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ABSTRACT

Mobile apps and location-based services generate large amounts of
location data. Location density information from such datasets bene-
fits research on traffic optimization, context-aware notifications and
public health (e.g., disease spread). To preserve individual privacy,
one must sanitize location data, which is commonly done using
differential privacy (DP). Existing methods partition the data do-
main into bins, add noise to each bin and publish a noisy histogram
of the data. However, such simplistic modelling choices fall short
of accurately capturing the useful density information in spatial
datasets and yield poor accuracy. We propose a machine-learning
based approach for answering range count queries on location data
with DP guarantees. We focus on countering the sources of error
that plague existing approaches (i.e., noise and uniformity error)
through learning, and we design a neural database system that
models spatial data such that density features are preserved, even
when DP-compliant noise is added. We also devise a framework
for effective system parameter tuning on top of public data, which
helps set important system parameters without expending scarce
privacy budget. Extensive experimental results on real datasets with
heterogeneous characteristics show that our proposed approach
significantly outperforms the state of the art.
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1 INTRODUCTION

Mobile apps collect large amounts of individual location data used to
optimize traffic, study disease spread, or improve point-of-interest

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 5 ISSN 2150-8097.
doi:10.14778/3510397.3510404

*Equal contribution.

Ritesh Ahuja"

University of Southern California
riteshah@usc.edu

Cyrus Shahabi

University of Southern California

shahabi@usc.edu

placement. When using such data, preserving location privacy is
essential, since even aggregate statistics can leak details about indi-
vidual whereabouts. Existing solutions publish a noisy version of
the dataset, transformed according to differential privacy (DP) [13],
the de-facto standard for releasing statistical data. The goal of DP
mechanisms is to ensure privacy while keeping the query answers
as accurate as possible. For spatial data, range queries are the most
popular query type, used as building blocks in most processing
tasks. A DP-compliant representation of a spatial dataset is created
by partitioning the data domain into bins, and then publishing a
histogram with the noisy count of points that fall within each bin.
Domain partitioning is commonly adopted [11, 18, 25, 34, 40, 48], e.g.,
uniform and adaptive grids [34] or hierarchical partitioning [11, 48].
At query time, the noisy histogram is used to compute answers,
by considering the counts in all bins that overlap the query. When
a query partially overlaps with a bin, the uniformity assumption is
used to estimate what fraction of the bin’s count should be added to
the answer. Since DP mechanisms release only the (noisy) count for
each bin, it is assumed that data points are distributed uniformly
within the partition, hence the estimate is calculated as the product
of the bin count and the ratio of the overlapping area to the total
area of the bin. This is often a poor estimate, since location datasets
tend to be highly skewed in space (e.g., a shopping mall in a suburb
increases mobile user density in an otherwise sparse region). Thus,
in addition to DP sanitization noise, uniformity error is a major
cause of inaccuracy for existing work on DP release of spatial data.
We propose a paradigm shift towards learned representations of
data, which have been shown to accurately capture data distribu-
tion in non-private approximate query processing [19, 27, 46]. Such
results show that learning exploits data patterns to accurately and
compactly represent the data. As such, learning can be used to com-
bat data modelling errors, also present in DP setting. Nonetheless,
due to the impact of DP noise on the process of learning, creating
learned differentially private data representations is non-trivial.
Recent attempts at creating learned DP data representations
[29, 47] propose the use of learned models to answer queries in
non-spatial domains (e.g., categorical data). While these approaches
perform well in the case of categorical data, they cannot model the
intrinsic properties of location datasets, which exhibit both high
skewness, as well as strong correlation among regions with similar
designations. For instance, two busy city areas (e.g., a stadium and
a street bar area) will exhibit similar density patterns, while the
regions in between may be sparse. These busy areas may also be cor-
related, since people are likely to congregate at bars after they see
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Figure 1: Spatial Neural Histogram System

a game at the stadium. Models with strong representational power
in the continuous domain are necessary to learn such patterns.

Meanwhile, training complex models while preserving DP is dif-
ficult. For neural networks, existing techniques [4] utilize gradient
perturbation to train differentially private models. However, the sen-
sitivity of this process, defined as the influence a single input record
may have on the output (see Section 2 for a formal definition), is
high. DP-added noise is proportional to sensitivity, and as a result
meaningful information encoded in the gradients is obliterated. The
learning process has to be carefully crafted to the unique properties
of spatial data, or accuracy will deteriorate.

We propose Spatial Neural Histograms (SNH), a neural network
system specifically designed to answer differentially private spatial
range queries. SNH models range queries as a function approxima-
tion task, where we learn a function approximator that takes as
input a spatial range and outputs the number of points that fall
within that range. Training SNH consists of two stages (Figure 1):
the first perturbs training query answers according to DP, while the
second trains neural networks from noisy answers. The first stage is
called data collection. It prepares a differentially private training set
for our model while ensuring low sensitivity, such that the signal-
to-noise ratio is good. However, due to the privacy constraints
imposed by DP, we can only collect a limited amount of training
data. Thus, in the second stage, we synthesize more training sam-
ples based on the collected data to boost learning accuracy, in a step
called data augmentation. Then, we employ a supervised learning
training process with a carefully selected set of training samples
comprising of spatial ranges and their answers. SNH learns from
training queries at varying granularity and placement to capture
subtle correlations present within the data. Finally, an extensive
private parameter tuning process (ParamSelect) is performed us-
ing publicly available data, without the need to consume valuable
privacy budget.

The fully trained SNH can then be released publicly and only
requires a single forward pass to answer a query, making it highly
efficient at runtime. SNH is able to learn complex density variation
patterns that are specific to spatial datasets, and reduces the nega-
tive impact of noise and uniformity assumption when answering
range queries, significantly boosting accuracy.

Use of machine learning when answering test queries (i.e., at
runtime) is beneficial because, through learning, SNH combines ev-
idence from multiple training queries over distinct regions. In fact,
gradient computation during training can be seen as a novel means
of aggregating information across the space. We show that neural
networks can learn the underlying patterns in location data from
imprecise observations (e.g., observations collected with noise and

uniformity error), use those patterns to answer queries accurately
and thereby mitigate noise and uniformity errors. In contrast, exist-
ing approaches are limited to using imprecise local information only
(i.e., within a single bin). When the noise introduced by differential
privacy or the error caused by the uniformity assumption are large
for a particular bin, the answer to queries evaluated using that bin
will be inaccurate.

Contributions and organization. In this paper, we

e Formulate the problem of answering spatial range count
queries as a function approximation task (Sec. 2);

e Propose a novel system that leverages neural networks to rep-
resent spatial datasets while accurately capturing location-
specific density and correlation patterns (Sec. 3, 4);

e Introduce a comprehensive framework for tuning system
parameters on public data (Sec. 5); and

e Conduct an extensive experimental evaluation on a broad
array of public and private real-world location datasets with
heterogeneous properties and show that SNH outperforms
all the state-of-the-art solutions (Sec. 6).

We survey related work in Section 7 and conclude in Section 8.

2 PRELIMINARIES
2.1 Differential Privacy

e-differential privacy [13] provides a rigorous privacy framework
with formal protection guarantees. Given privacy budget parameter
¢ € (0,+00), a randomized mechanism M satisfies e-differential
privacy iff for all datasets D and D’, where D’ can be obtained from
D by either adding or removing one tuple, and for all E C Range(M)

Pr[M(D) € E] < ePr[M(D’) € E] 1)

Pr[M(D) € E] denotes the probability of mechanism M out-
putting an outcome in the set E for a database D and Range(M)
is the co-domain of M. M hides the presence of an individual in
the data, since the difference in probability of any set of outcomes
obtained on two datasets differing in a single tuple never exceeds
e®. The protection provided by DP is stronger when ¢ approaches 0.

The sensitivity of a function (e.g., a query) f, denoted by Z,
is the maximum amount the value of f can change when adding
or removing a single individual’s records from the data. The -
DP guarantee can be achieved by adding random noise derived
from the Laplace distribution Lap(Z¢/¢). For a query f : D —
R, the Laplace mechanism M returns f(D) + Lap(Zy/e), where
Lap(Zy/¢) is a sample drawn from the probability density function
Lap(x|(Zg/e)) = (¢/2Zf)exp(=Ixle/Zf) [13]. The composability
property of DP helps quantify the amount of privacy attained when



Table 1: Summary of Notations

Notation Definition

£ DP Privacy Budget

Q, Qw Query distribution and workload query set
Op., Yp Data collection query set and its answers
Oa, Ya Augmented query set and its answers

R, k Set and number of query sizes for training
lLu Lower and upper bound on query sizes

f(q), (f(g;0)) | Count of records in q calculated from D (estimated from 0)
S f(q) +Lap(1/e)

p,C Grid granularity, Set of bottom-left corners of grid cells

v Smoothing factor in relative error

D,0 ParamSelect Model, Dataset features

D, Dr, Dy All public datasets, ParamSelect training and inference datasets

71e (D, €) Function denoting best value of system parameter « for dataset
D and budget ¢

7o (D, €) Empirical estimate of 74 (D, €)

multiple functions are evaluated on the data. Specifically, when
mechanisms M;, My with privacy budgets ¢1, 3 are applied in
succession on overlapping data partitions, the sequential composi-
tion property [13] states that the budget consumption is (g1 + €2).
Conversely, when My, M are applied on disjoint data partitions,
the parallel composition property states that the resulting budget
consumption is max(ey, €2). The post-processing property of differ-
ential privacy [13] states that given any arbitrary function h and
an ¢-DP mechanism M, the mechanism h(M) is e-DP. Lastly, we
note that DP is robust to side-channel information [13], that is, the
privacy guarantee on the DP-release of D is irrespective of any
publicly available information about the users in D.

2.2 Problem Definition

Consider a database D that covers a spatial region SR C R?, and
contains n records each describing an individual’s geo-coordinate.
Given a privacy budget ¢, the problem studied in this paper is to
return the answer to an unbounded number of spatial range count
queries (RCQs). An RCQ consists of a spatial range predicate and
its answer is the number of records in D that satisfy the range
predicate. We consider spatial range queries that are axis-parallel
and square-shaped, defined by their bottom-left corner ¢ (where
c is a vector in SR), and their side length r. An RCQ, ¢, is then
defined by the pair ¢ = (c,r). We say r is the query size and c is
its location coordinate. For a database D, the answer to the RCQ
q = (c,r) can be written as a function f(q) = {plp € D,c[i] <
plil < cl[i]+r, Vi € {0,1}}|, where z[0] and z[1] denote the latitude
and longitude of any coordinate z, respectively. We assume RCQs
follow a distribution Q and for any RCQ g, we measure the utility

of its estimated answer, y, using the relative error metric, defined as

Ay, f(q) = %, where 1 is a smoothing factor necessary

to avoid division by zero.

The typical way to solve the problem of answering an unbounded
number of RCQs is to design an e-DP mechanism M and a function
f such that (1) M takes as an input the database D and outputs a dif-
ferentially private representation of the data, 6; and (2) the function
f (q; 0) takes the representation 0, together with any input query
q, and outputs an estimate of f(g). In practice, M is used exactly
once to generate the representation 0. Given such a representation,
f (gq; 0) answers any RCQ, g, without further access to the database.

For instance, in [34], M is a mechanism that outputs noisy counts
of cells of a 2-dimensional grid overlaid on D. Then, to answer an
RCQgq, f (g; 0) takes the noisy grid, 8, and the RCQ, g, as inputs and
returns an estimate of f(q) using the grid. The objective is to design
M and f such that the relative error between f (g;0) and f(q) is
minimized, that is, to minimize Eg.p(E4-0 [A(f(q; 0), f(q))].

Let f be a function approximator and define M to be a mecha-
nism that learns its parameters. The learning objective of M is to
find a 6 such that f(q;0) closely mimics f(g) for different RCQs, g.
The representation of the data, 6, is the set of learned parameters of
a function approximator. Mechanism M outputs a representation
0, and any RCQ, ¢, is answered by evaluating the function f(g; 6).
However, M is now defined as a learning algorithm and f as a
function approximator. Our problem is formally defined as follows:

PrROBLEM 1. Given a privacy budget ¢, design a function approxi-
mator, f, (let the set of possible parameters of f be ®) and a learning
algorithm, M, such that M satisfies e-DP and finds

argmin Egeo [A(f(q:0). f(9))]

3 SPATIAL NEURAL HISTOGRAMS (SNH)

Our goal is to utilize models that can learn patterns within the data
in order to answer RCQs accurately. We employ neural networks
as the function approximator f , due to their ability to learn com-
plex patterns effectively. Prior work [4] introduced a differentially
private stochastic gradient descent (DP-SGD) approach to privately
train a neural network. Thus, a seemingly straightforward solution
to Problem 1 is using a simple fully connected neural network and
learning its parameters with DP-SGD. Sec. 3.1 discusses this triv-
ial approach and outlines the limitations of using DP-SGD in our
setting, which leads to poor accuracy. Next, in Sec.3.2, we discuss
how we improve the training process to achieve good accuracy.
In Sec.3.3 we provide an overview of our proposed Spatial Neural
Histogram (SNH) solution. Table 1 summarizes the notations.

3.1 Baseline Solution using DP-SGD

Learning Setup. We define f(.; 0) to be a fully connected neural
network with parameter set §. We train the neural network so
that for an RCQ ¢, its output f(g;0) is similar to f(g). A training
set, T, is created, consisting of (g, f(q)) pairs, where q is the input
to the neural network and f(q) is the training label for the input
q (we call RCQs in the training set training RCQs). To create the
training set, similar to [25, 28], we assume we have access to a
set of workload RCQs, Qyy, that resembles RCQs a query issuer
would ask (e.g., are sampled from Q or a similar distribution) and
is assumed to be public. Thus, we can define our training set T to
be {(g, f(9))|q € Qw}. We define the training loss as

L= (f(g:0) - f(@)* 2)
q€Qw

In a non-private setting, a model can be learned by directly opti-
mizing Eq. (2) using a gradient descent approach. The model can
answer any new RCQ ¢ similar to the ground truth f(q).
Incorporating Privacy. DP-SGD [4] incorporates differential pri-
vacy for training neural networks. It modifies SGD by clipping each
sample gradient to have norm at most equal to a given clipping



threshold, B, and obfuscating them with Gaussian noise. Intuitively,
the clipping threshold, B, disallows learning more information than
a set quantity from any given training sample (no matter how dif-
ferent it is from the rest) and the standard deviation of the Gaussian
noise added is scaled with B to ensure obfuscation is proportional
to the amount of information gained per sample. Specifically, in
each iteration: (1) a subset, S, of the training set is sampled; (2) for
each sample, s = (x,y) € S, the gradient g5 = Vo (f(x;0) — y)? is
computed, and clipped (i.e., truncated) to a maximum #£-norm of B

as gs = min(||gs||2, B) ﬁ (3) the average clipped gradient value
for samples in S is obfuscated with Gaussian noise as
9= (gs) +N(0,6°B) 3)
SES

(4) the parameters are updated in the direction opposite to g.
DP-SGD Challenges. In our problem setting, the training set is
created by querying D to obtain the training labels, and our goal is
to ensure the privacy of records in D. On the other hand, DP-SGD
considers the training set itself to be the dataset whose privacy
needs to be secured. This changes the sensitivity analysis of DP-
SGD. In our setting, to compute the sensitivity of the gradient sum
> ses(gs) in step (3) of DP-SGD, we have to consider the worst-case
effect the presence or absence of a single geo-coordinate record p
can have on the sum (as opposed to the worst-case effect of the
presence or absence of a single training sample). Removing p can
potentially affect every g for all s € S, so sensitivity of the gradient
sum is |2S| X B and Gaussian noise of N(0, %4|S|?B?) must be
added to the gradient sum to achieve DP (cf. noise in step (3) above).
After this adjustment, per-iteration and total privacy consumption
of DP-SGD is amplified, impairing learning. We experimentally
observed that, for any reasonable privacy budget, training loss does
not improve at all during training due to the large added noise.

3.2 A different learning paradigm for RCQs

Next, we introduce three design principles (P1-P3) we follow when
training neural networks to answer RCQs. These principles are
then used in Sec. 3.3 to build our solution.

P1: Separation of noise addition from training. The main rea-
son DP-SGD fails in our problem setting is that too much noise
needs to be added when calculating gradients privately. Recall that
DP-SGD uses the quantity g, defined in Eq. (3), as the differentially
private estimate of the gradient of the loss function. Here, we inves-
tigate the private gradient computation in more details to provide
an alternative method to calculate the gradient with differential
privacy. Recall that the goal is to obtain the gradient of the loss
function, ., defined in Eq. (2) with respect to the model parameters.
We thus differentiate L' and obtain:

VoL = 3 2x(f(g:0) - f(@))xVf(g:6) (4
~——

q€Qw v Ny
data data data
indep. dep. indep.

In Eq. (4), only f(q) accesses the database. This is because the
training RCQs in Qyy (i.e., the inputs to the neural network), are
created independently of the database. The data dependent term
requires computing private answers to f(g) for an RCQ g, hence
must consume budget, while the data-independent terms can be

calculated without spending any privacy budget. This decomposi-
tion of the gradient into data dependent and independent terms is
possible because, different from typical machine learning settings,
the differential privacy is defined with respect to the database D
and not the training set (as discussed in Sec. 3.1).

Instead of directly using g (Eq. (3)) as the differentially private
estimate of the gradient (where the gradients are clipped and noise is
added to the clipped gradients), we calculate a differentially private
value of the training label f(g), called f(q), by adding noise to the
label (define f(q) = f(q) + Lap(1/¢)) and calculate the gradient
from that. The differentially private estimate of the gradient is then

g= Y 2x(f(g:0) - f(@) xVf(g:0) (5)

qeQw

A crucial benefit is that f(g), does not change over successive
learning iterations. That is, the differentially private value f(q) can
be computed once and used for all training iterations. This motivates
our first design principle of separating noise addition and training.
This way, training becomes a two step process: first, for all g € Qyy,
we calculate the differentially private training label f(g). We call
this step data collection. Then, we use a training set consisting of
pairs (g, f(q)) for all ¢ € Qy for training. Since DP-compliant
data measurements are obtained, all future operations that use as
input these measurements are also ¢-differentially private according
to the post-processing property of differential privacy [13]. Thus,
the training process is done as in a non-private setting, where a
conventional SGD algorithm can be applied (i.e., we need not add
noise to gradients), and differential privacy is still satisfied.

P2: Spatial data augmentation through partitioning. Follow-
ing principle P1, privacy accounting is only needed when answering
training queries to collect training labels. Meanwhile, in our experi-
ments, we observed that training accurate neural networks requires
a training set containing queries of different sizes (see Sec. 6.3.2).
Such queries may overlap and, if we answer them directly from the
database, sequential composition theorem would apply to account
for the total privacy budget consumption. This way, the more such
queries we answer, the more budget needs to be spent.

Instead, to avoid spending extra privacy budget while creating
more training samples with multiple query sizes, we propose spa-
tial data augmentation through partitioning. First, we use a data
collection query set, Qp, chosen such that RCQs in Qp don’t overlap
(i.e., a space partitioning). This ensures parallel composition can
be used for privacy accounting, instead of sequential composition,
which allows answering all RCQs in Qp by spending budget equal
to one RCQ. Then, using the partitioning Qp, we create and answer
new queries, g, of different sizes without spending any more pri-
vacy budget but by making uniformity assumption across cells in
Qp that partially overlap g. Even though this approach introduces
uniformity error in our training set, it avoids adding the otherwise
required large scale noise, and boosts accuracy. Thus, it allows us
to optimize the uniformity/noise trade-off [11, 34] when creating
our training set (we present experiments in Sec. B.2 of our technical
report [45] to show that data augmentation reduces error).

P3: Learning at multiple granularities. We employ in our so-
lution multiple models that learn at different granularities, each
designed to answer RCQs of a specific size. Intuitively, it is more
difficult for a model to learn patterns when both query size and
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locations change. Using multiple models allows each model to learn
the patterns relevant to the granularity they operate on.

3.3 Proposed approach: SNH

Our Spatial Neural Histograms (SNH) design, illustrated in Figure 2,
consists of three steps: (1) Data collection, (2) Model Training, and
(3) Model Utilization. We provide a summary of each step below,
and defer details until Sec. 4.

Data Collection. This step partitions the space into non-overlapping
RCQs that are directly answered with DP-added noise. The output
of this step is a data collection query set, Qp, and a set Yp which con-
sists of the differentially private answers to RCQs in Qp. This is the
only step in SNH that accesses the database. In Fig. 2 for example,
the query space is partitioned into four RCQs, and a differentially
private answer is computed for each.

Training. Our training process consists of two stages. First, we use
spatial data augmentation to create more training samples based
on Qp. An example is shown in Fig. 2, where an RCQ covering
both the red and yellow squares is not present in the set Qp, but
it is obtained by aggregating its composing sub-queries (both in
QOp)- Second, the augmented training set is used to train a function
approximator f that captures f well. f consists of a set of neural
networks, each trained to answer different query sizes.

Model Utilization. This step decides how any previously unseen
RCQ can be answered using the learned function approximator,
and how different neural networks are utilized to answer an RCQ.

4 TECHNICAL DETAILS
4.1 Step 1: Data Collection

This step creates a partitioning of the space into non-overlapping
bins, and computes for each bin a differentially private answer. We
opt for a simple equi-width grid of cell width p as our partitioning
method. As illustrated in Fig. 3, (1) we overlay a grid on top of the
data domain; (2) we calculate the true count for each cell in the grid,
and (3) we add noise sampled from Lap(%) to each cell count. We
represent a cell by the coordinates of its bottom left corner, ¢, so
that getting the count of records in each cell is an RCQ, g = (c, p).
Let C be the set of bottom left coordinates of all the cells in the grid.
Furthermore, recall that for a query g, f(q) = f(q) + Lap(%). Thus,
the data collection query set is defined as Qp = {(c, p),c € C}, and
their answers are the set Yp = {f(c, p),c € C}. We use Yp[c] to
refer to the answer for the query located at ¢ in Yp. The output of
the data collection step consists of sets Qp and Yp.

Cl. Build a grid on the dataset CTrust barrier

Figure 3: Data Collection: map view (left), true cell count
heatmap (middle), e-DP heatmap with noisy counts (right)

Even though more complex partitioning structures have been
used previosuly for privately answering RCQs [34, 48], we chose a
simple regular grid, for two reasons. First, our focus is on a novel
neural database approach to answering RCQs, which can be used in
conjunction with any partitioning type — using a simple grid allows
us to isolate the benefits of the neural approach. Second, using more
complex structures in the data collection step may increase the im-
pact of uniformity error, which we attempt to suppress through
our approach. The neural learning step captures density variations
well, and conducting more complex DP-compliant operations in
the data collection step can have a negative effect on overall accu-
racy. In our experiments, we observed significant improvements
in accuracy with the simple grid approach. While it may be possi-
ble to improve the accuracy of SNH by using more advanced data
collection methods, we leave that study for future work.

The challenge in data collection is choosing the value of p to
minimize induced errors. We address this thoroughly in Sec. 5.1
and present a method to determine the best granularity of the grid.

4.2 Step 2: SNH Training

Given query set Qp and its sanitized answers, we can perform
any operation on this set without privacy leakage due to the post-
processing property of DP. As discussed in Sec. 3.3, we first perform
a data augmentation step using Qp to create an augmented training
set Q4. Then, Q4 is used for training our function approximator.
Data Augmentation is a common machine learning technique to
increase the number of samples for training based on the existing
(often limited) available samples [24, 49]. We propose spatial data
augmentation for learning to answer RCQs. Our proposed data aug-
mentation approach is based on our design principle P2, discussed
in Sec. 3.2, where we motivate augmenting the training set through
partitioning. In the data augmentation step, we create new queries
of different sizes, answer them using the partitioning, and add the
answers to our training set, as detailed in the following.

We use the partitioning defined by Qp and corresponding an-
swers Yp to answer queries at the same locations as in Qp but of
othersizes. Consider a query location ¢ € C and a query size r,r # p.

We estimate the answer for RCQ g = (¢,7) as D e ‘(”)m—z(c/p)l X

Yp[c], where |(¢,r) N (¢’, p)| is the overlapping area of RCQs (c, r)
and (c’, r). In this estimate, noisy counts of cells in Qp fully covered
by q are added as-is (since |(c, ) N (¢’, p)| = p?), whereas fractional
counts for partially-covered cells are estimated using the uniformity
assumption. Fig. 4 shows how we perform data augmentation for a
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Algorithm 1 Spatial data augmentation

Input: Query set Qp with answers Yp, k query sizes
Output: Augmented training set Q4 with labels Y4
1 Re—{l+ (uk_l) X (i+3),Vi,0 <i<k}
2: forallr € Rdo

3: Q:‘, Y;\. —0

4 for (c,p) € Qp do

5 Q' -append((c,7))

6: YIZ[C] — Z(C/,p)EQD W X Yp [C’]

7. return Qa, Ya < {Q',,Vr € R}, {Y},Vr € R}

query (¢, r1) with size r; at location c. Also observe that, by using
queries at the same locations as in Qp, the bottom-left corners of
all queries in the augmented query set are aligned with the grid.
We repeat this procedure for k different query sizes to generate
sufficient training data. To ensure coverage for all expected query
sizes, we define the set of k sizes to be uniformly spaced. Specifically,
assuming the test RCQs have size between [ and u, we define the
set R as the set of k uniformly spaced values between [ and u,
and we create an augmented training set for each query size in R.
This procedure is shown in Alg.1. We define Q7 for r € R to be
the set of RCQs located at C but with query size r, that is Q) =
{(c,r),c € C}, and define Y} to be the set of the estimates for
queries in Q7 obtained from Qp and Yp. The output of Alg. 1 is the
augmented training set containing training samples for different
query sizes. Note that, as seen in the definition above, Q;‘, for
any r, only contains queries whose bottom-left corner is aligned
with the grid used for data collection to minimize the use of the
uniformity assumption. However, uniformity errors can still be
present in our answers in Y} . We discuss in Sec. 4.3 how training
of neural networks on top of these answers allows us to mitigate
the uniformity error through learning.
Model architecture. We find that using multiple neural networks,
each trained for a specific query size, performs better than using a
single neural network to answer queries of all sizes. Thus, we train k
different neural networks, one for each r € R. Meaning that a single
neural network trained for query size r can only answer queries

[gr = (29.759, ~95.366,30) ,~0 ©— [g2=(29.758,—95364,90)
‘ .ql 29.760
29.758 29.758 . q2

f(g2:0)=
489.9><(19T%)2

f(q1;0)=
103.2x (397

Figure 5: Model utilization: 30m query answered from 25m
network (left), 90m query from 100m network (right)

of size r (we discuss in Sec. 4.3 how the neural networks are used
to answer other query sizes), accordingly the input dimensionality
of each neural network is two, i.e., lat. and lon. of the location
of the query. We use k identical fully-connected neural networks
(specifics of the network architecture are discussed in Sec. 6).

Loss function and Optimization. We train each of the k neural
networks independently. We denote by Q’, the training set for a

neural network f (.; 0r), trained for query size r, and we denote the
resulting labels by Y};. We use a mean squared error loss function
to train the model, but propose two adjustments to capitalize on
the workload information available. First, note that for a query size
r € R, Q') is comprised of queries at uniformly spaced intervals,
which may not follow the query distribution Q. However, we can
exploit properties of the workload queries, Qyy to tune the model
for queries from Q. Specifically, for any (c,r) € Q',, let w(.,) =
H{q’ € Qw. (c,r)Ng" # 0}, thatis, w(, ;) is the number of workload
queries that overlap a training query. In our loss function, we weight
every query (¢, 7) by w(c . This workload-adaptive modification to
the loss function emphasizes the regions that are more popular for
a potential query issuer. Second, we aim at answering queries with
low relative error, whereas a mean square loss puts more emphasis
on absolute error. Thus, for a training query (c, r), we also weight
the sample by 1/max{Y} [c], y}. Putting these together, the loss
function optimized for each neural network is

Wier)

F r 2
W(ﬂa 0r) = Y, lcD) (6)

(er)eQ);

4.3 Model Utilization

To answer a new query (c, r), the model that is trained to answer
queries with size most similar to r is accessed. That is, we find
r* = argmin, cg |r — r’| and we answer the query using network
f (¢, 0,+). The output answer is scaled to r according to a uniformity
assumption, and the scaled answer is returned, i.e., (ﬁ)zf(c, 0,+).
Fig. 5 shows this procedure for two different RCQs.

It is important to differentiate the use of uniformity assumption
before learning (i.e., in data augmentation), called uniformity as-
sumption pre-learning, from the use of uniformity assumption after
learning (during model utilization), called uniformity assumption
post-learning. The parameter k allows exploring the spectrum be-
tween the two cases. Specifically, when k is larger, we train more
models and each model is trained for a different query size. For



each query size, data augmentation uses uniformity assumption to
generate training samples. Thus, more training samples are created
using uniformity assumption. We call this increasing uniformity
assumption pre-learning. On the other hand, since more models are
trained, the output of each model will be scaled by a factor closer
to one (i.e., in the above paragraph, r* becomes closer to r so that
(r—r*)2 becomes closer to 1). We call this decreasing uniformity as-
sumption post-learning. Our experimental results in Sec. 6.3.2 show
that increasing k improves accuracy, and k should be set as large
as possible so that uniformity assumption post-learning becomes
negligible in practice. This follows the SNH motivation (and obser-
vations in Sec. 6.3.4) that learning can mitigate the uniformity error.
That is, the uniformity assumption should be made pre-learning so
that its impact on final accuracy can be reduced through learning.

5 END-TO-END SYSTEM ASPECTS
5.1 System Tuning with ParamSelect

Choosing a good grid granularity, p, is crucial for achieving high
accuracy for DP spatial data publishing, and studied in previous
work [17, 34]. Discretizing continuous domain geo-coordinates cre-
ates uniformity errors, and hence the granularity of the grid must
be carefully tuned to compensate for the effect of discretization. Ex-
isting work [17, 34] makes simplifying assumptions to analytically
model the impact of grid granularity on the accuracy of answering
queries. However, modelling data and query specific factors is diffi-
cult and the simplifying assumptions are often not true in practice,
as our experiments show (see Sec. B.3 of our technical report [45]).
Instead, we learn a model that is able to predict an advantageous
grid granularity for the specific dataset, query distribution and
privacy budget. Sec. 5.1.1, discusses ParamSelect, our approach to
determine p. In Sec. 5.1.2 we show how to extend ParamSelect to
tune other system parameters.

5.1.1  ParamSelect for p. The impact of grid granularity on privacy-
accuracy trade-offs when answering queries is well-understood in
the literature [34]. In SNH, the grid granularity in data collection
phase impacts the performance as follows. On the one hand, smaller
grid cells increase the resolution at which the data are collected,
thereby reducing the uniformity error. Learning is also improved,
due to more training samples being extracted. On the other hand,
creating too fine grids can diminish the signal-to-noise ratio for
cells with small counts, since at a given ¢ the magnitude of noise
added to any cell count is fixed. Moreover, during data augmenta-
tion, aggregating multiple cells leads to increase in the total noise
variance, since the errors of individual cells are summed. SNH is
impacted by cell width in multiple ways, and determining a good
cell width, p, is important to achieve good accuracy.

Capturing an analytical dependence may not be possible, since
numerous data, query and modelling factors determine the ideal
cell width. If data points are concentrated in some area where the
queries fall, a finer grid can more accurately answer queries for
the query distribution (even though signal-to-noise ratio may be
poor for parts of the space where queries are not often asked). This
factor can be measured only by looking at the actual data and the
distribution of queries, and would require spending privacy budget.

The best value of p depends on the privacy budget ¢, the distribu-
tion of points in D and the query distribution Q. Define §(p, D, ¢)

to be the error of SNH with cell width p and define n(D,¢) =
argmin,eg 8(p, D, €), that is, the function that outputs the ideal
cell width. We learn a model, ®, to approximate 7 (D, ¢). We refer
to @ as regressor to distinguish it from the SNH model, f , discussed
in Sec. 4. The learning process is similar to any supervised learning
task, where for different dataset and privacy budget pairs, (D, ¢),
we use the label 7(D, ¢) to train ®. The input to the regressor is
(D, ¢) and the training objective is to get the output, ®(D, ¢), to be
close to the label 7 (D, ¢).
Feature engineering. Learning a regressor that takes a raw data-
base D as input is infeasible, due to the high sensitivity of learning
with privacy constraints. Instead, we introduce a feature engineer-
ing step that, for the dataset D, outputs a set of features, ¢p. Train-
ing then replaces D with ¢p. Let the spatial region of D be SRp.
First, as one of our features, we measure the skewness in the spread
of individuals over SRp, since this value directly correlates with the
expected error induced by using the uniformity assumption. In par-
ticular, we (1) discretize SRp using an equi-width partitioning, (2)
for each cell, calculate the probability of a point falling into a cell as
the count of points in the cell normalized by total number of points
in D, and (3) take the Shannon’s Entropy hp over the probabilities
in the flattened grid. However, calculating hp on a private dataset
violates differential privacy. Instead, we utilize publicly available
location datasets as an auxiliary source to approximately describe
the private data distribution for the same spatial region. We posit
that there exist high-level similarities in distribution of people’s
locations in a city across different private and public datasets for
the same spatial regions and thus, the public dataset can be used
as a surrogate. Let @ be the set of public datasets that we have
access to, and let Dy € @ be a public dataset covering the same
spatial region as D. We estimate hp for a dataset with hp,. We call
Dr public ParamSelect Inference dataset.

Second, we use data-independent features: ¢

L 1
» e and Nl
where the product of n X ¢ accounts for the fact that decreasing
the scale of the input dataset and increasing epsilon have equiva-
lent effects on the error. This is also understood as epsilon-scale

exchangeability [17]. We calculate ¢p . = (n, ¢, % \/%Tg hp,) as the

set of features for the dataset D without consuming any privacy
budget in the process. Lastly, we remark that for regions where
an auxiliary source of information is unavailable, we may still uti-
lize the data-independent features to good effect. In our technical
report [45], we show that our proposed features achieve reliable
accuracy across datasets; particularly, we chose hp amongst several
alternative data-dependent features for that reason.

Training Sample Collection. Generating training samples for ®
is not straightforward since we do not have an analytical formula-
tion for 6(p, D, €) and thus (D, ¢). Since the exact value of 7(D, ¢)
is unknown, we use an empirical estimate. We run SNH with var-
ious grid granularities of data collection and return the grid size,
PD,e» for which SNH achieves the lowest error. Our experimental re-
sults in Sec. 6.3 show that §(p, D, ¢) is only marginally affected with
small changes in p (so evaluating §(p, D, ¢) at different values of p
five meters apart and selecting the best p provides a good estimate
of 7(D, ¢)). Intuitively, one expects the error in the training set to
remain the same if the cell width of data collection grid changes
by a few meters, since the uniformity errors induced are similar.



Algorithm 2 ParamSelect training

Input: A set of public training datasets Dy € @ and privacy
budgets & for training to predict a system parameter o
Output: Regressor @, for system parameter o
1: procedure ¢(D, n, ¢)
2 hp « entropy of D
3: return (n, ¢, % \/Ln—f hp)

4: procedure TRAIN_PARAMSELECT(Dr, &)

5 T «— {(¢(D, |D|, ), ig (D, €))|e € §,D € Dr}
6 &, « Train regressor using T

7 return @,

Algorithm 3 ParamSelect usage

Input: Spatial extent SR and size n of a sensitive dataset D and
privacy budget ¢
Output: System parameter value « for private dataset D
1: procedure PARAMSELECT(SR, n, ¢)
2 Dy « Public dataset with spatial extent SR
3: a q)a(¢(DI: n, 8))
4: return o

Thus, we use this approach to obtain pp . as our training label. Note
that the empirically determined value of pp . is dependent on—and
hence accounts for—the query distribution on which SNH error
is measured. Moreover, when D contains sensitive data, obtaining
pp,e would require spending privacy budget. Instead, we generate
training records from a set of datasets, Dt C @ that have already
been publicly released (see Sec. 6 for details of public datasets).
We call datasets in Dt public ParamSelect Training datasets. Put
together, our training set is {(¢p ¢, pp¢)le € €, D € Dr}, where &
is the range of different privacy budgets chosen for training.
Predicting Grid Width with ParamSelect. The training phase
of ParamSelect builds regressor ® using the training set described
above. We observed that models from the decision tree family per-
form the best for this task. Once the regressor is trained, its utiliza-
tion for any unseen dataset is straightforward and only requires
calculating the corresponding features and evaluating .

5.1.2  Generalizing ParamSelect to any system parameter. We can
easily generalize the approach in Sec. 5.1.1 to any system parameter.
Define function 74 (D, ¢) that given a query distribution, outputs
the best value of « for a certain database and privacy budget. The
goal of ParamSelect is to learn a regressor, using public datasets
Dt € @, that mimics the function 74/(.).

ParamSelect functionality is summarized in Alg. 2. First, during
a pre-processing step, it defines the feature extraction function
(D, n, ¢), that extracts the features described in Sec. 5.1.1 from the
public dataset D with n records, and a privacy budget ¢. Second,
it creates the training set {(¢(D, |D|, €), 74 (D, ¢€)), e € &, D € Dr},
where 74 (D, ) estimates the value of 7, (D, ¢) with an empirical
search (i.e., by trying different values of @ and selecting the one with
the highest accuracy), and D and § are different public datasets
and values of privacy budget, respectively, used to collect training
samples. Lastly, it trains a regressor @, that takes extracted features
as an input and outputs a value for a.

Table 2: Urban datasets characteristics.

Low Pop. density Medium Pop. density

Fargo [46.877,-96.789] Phoenix [33.448, -112.073]
Kansas City [39.09, -94.59] Los Angeles [34.02,-118.29]  Chicago [41.880, -87.70]
Salt Lake [40.73,-111.926]  Houston [29.747, -95.365) SF [37.764, -122.43)

Tulsa [36.153, -95.992] Milwaukee [43.038, -87.910] Boston [42.360, -71.058]

High Pop. density
Miami [25.801, -80.256]

At inference stage (Alg. 3) ParamSelect uses a public dataset Dy
that covers the same spatial region as D, as well as size of D, n,
and privacy budget ¢ to extract features ¢(Dy, n, ). The predicted
system parameter value for D is then ®,(¢(Dy, n, €)).

5.2 Privacy and Security Discussion

Let D be a private dataset covering a spatial region SR and @ be a
set of public datasets. The SNH end-to-end privacy mechanism M
is comprised of two parts that compose sequentially: mechanism
My, that models range count queries using the neural networks,
and mechanism Mg, that trains a regressor to determine the system
parameters. My operates over D, ¢, SR and . Mg operates over
@ and SR for ParamSelect training and inference. Hence, we write
the end-to-end system as the SNH mechanism M(Dle, SR, D) =
Mg (Dle, D, SR, Mg (D, SR)).

THEOREM 5.1. Mechanism M(D|e, SR, D) satisfies e-DP.

Sec. A of our technical report [45] contains a proof of the above
theorem and a qualitative discussion on DP privacy guarantees.

6 EXPERIMENTAL EVALUATION

Sec. 6.1 describes the experimental testbed. Sec. 6.2 evaluates SHN
in comparison with state-of-the-art approaches. Sec. 6.3 provides
an ablation study of various design choices. Sec. B of our technical
reports [45] contains complementary experimental results.

6.1 Experimental Settings

6.1.1 Datasets. We first describe all the datasets and then specify
how they are utilized in our experiments.

Dataset Description. All datasets comprise of user check-ins spec-
ified as tuples of: user identifier, latitude and longitude of check-in
location, and timestamp. Our first dataset is a subset of the user
check-ins collected by the SNAP project [10] from the Gowalla (GW)
network. It contains 6.4 million records from 200k unique users
during a time period between February 2009 and October 2010. Our
second dataset, SF-CABS-S (CABS) [33], is derived from the GPS
coordinates of approximately 250 taxis collected over 30 days in
San Francisco. Following [17, 34], we keep only the start point of
the mobility traces, for a total of 217k records. The third dataset
is proprietary, obtained from Veraset [2] (VS), a data-as-a-service
company that provides anonymized movement data from 10% of the
cellphones in the U.S [3]. For a single day in December 2019, there
were 2.6 billion readings from 28 million distinct devices. From VS
we generate the fourth dataset called SPD-VS. We perform Stay
Point Detection (SPD) [42] on the data to remove location signals
when a person is moving, and to extract POI visits when a user is
stationary. SPD is useful for POI services [32], and results in a data
distribution consisting of user visits (i.e., fewer points on roads and



more at POIs). Following [42], we consider as location visit a region
100 meters wide where a user spends at least 30 minutes.

To simulate a realistic urban environment, we focus on check-ins
from several cities in the U.S. We group cities into three categories
based on their population densities [1], measured in people per
square mile: low density (lower than 1000/sq mi), medium den-
sity (between 1000 and 4000/sq mi) and high density (greater than
4000/sq mi). A total of twelve cities are selected, four in each popula-
tion density category as listed in Table 2. For each city, we consider
a large spatial region covering a 20 x 20km? area centered at [lat,
lon]. From each density category we randomly select a test city
(highlighted in bold in Table 2), while the remaining cities are used
as training cities. We use the notation <city> (<dataset>) to refer
to the subset of a dataset for a particular city, e.g., Milwaukee (VS)
refers to the subset of VS datasets for the city of Milwaukee.
Experiments on VS. Private dataset: Our experiments on Ve-
raset can be seen as a case-study of answering RCQs on a propri-
etary dataset while preserving differential privacy. We evaluate
RCQs on the Veraset dataset for the test cities. Due to the enor-
mous volume of data, we sample at random sets of n check-ins, for
n € {25k, 50k, 100k, 200k, 400k} for the test cities and report the
results on these datasets. Auxiliary Datasets: For each test city in
VS, we set Qy and Dy to be the GW dataset from the corresponding
city. GW and VS datasets are completely disjoint (they are collected
almost a decade apart). The public datasets Dr are the set of all the
training cities of the GW dataset.

Experiments on GW. Private dataset: We present the results on
the complete set of records for the test cities of Miami, Milwaukee
and Kansas City with 27k, 32k and 54k data points, respectively.
Auxiliary Datasets: For each test city, we set Qyy and Dy to be the VS
counterpart dataset for that city. Dy contains all the training cities
in the GW dataset. None of the test cities, which are considered
sensitive data, are included in Dr.

Experiments on CABS. Private dataset: Since CABS consists of
217k records within the city of San Francisco only, we treat it as
the sensitive test city for publishing. Auxiliary Datasets: We set Qv
and Dy to be the GW dataset for San Francisco. Dt contains all the
training cities in the GW dataset. Once again, collecting auxiliary
information from an entirely different dataset ensures no privacy
leakage on the considered private dataset.

6.1.2  SNH system parameters. We use the GW dataset to train the
ParamSelect regression model. For the nine training cities and five
values of privacy budget ¢, we obtain 45 training samples. We utilize
an AutoML pipeline (such as [15, 41]) to find out a suitable model
from among a wide range of ML algorithms. The pipelines use
cross-validation to evaluate goodness-of-fit for possible algorithm
and hyperparameter combinations. The final model is an Extremely
Randomized Tree (ExtraTrees) [16]. ExtraTrees create an ensem-
ble of random forests [21], where each tree is trained using the
whole learning sample (rather than a bootstrap sample). The model
ensembles 150 trees having a maximum depth of 7.

For other system parameters, we observed that their best value
for SNH remain stable over various dataset and privacy budget
combinations. Sec. 6.3.2 and Sec. B.4 of our technical report [45]
present this result for parameter k and Sec. 6.3.4 and Sec. B.4 of
our technical report [45] for the model depth. We observed no

benefit in using ParamSelect to set these parameters and merely
selected a value that performed well on our public datasets for the
system parameter k and neural network hyper-parameters. The
fully connected neural networks contain 20 layers of 80 unit each
and are trained with Adam [23] optimizer with learning rate 0.001.

6.1.3  Other experimental settings.

Evaluation Metric. We construct query sets of 5,000 RCQs cen-
tered at uniformly random positions. Each query has side length
that varies uniformly from 25 meters to 100 meters. We evaluate the
relative error for a query q as defined in Sec. 2, and set smoothing
factor i to 0.1% of the dataset cardinality n, as in [11, 34, 48].
Baselines. We evaluate our proposed SNH approach in compari-
son to state-of-the-art DP solutions: PrivTree [48], Uniform Grid
(UG) [34], Adaptive Grid (AG) [34] and Data and Workload Aware
Algorithm (DAWA) [25]. Brief summaries of each method are pro-
vided in Sec. 7. DAWA requires the input data to be represented
over a discrete 1D domain, which can be obtained by applying a
Hilbert transformation. To this end, we discretize the domain of
each dataset into a uniform grid with 22° cells, following the work
of [25, 48]. DAWA also uses the workload query set, Qyy, as speci-
fied in Sec. 6.1.1. For PrivTree, we set its fanout to 4, following [48].
We also considered Hierarchical methods in 2D (HB2D) [18, 35] and
QuadTree [11], but the results were far worse than the above ap-
proaches and thus are not reported (we report the results of all the
baselines in Sec. B.1 of our technical report [45]). As an additional
baseline, we modify STHoles [8], a non-private workload-aware
algorithm, to satisfy DP. STHoles builds nested buckets in regions
where the workload requires finer granularity. We incorporate dif-
ferential privacy by (1) adding the required sanitization noise to
the frequency counts in STHoles’ buckets and (2) implementing
the algorithm so that it avoids asking overlapping queries from
the database to minimize the magnitude of noise added. Details
of our DP-compliant adoption of STHoles are available in the Ap-
pendix C of our technical report [45] and our implementation is
publicly available at [43]. Similar to DAWA and SNH, STHoles uses
the workload query set, Qyy, as specified in Sec. 6.1.1.
Implementation. All algorithms were implemented in Python,
and executed on a Linux machine with an Intel 19-9980XE CPU,
128GB RAM and a RTX2080 Ti GPU. Neural networks are imple-
mented in JAX [7]. Given this setup, SNH took up to 20 minutes to
train in our experiments, depending on the value of p. The average
query time of SNH is 329us and a model takes 4 MB of space. We
publicly release the source code at [44].

Default Values. Unless otherwise stated, we present the results
on the medium population density city, Milwaukee (VS), with data
cardinality n = 100k. Privacy budget ¢ is set to 0.2.

6.2 Comparison with Baselines

Impact of privacy budget. Figs. 6 and 7 present the error of SNH
and competitors when varying e for test datasets VS, SPD-VS, CABS
and GW. Recall that a smaller ¢ means stronger privacy protection.

For our proprietary datasets, VS and SPD-VS, we observe that
SNH outperforms the state-of-the-art by up to 50% at all privacy
levels (Fig. 6 (a)-(d)). This shows that SNH is effective in utilizing
machine learning and publicly available data to improve accuracy
of privately releasing proprietary datasets. Fig. 6 (¢) and Fig. 7 show
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Figure 12: SNH learns patterns on GMM dataset of 16 components. Color
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that SNH also outperforms for CABS and GW datasets in almost all
settings, the advantage of SNH being more pronounced for smaller
¢ values. Stricter privacy regimes are particularly important for
location data, since such datasets are often released at multiple time
instances with smaller privacy budget per release.

Impact of data cardinality. Fig. 8 (a) shows the impact of data
cardinality on relative error for Milwaukee (VS). For all algorithms,
the accuracy improves as data cardinality increases. This is a direct
consequence of the signal-to-noise ratio improving as cell counts
are less impacted by DP noise. SNH consistently outperforms com-
petitor approaches at a wide range of data cardinality settings.
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Figure 13: Impact of data skewness (¢ = 0.2)

Impact of query size. We evaluate the impact of query size on
accuracy by considering test queries of four different sizes in Mil-
waukee (VS). Fig. 8 (b) shows that the error for all the algorithms
increases when query size grows, with SNH outperforming the
baselines at all sizes. There are two competing effects when increas-
ing query size: on the one hand, each query is less affected by noise,
since actual counts are larger; on the other hand, the error from
more grid cells is aggregated in a single answer. The second effect
is stronger, so the overall error steadily increases with query size.



6.3 Ablation Study for SNH

6.3.1 Modeling choices. Recall that SNH first creates a uniform
grid, with granularity decided by ParamSelect. It then performs data
augmentation and learning using the data collected on top of the
grid. Next, we study the importance of each component of SNH to
its overall performance. We create two new baselines to show how
our choice of using neural networks to learn the patterns in the data
improves performance. The first, called IDENTITY@ParamSelect,
ablates SNH, utilizing only the uniform grid created in SNH at
data collection. The second baseline, called PGM@ParamSelect,
employs Private Probabilistic Graph Models (PGM) [29], a learning
algorithm specifically designed for high-dimensional categorical
data. We extend PGM to 2D spatial datasets by feeding it a DP
uniform grid at the granularity selected by ParamSelect.

Fig. 9 (a) shows SNH outperforming both these baselines. SNH
outperforming IDENTITY shows the benefit of learning, since both
SNH and IDENTITY use the same grid for data collection but SNH
learns neural networks using data generated from the grid, while
IDENTITY directly uses the grid to answer queries. This benefit di-
minishes when the privacy budget and the data cardinality increase
(note that both n and ¢ are in log scale), where a simple uniform grid
chosen at the correct granularity outperforms all existing methods
(comparing Fig. 9 (b) with Fig. 6 (b) shows IDENTITY@ParamSelect
outperforms the state-of-the-art for ¢ = 0.4 and 0.8). For such ranges
of privacy budget and data cardinality, ParamSelect recommends
a very fine grid granularity. Thus, the uniformity error incurred
by IDENTITY@ParamSelect becomes lower than that introduced
by the modelling choices of SNH and PGM. This also shows the
importance of a good granularity selection algorithm, as UG in
Fig. 6 performs worse than IDENTITY@ParamSelect for larger e.

6.3.2  Balancing Uniformity Errors. We discuss how the use of the
uniformity assumption at different stages of SNH impacts accuracy.
Recall from Sec. 4.3 that the value of k balances the use of the
uniformity assumption pre- and post-learning. We empirically study
how uniformity assumption pre- and post-learning influence SNH’s
accuracy by varying k. Furthermore, we study how removing the
uniformity assumption post-learning and replacing it with a neural
network affects accuracy. Specifically, we consider a variant of SNH
where we train the neural networks to also take as an input the
query size. Each neural network is still responsible for a particular
set of query sizes, [r}, r,], where we use data augmentation to
create query samples with different query sizes falling in [r, ry,].
Instead of scaling the output of the trained neural networks, now
each neural network also takes the query size as an input, and thus,
the answer to a query is just the forward pass of the neural network.
We call this variant SNH with query size, or SNH+QS .

Fig. 10 shows that, first, removing the uniformity assumption
post-learning has almost no impact on accuracy when k is large.
However, for a small value of k, it provides more stable accuracy.
Note that when k = 1, SNH trains only one neural network for
query size r* and answers the queries of size r by scaling the output
of the neural network by . The error is expected to be lower when
p and r* have similar values, since there will be less uniformity
error when performing data augmentation. This aspect is captured
in Fig. 10, where at ¢ = 0.2, r* and p are almost the same values

and thus, the error is the lowest. Sec. B.4 of our technical report
[45] evaluates more comprehensively the impact of k.

6.3.3 ParamSelect and p. Fig.11 shows the performance of SNH
with varying cell width p at multiple values of ¢. A coarser grid first
improves accuracy by improving signal-to-noise ratio at each cell,
but a grid too coarse hampers accuracy by reducing the number of
samples extracted for training SNH. This creates a U-shaped trend
which shifts to smaller values of p for larger values of ¢ as the lower
DP noise impacts the cell counts less aggressively. The red line
in Fig.11 labelled SNH shows the result of SNH at the granularity
chosen by ParamSelect. SNH performing close to the best possible
proves that ParamSelect finds an advantageous cell width for SNH.

6.3.4 SNH Learning Ability in Non-Uniform Datasets. We study the
ability of neural networks to learn patterns from skewed datasets
through imprecise observations, where imprecision is due to noise
or uniformity assumption.
Setup. We synthesize 100k points from a Gaussian Mixture Model
(GMM) [36] with 16 components. The means of the components are
placed uniformly over the data space. All components are equally
weighted and have the covariance matrix I X o2, where I is the
identity matrix. GMMs allow controlling data skewness via the
parameter 0. We partition the data space into a grid of 200x200
cells and report o in terms of number of cells. The query set, Q,
consists of queries asking for the number of points inside each cell.
Fig. 12(a) plots the true answers to this query set when o = 7.
Learning from Noisy Observations. We consider two scenarios.
First, we obtain the DP answers, A, to the queries in Q by adding
noise to the true answers. We call this algorithm No Learning. For
& = 0.05, Fig. 12 (b1) shows the noisy answers reported by No
Learning. Comparing Figs. 12 (a) and 12 (b1) we observe that the
sanitization noise severely distorts the existing patterns in the data.
Second, we train a neural network using only the noisy answers
shown in Fig. 12 (b1), that is, the inputs to the neural network
are queries in Q and training labels are the answers in A. After
training, we ask the same queries, Q. The result in Fig. 12 (c1)
shows the output of the neural network. SNH has a strong ability
to recover the underlying patterns of GMMs from even highly
distorted observations. Additional visualizations for several values
of ¢ and o can be found in Sec. B.5 of our technical report [45].
Next, we compare the error in the neural network predictions
to that in the noisy answers it was trained with. The latter is rep-
resented with the line labelled ‘No Learning’ in Fig. 13 (a) and is
the error in A. Lines labeled SNH show the error of SNH at varying
model sizes (s1, sz and s3 correspond to models with depth 5, 10
and 20 and width 15, 25 and 80 respectively) on the same query set.
When o is large, the data is closer to being uniformly distributed
and there are fewer patterns to learn, whereas when o is small,
the data becomes more skewed towards the mean of each GMM
component. The results in Fig. 13 (a) show that when data is skewed,
SNH is especially capable of extracting patterns in the data where
present, utilizing them to boost accuracy. However, when data is
uniform-like, SNH performs similar to ‘No Learning’ as there are
few patterns to be learned. Lastly, by varying model size (lines s1,



s and s3) we show that it is beneficial to use a larger neural net-
work for more skewed datasets. A larger network exhibits stronger
representation power and hence captures the skewness better.
Learning from Observations with Uniformity Error. We gen-
erate the training data by purposefully inducing uniformity error
when answering queries in our training set, Q. We first superimpose
a coarse partitioning of 20x20 blocks over the original 200x200
cell grid, with each block covering exactly 100 cells. To answer the
queries in Q, we first obtain the true answer for each block, and
then divide that value by 100 to obtain the answer for each cell
within the block (assuming uniformity within the block). The result
is shown in Fig. 12 (b2). Note that the set of queries that fall within
the same block (in the 20x20 grid) all receive the same answers due
to the uniformity assumption. Next, we train a neural network with
queries in Q (corresponding to the cells in the 200x200 grid). The
result in Fig. 12 (c2) shows that the neural network smoothens the
observations and brings them closer to the true answers. In Fig. 13
(b) we evaluate the effect of increasing skewness (i.e., decreasing o):
“No Learning” yields larger errors, whereas SNH, through learning,
keeps the error steady for different skewness levels.

7 RELATED WORK

Privacy preserving machine learning. A learned model can leak
information about the data it was trained on [20, 38]. Recent efforts
have developed differentially private versions of ML algorithms,
e.g., empirical risk minimization [9, 22] and deep neural networks
[4, 37]. For DP sanitization, existing approaches add noise to the
output of the trained model [39], add a random regularization term
to the objective function [9, 22], or add noise to the gradient of the
loss function during training [4]. Our approach is different in that
we sanitize the training data before learning. Furthermore, the work
of [4] achieves (g, §)-DP [5, 14, 31], a weaker privacy guarantee.
Answering RCQs. In the one dimensional case, the data-independent
Hierarchical method [18] uses a strategy consisting of hierarchi-
cally structured range queries typically arranged as a tree. Similar
methods (e.g., HB [35]) differ in their approach to determining the
tree’s branching factor and allocating appropriate budget to each
of its levels. Data-dependent techniques, on the other hand, exploit
the redundancy in real-world datasets to boost the accuracy of
histograms. The main idea is to first lossily compress the data. For
example, EFPA [6] applies the Discrete Fourier Transform whereas
DAWA [25] uses dynamic programming to compute the least cost
partitioning. The compressed data is then sanitized, for example,
directly with Laplace noise [6] or with a greedy algorithm that
tunes the privacy budget to an expected workload [25]).

While some approaches such as DAWA and HB extend to 2D
naturally, others specialize to answer spatial range queries. Uniform
Grid (UG) [34] partitions the domain into a m X m grid and releases
a noisy count for each cell. The value of m is chosen in a data-
dependent way, based on dataset cardinality. Adaptive Grid (AG)
[34] builds a two-level hierarchy: the top-level partitioning utilizes
a granularity coarser than UG. For each bucket of the top-level par-
tition, a second partition is chosen in a data-adaptive way, using a
finer granularity for regions with a larger count. QuadTree [11] first
generates a quadtree, and then employs the Laplace mechanism to
inject noise into the point count of each node. Range-count queries

are answered via a top-down traversal of the tree. Privtree [48] is
another hierarchical method that allows variable node depth in the
indexing tree (as opposed to fixed tree heights in AG, QuadTree
and HB). It utilizes the Sparse-Vector Technique [26] to determine
a cell’s density prior to splitting the node.

The case of high-dimensional data was addressed by [28, 40, 47].
The most accurate algorithm in this class is High-Dimensional Ma-
trix Mechanism (HDMM) [28] which represents queries and data
as vectors, and uses optimization and inference techniques to an-
swer RCQs. PrivBayes [47] is a mechanism that privately learns a
Bayesian network over the data that generates a synthetic dataset
which can consistently answer workload queries. Due to the use of
sampling to estimate data distribution, it is a poor fit for skewed spa-
tial datasets. Most similar to our work is PGM [29], which utilizes
Probabilistic Graphical Models to measure a compact representa-
tion of the data distribution, while minimizing a loss function. Data
projections over user-specified subgroups of attributes are sani-
tized and used to learn the model parameters. PGM is best used in
the inference stage of privacy mechanisms (such as HDMM and
PrivBayes) that can already capture a good model of the data.
Private parameter tuning. Determining the system parameters
of a private data representation must also be DP-compliant. Several
approaches utilize the data themselves to tune system parameters
such as depth of a hierarchical structure (e.g., in QuadTree or HB)
or spatial partition size (e.g. k-d trees), without privacy consider-
ation [18]. Using public datasets to tune system parameters is a
better strategy [9]. Our strategy to determine a good cell width for
a differentially-private grid is similar to that in UG [34]. However,
our proposed strategy for parameter selection vastly improves gen-
eralization ability over UG [34] by exploiting additional dataset
features and their non-linear relationships.

8 CONCLUSION

We proposed SNH: a novel method for answering range count
queries on location datasets while preserving differential privacy.
To address the shortcomings of existing methods (i.e., over-reliance
on the uniformity assumption and noisy local information when
answering queries), SNH utilizes the power of neural networks to
learn patterns from location datasets. We proposed a two stage
learning process: first, noisy training data is collected from the
database while preserving differential privacy; second, models are
trained using this sanitized dataset, after a data augmentation step.
In addition, we devised effective machine learning strategies for
tuning system parameters using only public data. Our results show
SNH outperforms the state-of-the-art on a broad set of input data
with diverse characteristics. In future work, we plan to extend SNH
to releasing high data dimensional user trajectories datasets.
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A DP PROOF AND SECURITY DISCUSSION

Proof of Theorem 5.1. SNH, represented as the mechanism M
is the composition of mechanisms J\/[¢ and M £ Furthermore, Mf
can be written as a composition of the data collection mechanism,
denoted as Mp, which outputs the data collection grid, and a func-
tion £ that performs the arbitrary transformations on this grid
during data augmentation and training. That is M(D|e, SR, D) =
A(Mp(Dle, SR, Mg (D, SR)), D). Mp (D, SR)) is the ParamSelect
mechanism that obtains system parameters utilizing only public
information 0 and SR to predict the system parameters. Thus it
does not access private records in D, consequently, it also does
not consume privacy budget. Note that ParamSelect mechanism
does use the size of the private dataset for prediction, which we
assume is publicly available and, if not, an estimate can be obtained
by spending negligible privacy budget. Next, Mp is called, which
creates a grid of cell width p, where p is the output of My, on the
spatial extent SR. For each cell in the grid created, it then access
the database to obtain the number of records in the cell and adds
noise Lap( %) to the true count. Thus, a noisy count for each cell
is obtained with e-DP. Furthermore, since cells do not overlap par-
allel composition theorem of DP applies, and the computation of
noisy count for all the cells is still e-DP. Finally, the transformation
f is applied to the output of Mp, which due to the post process-
ing property of DP does not consume any privacy budget. Thus,
the mechanism M, which is a composition of M¢, Mp and £ is
e-differentially private.

O
Security Discussion. DP has different requirements and guaran-
tees compared to alternative security models such as encryption.
With encryption, one protects the data values of an individual (i.e.,
locations visited by a person), whereas the presence of an individual

in the data is known (either a real identity or a pseudo-identity).
In the context of cryptography, leaking the distribution of visited
locations is not permitted. In contrast, DP allows statistical infor-
mation (including density distribution) to be released, as long as an
adversary cannot pinpoint the presence of a targeted individual in
the data. The purpose of SNH is to publish DP-compliant density
statistics while protecting against individual presence inference. In
this context, density information is actually needed by the applica-
tion (e.g., identifying hotspots), and leakage of DP-sanitized density
information is desired and permitted. Moreover, due to the robust-
ness of DP to side-channel information, this privacy guarantee is
independent of available public information in @.

B COMPLEMENTARY EXPERIMENTAL
RESULTS

B.1 Comparison against all baselines

We compare our method against all existing baselines in Figure 14
(note the log scale). To the best of our knowledge, the figure con-
tains all differentially private algorithms applicable to 2D location
datasets. Existing methods are predominantly domain partition-
ing methods that utilize traditional data structures. For instance,
DPCube[12] exploits a kd-tree structure, QuadTree[11] uses a full

quadtree, HB[35] invokes a hierarchical tree with variable fanout,
Privtree[48] also uses a hierarchical tree but without height con-

straints, UG [34] is a single level grid and AG[34] is a two level
grid. A detailed description of each method is available in Section 7.
Missing from the excerpt is DPCube [40], which in particular is a
method best sutiable to high-dimensional data. DPCube searches for
dense ‘subcubes’ of the datacube representation to release privately.
A part of the privacy budget is used to obtain noisy counts using
Laplace mechanism over a straightforward partitioning, which is
then improved to a standard kd-tree. Fresh noisy counts for the
partitions are obtaining with the remaining budget and a final infer-
ence step resolves inconsistencies between the two sets of counts,
and improves accuracy. Methods that perform worse than Unifrom
Grid (UG), have been omitted in our experiments in Section 6 due
to their poor performance.

B.2 Data Augmentation: Uniformity error or
Large Scale Noise

In this section, we present our empirical results motivating our
design principle “P2: Spatial Data Augmentation through Partition-
ing”. Recall that, as discussed in Sec. 3.2, neural networks perform
best when trained with queries of different sizes (as shown in exper-
iments in Sec. 6.3.2, Figs 17 and 10). However, queries of different
sizes may overlap. Hence, due to DP constraints, answering such
queries can either be done by introducing more noise or more uni-
formity error due to sequential composition property of DP (see
Sec. 2.1).

Here, we present our results that show a considerable advantage
in adding noise once and collecting more training data through
data augmentation (and thereby using uniformity assumption) com-
pared with adding more noise but avoiding uniformity assumption.
To substantiate this claim we design an experiment (in Fig. 15),
where for any location we generate training queries with 8 differ-
ent sizes, creating 8 overlapping queries per location. Lines labelled



“SNH No Unif” and “SNH” both use the same query set for training,
however the answers (i.e., labels) to the training queries are gener-
ated differently. “SNH No Unif” answers all queries directly from
the database records (and thus more noise is added per query due to
sequential decomposition of DP, but avoids completely uniformity
assumption). On the other hand, SNH as presented in the paper and
(discussed in Sec. 3.3) first uses a grid for data collection and then
answers queries based on the grid (so it incurs uniformity error, but
adds less noise per query than “SNH No Unif."). The result shows
that it is better to use uniformity assumption than to increase noise,
justifying its use in data augmentation. However note that the uni-
formity error is introduced in the training set before learning, and
mitigated through learning.

B.3 Benefit of ParamSelect

ParamSelect selects the best grid granularity p for SNH. An existing
alternative for setting the grid granularity is using the guideline of
UG [34], which, by making assumptions about the query and data
distribution, analytically formulates the error for using a uniform
grid. It then proposes creating an m X m grid, setting m = +/ne/c
for a constant ¢ empirically set to ¢ = 10. We call SNH with grid
granularity chosen this way SNH@UG. We compare this method
with SNH (referred to SNH@ParamSelect to emphasize the use of
ParamSelect to set p).

We compare the error in the p predicted by ParamSelect to that
by the UG guideline. To do so, we first empirically find p*, the cell
width at which SNH achieves highest accuracy. Then we calculate
the mean absolute error (MAE), [p — p*|, of the suggested cell width
p by either UG or ParamSelect. Averaged across several privacy
budgets, ParamSelect achieves MAE of 3.3m while UG results in
MAE of 281.3m. That is, UG recommends a cell width far from the
optimal cell width.

Fig. 16 shows how cell width impacts the accuracy of SNH. We ob-

serve a significant difference between SNH@UG and SNH@ParamSelect,

establishing the benefits of ParamSelect. Overall, the results of this
ablation study, and the ablation study in Sec. 6.3.2, show that both
good modelling choices and system parameter selection are imper-
ative in order to achieve high accuracy.

B.4 System parameters analysis

Impact of k. Fig. 17 shows the impact of k on the accuracy of the
models. The result shows that for large values of ¢, increasing k
can substantially improve the performance. Fig. 17 also shows the
need for having access to queries of multiple sizes during training,
as this is required when k > 1.

Impact of Model Depth. We study how the neural network archi-
tecture impacts SNH’s performance in Fig.18. Specifically, we vary
the depth (i.e., the number of layers) of the network. Increasing
model depth improves slightly the accuracy of SNH due to having
better expressive power from deep neural networks. However, net-
works that are too deep quickly decrease accuracy as the gradients
during model training diminish dramatically as they are propagated
backward through the very deep network. Furthermore, larger ¢
values are able to benefit more from the increase in depth, as more
complex patterns can be captured in the data when it is less noisy.

B.5 Further GMM Visualizations

We extend the discussion of Sec. 6.3.4 and visualize in various
settings the ability of neural networks to reduce the errors by
learning from imprecise observations. We study this behavior for
& =0.05 (i.e. in high-privacy regime) in Figures 19, 21, 23, and for
& = 0.2 (i.e. low-privacy regime) in Figures 20, 22, 24 for different
values of standard deviation, o, of the GMM components. SNH is
especially capable in the low-privacy regime, and when the data
are heavily skewed or non-uniform, justifying their use in location
datasets that exhibit similarly skewed distributions. To conclude,
given a set of imprecise observations, by fitting a neural network to
all such observations simultaneously, we obtain a neural network
with lower error than in the observations themselves.

C DIFFERENTIALLY PRIVATE STHOLES
IMPLEMENTATION

We describe the general structure of the STHoles histograms and
the specific modifications that we make to achieve DP-compliance
and good utility for answering RCQs. STHoles [8] is a histogram
construction technique that exploits query workload. It generates
a domain partitioning in the form of nested buckets assembled
as a tree structure. In contrast to traditional domain partitioning
methods, STHoles allows buckets to overlap by permitting inclusion
relationships between ancestor nodes of the tree structure, i.e., some
buckets can be completely included inside others. We defer the
details of the histogram’s construction, and instead refer the reader
to [8]. Our implementation is publicly available at [43].

Our DP-compliant STHoles implementation makes two adjust-
ments to the original STHoles algorithm to allow for better accuracy
when accounting for privacy. First, we allow the algorithm to use
unlimited memory, so that it does not need to merge any of the
buckets to reduce memory usage. This not only avoids incurring
the merge penalty (discussed in the paper [8]) but also lowers the
privacy budget consumption, since we can avoid calculating merge
penalties that would require budget consuming accesses to D. Sec-
ond, we separate the process of calculating the frequency counts for
each bucket from the process of building the nested bucket struc-
ture. That is, we first build the bucket structure based on the query
workload and then calculate the frequency counts within each
bucket. This separation significantly reduces the privacy budget
consumption, since it allows us to avoid asking overlapping queries
from the database and thus, final privacy budget accounting can
be done with only parallel composition theorem. Next, we present
how we build the buckets and calculate the frequency counts in
more details.

First, we generate the nested budget structure using the query
workload Qyy (Algorithm 4). Modified from the original algorithm,
in this step, we do not calculate database related statistics such
as the number of records in each bucket b € Hgg as that would
necessitate spending scarce privacy budget. For the same reason,
we also skip the step which merges buckets together based on a
penalty caculated from database records. From the privacy analysis
perspective, the query workload is public and using information
therein incurs no privacy leakage. Hence, Algorithm 4 doesn’t use
any privacy budget. In the second step (Algorithm 5), we gener-
ate sanitized frequency counts for STHoles’ buckets in the data
structure. For each bucket, we query the database for the number
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Algorithm 4 STHoles Domain Partitioning

Input: Query Workload Qyy for the spatial region SR
Output: Domain Partitioning 0
1: procedure BUILDPARTITIONING(Qyy, SR)

2 Hgr « Initialize histogram with fixed size root bucket of
3 spatial extent SR.

4 for all g € Qy do

5: Identify b € Hgg that have g N b # 0.

6 Shrink candidate holes according to Sec. 4.2.1 of [8]

7 Add new holes as buckets to histogram Hgg

8: return Hgg

Algorithm 5 DP-compliant sanitization of STHoles

Input: Private Dataset D, Buckets b € Hgsg, privacy budget ¢
Output: DP-compliant STHoles model Og7gojes

1: procedure SANITIZEHISTOGRAM(HSR, D, ¢)

2: for all b € Hsp do

3 Set frequency of b to be f(b) (i.e., true count + Lap(1/¢))

4 return 0s7goes

of records that fall within its extent, sanitizing these counts using
the Laplace Privacy Mechanism (see Section 2.1 for details of the
mechanism).
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Figure 24: ¢ =0.2,0 = 3.5

D PARAMSELECT FEATURE ENGINEERING
AND FEATURE SELECTION

We present experimental results supporting that we have care-
fully selected features for ParamSelect that accurately capture the
privacy-utility trade-off across spatial datasets and allow for reliable
system parameter estimation.

Since the training data is comprised of public datasets D, the
feature extraction process is a typical ML problem. Our feature
extraction process follows two steps: (I) feature engineering where
we transform raw data into a number of features that better rep-
resent the dataset for learning our regression model, and (II) fea-
ture selection, where we select a subset of the engineered features
that provide reliable accuracy across datasets. Feature Engineer-
ing. We engineered various features according to relations (such as
epsilon-scale exchangeability) well studied in the literature [17]
and proposed novel features to capture data distribution in location
datasets. While data-independent features were straightforward,
data region specific features posed a challenged since they need
to summarize location datasets while capturing the differences in
the pattern of originating location signal (e.g., cell phone location
signals vs user-checkins in geo-social networks), and differences
in skewness between cities (e.g., dense sprawls of New York vs
the spares expanses in Kansas City). We generated the following
features; (1) Population density (POPp), calculated as the number
of people resident per square mile (as reported by the US Census)
(2) Entropy profile (hp), which computes over a flattened grid rep-
resentation of the region the Shannon’s Entropy of the probabilities



Relative Error of regressor &
Feature Set ¢ N
on cross-validation set
¢(n) 0.312
$(n,e) 0.237
¢(n, e 1/ne, m) 0.193
¢(n, &, 1/ne, \[1/ne, POPp) 0.207
¢(n, e, 1/ne,\[1/ne, ANNp) 0.225
¢(n, e, 1/ne,\[1/ne, SNRp) 0.187
¢(n, e, 1/ne,\[1/ne, hp) 0.151

Table 3: Validation set error of ParamSelect in predicting p

of counts in each cell; (3) Average Nearest Neighbor (ANNp) dis-
tance feature averages the distance to the nearest neighbor for all
users in the city; and (4) Signal-to-Noise ratio (SNRp) evaluates
how many cells in an overlaid grid have enough signal (in terms of
number of user counts in a cell) to not be obliterated by DP noise
(average noise is 2/¢ when sampled from distribution Lap(1/¢)).

Feature Selection. The proposed features are filtered through a fea-
ture selection process that evaluates the accuracy achieved by candi-
date feature subset across different datasets. This step finds a subset
of the engineered features that can help genearlize the model across
datasets. This selection process is conducted on a validation set
(J-K cross-validation folds [30] in our case, with J=3 and K=5). We
utilize an iterative feature selection technique that incrementally

adds features one at a time and evaluates the subset’s validation
performance, ignoring features that do not contribute. In Table 3 we
report the validation performance (relative error) for the evaluated
feature subset. The proposed data region specific feature, entropy
hp, is the most valuable for ParamSelect (relative error of 0.151).

In brief, features used in ParamSelect are highly performant. In
Section B.3, we show that ParamSelect with its use of our feature
extraction function vastly improves generalization ability over ex-
isting method for system parameter selection by exploiting the
additional dataset features and, with the use of ML, their non-linear
relationships.

We conclude with a discussion on potential future work per-
taining to datasets used in ParamSelect module. Recall that, data
region specific features (such as hp) are obtained from a proxy
dataset. This comprises public domain auxiliary information that
is, at a very high-level, similar to our private dataset. In our empir-
ical evaluation we use data sources that were collected a decade
apart. While not included in the evaluation, we report that static
datasets too perform well such as the positions of points of in-
terests in a city. Other DP-compliant public releases of location
datasets, such as that from “Facebook Data For Good” initiative, are
also viable. Nevertheless, for regions where an auxiliary source of
public information is unavailable, the data-independent features
can be utilized to good effect (relative error of 0.193 for feature set

¢(n, &, 1/ne, A/1/ne)).
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