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Noncommutative partially convex rational functions

Michael Jury, Igor Klep, Mark E. Mancuso, Scott McCullough and James
Eldred Pascoe

Abstract. Motivated by classical notions of bilinear matrix inequalities (BMIs) and
partial convexity, this article investigates partial convexity for noncommutative func-
tions. It is shown that noncommutative rational functions that are partially convex
admit novel butterfly-type realizations that necessitate square roots. A strengthening of
partial convexity arising in connection with BMIs – GH-convexity – is also considered.
A characterization of GH-convex polynomials is given.

1. Introduction

Convexity and its matricial analogs arise naturally in many mathematical and engineering
contexts. A function 5 : [0, 1] → R is convex if

5

( G + H
2

)
≤ 1

2
( 5 (G) + 5 (H))

for all G, H ∈ [0, 1]. Convex functions have good optimization properties. For example,
local minima are global, making them highly desirable in applications. The dimension-free
or scalable matrix analog of convexity appears in many modern applications, such as
linear systems engineering [BGFB94, SIG98], wireless communication [JB07], matrix
means [And89,And94,Han81], perspective functions [Eff09,ENE11], random matrices
and free probability [GS09] and noncommutative function theory [DK+,HMV06,HM04,
DHM17,BM14]. Often in systems engineering [dHMP09] problems have two classes of
variables: known unknowns 0 = (01, . . . , 0h) and unknown unknowns G = (G1, . . . , Gg).
Linear system problems specified by a signal flow diagram naturally give rise to matrix
inequalities ?(0, G) � 0, where ? is a polynomial, or more generally a rational function, in
freely noncommuting variables. The 0 variables represent system parameters whose size,
which can be large, depends upon the specific problem. The G variables represent the design
variables. A key point is that ?(0, G) depends only upon the signal flow diagram. Thus a
choice of a value � for 0 corresponds to a specific problem governed by the given signal
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flow diagram and in that sense 0 is a known unknown. One then chooses the design variable
- to optimize an objective and in that sense G is an unknown unknown. Partial convexity in
the unknown unknowns G is then sufficient for reliable numerics and optimization.

A function 5 : (−1, 1) → R is matrix convex if

5

(
- + .

2

)
� 1

2
( 5 (-) + 5 (. ))

for all hermitian matrices -, . with spectrum in (−1, 1). Matrix convex functions are
automatically real analytic and admit analytic realizations, such as the famous Kraus
formula [Kra36,Bha97]

(1.1) 5 (G) = 0 + 1G +
∫ 1

−1

G2

1 + CG 3`,

where 0, 1 ∈ R and ` is a finite Borel measure on [−1, 1]. Conversely, functions of the form
(1.1) are readily seen to be matrix convex on (−1, 1). As an example, the Kraus formula
(1.1) in conjunction with the asymptotics at infinity shows that G2 is matrix convex, but G4

is not.
In the noncommutative multivariable setting one considers noncommutative (nc)

polynomials, rational functions and their generalizations. An nc polynomial is a linear
combination of words in the freely noncommuting letters G = (G1, . . . , Gg). For example,

(1.2) ?(G) = G1G2 − 17G2G1 + 4

is a nc (or free) polynomial. Noncommutative polynomials are naturally evaluated at tuples
of matrices of any size. For instance, to evaluate ?(G) from (1.2) on

-1 =

(
1 2
3 4

)
, -2 =

(
−1 −1
−1 −1

)
,

we substitute -8 for the variable G8 , that is,

?(-1, -2) = -1-2 − 17-2-1 + 4�2 =
(
69 99
61 99

)
.

More generally, an nc rational function is a syntactically valid expression involving
G, +, ·, ()−1 and scalars. Thus

A (G) = 1 + (G1 − G2 (G1G2 − G2G1)−1)−1

is an example of a nc rational function. It is evaluated at a tuple - = (-1, -2) of = × =
matrices for which -1-2 − -2-1 is invertible and in turn -1 − -2 (-1-2 − -2-1)−1 is
invertible in the natural way to output an = × = matrix A (-). A nc rational function A is
symmetric if A (-) = A (-)∗ for all hermitian tuples - in its domain.

Matrix convexity for multivariate nc functions is now well understood. Analogs of the
Kraus representation, the so-called butterfly realizations, were obtained in [HMV06] for
rational functions and in [PTD+] for more general nc functions. There is a paucity of matrix
convex polynomials: as first observed in [HM04] they are of degree at most two.

A main result of this paper, Theorem 1.2, is an analog of the Kraus representation
for partially convex nc rational functions. Specialized to polynomials, our results extend
and generalize results of [HHLM08]. Moreover, we also investigate the stronger notion of
GH-convexity, modeled on the theory of bilinear matrix inequalities (BMIs) [KSVS04].
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1.1. Main results

For positive integers k and =, let Sk= = Sk= (C) denote the k-tuples of = × = hermitian matrices
over C. A subset D = (D=)= of Sk is a sequence of sets such that D= ⊆ Sk=. This subset is
free, or a free set, if it is closed under direct sums and unitary conjugation: if . ∈ D<,
- ∈ D=, and* is an = × = unitary matrix, then

- ⊕ . :=
(
-1 ⊕ .1, · · · , -k ⊕ .k

)
=

((
-1 0
0 .1

)
, · · · ,

(
-k 0
0 .k

))
∈ D=+<,

*∗-* := (*∗-1*, . . . ,*
∗-k*) ∈ D=.

It is open if each D= is open. (In general adjectives such as open and connected apply
term-wise to D.)

Since we are dividing our freely noncommuting variables into two classes 0 = (01, . . . , 0h)
and G = (G1, . . . , Gg), where g and h are positive integers, we take k = h + g and let
Sk = Sh × Sg = (Sh= × S

g
=)=. We express elements of Sk= as (�, -), where � ∈ Sh and

- ∈ Sg.
The symmetric version [HMV06, Proposition 4.3] of the well-known Schützenberger

[Scü61] state space similarity theorem implies that a symmetric nc rational function A (0, G)
that is regular at the origin (has 0 in its domain) admits a symmetric realization

(1.3) A (0, G) = 2∗
(
� −

g∑
8=1
)8G8 −

h∑
9=1
( 90 9

)−1
2,

where, for some positive integer 4, the 4 × 4 matrix � is a signature matrix (�2 = �, �∗ = �),
the 4 × 4 matrices ( 9 ,)8 are hermitian and 2 ∈ C4 . In the case 4 is the smallest such positive
integer, the resulting realization is a symmetric minimal realization (SMR) of size 4.
Any two SMRs that determine the same rational function are similar as explained in more
detail in Subsection 2.1. In particular, the definitions and results here stated in terms of
an SMR do not depend upon the choice of SMR. The results of [Vol17,K-VV09] justify
defining the domain of A as

(1.4) dom A = {(�, -) ∈ Sh × Sg : det
(
� ⊗ � −

g∑
8=1
)8 ⊗ -8 −

h∑
9=1
( 9 ⊗ � 9

)
≠ 0}.

In particular, the domain of a rational function is a free open set. Let C (<0, G )> denote the
set of rational functions in the variables 0 and G.

1.1.1. The domain of partial convexity. An nc rational function A ismatrix convex in G
or partially convex on D if

A

(
�,
- + .

2

)
� 1

2
(A (�, -) + A (�,. ))

whenever (�, -), (�,. ), (�, -+.2 ) ∈ D. Sublevel sets of such functions have matrix con-
vexity properties, which we do not discuss here save to note that these sublevel sets are very
important in real and convex algebraic geometry, polynomial optimization, and the rapidly
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emerging subject of noncommutative function theory [SSS18, Pop18, PSS18, PS19, K-
VV14,HM12,HL18,HKM17,HKM13b,EH19,Eve18,DDSS17,BMV16].

Our first main theorem gives an effective easily computable criterion to determine
where A is convex in G. To state this result, let +) denote the inclusion of the span of the
ranges of the )9 into C4 and let

(1.5) ') (0, G) = +∗)
©­«� −

g∑
8=1
)8G8 −

h∑
9=1
( 90 9

ª®¬
−1

+) .

Finally, let

(1.6) dom+ A := {(�, -) ∈ dom A : ') (�, -) � 0}.

Given D ⊆ Sh × Sg and � ∈ Sh
:
,

(1.7) D[�] = {- ∈ Sg
:

: (�, -) ∈ D}.

A free set D is convex (resp. open) in G if D[�] is convex (resp. open) for each � ∈ Sh.
Theorem 1.1 below, which is proved as Theorem 2.6, says that dom+ A deserves the
moniker, the domain of partial convexity of A. Generally, a free set D is a domain of
partial convexity for A ifD is open in G, convex in G, and A is convex in G onD . It is a full
domain of partial convexity if in addition D contains a free open setU withU1 ≠ ∅.

Theorem 1.1. The set dom+ A is a domain of partial convexity for A.
Conversely, if D ⊆ dom A is a full domain of partial convexity for A, then D ⊆ dom+ A

and dom+ A is also a full domain of partial convexity for A.

1.1.2. The root butterfly realization: a certificate of partial convexity. Our second
main theorem, the root butterfly realization, gives an algebraic certificate for partial convex-
ity near points in the domain of A of the form (�, 0). This realization differs from existing
realizations in that it contains a square root that appears difficult to avoid. A free set D
is a vertebral set if (�, -) ∈ D implies (�, 0) ∈ D . We denote the positive (semidefi-
nite) square root of a positive (semidefinite) matrix % by

√
%. A vertebral free set D is

a vertebral domain of convexity for A provided D is open in G, convex in G, and if A is
convex in G on D . If in addition D contains a free open setU withU1 ≠ ∅, then D is a
full vertebral domain of convexity.

The vertebral domain of A is the set

domver A = {(�, -) ∈ dom A : (�, 0) ∈ dom A}.

Let
dom+ver A = {(�, -) ∈ dom+ A : (�, 0) ∈ dom+ A}

Theorem 1.2 gives a realization tailored to partial convexity that provides an algebraic
certificate of convexity in G for an A ∈ C (<0, G )>. Given a subset D ⊆ Sh × Sg, let

(1.8) c0 (D) = {� ∈ Sh : (�, -) ∈ D for some - ∈ Sg}.
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Theorem 1.2 (Wurzelschmetterlingrealisierung). Suppose A ∈ C (<0, G )> is a nc rational
function with the SMR as in (1.3). Then

(1) dom+ver A is a vertebral domain of convexity for A;
(2) if D is a full vertebral domain of convexity for A, then D ⊆ dom+ver A and dom+ver A

is a also a full vertebral domain of convexity for A;
(3) there exists a positive integer : , a tuple )̂ ∈ ": (C)g, and a symmetric rational

function |(0) ∈ C (<0 )>:×: defined on c0 (domver A) such that

dom+ver A =
{
(�, -) ∈ domver A : |(�) � 0, � −

√
|(�)

[
g∑
8=1
)̂8 ⊗ -8

] √
|(�) � 0

}
;

(4) there exists a rational function ℓ(0, G) ∈ C (<0, G )>:×1, defined on domver A and
linear in G; and a symmetric rational function 55 (0, G) ∈ C (<0, G )>, defined on
domver A and affine linear in G such that A admits the following realization, valid on
dom+ver A :

A = ℓ(0, G)∗
√
|(0)

(
� −

∑√
|(0))̂8G8

√
|(0)

)−1 √
|(0) ℓ(0, G) + 55 (0, G).

As a corollary we obtain the following simple representation for polynomials that are
convex in G. We use C〈0, G〉 to denote the set of noncommutative polynomials in (0, G).

Corollary 1.3 ([HHLM08, Proposition 3.1]). Suppose D is a free set that is open in G,
convex in G and contains a free open set U such that U1 ≠ ∅. A polynomial ?(0, G) is
convex in G on D if and only if there exists ℓ(0, G) ∈ C〈0, G〉 that is linear in G, and a
symmetric |(0) ∈ C〈0〉 that is positive semidefinite on c0 (D) such that

? = ℓ(0, G)∗|(0)ℓ(0, G) + 55 (0, G),

where 55 (0, G) ∈ C〈0, G〉 is affine linear in G and symmetric. In particular, if ? is convex in
G on D, then ? is convex in G on c0 (D) × Sg.

1.1.3. xy-convexity and BMIs. In this subsection we preview our results on GH-convexity
and BMIs. Like partial convexity, here we have two classes of variables. Unlike partial
convexity, the roles of the classes of variables appear symmetrically in GH-convexity. With
that in mind, we switch notation somewhat and consider freely noncommuting letters
G1, . . . , Gg, H1, . . . , Hh.

An expression of the form

! (G, H) = �0 +
g∑
9=1

� 9G 9 +
h∑
:=1

�: H: +
g,h∑
?,@=1

�?@G?H@ +
g,h∑
?,@=1

� ?@H@G? ,

where � 9 , �: , �?@ , � ?@ are all matrices of the same size, is an GH-pencil. In the case
� 9 , �: are hermitian and � ?@ = �

∗
@? , ! is a hermitian GH-pencil. If �0 = �, then ! is

monic. For a monic hermitian GH-pencil !, the inequality ! (-,. ) � 0 for (-,. ) ∈ Sg × Sh
is a bilinear matrix inequality (BMI) [vAB00,GSL96,KSVS04]. Domains D defined by
BMIs are convex in the G and H variables separately.
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We say a function 5 of two freely noncommuting variables is GH-convex on a free
set D if 5 (+∗ (-,. )+) � +∗ 5 (-,. )+ for all isometries + , and all -,. ∈ D satisfying
+∗ (-. )+ = (+∗-+) (+∗.+). Such a pair ((-,. ), +) is called an GH-pair. Sublevel sets
of GH-convex functions are delineated by (perhaps infinitely many) BMIs as proved in
[JKMMP21].

Symmetric polynomials in two freely noncommuting variables G and H (so g = 1 = h)
that are GH-convex essentially arise from BMIs. Here GH-convex means globally; that is, on
all of S1 × S1.

Theorem 1.4. Suppose ? is a symmetric polynomial in the two freely noncommuting
variables G, H. If ? is GH-convex, then there exists a hermitian GH-pencil _ ∈ C〈G, H〉, a
positive integer : and an GH-pencil Λ ∈ C〈G, H〉:×1 such that

? = _(G, H) + Λ(G, H)∗Λ(G, H).

The converse is easily seen to be true.

The notions of partial convexity and GH-convexity are two instantiations of Γ-convexity
[JKMMP21]. Let D ⊆ Sh × Sg be a given free open set that is also closed with respect to
restrictions to reducing subspaces; that is if (�, -) ∈ D and + is an isometry whose range
reduces each � 9 and -: , then +∗ (�, -)+ ∈ D . The set D is convex in G, or partially
convex, if for each � ∈ Sh

:
the slice D[�] (see (1.7)) is convex. Likewise D is 02-convex

if for each (�, -) ∈ D= and isometry + : C<→ C= such that +∗�2+ = (+∗�+)2 it follows
that +∗ (�, -)+ ∈ D. In [JKMMP21] it is shown that D is convex in G if and only if it is
02-convex. A straightforward variation on the proof of that result establishes Proposition
1.5 below. A rational function A ∈ C (<0, G )> is 02-convex on D if, whenever (�, -) ∈ D
and + : C< → C= is an isometry such that +∗�2

9
+ = (+∗� 9+)2 and +∗ (�, -)+ ∈ D, we

have that
+∗A (�, -)+ � A (+∗ (�, -)+).

Proposition 1.5. If D ⊆ Sh × Sg is a free set that is closed with respect to reducing
subspaces and 02-convex, then an A ∈ C (<0, G )> is 02-convex onD if and only if it is convex
in G on D .

2. Partial convexity for nc rational function

In this section we consider partial convexity of nc rational functions and establish Theorems
1.1 and 1.2 as well as Corollary 1.3.

2.1. Preliminaries

Proposition 2.1 below is a version of the well known state space similarity theorem due
to Schützenberger [Scü61]; see also [BMG05] or [HMV06, Proposition 4.3].

Proposition 2.1. If

@(G) = 0∗ ©­«� −
<∑
9=1

� 9G 9
ª®¬
−1

0, @(G) = 1∗ ©­« −
<∑
9=1

� 9G 9
ª®¬
−1

1
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are two SMRs for the same rational function, then there is a unique matrix ( such that
(∗ ( = �, (�� 9 =  � 9( for 1 ≤ 9 ≤ < and (�0 =  1.

A bit of algebra reveals that (∗�( = �. Thus  −∑
� 9G 9 = (

∗ (� −∑
� 9G 9 )( and it

follows that the definitions of dom A, dom+ A and dom‡ A are independent of the choice of
SMR.

Just as in the commutative case, it is well known that convexity properties of a free
rational functions can be characterized by positivity of a Hessian. See for instance [HM98].
The G-partial Hessian of an SMR as in equation (1.3) is the rational function in 2g + h
freely noncommuting variables,

AGG (0, G) [ℎ] = 22∗'(0, G) (
∑
8

)8ℎ8)'(0, G) (
∑
8

)8ℎ8)'(0, G)2

= 2

[
2∗'(0, G) (

∑
8

)8ℎ8)
]
') (0, G)

[
(
∑
8

)8ℎ8)'(0, G)2
]
,

(2.1)

where ' is the resolvent

(2.2) '(0, G) := (� −
∑

)9G 9 −
∑

(:0: )−1,

Λ) [ℎ] =
∑g
9=1 )9ℎ 9 , and ') (0, G) = +

∗
)
'(0, G)+) is defined as in (1.5). Compare with

[HMV06, Equation (5.3)] where the full Hessian of a SMR is computed in detail. The
G-partial Hessian is naturally evaluated at a tuple (�, -, �) ∈ Sh × Sg × Sg where (�, -) ∈
dom A with output a symmetric : × : matrix.

Proposition 2.2 is the partial convexity analog of the [HM98] characterization of
convexity in terms of Hessians. The proof is a straightforward modification of the one in
[HM98] so is only sketched below.

Proposition 2.2. The rational function A is convex in G on a nonempty, open in G, and
convex in G set ( ⊆ dom A ∩

(
Sh
:
× Sg

:

)
if and only if AGG (�, -) [�] � 0 for all (�, -) ∈ (

and � ∈ Sg
:
.

Sketch of proof. The rational function A is convex in G on ( if and only if for each � ∈ Sh
:

and each positive linear functional _ : S: → R the function 5�,_ : ( → R defined by
5�,_ (-) = _ ◦ A (�, -) is convex. On the other hand, 5�,_ is convex if and only if its
Hessian is positive; that is

0 ≤ 5 ′′�,_ (-) [�] = _ ◦ AGG (�, -) [�]

for all �. Thus 5�,_ is convex for each � and positive _ if and only if AGG (�, -) [�] � 0.

2.2. dom+ r is open in x and convex in x

In this section we show that dom+ A is both open in G and convex in G. Let positive integers
< and =, a matrix � ∈ S= and a matrix � ∈ "<,= (C) be given. Let + : C< → C< ⊕ C=
denote the inclusion,

+G =

(
G

0

)
∈ C< ⊕ C=.
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Define ! : S< → S<+= by

! (X) =
(
X �

�∗ �

)
.

Let

Ω = {X ∈ S= (C) : det ! (X) ≠ 0} and Ω+ = {X ∈ Ω : +∗! (X)−1+ � 0}.

Lemma 2.3. The set Ω+ is open, convex, and a connected component of Ω.

Before proving Lemma 2.3, we first establish the following result.

Lemma 2.4. There exists a subspaceH ⊆ C< and a self-adjoint operator � onH such
that, with, equal the inclusion ofH into C<,

(1) X ∈ Ω if and only if,∗X, − � is invertible; and
(2) X ∈ Ω+ if and only if,∗X, − � � 0.

Proof. The proof is straightforward in the case that � is invertible. Indeed, under the
assumption that � is invertible, a standard Schur complement result says ! (X) is invertible
if and only if the Schur complement of �,

((X) = X − ��−1�∗,

is invertible and further, in that case,

+∗! (X)−1+ = ((X)−1.

Thus the result holds withH = C< and � = ��−1�∗.
The result also holds trivially if Ω = ∅ by choosingH = {0}. Thus, for the remainder

of this proof, assume � is not invertible and Ω ≠ ∅. In particular, ker� ∩ ker � ≠ {0}.
With respect to the orthogonal direct sum C= = ker� ⊕ ker�⊥,

� =

(
0 0
0 �0

)
and ! (X) = ©­«

X �1 �2
�∗1 0 0
�∗2 0 �0

ª®¬ ,
with �0 invertible. It follows that �1 : ker� → C< is one-one, as otherwise ! (X) is never
invertible, violating the assumption Ω ≠ ∅.

With respect to the orthogonal decomposition C< = rng �1 ⊕ rng �⊥1 ,

�1 =

(
�1,1
0

)
: ker� → C<.

In particular, �1,1 is invertible. In these coordinates (C< = rng �1 ⊕ rng �⊥1 and C= =
ker� ⊕ ker�⊥),

! (X) =
©­­­«
X1,1 X1,2 �1,1 �1,2
X∗1,2 X2,2 0 �2,2
�∗1,1 0 0 0
�∗1,2 �∗2,2 0 �0

ª®®®¬ .
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Since �0 is invertible, ! (X) is invertible if and only if the Schur complement of �0,

) (X) = ©­«
X1,1 X1,2 �1,1
X∗1,2 X2,2 0
�∗1,1 0 0

ª®¬ − ©­«
�1,2
�2,2
0

ª®¬ �−1
0

(
�∗1,2 �∗2,2 0

)
,

is invertible. Writing ) (X) as

©­«
X1,1 − �1,1 X1,2 − �1,2 �1,1
X∗1,2 − �

∗
1,2 X2,2 − �2,2 0

�∗1,1 0 0

ª®¬ ,
observe that ) (X) is invertible if and only if X2,2 − �2,2 is invertible, proving item (1) with
H = rng �⊥1 and � = �2,2. Moreover,

) (X)−1 =
©­«

0 0 �−1
1,1

0 (X2,2 − �2,2)−1 ∗
�−∗1,1 ∗ ∗

ª®¬ .
Since the upper 3 × 3 block of ! (X)−1 is ) (X)−1, it follows that

+∗! (X)−1+ =

(
0 0
0 (X2,2 − �2,2)−1

)
.

Hence X ∈ Ω+ if and only if X2,2 − �2,2 � 0, proving item (2) again withH = rng �⊥1 and
� = �2,2.

Proof of Lemma 2.3. Since, by Lemma 2.4, X ∈ Ω+ if and only if,∗X, − � � 0, the set
Ω+ is both open and convex. Since Ω+ is convex, to prove Ω+ is a connected component of
Ω, it suffices to prove Ω+ is closed in Ω. To this end, suppose (X=)= is a sequence from Ω+

that converges to X ∈ Ω. It follows from Lemma 2.4 that,∗X=, − � � 0 for each = and
hence, after taking a limit,,∗X, − � � 0. On the other hand, X ∈ Ω implies,∗X, − �
is invertible by Lemma 2.4. Hence ,∗X, − � � 0 and therefore X ∈ Ω+ by yet another
application of Lemma 2.4.

Proposition 2.5. Suppose A ∈ C (<0, G )> is a nc rational function with the SMR as in (1.3)
and � ∈ Sh=. The set

Ω[�]+ = {- ∈ Sg= : (�, -) ∈ dom+ A}

is open, convex and a connected component of the set

Ω[�] = {- ∈ Sg= : (�, -) ∈ dom A} ⊆ Sg=.

Proof. Let # denote the size of realization. Thus � ∈ "# (C).Without loss of generality,
we assume that rng) ⊕ rng)⊥ decomposes C# as C0 ⊕ C1 . Express �, (, ) with respect
to this orthogonal decomposition as

� =

(
�1,1 �1,2
�∗1,2 �2,2

)
, (: =

(
(:,0 (:,1
(∗
:,1 (:,2

)
, )9 =

(
)9 ,0 0
0 0

)
.
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Let � = �1,2 ⊗ � −
∑
(:,1 ⊗ �: ∈ "0,1 (C) ⊗ S= and � = �2,2 ⊗ � −

∑
: (:,2 ⊗ �: ∈

S1 ⊗ S= ⊆ S1= and define ! : S0< → S0<+1= by

! (X) =
(
X �

�∗ �

)
and let + denote the inclusion of C0 ⊗ C= into (C0 ⊗ C=) ⊕ C1 ⊗ C=. Let Ω = {X ∈ S0< :
det ! (X) ≠ 0} and let

Ω+ = {X ∈ Ω : +∗! (X)−1+ � 0}.

By Lemma 2.3, Ω+ is open, convex and a connected component of Ω. In particular, Ω+ is
closed in Ω.

Define Λ : Sg= → S0= by

Λ(-) = (�1,1 ⊗ � −
∑
:

(:,0 ⊗ �: ) −
∑
9

)9 ,0 ⊗ - 9 .

Observe Λ is affine linear, Ω[�] = Λ−1 (Ω) and Ω[�]+ = Λ−1 (Ω+). Thus, since Λ is
continuous and Ω+ is open, Ω[�]+ is open. Likewise, since Λ is affine linear and Ω+ is
convex, Ω[�]+ is convex and thus connected. Finally, since Ω[�]+ connected, to show it is
a component of Ω[�], it suffices to observe that it is closed since it is the inverse image
under the continuous map Λ|Ω[�] : Ω[�] → Ω of the closed (in Ω) set Ω+.

2.3. Characterization of partial convexity

Throughout this section we fix an SMR (1.3) for A, and let '(0, G) denote the resolvent of
equation (2.2). Recall the definitions of ') and dom+ A of equations (1.5) and (1.6).

Theorem 2.6. If A ∈ C (<0, G )> is a nc rational function with the SMR as in (1.3), then
(1) dom+ A is a domain of partial convexity for A;
(2) if D ⊆ dom A is a full domain of partial convexity for A, then D ⊆ dom+ A.

Corollary 2.7 ([HMV06]). Suppose A ∈ C (<G )>. If A is convex in a free open set containing
0, then dom0 A , the component of dom A containing 0, is convex and A is convex on dom0 A.

It is straightforward to verify that dom+ A is a free set. That dom+ A is open in G and
convex in G was established in Proposition 2.5. Thus to prove dom+ A is a domain of partial
convexity for A, it remains to prove that A is convex in G on dom+ A , a statement that follows
from Proposition 2.8 below. Item (2) of Theorem 2.6 is an immediate consequence of the
converse portion of Proposition 2.8.

Proposition 2.8. Let A denote the rational function of (1.3) and suppose E ⊆ dom A is a
free set that is open in G and convex in G.

If ') � 0 on E, then A is convex in G on E . Conversely, if E contains a free open setU
withU1 ≠ ∅, and if A is convex in G on E, then ') � 0 on E .

2.3.1. The CHSY Lemma. In this subsection we establish a variant of the CHSY Lemma
[CHSY03] (see also [BK13,Vol18]) suitable for a proof of Proposition 2.8, starting with
the of independent interest Lemma 2.9 below.



Noncommutative partially convex rational functions 11

Lemma 2.9. If b1, . . . , b ∈ C (<G )> are linearly independent rational functions in g vari-
ables, < is a positive integer and U is a free open subset of Sg with U1 ≠ ∅, then there
exists a positive integer " , an - ∈ U" and a matrix | ∈ "<," (C) such that

{
©­­«
| b1 (-){

...

| b (-){

ª®®¬ : { ∈ C" } = C ⊗ C< = C <.

Proof. Let Ξ= col (b1, . . . , b ) ∈ " ,1 (C (<G )>). LetS denote the set of pairs (I,. ), where,
for some =, . ∈ U= and I ∈ "<,= (C). Given (I,. ) ∈ S=, let

V(I,. ) = {(� ⊗ I)Ξ(. ){ : { ∈ C=} ⊆ C ⊗ C<.

Given � = (I,. ) and �̃ = ( Ĩ, .̃ ) both in S, let

� ⊕ �̃ =
( (
I Ĩ

)
,

(
. 0
0 .̃

))
.

It is straightforward to verify thatV
�⊕ �̃ = V� + V�̃. Hence, there exists a (dominating)

pair (|, -) ∈ S such that

(2.3) V(I,. ) ⊆ V(|,- ) ,

for all (I,. ) ∈ S. Suppose U ∈ V⊥(|,- ) . From equation (2.3), it follows that U ∈ V⊥(I,. ) for
all (I,. ) ∈ S.Write U ∈ C ⊗ C< as U =

∑
U 9 ⊗ 4 9 , where {41, . . . , 4<} is the standard

orthonormal basis for C< and U 9 ∈ C .We will show, for each 9 , that
∑ 
B=1 (U 9 )BbB = 0,

and hence, by the linear independence assumption, that each U 9 , and hence U, is zero.
Accordingly, fix 9 and let = and . ∈ U= be given. Given a vector 5 ∈ C=, let | 5 = 4 9 5 ∗.
Since U ∈ V⊥(. ,| 5 ) ,

0 = U∗ [� ⊗ | 5 ]Ξ(. ) = (U∗9 ⊗ 5 ∗)Ξ(. ) = 5 ∗
 ∑
B=1
(U 9 )BbB (. ).

Thus, for each 9 , the rational function b =
∑ 
B=1 (U 9 )BbB vanishes on U . By hypothesis,

U1 ≠ ∅ andU is an open free set. Hence, for each =, the setU= is nonempty and open and
b vanishes identically onU . Hence b is identically zero since there are no rational identities
[Ber76]; cf. the definition of nc rational functions via matrix evaluations in [HMV06]. The
desired conclusion follows.

Lemma 2.10. If the realization (1.3) is minimal and of size # andU is a free open subset
of dom A, then, for each < ∈ N, there exists an ", (�, -) ∈ U, a | ∈ "<," (C) and an
� ∈ Sg

"
such that

+�,-,� ,| := {(�# ⊗ |) (
∑
8

)8 ⊗ �8)'(�, -) (2 ⊗ �" ){ | { ∈ C" } = (rng)) ⊗ C<.
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Proof. Let  denote the dimension of rng) and * a unitary matrix mapping rng) into
the first  coordinates of C# . The entries [ 9 of the # × 1 matrix '(0, G)2 are linearly
independent nc rational functions by minimality of (1.3) and hence so are the entries of the
g # × 1 matrix

&(0, G, ℎ) :=
©­­«
ℎ1'(0, G)2

...

ℎg'(0, G)2

ª®®¬ .
Thus there are b 9 ∈ C (<ℎ, 0, G )> such that∑

)8ℎ8'(0, G)2 =
[ (
)1 · · · )g

) ]
&(0, G, ℎ) = *∗ col (b1, · · · , b , 0, · · · , 0) .

Further, since the entries of & are linearly independent, the set {b1, . . . , b } is linearly
independent. By Lemma 2.9, for each positive integer <, there exists a positive integer
" , a tuple (�, �, -) ∈ Sg

"
×U" and a matrix | ∈ "",< (C) such that the conclusion of

Lemma 2.9 holds, completing the proof.

2.3.2. Proof of Proposition 2.8. Observe that, from equation (2.1) it is evident that the
inequality ') � 0 on E implies AGG is positive semidefinite on E, equivalently A is convex
in G on E by Proposition 2.2.

Now suppose AGG is positive semidefinite on E . To prove that the inequality ') � 0
holds on E, disaggregate the variables, in the following way. Let

G8 =

(
G1
8

0
0 G2

8

)
, ℎ8 =

(
0 :8
:∗
8

0

)
, 08 =

(
01
8

0
0 02

8

)
,

where the G 9
8
, :8 and 0 98 form a 2(2g + h) collection of freely noncommuting variables. In

these coordinates the (1, 1) entry of AGG in (2.1) equals

(2.4) 2

[
2∗'(01, G1) (

∑
8

)8:8)
]
'(02, G2)

[
(
∑
8

)8 (:8)∗)'(01, G1)2
]
.

We next apply Lemma 2.10. Given a positive integer < and (�2, -2) ∈ E<, choose " and
(�1, -1) ∈ U" , | ∈ "<," (C) and � ∈ Sg" satisfying the conclusion of Lemma 2.10. Thus
(�, -) = (�1 ⊕ �2, -1 ⊕ -2) ∈ E<+" and hence AGG (�, -) [�] � 0. Choose  = |� ∈
"<," (C). Substituting into (2.4) and observing that {[∑)9 ⊗  9 ]'(�1, -1) (2 ⊗ �) : { ∈
C=} spans rng) ⊕ C<, it now follows that ') (�2, -2) � 0.

2.3.3. Proof of Theorem 2.6. For item (1), Proposition 2.5 says that dom+ A is open in
G and convex in G. The forward direction of Proposition 2.8 says that A is convex in G on
dom+ A.

The converse direction of Proposition 2.8 says, if D is a full domain of convexity for A,
then ') � 0 on E . Thus E ⊆ dom+ A.
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2.4. Realizations for partial convexity

Proposition 2.11. The rational function A ∈ C (<0, G )> of equation (1.3) admits the realiza-
tion

A = 2∗ (� −
∑

(808)−12 + 2∗ (� −
∑

(808)−1
∑

)8G8 (� −
∑

(808)−12

+ 2∗ (� −
∑

( 90 9 )−1
∑

)8G8

(
� −

∑
)9G 9 −

∑
(:0:

)−1 ∑
)8G8 (� −

∑
(808)−12.

(2.5)

We will refer to a realization of the form (2.5) as a caterpillar realization.

Proof. Formula (2.5) follows from a routine calculation.

Recall the definitions of +) and c0 (D) from equations (1.5) and (1.8) respectively.

Theorem 2.12 (Wurzelschmetterlingrealisierung). Suppose A ∈ C (<0, G )> is symmetric with
SMR as in equation (1.3).

(1) The set dom+ver A is a vertebral domain of convexity for A.
(2) If D ⊆ dom A is a full vertebral domain of convexity for A, then D ⊆ dom+ver A;

Let )̂9 =+∗))9+) and let : denote the dimension of rng). There exists a rational function
|(0) ∈ ": (C (<0 )>) defined on c0 (domver A) and positive semidefinite on c0 (dom+ver A);
rational functions ℓ 9 (0) ∈ C (<0 )>: for 1 ≤ 9 ≤ 6, that are defined on domver A; and a
rational function 55 (0, G) that is affine linear in G and defined on domver A such that, with

(2.6) ℓ(0, G) =
∑

G 9ℓ 9 (0),

(3) if (�,. ) ∈ domver A; then � − (
∑
)9 ⊗ . 9 )|(�) is invertible and

A (�,. ) = ℓ(�,. )∗|(�)
(
� − (

∑
)̂8 ⊗ .8)|(�)

)−1
ℓ(�,. ) + 55 (�,. );

(4) dom+ver A = {(�, -) ∈ domver A : |(�) � 0 and � −
√
|(�) [∑ )̂9 ⊗ - 9 ]√|(�) � 0};

and
(2.7)
A |dom+ver A

(0,G) = ℓ(0,G)∗
√
|(0)

(
� −

√
|(0)

∑
)̂8G8

√
|(0)

)−1 √
|(0) ℓ(0,G) + 55 (0,G);

(5) If A is a polynomial and D is a full vertebral domain of convexity for A, then
(a) 55 , |, ℓ are also polynomials;
(b) A has the representation,

(2.8) A (0, G) = ℓ(0, G)∗|(0)ℓ(0, G) + 55 (0, G),

and hence A is convex in G on c0 (D) × Sg and has degree at most two in G.
Conversely, any (rational) function of the form (2.7) is convex in G on the set dom+ver A
and any polynomial of the form of equation (2.8) is convex in G on the free strip {� ∈ Sh :
|(�) � 0} × Sg.
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Given the symmetric realization (1.3), express the matrices )9 , ( 9 as block 2 × 2
matrices with respect to the orthogonal decomposition rng) ⊕ rng)⊥ as

(2.9) )9 =

(
)̂9 0
0 0

)
, ( 9 =

(
(
9

11 (
9

12
(8∗12 (

9

22

)
, � =

(
�11 �12
�∗12 �22

)
.

Proof of Theorem 2.12. By definition, dom+ver A is convex in G and a subset of dom+ A.
Thus, since A is convex in G on dom+ A, it is also convex in G on dom+ver A. Thus item (1)
holds.

If D ⊆ dom A is full vertebral domain of convexity for A, then D is a full domain
of partial convexity for A. Hence, by Theorem 1.1, D ⊆ dom+ A. If (�, -) ∈ D, then
(�, 0) ∈ D, since D is a vertebral set. Thus both (�, -) and (�, 0) ∈ dom+ A and hence
(�, -) ∈ dom+ver A, proving item (2).

By Proposition 2.11, A admits the caterpillar realization (2.5) whose resolvent,

'(0, G) =
(
�11 −

∑
)̂9G 9 −

∑
(
9

110 9 �12 −
∑
(
9

120 9
�∗12 −

∑
(
9∗
120 9 �22 −

∑
(
9

220 9 ,

)−1

is defined on the domain of A.We obtain a free rational function, (0) = '(0, 0) ∈ C (<0 )>.
Let |(0) = +∗

)
'(0, 0)+) denote the (block) (1, 1)-entry of, (0). Likewise the domain of

the rational function
ℓ(0, G) = +∗)

∑
)8G8, (0)2

contains dom,.

Suppose (�, -) ∈ domver A. Thus (�, 0), (�, -) ∈ dom A, and hence

'−1 (�, -), (�) =
(
� −

∑
)9 ⊗ - 9 −

∑
(: ⊗ �:

)
, (�)

= � −
(∑

)9 ⊗ - 9
)
, (�)

=

((
� −∑

)̂9 ⊗ - 9
)
|(�) ∗

0 �

)
.

(2.10)

It follows that � − (∑ )̂9 ⊗ - 9 )|(�) is invertible whenever (�, 0), (�, -) ∈ dom A, estab-
lishing the first half of item ((3)). Moreover, in that case, from equation (2.10),

'(�, -) = , (�)
((
� −∑

)̂9 ⊗ - 9
)
|(�) ∗

0 �

)−1

=

(
|(�)

(
� −∑

)̂9 ⊗ - 9
)
|(�) ∗

0 �

)−1

and thus
') (0, G) = +∗) '(0, G)+) = |(0)

(
� − (

∑
)̂8G8)|(0)

)−1
.

Letting 55 denote the affine linear in G term from the caterpillar realization of equation (2.5),

A (�, -) = ℓ(�, -)∗|(�)
(
� − (

∑
)̂8 ⊗ -8)|(�)

)−1
ℓ(�, -) + 55 (�, -),

when (�, -) ∈ domver A, proving item ((3)).
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Given square matrices % and & of the same size, the eigenvalues of %& and &% are the
same. Now suppose (-, �) ∈ domver A and |(�) � 0 and let T =

∑
)̂8 ⊗ -8 . Choosing % =

T
√
|(�) and & =

√
|(�), it follows that T|(�) and

√
|(�)T

√
|(�) have the same eigen-

values. Thus, in view of item ((3)), if � −
√
|(�)T

√
|(�) � 0, then � −

√
|(�)T

√
|(�) � 0.

Hence

') (�, -) = |(�) (� − T|(�))−1 =
√
|(�)

(
� −

√
|(�)T

√
|(�)

)−1 √
|(�) � 0

and therefore (�, -) ∈ dom+ A. The assumption ') (�, 0) = |(�) � 0 is equivalent to
(�, 0) ∈ dom+ A. Hence (�, -) ∈ dom+ver A.

Conversely, if (�, -) ∈ dom+ver A, then |(�) � 0 and, since dom+ver A is convex in G and
(�, 0) ∈ dom+ver A, for each 0 ≤ C ≤ 1, the matrix � − CT|(�) is invertible and hence so is
" (C) = � −

√
|(�)T

√
|(�). Since " (0) is positive and " (C) is invertible and self-adjoint

for 0 ≤ C ≤ 1, it follows that " (1) � 0 and the proof of item ((4)) is complete.
In the case A is a polynomial, '(0, G) is globally defined (has no singularities) and

is therefore a (matrix-valued) polynomial by [KV17, Corollary 3.4]. Hence both |(0)
and ℓ(0, G) are polynomials. By hypothesis, there is a free open setU ⊆ D withU1 ≠ ∅.
Choose a point (a, x) ∈ U1 ⊆ Rh × Rg and consider the polynomial @(0, G) = A (0 − a, G).
Let D ′ = {(� − a�, -) : (�, -) ∈ D}. If (�, -) ∈ D ′, then (� − a�, -) ∈ D and hence
(� − a�, 0) ∈ D and finally (�, 0) ∈ D ′. ThusD ′ is a vertebral domain of partial convexity
for @. Hence, without loss of generality, we assume from the outset that (0, 0) ∈ D . Then
|(0) = +∗

)
'(0, 0)+) is positive semidefinite by Theorem 2.6 since we have now convexity

in G in a neighborhood of 0. Next '(0, 0) = �−1 = � and so |(0) = �1,1 � 0. Since A is a
polynomial (and the realization is minimal), )� is (jointly) nilpotent by [KV17, Corollary
3.4]. But

)� =

(
)̂ 0
0 0

) (
�11 �12
�∗12 �22

)
=

(
)̂ �11 )̂ �12

0 0

)
,

whence )̂ �12 is (jointly) nilpotent. Thus . =
√
�11)9

√
�11 is self-adjoint and nilpotent and

hence 0. Thus, from equation (2.7), A has the representation of equation (2.8). From this
representation it is immediate that A has degree (at most) two in G and is convex in G on the
set {(�, -) : |(�) � 0}, which includes c0 (D) × Sg.

Corollary 2.13. Let D be a vertebral set. Let A ∈ C (<0, G )> be a nc rational function in
two classes of variables G = (G1, . . . , Gg) and 0 = (01, . . . , 0h). Let A have a SMR (1.3).
Consider the matrices in block form based on rng) in equation (2.9) and let : denote the
dimension of rng).

If �22 is invertible, then the function A is convex in G on D if and only if there exists
a rational function ℓ(0, G) ∈ C (<0, G )>:×1 that is linear in G, and a rational function
<(0) ∈ C (<0, G )>:×: such that

A = ℓ(0, G)∗
(
<(0) −

∑
)̂8G8

)−1
ℓ(0, G) + 55 (0, G),

where 55 (0, G) ∈ C (<0, G )> is affine linear in G, and the resolvent (<(0) − ∑
)̂8G8)−1 is

positive on a dense subset of D= for large =.

Proof. This result follows by using the Schur complement form for the inverse of a block
matrix in Proposition 2.11, the positivity condition follows from Proposition 2.8.
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3. A polynomial factorization

In this section we introduce an auxiliary operation E on both matrices and polynomials
and in Theorem 3.3 provide a decomposition of symmetric polynomials d ∈ "2 (C〈G, H〉)
for which E d is (matrix) positive. This result is a key ingredient in the proof of Theorem
1.4, which appears in Section 4, characterizing GH-convex polynomials.

Given a pair of block 2 × 2 matrices � = (�8, 9 ) and � = (�8, 9 ) define

� ~ � =
(
�8, 9 ⊗ �8, 9

)
.

Thus � ~ � is a mix of Schur product (∗) and tensor product (⊗). It is known as the

Khatri-Rao product. Let +1 =

(
�

0

)
and +2 =

(
0
�

)
with respect to the block decomposition of

� and define,1,,2 similarly with respect to the block decomposition of �. Let

� =
(
+1 ⊗,1 +2 ⊗,2

)
.

Lemma 3.1. With notation as above, � ~ � = �∗ [� ⊗ �]� .

Proof. Note that

�∗ [� ⊗ �]� =
(
(+∗9 ⊗,∗9 ) [� ⊗ �] (+: ⊗,: )

)2

9 ,:=1

and (+∗
9
⊗,∗

9
) [� ⊗ �] (+: ⊗,: ) = � 9: ⊗ � 9: .

Let, for 9 = 1, 2,

B 9 =

(
B 9 ,0 B 9 ,1
B∗
9 ,1 B 9 ,2

)
,

where {B 9 ,: : 1 ≤ 9 ≤ 2, 0 ≤ : ≤ 2} are freely noncommuting variables with B 9 ,0 and B 9 ,2
symmetric; that is B∗

9 ,:
= B 9 ,: for : = 0, 2. For notational purposes, let

B0 = �2 =

(
1 0
0 1

)
.

Suppose ? =
∑
9 ,:=0 ? 9 ,: G 9G: , is a 2 × 2 symmetric matrix polynomial of degree (at most)

two in two symmetric variables G = (G1, G2), where, for notation purposes, G0 = 1 (the unit
in C〈G〉), each ? 9 ,: ∈ "2 (C) and ?∗9 ,: = ?:, 9 . Let E ? denote the matrix polynomial in the
six variables {B 9 ,0, B 9 ,1, B 9 ,2 : 1 ≤ 9 ≤ 2} defined by

E ?(B) =
2∑

9 ,:=0
? 9 ,: ~ B 9 B: .

Such a polynomial is naturally evaluated at a pair of block 2 × 2 symmetric matrices,

(3.1) ( 9 =

(
( 9 ,0 ( 9 ,1
(∗
9 ,1 ( 9 ,2

)
∈ "` (C) ⊗ "2 (C)
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using ~ via

E ?(() =
2∑

9 ,:=0
? 9 ,: ~ ( 9(: ∈ "` (C) ⊗ "2 (C).

By contrast,

?(() =
2∑

9 ,:=0
? 9 ,: ⊗ ( 9(: ∈ "2 (C) ⊗ "` (C) ⊗ "2 (C).

However, ? and E ? are closely related, as the following lemma describes. Its proof is
similar to that of Lemma 3.1.

Lemma 3.2. With notations as above,

E ?(() = �∗ ©­«
2∑

9 ,:=0
? 9 ,: ⊗ ( 9(:

ª®¬ � = �∗?(()�.
In particular, if ?(() � 0, then E ?(() � 0 too.

Theorem 3.3 is the main result of this section.

Theorem 3.3. Suppose d(G) is a symmetric 2 × 2 polynomial of degree at most two in
the symmetric variables G = (G1, G2). If E d(() � 0 for all positive integers <, = and pairs
( = ((1, (2) ∈ S2

=+< of 2 × 2 block symmetric matrices, then there exists an # ≤ 12 and
@0, @1, @2 ∈ "# ,2 (C) such that

@∗9@: = d 9 ,: , 1 ≤ 9 , : ≤ 2,

@∗0@: + @
∗
:@0 = d:,0 + d0,: , : = 1, 2,

(3.2) (@∗0@0)1,1 = (d0,0)1,1, (@∗0@0)2,2 = (d0,0)2,2.

In particular, letting @ denote the affine linear polynomial @ =
∑2
9=0 @ 9G 9 ∈ C〈G〉#×2, there

is an A1 ∈ C such that

d = @∗@ + A, where A =
(
0 A1
A∗1 0

)
.

The remainder of this section is devoted to the proof of Theorem 3.3. Let {41, 42} denote
the standard orthonormal basis for C2 with resulting matrix units 404∗1 for 1 ≤ 0, 1 ≤ 2. Let
〈G1, G2〉: denote the words in G1, G2 of length at most : . Thus 〈G1, G2〉1 = {G0, G1, G2}, where,
as above, G0 = 1.We will view C3 as the span of 〈G1, G2〉1 with 〈G1, G2〉1 as an orthonormal
basis and "3 (C) as matrices indexed by 〈G1, G2〉1 × 〈G1, G2〉1. In this case G 9G∗: are the
matrix units.

Let S denote the subspace of "2 (C) ⊗ "3 (C) consisting of matrices

) =
(
)U,V

)
U,V∈〈G1 ,G2 〉1 ,
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where )U,V ∈ "2 (C) satisfy, for V ∈ 〈G1, G2〉1,

)V,G0 = )G0 ,V , )G0 ,G0 ∈ span{414
∗
1, 424

∗
2}.

Thus )G0 ,G0 is diagonal and S is an operator system; that is, a self-adjoint subspace of
"2 (C) ⊗ "3 (C) that contains the identity.

Define k : S → "2 (C) by

(3.3) k
(
)U,V

)
=

∑
U,V∈〈G1 ,G2 〉1

dU,V ∗ )U,V =
∑

U,V∈〈G1 ,G2 〉1

dU,V ~ )U,V .

Proposition 3.4. The mapping k of equation (3.3) is completely positive (cp).

Proof. To prove that k is cp, let a positive integer = and positive definite / ∈ "= (C) ⊗S
be given. In particular,

/ =
(
/U,V

)
U,V∈〈G1 ,G2 〉1 ,

where /U,V =
(
(/U,V)0,1

)2
0,1=1 ∈ "= (C) ⊗ "2 (C), (/U,V)0,1 ∈ "= (C) and

/G0 ,V = /V,G0 , /G0 ,G0 =

2∑
0=1
(/G0 ,G0 )0,0 ⊗ 404∗0 .

Since / is positive definite, /∗G0 ,U = /G0 ,U and letting Θ = /−1
G0 ,G0 ,

0 �
(
/U,V − /U,G0Θ/G0 ,V

)
|U |= |V |=1 = ��

∗ =
(
�U�

∗
V

)
|U |= |V |=1

,

for some < and matrices

�U =
(
(�U)0, 9

)2
0, 9=1 ∈ "=,< (C) ⊗ "2 (C).

In particular, for 1 ≤ 0, 1 ≤ 2,

(/U,V)0,1 −
[
/U,G0

(
Θ1,1 0

0 Θ2,2

)
/G0 ,V

]
0,1

=

2∑
9=1
(�U)0, 9 (�V)∗1, 9 ,

where Θ 9 , 9 = (/G0 ,G0 )−1
9 , 9
. Thus, for |U | = 1 = |V |,

2∑
9=1
(/U,G0 )0, 9Θ 9 , 9 (/G0 ,V) 9 ,1 +

2∑
9=1
(�U)0, 9 (�V)∗1, 9 = (/U,V)0,1 .

Let

Ψ=

(
Ψ1,1 0

0 Ψ2,2

)
∈"=+< (C) ⊗"2 (C), where Ψ0,0 =

(
(/G0 ,G0 )0,0 0

0 �<

)
∈"=+< (C).

Let, for 9 = 1, 2,
(3.4)

, 9 =
(
(, 9 )0,1

)
∈"=+< (C) ⊗"2 (C), where (, 9 )0,1 =

(
(/G0 ,G 9 )0,1 (�G 9 )0,1
(�G 9 )∗1,0 0

)
∈"=+< (C).
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Since /U,G0 = /G0 ,U is self-adjoint, so is, 9 . By construction,

(, 9Ψ
−1,: )0,1 =

(
(/G 9 ,G: )0,1 ∗
∗ ∗

)
∈ "=+< (C).

Let

, =
©­«
Ψ ,1 ,2
,1 ,1Ψ

−1,1 ,1Ψ
−1,2

,2 ,2Ψ
−1,1 ,2Ψ

−1,2

ª®¬ ∈ "=+< (C) ⊗S

and let + ∈ "2(=+<) ,2= (C) denote the isometry whose adjoint is

+∗ =

(
�= 0 0 0
0 0 �= 0

)
∈ "2=,2(=+<) (C),

From the definition (3.3) of k (and letting k also denote its ampliations k ⊗ �ℓ , where
�ℓ is the identity on "ℓ (C)),

(3.5) k(,) = dG0 ,G0 ~ Ψ + dG0 ,G1 ~,1 + dG0 ,G2 ~,2 +
2∑

9 ,:=1
dG 9 ,G: ~, 9Ψ

−1,: .

By definition of the ~ operation, given

' =

(
'1,1 '1,2
'2,1 '2,2

)
∈ "=+< (C) ⊗ "2 (C)

'8, 9 =

(
'

1,1
8, 9

'
1,2
8, 9

'
2,1
8, 9

'
2,2
8, 9

)
∈ "= (C) ⊕ "< (C)

g =

(
g1,1 g1,2
g2,1 C2,2

)
∈ "2 (C)

(3.6)

we have g ~ ' =
(
g8, 9'8, 9

)
and hence

+∗ [g ~ '] + =
(
g8, 9'

1,1
8, 9

)
= g ~ '̃,

where '̃ =
(
'

1,1
8, 9

)2

8, 9=1
. Hence,

+∗
[
dG0 ,G0 ~ Ψ

]
+ = dG0 ,G0 ~ /G0 ,G0

+∗
[
dG0 ,G 9 ~, 9

]
+ = dG 9 ,G: ~ /G 9 ,G:

+∗
[
dG 9 ,G: ~, 9Ψ

−1,:

]
+ = dG 9 ,G: ~ /G 9 ,G: .

Thus, from equation (3.5)
+∗k(,)+ = k(/).

Hence, to prove k(/) � 0 it suffices to show k(,) � 0.
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With ' and g as in equation (3.6), given a block diagonal matrix

� =

(
�1 0
0 �2

)
∈ "=+< (C) ⊗ "2 (C),

we have

� [g ~ '] � =

(
�1 0
0 �2

) (
g8, 9'8, 9

) (
�1 0
0 �2

)
=

(
g8, 9�8'8, 9� 9

)
= g ~ (�'�).

Hence, ( 9 = Ψ−
1
2, 9Ψ

− 1
2 ∈ "=+< (C) ⊗ "2 (C) are self-adjoint and

Ψ−
1
2 k(,)Ψ− 1

2 =
∑
9 ,:

Ψ−
1
2

[
d 9 ,: ~, 9 ,:

]
Ψ−

1
2

=
∑
9 ,:

d 9 ,: ~ ( 9(: = Ed(().

By hypothesis Ed(() � 0 and hence k(,) � 0. Thus k(/) � 0 under the extra assumption
that / � 0.

Now suppose / ∈ "= (C) ⊗S is positive semidefinite. Since the identity is contained
in "= (C) ⊗S , for each n > 0, the matrix / + n � is positive definite and in "= (C) ⊗S .

Thus, by what has already been proved, k(/ + n �) � 0 and hence, by letting n tend to 0, it
follows that k(/) � 0 and the proof is complete.

Proof of Theorem 3.3. Since, by Proposition 3.4, k is cp it extends, by the Arveson Exten-
sion Theorem [Pau02, Theorem 7.5], to a cp map i : "2 (C) ⊗ "3 (C) → "2 (C). By a
well-known result of Choi [Pau02, Theorem 3.14], its Choi matrix

�i =

2∑
9 ,:=0

2∑
0,1=1
[404∗1 ⊗ G 9G

∗
: ] ⊗ [i(404

∗
1 ⊗ G 9G

∗
: )] ∈ "2 (C) ⊗ "3 (C) ⊗ "2 (C)

is positive semidefinite. In particular, �i factors as �∗� where,

� =

2∑
0=1

3∑
9=1
4∗0 ⊗ G∗9 ⊗ �9 ,0

for some # (≤ 12) and # × 2 matrices �9 ,0 and, in particular,

(3.7) �∗9 ,0�:,1 = i(404∗1 ⊗ G 9G
∗
: ).

For @ 9 =
(
�9 ,141 �9 ,242

)
∈"# ,2 (C),we have @∗9@: =

(
4∗0�

∗
9 ,0
�:,141

)2

0,1=1
∈"2 (C).

So, using (3.7), for 0 = 1, 2,

(d0,0)0,0 =
(
d0,0 ~ 404

∗
0

)
0,0
=k(404∗0 ⊗ G0G

∗
0)0,0 = i(404

∗
0 ⊗ G0G

∗
0)0,0 = 4

∗
0�
∗
0,0�0,040 = (@∗0@0)0,0 .



Noncommutative partially convex rational functions 21

Hence equation (3.2) holds. Next, for ℓ = 1, 2 and 1 ≤ 0, 1 ≤ 2,

(d0,ℓ + dℓ,0)0,1 = 4∗0
[
(d0,ℓ + dℓ,0) ~ 404∗1

]
41 = 4

∗
0k

(
404
∗
1 ⊗ (G0G

∗
ℓ + GℓG

∗
0)

)
41

= 4∗0i
(
404
∗
1 ⊗ (G0G

∗
ℓ + GℓG

∗
0)

)
41 = 4

∗
0 [�∗0,0�ℓ,1 + �

∗
ℓ,0�0,1]41

= (@∗0@ℓ + @
∗
ℓ@0)0,1 .

Thus @∗0@ℓ + @
∗
ℓ
@0 = d0,ℓ + dℓ,0.

Finally, we see that @∗
9
@: = d 9 ,: (for 1 ≤ 9 , : ≤ 2) by computing, for 1 ≤ 0, 1 ≤ 2,

(d 9 ,: )0,1 = 4∗0 [d 9 ,: ~ 404∗1]41 = 4
∗
0k(404∗1 ⊗ G 9G

∗
: )41

= 4∗0i(404∗1 ⊗ G 9G
∗
: )41 = 4

∗
0�
∗
9 ,0�:,141 = (@∗9@: )0,1 .

4. The characterization of xy-convex polynomials

In this section we prove Theorem 1.4. In Subsection 4.1 it is established that GH-convex
polynomials are biconvex (convex in G and H separately). Two applications of equation (2.8)
of Theorem 2.12 then significantly reduce the complexity of the problem of characterizing
GH-convex polynomials. The notion of the GH-Hessian of a polynomial is introduced
in Subsection 4.2, where a border vector-middle matrix (see for instance [HKM13a])
representation for this Hessian is established. Further, it is shown that this middle matrix is
positive for GH-convex polynomials. The proof of Theorem 1.4 concludes in Subsection 4.3
by combining positivity of the middle matrix and Theorem 3.3.

4.1. xy-convexity implies biconvexity

The notion of GH-convexity for polynomials has a convenient concrete reformulation.

Proposition 4.1. A triple ((-,. ),+) is an GH-pair if and only if, up to unitary equivalence,
it has the block form

(4.1) - =
©­«
-0 � 0
�∗ ∗ ∗
0 ∗ ∗

ª®¬ , . = ©­«
.0 0 �

0 ∗ ∗
�∗ ∗ ∗

ª®¬ , + =
(
� 0 0

)∗
.

Thus, a polynomial ?(G, H) ∈ "` (C〈G, H〉) is GH-convex if and only if for each GH-pair
((-,. ), +) of the form of equation (4.1), we have

(�` ⊗ +)∗?(-,. ) (�` ⊗ +) − ?(-0, .0) � 0.

Proof. Observe that (-0, .0) = +∗ (-,. )+ and ((-,. ), +) is an GH-pair; that is +∗.-+ =
+∗.++∗-+ . Thus, if ? is GH-convex, then

0 � (�` ⊗ +)∗?(-,. ) (�` ⊗ +) − ?(+∗ (-,. )+) = (�` ⊗ +)∗?(-,. ) (�` ⊗ +) − ?(-0,.0).

To establish the reverse implication, given an GH-pair ((-, . ), +), decompose the
space (-,. ) act upon as rng+ ⊕ (rng+)⊥ and note that, with respect to this orthogonal
decomposition, - and . have the block form

- =

(
-0 U

U∗ V

)
, . =

(
.0 W

W∗ X

)
,
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where -0, .0, V, X are hermitian. The relation +∗.-+ = +∗.++∗-+ implies UW∗ = 0. But
then, U and W are, up to unitary equivalence, of the form

(
� 0

)
and

(
0 �

)
, respectively.

Consider the following list of monomials:

(4.2) L = {1, G, H, G2, H2, GH, HG, GH2, H2G, G2H, HG2, GHG, HGH, GHGH, HGHG, GH2G, HG2H}.

Proposition 4.2. If ? ∈ C〈G, H〉 is convex in both G and H (separately), then ? has degree
at most two in both G and H (separately) and ? contains no monomials of the form G2H2 or
H2G2, only the monomials in the set L .

Proof. The degree bounds follow from Theorem 2.12. The representation of ? in (2.8) and
that of ℓ in (2.6) imply ? does not contain the monomials G2H2 and H2G2.

Let [L ] denote the C-vector space with basis L of equation (4.2).

Lemma 4.3. If ? ∈ C〈G, H〉 is GH-convex, then ? is convex in both G and H. Hence ? ∈ [L ] .

Proof. Given (-1, . ) and (-2, . ), let + = 1√
2

(
� �

)) and note ((-1 ⊕ -2, . ⊕ . ), +) is
an GH-pair. Since ? is GH-convex,

?

( -1 + -2
2

, .

)
= ?(+∗ (-,. )+) � +∗?(-,. )+ = 1

2
(
?(-1, . ) + ?(-2, . )

)
Thus ? is convex in G. By symmetry ? is convex in H. The conclusion of the lemma now
follows from Proposition 4.2.

4.2. The xy-Hessian

In view of Lemma 4.3, we now consider only symmetric polynomials ? ∈ [L ] . Let
{B0, C0, U, V 9 , W, X 9 : 0 ≤ 9 ≤ 2} denote freely noncommuting variables with B0, C0, V0, V2, X0, X2
symmetric. Let, in view of Proposition 4.1,

B =
©­«
B0

(
U 0

)(
U∗

0

) (
V0 V1
V∗1 V2

)ª®¬ , C =
©­«
C0

(
0 W

)(
0
W∗

) (
X0 X1
X∗1 X2

)ª®¬ , + =
(
1 0 0

)∗
.

The GH-Hessian of ? ∈ C〈G, H〉, denoted �GH ?, is the quadratic in U, W part of+∗?(B, C)+ −
?(+∗ (B, C)+) = +∗?(B, C)+ − ?(B0, C0). In particular, for ? ∈ [L ],

�GH ? := +∗?(B, C)+ − ?(+∗ (B, C)+) = +∗?(B, C)+ − ?(B0, C0).

The proof of the following lemma is routine.
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Lemma 4.4. If ? =
∑
D∈L ?DD ∈ [L ], then�GH ? is a function of {U,W, B0, C0, X0, X1, V1, V2}

with the explicit form

�GH ? = [?G2UU∗ + ?H2WW∗] + [?GHGUX0U
∗ + ?HGHWV2W

∗ + ?GH2 (B0WW∗ + UX1W
∗)

+ ?H2G (WW∗B0 + WX∗1U
∗) + ?G2H (UU∗C0 + UV1W

∗) + ?HG2 (C0UU∗ + WV∗1U
∗)]

+ [?GH2G (B0WW∗B0 + UX1W
∗B0 + B0WX∗1U

∗ + U(X2
0 + X1X

∗
1)U
∗)

+ ?GHGH (UX0U
∗C0 + UX0V1W

∗ + B0WV2W
∗ + UX1V2W

∗)
+ ?HGHG (C0UX0U

∗ + WV∗1X0U
∗ + WV2W

∗B0 + WV2X
∗
1U
∗)

+ ?HG2H (C0UU∗C0 + WV∗1U
∗C0 + C0UV1W

∗ + W(V∗1V1 + V2
2)W
∗)]

= U
[
?G2 + ?GHGX0 + ?GH2G (X2

0 + X1X
∗
1)

]
U∗ + U

[
?GH2 + ?GHGHX0

]
U∗C0 + C0U

[
?HG2 + ?HGHGX0

]
U∗

+ U
[
?GH2X1 + ?G2HV1 + ?GHGH (X0V1 + X1V2)

]
W∗

+ W
[
?H2GX

∗
1 + ?HG2 V∗1 + ?HGHG (V

∗
1X0 + V∗2X1)

]
U∗

+ U
[
?GH2GX1

]
W∗B0 + B0W

[
?GH2GX

∗
1
]
U∗ + C0U

[
?HG2H

]
U∗C0 + C0U

[
?HG2HV1

]
W∗

+ W
[
?HG2HV

∗
1
]
U∗C0 + W

[
?H2 + ?HGHV2 + ?HG2H (V∗1V1 + V2

2)
]
W∗ + W

[
?H2G + ?HGHGV2

]
W∗B0

+ B0W
[
?GH2 + ?GHGHV2

]
W∗ + B0W

[
?HG2H

]
W∗B0.

Lemma 4.5. If ? ∈ [L ] and �GH ? = 0, then ? is an GH-pencil. If ?, @ ∈ [L ] satisfy
�GH ? = �GH@, then there is an GH-pencil _ ∈ C〈G, H〉 such that ? = @ + _.

Proof. Since �GH is a linear mapping, it suffices to show, if ? =
∑
|∈L ?|| satisfies

�GH ? = 0, then ? is an GH-pencil. To this end, observe, if �GH ? = 0, then, in view of
Lemma 4.4, ?| = 0 for | in the set

{G2, H2, GHG, HGH, GH2, H2G, G2H, HG2, GH2G, GHGH, HGHG, HG2H}.

Hence the only possible nonzero coefficients of ? are ?1, ?G , ?H , ?GH , ?HG and the result
follows.

The Hessian of a ? ∈ [L ] has a border vector-middle matrix representation that we
now describe. Since ? ∈ [L ],

?(G, H) = _(G, H) +
∑
|∈L∗

?||,

where _(G, H) is an GH-pencil and

L∗ = {G2, H2, GHG, HGH, GH2, H2G, G2H, HG2, GH2G, GHGH, HGHG, HG2H} =L \ {1, G, H, GH, HG}.

Since ? is symmetric, there are relations among its coefficients. For instance, ?GHG , ?HGH ∈R
and ?HG2 = ?G2H .

Let B = B(B0, C0, U, W) denote the row vector-valued free polynomial,

B(B0, C0, U, W) =
(
U C0U W B0W

)
.

We call B the GH-border vector, or simply the border vector.
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For 1 ≤ 9 , : ≤ 2, letM 9 ,: (V1, V2, X0, X1) denote the 2 × 2 matrix polynomial,

M11 =

(
?G2 + ?GHGX0 + ?GH2G (X2

0 + X1X
∗
1) ?G2H + ?GHGHX0

?HG2 + ?HGHGX0 ?HG2H

)
,

M12 =

(
?G2HV1 + ?GH2X1 + ?GHGH (X0V1 + X1V2) ?GH2GX1

?HG2HV1 0

)
,

M21 =

(
?HG2 V∗1 + ?H2GX

∗
1 + ?HGHG (V

∗
1X0 + V2X

∗
1) ?HG2HV

∗
1

?GH2GX
∗
1 0

)
,

M22 =

(
?H2 + ?HGHV2 + ?HG2H (V2

2 + V
∗
1V1) ?H2G + ?HGHGV2

?GH2 + ?GHGHV2 ?GH2G

)
.

Let M = (M 9 ,: )29 ,:=1 denote the resulting 4 × 4 (2 × 2 block matrix with 2 × 2 entries)
matrix polynomial. The matrixM is the GH-middle matrix, or simply the middle matrix,
of ?.

Lemma 4.6. If ? ∈ [L ] is symmetric, then

�GH ? = BMB∗.

Proposition 4.7 shows GH-convexity of ? is equivalent to positivity of its middle matrix.

Proposition 4.7. If ?(G, H) is GH-convex, then M(�1, �2, �0, �1) � 0 for all matrices
(�1, �2, �0, �1) of compatible sizes.

Proof. Since ? is GH-convex, �GH ? � 0. Let positive integers ", # and matrices �0 ∈
"" (C), �2 ∈ "# (C) and �1, �1 ∈ "# ," (C) be given. Choose a vector ℎ ∈ C2 and
-0, .0 ∈ "2 (C) such that {ℎ, -0ℎ} and {ℎ,.0ℎ} are linearly independent. Positivity of the
Hessian gives

0 ≤ ℎ∗�GH ?(-0, �, �1, �2, .0, �, �0, �1)ℎ
= [ℎ∗B(-0, �,.0, �)]M(�1, �2, �0, �1) [ℎ∗B(-0, �,.0, �)]∗.

On the other hand, given vectors 51, . . . , 54 ∈ C" , there exists � ∈ "2," (C) and � ∈
"2,# (C) such that

B(-0, .0, �, �)∗ℎ =
©­­­«
�∗ℎ
�∗.0ℎ
�∗ℎ
�∗-0ℎ

ª®®®¬ =
©­­­«
51
52
53
54

ª®®®¬ .
It follows thatM(�1, �2, �0, �1) � 0.

4.3. Proof of Theorem 1.4

The convexity assumption on ? implies the middle matrixM of its Hessian takes positive
semidefinite values by Proposition 4.7.

Let
f =

((
X0 X1
X∗1 X2

)
,

(
V0 V1
V∗1 V2

))
.
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Let & denote the 2 × 2 matrix polynomial obtained from the first and third rows and
columns ofM. Thus,
(4.3)

& =&(X0,1 , V0,1)
(

?G2 + ?GHGX0 + ?GH2G (X2
0 + X1X

∗
1) ?G2HV1 + ?GH2X1 + ?GHGH (X0V1 + X1V2)

?HG2 V∗1 + ?H2GX
∗
1 + ?HGHG (V

∗
1X0 + V2X

∗
1) ?H2 + ?HGHV2 + ?HG2H (V2

2 + V
∗
1V1)

)
,

and, given ( = ((1, (2) of the block form of equation (3.1), we have &(() � 0 since
M((2,1, (2,2, (1,0, (1,1) � 0 by Proposition 4.7.

Define a 2 × 2 polynomial %(G1, G2) =
∑
% 9 ,:G 9G: (with G0 = 1 as usual) by setting

%0,0 =

(
?G2 0
0 ?H2

)
, %0,1 = %1,0 =

1
2

(
?GHG ?GH2

?H2G 0

)
, %0,2 = %2,0 =

1
2

(
0 ?G2H

?HG2 ?HGH

)
%1,2 =

(
0 ?GHGH
0 0

)
, %2,1 =

(
0 0

?HGHG 0

)
, %1,1 =

(
?GH2G 0

0 0

)
, %2,2 =

(
0 0
0 ?HG2H

)
(4.4)

and observe E %(f) = &(f). Thus E %(() � 0 for all tuples of hermitian matrices of the
form (3.1). Hence Theorem 3.3 produces an # and � =

∑
�9 B 9 , where �9 ∈ "# ,2 (C), and

an ' =
(
0 A

A∗ 0

)
such that �∗� + ' = %, where A ∈ C. In particular,

�∗9 �: = % 9 ,: , 1 ≤ 9 , : ≤ 2

�∗0�: + �
∗
:�0 = %:,0 + %0,: , : = 1, 2
�∗0�0 = %0,0 + ',

�∗1�1 = %1,1 =

(
?GH2G 0

0 0

)
, �∗2�2 = %2,2 =

(
0 0
0 ?HG2H

)
.

Hence, letting {41, 42} denote the standard orthonormal basis for C2, �142 = 0 = �241. In
particular, 4∗1�

∗
2�0 = 0. Now set ΛG = �041, ΛH = �042, ΛHG = �141 and ΛGH = �242 and

verify,

Λ∗GΛG = 4
∗
1�
∗
0�041 = 4

∗
1%0,041 = ?G2

Λ∗HΛH = 4
∗
2�
∗
0�042 = 4

∗
2%0,042 = ?H2

Λ∗HGΛG + Λ∗GΛHG = 4∗1�
∗
1�041 + 4∗1�

∗
0�141 = 4

∗
1 (�

∗
1�0 + �∗0�1)41 = (2%1,0)1,1 = ?GHG

Λ∗GHΛH + Λ∗HΛGH = 4∗2�
∗
2�042 + 4∗2�

∗
0�242 = 4

∗
2 (�

∗
2�0 + �∗0�2)42 = 4

∗
2 (2%2,0)42 = ?HGH

Λ∗GΛGH = 4
∗
1�
∗
0�242 = 4

∗
1 (�

∗
0�2 + �∗2�0)42 = 4

∗
1 (2%2,0)42 = ?G2H

Λ∗HΛHG = 4
∗
2�
∗
0�141 = 4

∗
2 (�

∗
0�1 + �∗1�0)41 = 4

∗
2 (2%1,0)41 = ?H2G(4.5)

Λ∗GHΛG = 4
∗
2�
∗
2�041 = 4

∗
2 (�

∗
2�0 + �∗0�2)41 = 4

∗
2 (2%2,0)41 = ?HG2

Λ∗HGΛH = 4
∗
1�
∗
1�042 = 4

∗
1 (�

∗
1�0 + �0�

∗
1 )42 = 4

∗
1 (2%1,0)42 = ?GH2

Λ∗HGΛHG = 4
∗
1�
∗
1�141 = 4

∗
1%1,141 = ?GH2G

Λ∗GHΛGH = 4
∗
2�
∗
2�242 = 4

∗
2%2,242 = ?HG2H

Λ∗GHΛHG = 4
∗
2�
∗
2�141 = 4

∗
2%2,141 = ?HGHG
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Λ∗HGΛGH = 4
∗
1�
∗
1�242 = 4

∗
1%1,242 = ?GHGH .

Let
@ = Λ(G, H, GH)∗Λ(G, H, GH),

where Λ denotes the GH-pencil

Λ = ΛGG + ΛHH + ΛGHGH + ΛHGHG.

A straightforward calculation, based on the identities of equation (4.5) and an appeal to the
formula for the GH-Hessian in Lemma 4.4, shows �GH@ = �GH ?. Hence, by Lemma 4.5,
there is a hermitian GH-pencil _ such that ? = @ + _ = Λ∗Λ + _, completing the proof.

Remark 4.8. Note that Λ∗GΛH + Λ∗HΛG = ' =
(
0 A

A∗ 0

)
.
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