6.87 0.08 0.786

Site × Degree 2 2.04 1.02 0.01 0.989

Centrality 1 82.95 82.95 0.91 0.349

Site × Centrality 2 37.09 18.54 0.20 0.817

Residuals 25 2274.59 90.98
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Table S4: Sequential ANOVA (Type I) of site, bee degree, and bee weighted-closeness centrality

effects on fungal richness.

Source df SS MS F P

No rarefaction (NA)

Site 2 627.12 313.56 11.82 <0.001

Degree 1 108.72 108.72 4.10 0.053

Site × Degree 2 52.42 26.21 0.99 0.385

Centrality 1 124.06 124.06 4.68 0.040

Site × Centrality 2 425.98 212.99 8.03 0.002

Residuals 27 716.00 26.52

Rarefy to 530 reads (High)

Site 2 149.58 74.79 4.11 0.036

Degree 1 46.89 46.89 2.58 0.128

Site × Degree 2 17.34 8.67 0.48 0.629

Centrality 1 22.89 22.89 1.26 0.278

Site × Centrality 2 120.54 60.27 3.31 0.062

Residuals 16 290.97 18.19

Rarefy to 96 reads (Low)

Site 2 105.15 52.58 8.99 0.001

Degree 1 15.48 15.48 2.65 0.117

Site × Degree 2 11.65 5.83 1.00 0.384

Centrality 1 0.09 0.09 0.02 0.900

Site × Centrality 2 65.30 32.65 5.58 0.011

Residuals 23 134.48 5.85
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