
A Neural Database for Differentially Private Spatial Range
Queries

Sepanta Zeighami

University of Southern California

*

zeighami@usc.edu

Ritesh Ahuja

University of Southern California

*

riteshah@usc.edu

Gabriel Ghinita

UMass Boston

gabriel.ghinita@umb.edu

Cyrus Shahabi

University of Southern California

shahabi@usc.edu

ABSTRACT
Mobile apps and location-based services generate large amounts of

location data. Location density information from such datasets bene-

fits research on traffic optimization, context-aware notifications and

public health (e.g., disease spread). To preserve individual privacy,

one must sanitize location data, which is commonly done using

differential privacy (DP). Existing methods partition the data do-

main into bins, add noise to each bin and publish a noisy histogram

of the data. However, such simplistic modelling choices fall short

of accurately capturing the useful density information in spatial

datasets and yield poor accuracy. We propose a machine-learning

based approach for answering range count queries on location data

with DP guarantees. We focus on countering the sources of error

that plague existing approaches (i.e., noise and uniformity error)

through learning, and we design a neural database system that

models spatial data such that density features are preserved, even

when DP-compliant noise is added. We also devise a framework

for effective system parameter tuning on top of public data, which
helps set important system parameters without expending scarce

privacy budget. Extensive experimental results on real datasets with

heterogeneous characteristics show that our proposed approach

significantly outperforms the state of the art.

PVLDB Reference Format:
Sepanta Zeighami, Ritesh Ahuja, Gabriel Ghinita, and Cyrus Shahabi. A

Neural Database for Differentially Private Spatial Range Queries. PVLDB,

15(5): 1066 - 1078, 2022.

doi:10.14778/3510397.3510404

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/szeighami/SNH.

1 INTRODUCTION
Mobile apps collect large amounts of individual location data used to

optimize traffic, study disease spread, or improve point-of-interest

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 5 ISSN 2150-8097.

doi:10.14778/3510397.3510404

*Equal contribution.

placement. When using such data, preserving location privacy is

essential, since even aggregate statistics can leak details about indi-

vidual whereabouts. Existing solutions publish a noisy version of

the dataset, transformed according to differential privacy (DP) [13],

the de-facto standard for releasing statistical data. The goal of DP

mechanisms is to ensure privacy while keeping the query answers

as accurate as possible. For spatial data, range queries are the most

popular query type, used as building blocks in most processing

tasks. A DP-compliant representation of a spatial dataset is created

by partitioning the data domain into bins, and then publishing a

histogram with the noisy count of points that fall within each bin.

Domain partitioning is commonly adopted [11, 18, 25, 34, 40, 48], e.g.,

uniform and adaptive grids [34] or hierarchical partitioning [11, 48].

At query time, the noisy histogram is used to compute answers,

by considering the counts in all bins that overlap the query. When

a query partially overlaps with a bin, the uniformity assumption is

used to estimate what fraction of the bin’s count should be added to

the answer. Since DP mechanisms release only the (noisy) count for

each bin, it is assumed that data points are distributed uniformly

within the partition, hence the estimate is calculated as the product

of the bin count and the ratio of the overlapping area to the total

area of the bin. This is often a poor estimate, since location datasets

tend to be highly skewed in space (e.g., a shopping mall in a suburb

increases mobile user density in an otherwise sparse region). Thus,

in addition to DP sanitization noise, uniformity error is a major

cause of inaccuracy for existing work on DP release of spatial data.

We propose a paradigm shift towards learned representations of
data, which have been shown to accurately capture data distribu-

tion in non-private approximate query processing [19, 27, 46]. Such

results show that learning exploits data patterns to accurately and

compactly represent the data. As such, learning can be used to com-

bat data modelling errors, also present in DP setting. Nonetheless,

due to the impact of DP noise on the process of learning, creating

learned differentially private data representations is non-trivial.

Recent attempts at creating learned DP data representations

[29, 47] propose the use of learned models to answer queries in

non-spatial domains (e.g., categorical data). While these approaches

perform well in the case of categorical data, they cannot model the

intrinsic properties of location datasets, which exhibit both high

skewness, as well as strong correlation among regions with similar

designations. For instance, two busy city areas (e.g., a stadium and

a street bar area) will exhibit similar density patterns, while the

regions in betweenmay be sparse. These busy areas may also be cor-

related, since people are likely to congregate at bars after they see

https://doi.org/10.14778/3510397.3510404
https://github.com/szeighami/SNH
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3510397.3510404

Model
publishingTrust barrier

Mobile users

Trusted-data
aggregator

Research &
business use

Location
updates

. . .

ε-DP mechanism

Data
Augmentation

. . .

Stage 2: TrainingStage 1: Data
 Collection

Trained
Neural
Networks

ParamSelect

Public
Datasets

Figure 1: Spatial Neural Histogram System

a game at the stadium. Models with strong representational power

in the continuous domain are necessary to learn such patterns.

Meanwhile, training complex models while preserving DP is dif-

ficult. For neural networks, existing techniques [4] utilize gradient
perturbation to train differentially private models. However, the sen-
sitivity of this process, defined as the influence a single input record
may have on the output (see Section 2 for a formal definition), is

high. DP-added noise is proportional to sensitivity, and as a result

meaningful information encoded in the gradients is obliterated. The

learning process has to be carefully crafted to the unique properties

of spatial data, or accuracy will deteriorate.

We propose Spatial Neural Histograms (SNH), a neural network

system specifically designed to answer differentially private spatial

range queries. SNH models range queries as a function approxima-
tion task, where we learn a function approximator that takes as

input a spatial range and outputs the number of points that fall

within that range. Training SNH consists of two stages (Figure 1):

the first perturbs training query answers according to DP, while the

second trains neural networks from noisy answers. The first stage is

called data collection. It prepares a differentially private training set

for our model while ensuring low sensitivity, such that the signal-

to-noise ratio is good. However, due to the privacy constraints

imposed by DP, we can only collect a limited amount of training

data. Thus, in the second stage, we synthesize more training sam-

ples based on the collected data to boost learning accuracy, in a step

called data augmentation. Then, we employ a supervised learning
training process with a carefully selected set of training samples

comprising of spatial ranges and their answers. SNH learns from

training queries at varying granularity and placement to capture

subtle correlations present within the data. Finally, an extensive

private parameter tuning process (ParamSelect) is performed us-

ing publicly available data, without the need to consume valuable

privacy budget.

The fully trained SNH can then be released publicly and only

requires a single forward pass to answer a query, making it highly

efficient at runtime. SNH is able to learn complex density variation

patterns that are specific to spatial datasets, and reduces the nega-

tive impact of noise and uniformity assumption when answering

range queries, significantly boosting accuracy.

Use of machine learning when answering test queries (i.e., at

runtime) is beneficial because, through learning, SNH combines ev-

idence from multiple training queries over distinct regions. In fact,

gradient computation during training can be seen as a novel means

of aggregating information across the space. We show that neural

networks can learn the underlying patterns in location data from

imprecise observations (e.g., observations collected with noise and

uniformity error), use those patterns to answer queries accurately

and thereby mitigate noise and uniformity errors. In contrast, exist-

ing approaches are limited to using imprecise local information only

(i.e., within a single bin). When the noise introduced by differential

privacy or the error caused by the uniformity assumption are large

for a particular bin, the answer to queries evaluated using that bin

will be inaccurate.

Contributions and organization. In this paper, we

• Formulate the problem of answering spatial range count

queries as a function approximation task (Sec. 2);

• Propose a novel system that leverages neural networks to rep-

resent spatial datasets while accurately capturing location-

specific density and correlation patterns (Sec. 3, 4);

• Introduce a comprehensive framework for tuning system

parameters on public data (Sec. 5); and
• Conduct an extensive experimental evaluation on a broad

array of public and private real-world location datasets with

heterogeneous properties and show that SNH outperforms

all the state-of-the-art solutions (Sec. 6).

We survey related work in Section 7 and conclude in Section 8.

2 PRELIMINARIES
2.1 Differential Privacy
𝜀-differential privacy [13] provides a rigorous privacy framework

with formal protection guarantees. Given privacy budget parameter

𝜀 ∈ (0, +∞), a randomized mechanism M satisfies 𝜀-differential

privacy iff for all datasets 𝐷 and 𝐷 ′, where 𝐷 ′ can be obtained from

𝐷 by either adding or removing one tuple, and for all 𝐸 ⊆ Range(M)

Pr[M(𝐷) ∈ 𝐸] ≤ 𝑒𝜀Pr[M(𝐷 ′) ∈ 𝐸] (1)

Pr[M(𝐷) ∈ 𝐸] denotes the probability of mechanism M out-

putting an outcome in the set 𝐸 for a database 𝐷 and Range(M)

is the co-domain of M. M hides the presence of an individual in

the data, since the difference in probability of any set of outcomes

obtained on two datasets differing in a single tuple never exceeds

𝑒𝜀 . The protection provided by DP is stronger when 𝜀 approaches 0.

The sensitivity of a function (e.g., a query) 𝑓 , denoted by 𝑍 𝑓 ,

is the maximum amount the value of 𝑓 can change when adding

or removing a single individual’s records from the data. The 𝜀-

DP guarantee can be achieved by adding random noise derived

from the Laplace distribution Lap(𝑍 𝑓 /𝜀). For a query 𝑓 : 𝐷 →
R, the Laplace mechanism M returns 𝑓 (𝐷) + Lap(𝑍 𝑓 /𝜀), where
Lap(𝑍 𝑓 /𝜀) is a sample drawn from the probability density function

Lap(𝑥 | (𝑍 𝑓 /𝜀)) = (𝜀/2𝑍 𝑓)exp(−|𝑥 |𝜀/𝑍 𝑓) [13]. The composability
property of DP helps quantify the amount of privacy attained when

Table 1: Summary of Notations

Notation Definition
𝜀 DP Privacy Budget

Q,𝑄𝑊 Query distribution and workload query set

𝑄𝐷 , 𝑌𝐷 Data collection query set and its answers

𝑄𝐴, 𝑌𝐴 Augmented query set and its answers

𝑅, 𝑘 Set and number of query sizes for training

𝑙 , 𝑢 Lower and upper bound on query sizes

𝑓 (𝑞) , (ˆ𝑓 (𝑞;𝜃)) Count of records in 𝑞 calculated from 𝐷 (estimated from 𝜃)
¯𝑓 (𝑞) 𝑓 (𝑞) + 𝐿𝑎𝑝 (1/𝜀)
𝜌 ,𝐶 Grid granularity, Set of bottom-left corners of grid cells

𝜓 Smoothing factor in relative error

Φ,𝜙 ParamSelect Model, Dataset features

D, 𝐷𝑇 , 𝐷𝐼 All public datasets, ParamSelect training and inference datasets

𝜋𝛼 (𝐷, 𝜀) Function denoting best value of system parameter 𝛼 for dataset

𝐷 and budget 𝜀

𝜋𝛼 (𝐷, 𝜀) Empirical estimate of 𝜋𝛼 (𝐷, 𝜀)

multiple functions are evaluated on the data. Specifically, when

mechanisms M1, M2 with privacy budgets 𝜀1, 𝜀2 are applied in

succession on overlapping data partitions, the sequential composi-

tion property [13] states that the budget consumption is (𝜀1 + 𝜀2).

Conversely, whenM1,M2 are applied on disjoint data partitions,
the parallel composition property states that the resulting budget

consumption is max(𝜀1, 𝜀2). The post-processing property of differ-

ential privacy [13] states that given any arbitrary function ℎ and

an 𝜀-DP mechanism M, the mechanism ℎ(M) is 𝜀-DP. Lastly, we
note that DP is robust to side-channel information [13], that is, the

privacy guarantee on the DP-release of 𝐷 is irrespective of any

publicly available information about the users in 𝐷 .

2.2 Problem Definition
Consider a database 𝐷 that covers a spatial region 𝑆𝑅 ⊆ R2

, and

contains 𝑛 records each describing an individual’s geo-coordinate.

Given a privacy budget 𝜀, the problem studied in this paper is to

return the answer to an unbounded number of spatial range count

queries (RCQs). An RCQ consists of a spatial range predicate and

its answer is the number of records in 𝐷 that satisfy the range

predicate. We consider spatial range queries that are axis-parallel

and square-shaped, defined by their bottom-left corner 𝑐 (where

𝑐 is a vector in 𝑆𝑅), and their side length 𝑟 . An RCQ, 𝑞, is then

defined by the pair 𝑞 = (𝑐, 𝑟). We say 𝑟 is the query size and 𝑐 is

its location coordinate. For a database 𝐷 , the answer to the RCQ

𝑞 = (𝑐, 𝑟) can be written as a function 𝑓 (𝑞) = |{𝑝 |𝑝 ∈ 𝐷, 𝑐 [𝑖] ≤
𝑝 [𝑖] < 𝑐 [𝑖]+𝑟,∀𝑖 ∈ {0, 1}}|, where 𝑧 [0] and 𝑧 [1] denote the latitude
and longitude of any coordinate 𝑧, respectively. We assume RCQs

follow a distribution Q and for any RCQ 𝑞, we measure the utility

of its estimated answer, 𝑦, using the relative error metric, defined as

Δ(𝑦, 𝑓 (𝑞)) = |𝑦−𝑓 (𝑞) |
max{𝑓 (𝑞),𝜓 } , where𝜓 is a smoothing factor necessary

to avoid division by zero.

The typical way to solve the problem of answering an unbounded

number of RCQs is to design an 𝜀-DP mechanismM and a function

ˆ𝑓 such that (1)M takes as an input the database𝐷 and outputs a dif-

ferentially private representation of the data, 𝜃 ; and (2) the function
ˆ𝑓 (𝑞;𝜃) takes the representation 𝜃 , together with any input query

𝑞, and outputs an estimate of 𝑓 (𝑞). In practice, M is used exactly

once to generate the representation 𝜃 . Given such a representation,

ˆ𝑓 (𝑞;𝜃) answers any RCQ, 𝑞, without further access to the database.

For instance, in [34], M is a mechanism that outputs noisy counts

of cells of a 2-dimensional grid overlaid on 𝐷 . Then, to answer an

RCQ 𝑞, ˆ𝑓 (𝑞;𝜃) takes the noisy grid, 𝜃 , and the RCQ, 𝑞, as inputs and
returns an estimate of 𝑓 (𝑞) using the grid. The objective is to design
M and

ˆ𝑓 such that the relative error between
ˆ𝑓 (𝑞;𝜃) and 𝑓 (𝑞) is

minimized, that is, to minimize 𝐸𝜃∼M𝐸𝑞∼Q [Δ(ˆ𝑓 (𝑞;𝜃), 𝑓 (𝑞))].
Let

ˆ𝑓 be a function approximator and defineM to be a mecha-

nism that learns its parameters. The learning objective ofM is to

find a 𝜃 such that
ˆ𝑓 (𝑞;𝜃) closely mimics 𝑓 (𝑞) for different RCQs, 𝑞.

The representation of the data, 𝜃 , is the set of learned parameters of

a function approximator. MechanismM outputs a representation

𝜃 , and any RCQ, 𝑞, is answered by evaluating the function
ˆ𝑓 (𝑞;𝜃).

However, M is now defined as a learning algorithm and
ˆ𝑓 as a

function approximator. Our problem is formally defined as follows:

Problem 1. Given a privacy budget 𝜀, design a function approxi-
mator, ˆ𝑓 , (let the set of possible parameters of ˆ𝑓 be Θ) and a learning
algorithm, M, such thatM satisfies 𝜀-DP and finds

arg min

𝜃 ∈Θ
𝐸𝑞∈Q [Δ(ˆ𝑓 (𝑞;𝜃), 𝑓 (𝑞))]

3 SPATIAL NEURAL HISTOGRAMS (SNH)
Our goal is to utilize models that can learn patterns within the data

in order to answer RCQs accurately. We employ neural networks

as the function approximator
ˆ𝑓 , due to their ability to learn com-

plex patterns effectively. Prior work [4] introduced a differentially

private stochastic gradient descent (DP-SGD) approach to privately

train a neural network. Thus, a seemingly straightforward solution

to Problem 1 is using a simple fully connected neural network and

learning its parameters with DP-SGD. Sec. 3.1 discusses this triv-

ial approach and outlines the limitations of using DP-SGD in our

setting, which leads to poor accuracy. Next, in Sec.3.2, we discuss

how we improve the training process to achieve good accuracy.

In Sec.3.3 we provide an overview of our proposed Spatial Neural

Histogram (SNH) solution. Table 1 summarizes the notations.

3.1 Baseline Solution using DP-SGD
Learning Setup. We define

ˆ𝑓 (.;𝜃) to be a fully connected neural

network with parameter set 𝜃 . We train the neural network so

that for an RCQ 𝑞, its output ˆ𝑓 (𝑞;𝜃) is similar to 𝑓 (𝑞). A training

set, 𝑇 , is created, consisting of (𝑞, 𝑓 (𝑞)) pairs, where 𝑞 is the input

to the neural network and 𝑓 (𝑞) is the training label for the input
𝑞 (we call RCQs in the training set training RCQs). To create the

training set, similar to [25, 28], we assume we have access to a

set of workload RCQs, 𝑄𝑊 , that resembles RCQs a query issuer

would ask (e.g., are sampled from Q or a similar distribution) and

is assumed to be public. Thus, we can define our training set 𝑇 to

be {(𝑞, 𝑓 (𝑞)) |𝑞 ∈ 𝑄𝑊 }. We define the training loss as

L =
∑

𝑞∈𝑄𝑊

(ˆ𝑓 (𝑞;𝜃) − 𝑓 (𝑞))2 (2)

In a non-private setting, a model can be learned by directly opti-

mizing Eq. (2) using a gradient descent approach. The model can

answer any new RCQ 𝑞 similar to the ground truth 𝑓 (𝑞).
Incorporating Privacy. DP-SGD [4] incorporates differential pri-

vacy for training neural networks. It modifies SGD by clipping each

sample gradient to have norm at most equal to a given clipping

threshold, 𝐵, and obfuscating them with Gaussian noise. Intuitively,

the clipping threshold, 𝐵, disallows learning more information than

a set quantity from any given training sample (no matter how dif-

ferent it is from the rest) and the standard deviation of the Gaussian

noise added is scaled with 𝐵 to ensure obfuscation is proportional

to the amount of information gained per sample. Specifically, in

each iteration: (1) a subset, 𝑆 , of the training set is sampled; (2) for

each sample, 𝑠 = (𝑥,𝑦) ∈ 𝑆 , the gradient 𝑔𝑠 = ∇𝜃 (ˆ𝑓 (𝑥 ;𝜃) − 𝑦)2 is

computed, and clipped (i.e., truncated) to a maximum ℓ2-norm of 𝐵

as 𝑔𝑠 = min(∥𝑔𝑠 ∥2, 𝐵) 𝑔𝑠
∥𝑔𝑠 ∥2 ; (3) the average clipped gradient value

for samples in 𝑆 is obfuscated with Gaussian noise as

𝑔 =
∑
𝑠∈𝑆
(𝑔𝑠) +N(0, 𝜎2𝐵2) (3)

(4) the parameters are updated in the direction opposite to 𝑔.

DP-SGD Challenges. In our problem setting, the training set is

created by querying 𝐷 to obtain the training labels, and our goal is

to ensure the privacy of records in 𝐷 . On the other hand, DP-SGD

considers the training set itself to be the dataset whose privacy

needs to be secured. This changes the sensitivity analysis of DP-

SGD. In our setting, to compute the sensitivity of the gradient sum∑
𝑠∈𝑆 (𝑔𝑠) in step (3) of DP-SGD, we have to consider the worst-case

effect the presence or absence of a single geo-coordinate record 𝑝

can have on the sum (as opposed to the worst-case effect of the

presence or absence of a single training sample). Removing 𝑝 can

potentially affect every 𝑔𝑠 for all 𝑠 ∈ 𝑆 , so sensitivity of the gradient
sum is |2𝑆 | × 𝐵 and Gaussian noise of N(0, 𝜎2

4|𝑆 |2𝐵2) must be

added to the gradient sum to achieve DP (cf. noise in step (3) above).

After this adjustment, per-iteration and total privacy consumption

of DP-SGD is amplified, impairing learning. We experimentally

observed that, for any reasonable privacy budget, training loss does

not improve at all during training due to the large added noise.

3.2 A different learning paradigm for RCQs
Next, we introduce three design principles (P1-P3) we follow when

training neural networks to answer RCQs. These principles are

then used in Sec. 3.3 to build our solution.

P1: Separation of noise addition from training. The main rea-

son DP-SGD fails in our problem setting is that too much noise

needs to be added when calculating gradients privately. Recall that

DP-SGD uses the quantity 𝑔, defined in Eq. (3), as the differentially

private estimate of the gradient of the loss function. Here, we inves-

tigate the private gradient computation in more details to provide

an alternative method to calculate the gradient with differential

privacy. Recall that the goal is to obtain the gradient of the loss

function,L, defined in Eq. (2) with respect to the model parameters.

We thus differentiateL and obtain:

∇𝜃L =
∑

𝑞∈𝑄𝑊

2 × (ˆ𝑓 (𝑞;𝜃)︸ ︷︷ ︸
data

indep.

− 𝑓 (𝑞)︸︷︷︸
data

dep.

) × ∇ ˆ𝑓 (𝑞;𝜃)︸ ︷︷ ︸
data

indep.

(4)

In Eq. (4), only 𝑓 (𝑞) accesses the database. This is because the

training RCQs in 𝑄𝑊 (i.e., the inputs to the neural network), are

created independently of the database. The data dependent term

requires computing private answers to 𝑓 (𝑞) for an RCQ 𝑞, hence

must consume budget, while the data-independent terms can be

calculated without spending any privacy budget. This decomposi-

tion of the gradient into data dependent and independent terms is

possible because, different from typical machine learning settings,

the differential privacy is defined with respect to the database 𝐷

and not the training set (as discussed in Sec. 3.1).

Instead of directly using 𝑔 (Eq. (3)) as the differentially private

estimate of the gradient (where the gradients are clipped and noise is

added to the clipped gradients), we calculate a differentially private

value of the training label 𝑓 (𝑞), called ¯𝑓 (𝑞), by adding noise to the

label (define
¯𝑓 (𝑞) = 𝑓 (𝑞) + Lap(1/𝜀)) and calculate the gradient

from that. The differentially private estimate of the gradient is then

𝑔 =
∑

𝑞∈𝑄𝑊

2 × (ˆ𝑓 (𝑞;𝜃) − ¯𝑓 (𝑞)) × ∇ ˆ𝑓 (𝑞;𝜃) (5)

A crucial benefit is that
¯𝑓 (𝑞), does not change over successive

learning iterations. That is, the differentially private value
¯𝑓 (𝑞) can

be computed once and used for all training iterations. Thismotivates

our first design principle of separating noise addition and training.

This way, training becomes a two step process: first, for all 𝑞 ∈ 𝑄𝑊 ,

we calculate the differentially private training label
¯𝑓 (𝑞). We call

this step data collection. Then, we use a training set consisting of
pairs (𝑞, ¯𝑓 (𝑞)) for all 𝑞 ∈ 𝑄𝑊 for training. Since DP-compliant

data measurements are obtained, all future operations that use as

input these measurements are also 𝜀-differentially private according

to the post-processing property of differential privacy [13]. Thus,

the training process is done as in a non-private setting, where a

conventional SGD algorithm can be applied (i.e., we need not add

noise to gradients), and differential privacy is still satisfied.

P2: Spatial data augmentation through partitioning. Follow-
ing principle P1, privacy accounting is only neededwhen answering

training queries to collect training labels. Meanwhile, in our experi-

ments, we observed that training accurate neural networks requires

a training set containing queries of different sizes (see Sec. 6.3.2).

Such queries may overlap and, if we answer them directly from the

database, sequential composition theorem would apply to account

for the total privacy budget consumption. This way, the more such

queries we answer, the more budget needs to be spent.

Instead, to avoid spending extra privacy budget while creating

more training samples with multiple query sizes, we propose spa-
tial data augmentation through partitioning. First, we use a data
collection query set,𝑄𝐷 , chosen such that RCQs in𝑄𝐷 don’t overlap

(i.e., a space partitioning). This ensures parallel composition can

be used for privacy accounting, instead of sequential composition,

which allows answering all RCQs in 𝑄𝐷 by spending budget equal

to one RCQ. Then, using the partitioning𝑄𝐷 , we create and answer

new queries, 𝑞, of different sizes without spending any more pri-

vacy budget but by making uniformity assumption across cells in

𝑄𝐷 that partially overlap 𝑞. Even though this approach introduces

uniformity error in our training set, it avoids adding the otherwise

required large scale noise, and boosts accuracy. Thus, it allows us

to optimize the uniformity/noise trade-off [11, 34] when creating

our training set (we present experiments in Sec. B.2 of our technical

report [45] to show that data augmentation reduces error).

P3: Learning at multiple granularities. We employ in our so-

lution multiple models that learn at different granularities, each

designed to answer RCQs of a specific size. Intuitively, it is more

difficult for a model to learn patterns when both query size and

Figure 2: SHN Overview

locations change. Using multiple models allows each model to learn

the patterns relevant to the granularity they operate on.

3.3 Proposed approach: SNH
Our Spatial Neural Histograms (SNH) design, illustrated in Figure 2,

consists of three steps: (1) Data collection, (2) Model Training, and

(3) Model Utilization. We provide a summary of each step below,

and defer details until Sec. 4.

DataCollection. This step partitions the space into non-overlapping
RCQs that are directly answered with DP-added noise. The output

of this step is a data collection query set,𝑄𝐷 , and a set𝑌𝐷 which con-

sists of the differentially private answers to RCQs in𝑄𝐷 . This is the

only step in SNH that accesses the database. In Fig. 2 for example,

the query space is partitioned into four RCQs, and a differentially

private answer is computed for each.

Training. Our training process consists of two stages. First, we use
spatial data augmentation to create more training samples based

on 𝑄𝐷 . An example is shown in Fig. 2, where an RCQ covering

both the red and yellow squares is not present in the set 𝑄𝐷 , but

it is obtained by aggregating its composing sub-queries (both in

𝑄𝐷). Second, the augmented training set is used to train a function

approximator
ˆ𝑓 that captures 𝑓 well.

ˆ𝑓 consists of a set of neural

networks, each trained to answer different query sizes.

Model Utilization. This step decides how any previously unseen

RCQ can be answered using the learned function approximator,

and how different neural networks are utilized to answer an RCQ.

4 TECHNICAL DETAILS
4.1 Step 1: Data Collection
This step creates a partitioning of the space into non-overlapping

bins, and computes for each bin a differentially private answer. We

opt for a simple equi-width grid of cell width 𝜌 as our partitioning

method. As illustrated in Fig. 3, (1) we overlay a grid on top of the

data domain; (2)we calculate the true count for each cell in the grid,

and (3) we add noise sampled from 𝐿𝑎𝑝 (1𝜀) to each cell count. We

represent a cell by the coordinates of its bottom left corner, 𝑐 , so

that getting the count of records in each cell is an RCQ, 𝑞 = (𝑐, 𝜌).
Let𝐶 be the set of bottom left coordinates of all the cells in the grid.

Furthermore, recall that for a query 𝑞, ¯𝑓 (𝑞) = 𝑓 (𝑞) + 𝐿𝑎𝑝 (1𝜀). Thus,
the data collection query set is defined as 𝑄𝐷 = {(𝑐, 𝜌), 𝑐 ∈ 𝐶}, and
their answers are the set 𝑌𝐷 = { ¯𝑓 (𝑐, 𝜌), 𝑐 ∈ 𝐶}. We use 𝑌𝐷 [𝑐] to
refer to the answer for the query located at 𝑐 in 𝑌𝐷 . The output of

the data collection step consists of sets 𝑄𝐷 and 𝑌𝐷 .

Figure 3: Data Collection: map view (left), true cell count
heatmap (middle), 𝜀-DP heatmap with noisy counts (right)

Even though more complex partitioning structures have been

used previosuly for privately answering RCQs [34, 48], we chose a

simple regular grid, for two reasons. First, our focus is on a novel

neural database approach to answering RCQs, which can be used in

conjunction with any partitioning type – using a simple grid allows

us to isolate the benefits of the neural approach. Second, using more

complex structures in the data collection step may increase the im-

pact of uniformity error, which we attempt to suppress through

our approach. The neural learning step captures density variations

well, and conducting more complex DP-compliant operations in

the data collection step can have a negative effect on overall accu-

racy. In our experiments, we observed significant improvements

in accuracy with the simple grid approach. While it may be possi-

ble to improve the accuracy of SNH by using more advanced data

collection methods, we leave that study for future work.

The challenge in data collection is choosing the value of 𝜌 to

minimize induced errors. We address this thoroughly in Sec. 5.1

and present a method to determine the best granularity of the grid.

4.2 Step 2: SNH Training
Given query set 𝑄𝐷 and its sanitized answers, we can perform

any operation on this set without privacy leakage due to the post-

processing property of DP. As discussed in Sec. 3.3, we first perform

a data augmentation step using𝑄𝐷 to create an augmented training

set 𝑄𝐴 . Then, 𝑄𝐴 is used for training our function approximator.

Data Augmentation is a common machine learning technique to

increase the number of samples for training based on the existing

(often limited) available samples [24, 49]. We propose spatial data

augmentation for learning to answer RCQs. Our proposed data aug-

mentation approach is based on our design principle P2, discussed

in Sec. 3.2, where we motivate augmenting the training set through

partitioning. In the data augmentation step, we create new queries

of different sizes, answer them using the partitioning, and add the

answers to our training set, as detailed in the following.

We use the partitioning defined by 𝑄𝐷 and corresponding an-

swers 𝑌𝐷 to answer queries at the same locations as in 𝑄𝐷 but of

other sizes. Consider a query location 𝑐 ∈ 𝐶 and a query size 𝑟 , 𝑟 ≠ 𝜌 .

We estimate the answer for RCQ 𝑞 = (𝑐, 𝑟) as ∑𝑐′∈𝐶
| (𝑐,𝑟)∩(𝑐′,𝜌) |

𝜌2
×

𝑌𝐷 [𝑐], where | (𝑐, 𝑟) ∩ (𝑐 ′, 𝜌) | is the overlapping area of RCQs (𝑐, 𝑟)
and (𝑐 ′, 𝑟). In this estimate, noisy counts of cells in𝑄𝐷 fully covered

by 𝑞 are added as-is (since | (𝑐, 𝑟) ∩ (𝑐 ′, 𝜌) | = 𝜌2
), whereas fractional

counts for partially-covered cells are estimated using the uniformity

assumption. Fig. 4 shows how we perform data augmentation for a

Figure 4: Model Training: Augmented query sets of size 𝑟1 to
𝑟𝑘 (top) are used to learn neural network models (bottom)

Algorithm 1 Spatial data augmentation

Input: Query set 𝑄𝐷 with answers 𝑌𝐷 , 𝑘 query sizes

Output: Augmented training set 𝑄𝐴 with labels 𝑌𝐴

1: 𝑅 ← {𝑙 + (𝑢−𝑙)
𝑘
× (𝑖 + 1

2
),∀𝑖, 0 ≤ 𝑖 < 𝑘}

2: for all 𝑟 ∈ 𝑅 do
3: 𝑄𝑟

𝐴
, 𝑌 𝑟

𝐴
← ∅

4: for (𝑐, 𝜌) ∈ 𝑄𝐷 do
5: 𝑄𝑟

𝐴
.𝑎𝑝𝑝𝑒𝑛𝑑 ((𝑐, 𝑟))

6: 𝑌 𝑟
𝐴
[𝑐] ← ∑

(𝑐′,𝜌) ∈𝑄𝐷

| (𝑐,𝑟)∩(𝑐′,𝜌) |
𝜌2

× 𝑌𝐷 [𝑐 ′]

7: return 𝑄𝐴, 𝑌𝐴 ← {𝑄𝑟
𝐴
,∀𝑟 ∈ 𝑅}, {𝑌 𝑟

𝐴
,∀𝑟 ∈ 𝑅}

query (𝑐, 𝑟1) with size 𝑟1 at location 𝑐 . Also observe that, by using

queries at the same locations as in 𝑄𝐷 , the bottom-left corners of

all queries in the augmented query set are aligned with the grid.

We repeat this procedure for 𝑘 different query sizes to generate

sufficient training data. To ensure coverage for all expected query

sizes, we define the set of𝑘 sizes to be uniformly spaced. Specifically,

assuming the test RCQs have size between 𝑙 and 𝑢, we define the

set 𝑅 as the set of 𝑘 uniformly spaced values between 𝑙 and 𝑢,

and we create an augmented training set for each query size in 𝑅.

This procedure is shown in Alg.1. We define 𝑄𝑟
𝐴
for 𝑟 ∈ 𝑅 to be

the set of RCQs located at 𝐶 but with query size 𝑟 , that is 𝑄𝑟
𝐴

=

{(𝑐, 𝑟), 𝑐 ∈ 𝐶}, and define 𝑌 𝑟
𝐴
to be the set of the estimates for

queries in𝑄𝑟
𝐴
obtained from𝑄𝐷 and 𝑌𝐷 . The output of Alg. 1 is the

augmented training set containing training samples for different

query sizes. Note that, as seen in the definition above, 𝑄𝑟
𝐴
, for

any 𝑟 , only contains queries whose bottom-left corner is aligned

with the grid used for data collection to minimize the use of the

uniformity assumption. However, uniformity errors can still be

present in our answers in 𝑌 𝑟
𝐴
. We discuss in Sec. 4.3 how training

of neural networks on top of these answers allows us to mitigate

the uniformity error through learning.

Model architecture. We find that using multiple neural networks,

each trained for a specific query size, performs better than using a

single neural network to answer queries of all sizes. Thus, we train𝑘

different neural networks, one for each 𝑟 ∈ 𝑅. Meaning that a single

neural network trained for query size 𝑟 can only answer queries

Figure 5: Model utilization: 30m query answered from 25m
network (left), 90m query from 100m network (right)

of size 𝑟 (we discuss in Sec. 4.3 how the neural networks are used

to answer other query sizes), accordingly the input dimensionality

of each neural network is two, i.e., lat. and lon. of the location

of the query. We use 𝑘 identical fully-connected neural networks

(specifics of the network architecture are discussed in Sec. 6).

Loss function and Optimization. We train each of the 𝑘 neural

networks independently. We denote by 𝑄𝑟
𝐴
the training set for a

neural network
ˆ𝑓 (.;𝜃𝑟), trained for query size 𝑟 , and we denote the

resulting labels by 𝑌 𝑟
𝐴
. We use a mean squared error loss function

to train the model, but propose two adjustments to capitalize on

the workload information available. First, note that for a query size

𝑟 ∈ 𝑅, 𝑄𝑟
𝐴
is comprised of queries at uniformly spaced intervals,

which may not follow the query distribution Q. However, we can

exploit properties of the workload queries, 𝑄𝑊 to tune the model

for queries from Q. Specifically, for any (𝑐, 𝑟) ∈ 𝑄𝑟
𝐴
, let 𝑤 (𝑐,𝑟) =

|{𝑞′ ∈ 𝑄𝑊 , (𝑐, 𝑟)∩𝑞′ ≠ ∅}|, that is,𝑤 (𝑐,𝑟) is the number of workload

queries that overlap a training query. In our loss function, weweight

every query (𝑐, 𝑟) by𝑤 (𝑐,𝑟) . This workload-adaptive modification to

the loss function emphasizes the regions that are more popular for

a potential query issuer. Second, we aim at answering queries with

low relative error, whereas a mean square loss puts more emphasis

on absolute error. Thus, for a training query (𝑐, 𝑟), we also weight

the sample by 1/max{𝑌 𝑟
𝐴
[𝑐],𝜓 }. Putting these together, the loss

function optimized for each neural network is∑
(𝑐,𝑟) ∈𝑄𝑟

𝐴

𝑤 (𝑐,𝑟)
max{𝑌 𝑟

𝐴
[𝑐],𝜓 } (

ˆ𝑓 (𝑐, 𝜃𝑟) − 𝑌 𝑟
𝐴 [𝑐])

2
(6)

4.3 Model Utilization
To answer a new query (𝑐, 𝑟), the model that is trained to answer

queries with size most similar to 𝑟 is accessed. That is, we find

𝑟∗ = arg min𝑟 ′∈𝑅 |𝑟 − 𝑟 ′ | and we answer the query using network

ˆ𝑓 (𝑐, 𝜃𝑟 ∗). The output answer is scaled to 𝑟 according to a uniformity

assumption, and the scaled answer is returned, i.e., (𝑟𝑟 ∗)
2 ˆ𝑓 (𝑐, 𝜃𝑟 ∗).

Fig. 5 shows this procedure for two different RCQs.

It is important to differentiate the use of uniformity assumption

before learning (i.e., in data augmentation), called uniformity as-

sumption pre-learning, from the use of uniformity assumption after

learning (during model utilization), called uniformity assumption

post-learning. The parameter 𝑘 allows exploring the spectrum be-

tween the two cases. Specifically, when 𝑘 is larger, we train more

models and each model is trained for a different query size. For

each query size, data augmentation uses uniformity assumption to

generate training samples. Thus, more training samples are created

using uniformity assumption. We call this increasing uniformity

assumption pre-learning. On the other hand, since more models are

trained, the output of each model will be scaled by a factor closer

to one (i.e., in the above paragraph, 𝑟∗ becomes closer to 𝑟 so that

(𝑟𝑟 ∗)
2
becomes closer to 1). We call this decreasing uniformity as-

sumption post-learning. Our experimental results in Sec. 6.3.2 show

that increasing 𝑘 improves accuracy, and 𝑘 should be set as large

as possible so that uniformity assumption post-learning becomes

negligible in practice. This follows the SNH motivation (and obser-

vations in Sec. 6.3.4) that learning can mitigate the uniformity error.

That is, the uniformity assumption should be made pre-learning so

that its impact on final accuracy can be reduced through learning.

5 END-TO-END SYSTEM ASPECTS
5.1 System Tuning with ParamSelect
Choosing a good grid granularity, 𝜌 , is crucial for achieving high

accuracy for DP spatial data publishing, and studied in previous

work [17, 34]. Discretizing continuous domain geo-coordinates cre-

ates uniformity errors, and hence the granularity of the grid must

be carefully tuned to compensate for the effect of discretization. Ex-

isting work [17, 34] makes simplifying assumptions to analytically

model the impact of grid granularity on the accuracy of answering

queries. However, modelling data and query specific factors is diffi-

cult and the simplifying assumptions are often not true in practice,

as our experiments show (see Sec. B.3 of our technical report [45]).

Instead, we learn a model that is able to predict an advantageous

grid granularity for the specific dataset, query distribution and

privacy budget. Sec. 5.1.1, discusses ParamSelect, our approach to

determine 𝜌 . In Sec. 5.1.2 we show how to extend ParamSelect to

tune other system parameters.

5.1.1 ParamSelect for 𝜌 . The impact of grid granularity on privacy-

accuracy trade-offs when answering queries is well-understood in

the literature [34]. In SNH, the grid granularity in data collection
phase impacts the performance as follows. On the one hand, smaller

grid cells increase the resolution at which the data are collected,

thereby reducing the uniformity error. Learning is also improved,

due to more training samples being extracted. On the other hand,

creating too fine grids can diminish the signal-to-noise ratio for

cells with small counts, since at a given 𝜀 the magnitude of noise

added to any cell count is fixed. Moreover, during data augmenta-

tion, aggregating multiple cells leads to increase in the total noise

variance, since the errors of individual cells are summed. SNH is

impacted by cell width in multiple ways, and determining a good

cell width, 𝜌 , is important to achieve good accuracy.

Capturing an analytical dependence may not be possible, since

numerous data, query and modelling factors determine the ideal

cell width. If data points are concentrated in some area where the

queries fall, a finer grid can more accurately answer queries for

the query distribution (even though signal-to-noise ratio may be

poor for parts of the space where queries are not often asked). This

factor can be measured only by looking at the actual data and the

distribution of queries, and would require spending privacy budget.

The best value of 𝜌 depends on the privacy budget 𝜀, the distribu-

tion of points in 𝐷 and the query distribution Q. Define 𝛿 (𝜌, 𝐷, 𝜀)

to be the error of SNH with cell width 𝜌 and define 𝜋 (𝐷, 𝜀) =

arg min𝜌∈R 𝛿 (𝜌, 𝐷, 𝜀), that is, the function that outputs the ideal

cell width. We learn a model, Φ, to approximate 𝜋 (𝐷, 𝜀). We refer

to Φ as regressor to distinguish it from the SNH model,
ˆ𝑓 , discussed

in Sec. 4. The learning process is similar to any supervised learning

task, where for different dataset and privacy budget pairs, (𝐷, 𝜀),
we use the label 𝜋 (𝐷, 𝜀) to train Φ. The input to the regressor is

(𝐷, 𝜀) and the training objective is to get the output, Φ(𝐷, 𝜀), to be

close to the label 𝜋 (𝐷, 𝜀).
Feature engineering. Learning a regressor that takes a raw data-

base 𝐷 as input is infeasible, due to the high sensitivity of learning

with privacy constraints. Instead, we introduce a feature engineer-

ing step that, for the dataset 𝐷 , outputs a set of features, 𝜙𝐷 . Train-

ing then replaces 𝐷 with 𝜙𝐷 . Let the spatial region of 𝐷 be 𝑆𝑅𝐷 .

First, as one of our features, we measure the skewness in the spread

of individuals over 𝑆𝑅𝐷 , since this value directly correlates with the

expected error induced by using the uniformity assumption. In par-

ticular, we (1) discretize 𝑆𝑅𝐷 using an equi-width partitioning, (2)

for each cell, calculate the probability of a point falling into a cell as

the count of points in the cell normalized by total number of points

in 𝐷 , and (3) take the Shannon’s Entropy ℎ𝐷 over the probabilities

in the flattened grid. However, calculating ℎ𝐷 on a private dataset

violates differential privacy. Instead, we utilize publicly available
location datasets as an auxiliary source to approximately describe

the private data distribution for the same spatial region. We posit

that there exist high-level similarities in distribution of people’s

locations in a city across different private and public datasets for

the same spatial regions and thus, the public dataset can be used

as a surrogate. Let D be the set of public datasets that we have

access to, and let 𝐷𝐼 ∈ D be a public dataset covering the same

spatial region as 𝐷 . We estimate ℎ𝐷 for a dataset with ℎ𝐷𝐼
. We call

𝐷𝐼 public ParamSelect Inference dataset.
Second, we use data-independent features: 𝜀, 1

𝑛×𝜀 and
1√
𝑛×𝜀 ,

where the product of 𝑛 × 𝜀 accounts for the fact that decreasing
the scale of the input dataset and increasing epsilon have equiva-

lent effects on the error. This is also understood as epsilon-scale

exchangeability [17]. We calculate 𝜙𝐷,𝜀 = (𝑛, 𝜀, 1

𝑛𝜀 ,
1√
𝑛𝜀
, ℎ𝐷𝐼
) as the

set of features for the dataset 𝐷 without consuming any privacy

budget in the process. Lastly, we remark that for regions where

an auxiliary source of information is unavailable, we may still uti-

lize the data-independent features to good effect. In our technical

report [45], we show that our proposed features achieve reliable

accuracy across datasets; particularly, we chose ℎ𝐷 amongst several

alternative data-dependent features for that reason.

Training Sample Collection. Generating training samples for Φ
is not straightforward since we do not have an analytical formula-

tion for 𝛿 (𝜌, 𝐷, 𝜀) and thus 𝜋 (𝐷, 𝜀). Since the exact value of 𝜋 (𝐷, 𝜀)
is unknown, we use an empirical estimate. We run SNH with var-

ious grid granularities of data collection and return the grid size,

𝜌𝐷,𝜀 , for which SNH achieves the lowest error. Our experimental re-

sults in Sec. 6.3 show that 𝛿 (𝜌, 𝐷, 𝜀) is only marginally affected with

small changes in 𝜌 (so evaluating 𝛿 (𝜌, 𝐷, 𝜀) at different values of 𝜌
five meters apart and selecting the best 𝜌 provides a good estimate

of 𝜋 (𝐷, 𝜀)). Intuitively, one expects the error in the training set to

remain the same if the cell width of data collection grid changes

by a few meters, since the uniformity errors induced are similar.

Algorithm 2 ParamSelect training

Input: A set of public training datasets 𝐷𝑇 ⊆ D and privacy

budgets E for training to predict a system parameter 𝛼

Output: Regressor Φ𝛼 for system parameter 𝛼

1: procedure 𝜙(𝐷,𝑛, 𝜀)
2: ℎ𝐷 ← entropy of 𝐷

3: return (𝑛, 𝜀, 1

𝑛𝜀 ,
1√
𝑛𝜀
, ℎ𝐷)

4: procedure Train_ParamSelect(𝐷𝑇 , E)

5: 𝑇 ← {(𝜙 (𝐷, |𝐷 |, 𝜀), 𝜋𝛼 (𝐷, 𝜀)) |𝜀 ∈ E, 𝐷 ∈ 𝐷𝑇 }
6: Φ𝛼 ← Train regressor using 𝑇

7: return Φ𝛼

Algorithm 3 ParamSelect usage

Input: Spatial extent 𝑆𝑅 and size 𝑛 of a sensitive dataset 𝐷 and

privacy budget 𝜀

Output: System parameter value 𝛼 for private dataset 𝐷

1: procedure ParamSelect(𝑆𝑅, 𝑛, 𝜀)
2: 𝐷𝐼 ← Public dataset with spatial extent 𝑆𝑅

3: 𝛼 ← Φ𝛼 (𝜙 (𝐷𝐼 , 𝑛, 𝜀))
4: return 𝛼

Thus, we use this approach to obtain 𝜌𝐷,𝜀 as our training label. Note

that the empirically determined value of 𝜌𝐷,𝜀 is dependent on—and

hence accounts for—the query distribution on which SNH error

is measured. Moreover, when 𝐷 contains sensitive data, obtaining

𝜌𝐷,𝜀 would require spending privacy budget. Instead, we generate

training records from a set of datasets, 𝐷𝑇 ⊆ D that have already

been publicly released (see Sec. 6 for details of public datasets).

We call datasets in 𝐷𝑇 public ParamSelect Training datasets. Put
together, our training set is {(𝜙𝐷,𝜀 , 𝜌𝐷,𝜀) |𝜀 ∈ E, 𝐷 ∈ 𝐷𝑇 }, where E
is the range of different privacy budgets chosen for training.

Predicting Grid Width with ParamSelect. The training phase

of ParamSelect builds regressor Φ using the training set described

above. We observed that models from the decision tree family per-

form the best for this task. Once the regressor is trained, its utiliza-

tion for any unseen dataset is straightforward and only requires

calculating the corresponding features and evaluating Φ.

5.1.2 Generalizing ParamSelect to any system parameter. We can

easily generalize the approach in Sec. 5.1.1 to any system parameter.

Define function 𝜋𝛼 (𝐷, 𝜀) that given a query distribution, outputs

the best value of 𝛼 for a certain database and privacy budget. The

goal of ParamSelect is to learn a regressor, using public datasets

𝐷𝑇 ∈ D, that mimics the function 𝜋𝛼 (.).
ParamSelect functionality is summarized in Alg. 2. First, during

a pre-processing step, it defines the feature extraction function

𝜙 (𝐷,𝑛, 𝜀), that extracts the features described in Sec. 5.1.1 from the

public dataset 𝐷 with 𝑛 records, and a privacy budget 𝜀. Second,

it creates the training set {(𝜙 (𝐷, |𝐷 |, 𝜀), 𝜋𝛼 (𝐷, 𝜀)), 𝜀 ∈ E, 𝐷 ∈ 𝐷𝑇 },
where 𝜋𝛼 (𝐷, 𝜀) estimates the value of 𝜋𝛼 (𝐷, 𝜀) with an empirical

search (i.e., by trying different values of 𝛼 and selecting the one with

the highest accuracy), and 𝐷𝑇 and E are different public datasets

and values of privacy budget, respectively, used to collect training

samples. Lastly, it trains a regressor Φ𝛼 that takes extracted features

as an input and outputs a value for 𝛼 .

Table 2: Urban datasets characteristics.

Low Pop. density Medium Pop. density High Pop. density

Fargo [46.877, -96.789] Phoenix [33.448, -112.073] Miami [25.801, -80.256]
Kansas City [39.09, -94.59] Los Angeles [34.02, -118.29] Chicago [41.880, -87.70]

Salt Lake [40.73, -111.926] Houston [29.747, -95.365] SF [37.764, -122.43]

Tulsa [36.153, -95.992] Milwaukee [43.038, -87.910] Boston [42.360, -71.058]

At inference stage (Alg. 3) ParamSelect uses a public dataset 𝐷𝐼

that covers the same spatial region as 𝐷 , as well as size of 𝐷 , 𝑛,

and privacy budget 𝜀 to extract features 𝜙 (𝐷𝐼 , 𝑛, 𝜀). The predicted
system parameter value for 𝐷 is then Φ𝛼 (𝜙 (𝐷𝐼 , 𝑛, 𝜀)).

5.2 Privacy and Security Discussion
Let 𝐷 be a private dataset covering a spatial region 𝑆𝑅 and D be a

set of public datasets. The SNH end-to-end privacy mechanism M

is comprised of two parts that compose sequentially: mechanism

M𝑓 , that models range count queries using the neural networks,

and mechanismMΦ, that trains a regressor to determine the system

parameters. M𝑓 operates over 𝐷 , 𝜀, 𝑆𝑅 and D. MΦ operates over

D and 𝑆𝑅 for ParamSelect training and inference. Hence, we write

the end-to-end system as the SNH mechanism M(𝐷 |𝜀, 𝑆𝑅,D) =
M𝑓 (𝐷 |𝜀,D, 𝑆𝑅,MΦ (D, 𝑆𝑅)).

Theorem 5.1. MechanismM(𝐷 |𝜀, 𝑆𝑅,D) satisfies 𝜀-DP.

Sec. A of our technical report [45] contains a proof of the above

theorem and a qualitative discussion on DP privacy guarantees.

6 EXPERIMENTAL EVALUATION
Sec. 6.1 describes the experimental testbed. Sec. 6.2 evaluates SHN

in comparison with state-of-the-art approaches. Sec. 6.3 provides

an ablation study of various design choices. Sec. B of our technical

reports [45] contains complementary experimental results.

6.1 Experimental Settings
6.1.1 Datasets. We first describe all the datasets and then specify

how they are utilized in our experiments.

Dataset Description.All datasets comprise of user check-ins spec-

ified as tuples of: user identifier, latitude and longitude of check-in

location, and timestamp. Our first dataset is a subset of the user

check-ins collected by the SNAP project [10] from theGowalla (GW)

network. It contains 6.4 million records from 200k unique users

during a time period between February 2009 and October 2010. Our

second dataset, SF-CABS-S (CABS) [33], is derived from the GPS

coordinates of approximately 250 taxis collected over 30 days in

San Francisco. Following [17, 34], we keep only the start point of

the mobility traces, for a total of 217k records. The third dataset

is proprietary, obtained from Veraset [2] (VS), a data-as-a-service

company that provides anonymized movement data from 10% of the

cellphones in the U.S [3]. For a single day in December 2019, there

were 2.6 billion readings from 28 million distinct devices. From VS

we generate the fourth dataset called SPD-VS. We perform Stay

Point Detection (SPD) [42] on the data to remove location signals

when a person is moving, and to extract POI visits when a user is

stationary. SPD is useful for POI services [32], and results in a data

distribution consisting of user visits (i.e., fewer points on roads and

more at POIs). Following [42], we consider as location visit a region

100 meters wide where a user spends at least 30 minutes.

To simulate a realistic urban environment, we focus on check-ins

from several cities in the U.S. We group cities into three categories

based on their population densities [1], measured in people per

square mile: low density (lower than 1000/sq mi), medium den-
sity (between 1000 and 4000/sq mi) and high density (greater than

4000/sq mi). A total of twelve cities are selected, four in each popula-

tion density category as listed in Table 2. For each city, we consider

a large spatial region covering a 20 × 20km
2
area centered at [lat,

lon]. From each density category we randomly select a test city
(highlighted in bold in Table 2), while the remaining cities are used

as training cities. We use the notation <city> (<dataset>) to refer

to the subset of a dataset for a particular city, e.g., Milwaukee (VS)

refers to the subset of VS datasets for the city of Milwaukee.

Experiments on VS. Private dataset: Our experiments on Ve-

raset can be seen as a case-study of answering RCQs on a propri-

etary dataset while preserving differential privacy. We evaluate

RCQs on the Veraset dataset for the test cities. Due to the enor-

mous volume of data, we sample at random sets of 𝑛 check-ins, for

𝑛 ∈ {25𝑘, 50𝑘, 100𝑘, 200𝑘, 400𝑘} for the test cities and report the

results on these datasets. Auxiliary Datasets: For each test city in

VS, we set𝑄𝑊 and𝐷𝐼 to be the GW dataset from the corresponding

city. GW and VS datasets are completely disjoint (they are collected

almost a decade apart). The public datasets 𝐷𝑇 are the set of all the

training cities of the GW dataset.

Experiments on GW. Private dataset: We present the results on

the complete set of records for the test cities of Miami, Milwaukee

and Kansas City with 27k, 32k and 54k data points, respectively.

Auxiliary Datasets: For each test city, we set𝑄𝑊 and𝐷𝐼 to be the VS

counterpart dataset for that city. 𝐷𝑇 contains all the training cities

in the GW dataset. None of the test cities, which are considered

sensitive data, are included in 𝐷𝑇 .

Experiments on CABS. Private dataset: Since CABS consists of
217k records within the city of San Francisco only, we treat it as

the sensitive test city for publishing. Auxiliary Datasets: We set𝑄𝑊

and 𝐷𝐼 to be the GW dataset for San Francisco. 𝐷𝑇 contains all the

training cities in the GW dataset. Once again, collecting auxiliary

information from an entirely different dataset ensures no privacy

leakage on the considered private dataset.

6.1.2 SNH system parameters. We use the GW dataset to train the

ParamSelect regression model. For the nine training cities and five

values of privacy budget 𝜀, we obtain 45 training samples. We utilize

an AutoML pipeline (such as [15, 41]) to find out a suitable model

from among a wide range of ML algorithms. The pipelines use

cross-validation to evaluate goodness-of-fit for possible algorithm

and hyperparameter combinations. The final model is an Extremely

Randomized Tree (ExtraTrees) [16]. ExtraTrees create an ensem-

ble of random forests [21], where each tree is trained using the

whole learning sample (rather than a bootstrap sample). The model

ensembles 150 trees having a maximum depth of 7.

For other system parameters, we observed that their best value

for SNH remain stable over various dataset and privacy budget

combinations. Sec. 6.3.2 and Sec. B.4 of our technical report [45]

present this result for parameter 𝑘 and Sec. 6.3.4 and Sec. B.4 of

our technical report [45] for the model depth. We observed no

benefit in using ParamSelect to set these parameters and merely

selected a value that performed well on our public datasets for the

system parameter 𝑘 and neural network hyper-parameters. The

fully connected neural networks contain 20 layers of 80 unit each

and are trained with Adam [23] optimizer with learning rate 0.001.

6.1.3 Other experimental settings.
Evaluation Metric. We construct query sets of 5,000 RCQs cen-

tered at uniformly random positions. Each query has side length

that varies uniformly from 25 meters to 100 meters. We evaluate the

relative error for a query 𝑞 as defined in Sec. 2, and set smoothing

factor𝜓 to 0.1% of the dataset cardinality 𝑛, as in [11, 34, 48].

Baselines.We evaluate our proposed SNH approach in compari-

son to state-of-the-art DP solutions: PrivTree [48], Uniform Grid

(UG) [34], Adaptive Grid (AG) [34] and Data and Workload Aware

Algorithm (DAWA) [25]. Brief summaries of each method are pro-

vided in Sec. 7. DAWA requires the input data to be represented

over a discrete 1D domain, which can be obtained by applying a

Hilbert transformation. To this end, we discretize the domain of

each dataset into a uniform grid with 2
20

cells, following the work

of [25, 48]. DAWA also uses the workload query set, 𝑄𝑊 , as speci-

fied in Sec. 6.1.1. For PrivTree, we set its fanout to 4, following [48].

We also considered Hierarchical methods in 2D (HB2D) [18, 35] and

QuadTree [11], but the results were far worse than the above ap-

proaches and thus are not reported (we report the results of all the

baselines in Sec. B.1 of our technical report [45]). As an additional

baseline, we modify STHoles [8], a non-private workload-aware

algorithm, to satisfy DP. STHoles builds nested buckets in regions

where the workload requires finer granularity. We incorporate dif-

ferential privacy by (1) adding the required sanitization noise to

the frequency counts in STHoles’ buckets and (2) implementing

the algorithm so that it avoids asking overlapping queries from

the database to minimize the magnitude of noise added. Details

of our DP-compliant adoption of STHoles are available in the Ap-

pendix C of our technical report [45] and our implementation is

publicly available at [43]. Similar to DAWA and SNH, STHoles uses

the workload query set, 𝑄𝑊 , as specified in Sec. 6.1.1.

Implementation. All algorithms were implemented in Python,

and executed on a Linux machine with an Intel i9-9980XE CPU,

128GB RAM and a RTX2080 Ti GPU. Neural networks are imple-

mented in JAX [7]. Given this setup, SNH took up to 20 minutes to

train in our experiments, depending on the value of 𝜌 . The average

query time of SNH is 329𝜇𝑠 and a model takes 4 MB of space. We

publicly release the source code at [44].

Default Values. Unless otherwise stated, we present the results
on the medium population density city, Milwaukee (VS), with data

cardinality 𝑛 = 100𝑘 . Privacy budget 𝜀 is set to 0.2.

6.2 Comparison with Baselines
Impact of privacy budget. Figs. 6 and 7 present the error of SNH
and competitors when varying 𝜀 for test datasets VS, SPD-VS, CABS

and GW. Recall that a smaller 𝜀 means stronger privacy protection.

For our proprietary datasets, VS and SPD-VS, we observe that

SNH outperforms the state-of-the-art by up to 50% at all privacy

levels (Fig. 6 (a)-(d)). This shows that SNH is effective in utilizing

machine learning and publicly available data to improve accuracy

of privately releasing proprietary datasets. Fig. 6 (e) and Fig. 7 show

0.05 0.1 0.2 0.4 0.8
ε

0.0

0.1

0.2

0.3

re
la

tiv
e

er
ro

r

(a) Kansas City (VS)

0.05 0.1 0.2 0.4 0.8
ε

0.00

0.05

0.10

0.15

0.20

re
la

tiv
e

er
ro

r

(b) Milwaukee (VS)

0.05 0.1 0.2 0.4 0.8
ε

0.00

0.05

0.10

0.15

re
la

tiv
e

er
ro

r

(c) Miami (VS)

0.05 0.1 0.2 0.4 0.8
ε

0.0

0.1

0.2

0.3

re
la

tiv
e

er
ro

r

(d) Milwaukee (SPD VS)

0.05 0.1 0.2 0.4 0.8
ε

0.00

0.05

0.10

0.15

0.20

re
la

tiv
e

er
ro

r

(e) SF (CABS)
SNH AG UG PrivTree DAWA STHoles

Figure 6: Impact of privacy budget: VS, SPD-VS and CABS datasets

0.05 0.1 0.2 0.4 0.8
ε

0.0

0.2

0.4

0.6

0.8

re
la

tiv
e

er
ro

r

(a) Kansas City (GW)

0.05 0.1 0.2 0.4 0.8
ε

0.0

0.2

0.4

0.6

re
la

tiv
e

er
ro

r

(b) Milwaukee (GW)

0.05 0.1 0.2 0.4 0.8
ε

0.0

0.2

0.4

0.6

re
la

tiv
e

er
ro

r

(c) Miami (GW)

Figure 7: Impact of privacy budget: GW dataset

25 50 100 200 400
n (×1000)

0.0

0.1

0.2

re
la

tiv
e

er
ro

r

(a) Impact of n

25 50 75 100
query size (m)

0.0

0.1

0.2

re
la

tiv
e

er
ro

r

(b) Impact of Query size

Figure 8: Impact of data and query size

0.05 0.1 0.2 0.4 0.8
ε

0.0

0.1

0.2

0.3

re
la

tiv
e

er
ro

r

(a) n=25,000

0.05 0.1 0.2 0.4 0.8
ε

0.0

0.1

0.2

0.3

re
la

tiv
e

er
ro

r

(b) n=100,000

0.05 0.1 0.2 0.4 0.8
ε

0.0

0.1

0.2

0.3

re
la

tiv
e

er
ro

r

(c) n=400,000
SNH PGM@ParamSelect IDENTITY@ParamSelect

Figure 9: Study of modeling choice

0.05 0.1 0.2 0.4 0.8
ε

0.00

0.05

0.10

0.15
re

la
tiv

e
er

ro
r

SNH,k=1
SNH,k=8

SNH+QS,k=1
SNH+QS,k=8

Figure 10: Impact of uni-
formity assumption

15 20 25 30 35 40 45
ρ (m)

0.00

0.05

0.10

0.15

re
la

tiv
e

er
ro

r

ε=0.05
ε=0.2

ε=0.8
SNH

Figure 11: Impact of 𝜌

and ParamSelect

Figure 12: SNH learns patterns on GMM dataset of 16 components. Color
shows number of data points.

2 5 10 20 40
σ

0.00

0.02

0.04

re
la

tiv
e

er
ro

r

(a) Noisy Obs.

2 5 10 20 40
σ

0.00

0.05

0.10

re
la

tiv
e

er
ro

r
(b) Obs. with Uniformity

SNH (s1) SNH (s2) SNH (s3) No Learning

Figure 13: Impact of data skewness (𝜀 = 0.2)

that SNH also outperforms for CABS and GW datasets in almost all

settings, the advantage of SNH being more pronounced for smaller

𝜀 values. Stricter privacy regimes are particularly important for

location data, since such datasets are often released at multiple time

instances with smaller privacy budget per release.

Impact of data cardinality. Fig. 8 (a) shows the impact of data

cardinality on relative error for Milwaukee (VS). For all algorithms,

the accuracy improves as data cardinality increases. This is a direct

consequence of the signal-to-noise ratio improving as cell counts

are less impacted by DP noise. SNH consistently outperforms com-

petitor approaches at a wide range of data cardinality settings.

Impact of query size. We evaluate the impact of query size on

accuracy by considering test queries of four different sizes in Mil-

waukee (VS). Fig. 8 (b) shows that the error for all the algorithms

increases when query size grows, with SNH outperforming the

baselines at all sizes. There are two competing effects when increas-

ing query size: on the one hand, each query is less affected by noise,

since actual counts are larger; on the other hand, the error from

more grid cells is aggregated in a single answer. The second effect

is stronger, so the overall error steadily increases with query size.

6.3 Ablation Study for SNH
6.3.1 Modeling choices. Recall that SNH first creates a uniform

grid, with granularity decided by ParamSelect. It then performs data

augmentation and learning using the data collected on top of the

grid. Next, we study the importance of each component of SNH to

its overall performance. We create two new baselines to show how

our choice of using neural networks to learn the patterns in the data

improves performance. The first, called IDENTITY@ParamSelect,

ablates SNH, utilizing only the uniform grid created in SNH at

data collection. The second baseline, called PGM@ParamSelect,

employs Private Probabilistic Graph Models (PGM) [29], a learning

algorithm specifically designed for high-dimensional categorical

data. We extend PGM to 2D spatial datasets by feeding it a DP

uniform grid at the granularity selected by ParamSelect.

Fig. 9 (a) shows SNH outperforming both these baselines. SNH

outperforming IDENTITY shows the benefit of learning, since both

SNH and IDENTITY use the same grid for data collection but SNH

learns neural networks using data generated from the grid, while

IDENTITY directly uses the grid to answer queries. This benefit di-

minishes when the privacy budget and the data cardinality increase

(note that both 𝑛 and 𝜀 are in log scale), where a simple uniform grid

chosen at the correct granularity outperforms all existing methods

(comparing Fig. 9 (b) with Fig. 6 (b) shows IDENTITY@ParamSelect

outperforms the state-of-the-art for 𝜀 = 0.4 and 0.8). For such ranges

of privacy budget and data cardinality, ParamSelect recommends

a very fine grid granularity. Thus, the uniformity error incurred

by IDENTITY@ParamSelect becomes lower than that introduced

by the modelling choices of SNH and PGM. This also shows the

importance of a good granularity selection algorithm, as UG in

Fig. 6 performs worse than IDENTITY@ParamSelect for larger 𝜀.

6.3.2 Balancing Uniformity Errors. We discuss how the use of the

uniformity assumption at different stages of SNH impacts accuracy.

Recall from Sec. 4.3 that the value of 𝑘 balances the use of the

uniformity assumption pre- and post-learning.We empirically study

how uniformity assumption pre- and post-learning influence SNH’s

accuracy by varying 𝑘 . Furthermore, we study how removing the

uniformity assumption post-learning and replacing it with a neural

network affects accuracy. Specifically, we consider a variant of SNH

where we train the neural networks to also take as an input the

query size. Each neural network is still responsible for a particular

set of query sizes, [𝑟𝑙 , 𝑟𝑢], where we use data augmentation to

create query samples with different query sizes falling in [𝑟𝑙 , 𝑟𝑢].
Instead of scaling the output of the trained neural networks, now

each neural network also takes the query size as an input, and thus,

the answer to a query is just the forward pass of the neural network.

We call this variant SNH with query size, or SNH+QS .
Fig. 10 shows that, first, removing the uniformity assumption

post-learning has almost no impact on accuracy when 𝑘 is large.

However, for a small value of 𝑘 , it provides more stable accuracy.

Note that when 𝑘 = 1, SNH trains only one neural network for

query size 𝑟∗ and answers the queries of size 𝑟 by scaling the output
of the neural network by

𝑟
𝑟 ∗ . The error is expected to be lower when

𝜌 and 𝑟∗ have similar values, since there will be less uniformity

error when performing data augmentation. This aspect is captured

in Fig. 10, where at 𝜀 = 0.2, 𝑟∗ and 𝜌 are almost the same values

and thus, the error is the lowest. Sec. B.4 of our technical report

[45] evaluates more comprehensively the impact of 𝑘 .

6.3.3 ParamSelect and 𝜌 . Fig.11 shows the performance of SNH

with varying cell width 𝜌 at multiple values of 𝜀. A coarser grid first

improves accuracy by improving signal-to-noise ratio at each cell,

but a grid too coarse hampers accuracy by reducing the number of

samples extracted for training SNH. This creates a U-shaped trend

which shifts to smaller values of 𝜌 for larger values of 𝜀 as the lower

DP noise impacts the cell counts less aggressively. The red line

in Fig.11 labelled SNH shows the result of SNH at the granularity

chosen by ParamSelect. SNH performing close to the best possible

proves that ParamSelect finds an advantageous cell width for SNH.

6.3.4 SNH Learning Ability in Non-Uniform Datasets. We study the

ability of neural networks to learn patterns from skewed datasets

through imprecise observations, where imprecision is due to noise

or uniformity assumption.

Setup. We synthesize 100𝑘 points from a Gaussian Mixture Model

(GMM) [36] with 16 components. The means of the components are

placed uniformly over the data space. All components are equally

weighted and have the covariance matrix 𝑰 × 𝜎2
, where 𝑰 is the

identity matrix. GMMs allow controlling data skewness via the

parameter 𝜎 . We partition the data space into a grid of 200×200

cells and report 𝜎 in terms of number of cells. The query set, 𝑄 ,

consists of queries asking for the number of points inside each cell.

Fig. 12(a) plots the true answers to this query set when 𝜎 = 7.

Learning from Noisy Observations. We consider two scenarios.

First, we obtain the DP answers, 𝐴̃, to the queries in 𝑄 by adding

noise to the true answers. We call this algorithm No Learning. For
𝜀 = 0.05, Fig. 12 (b1) shows the noisy answers reported by No

Learning. Comparing Figs. 12 (a) and 12 (b1) we observe that the

sanitization noise severely distorts the existing patterns in the data.

Second, we train a neural network using only the noisy answers

shown in Fig. 12 (b1), that is, the inputs to the neural network

are queries in 𝑄 and training labels are the answers in 𝐴̃. After

training, we ask the same queries, 𝑄 . The result in Fig. 12 (c1)

shows the output of the neural network. SNH has a strong ability

to recover the underlying patterns of GMMs from even highly

distorted observations. Additional visualizations for several values

of 𝜀 and 𝜎 can be found in Sec. B.5 of our technical report [45].

Next, we compare the error in the neural network predictions

to that in the noisy answers it was trained with. The latter is rep-

resented with the line labelled ‘No Learning’ in Fig. 13 (a) and is

the error in 𝐴̃. Lines labeled SNH show the error of SNH at varying

model sizes (𝑠1, 𝑠2 and 𝑠3 correspond to models with depth 5, 10

and 20 and width 15, 25 and 80 respectively) on the same query set.

When 𝜎 is large, the data is closer to being uniformly distributed

and there are fewer patterns to learn, whereas when 𝜎 is small,

the data becomes more skewed towards the mean of each GMM

component. The results in Fig. 13 (a) show that when data is skewed,

SNH is especially capable of extracting patterns in the data where

present, utilizing them to boost accuracy. However, when data is

uniform-like, SNH performs similar to ‘No Learning’ as there are

few patterns to be learned. Lastly, by varying model size (lines 𝑠1,

𝑠2 and 𝑠3) we show that it is beneficial to use a larger neural net-

work for more skewed datasets. A larger network exhibits stronger

representation power and hence captures the skewness better.

Learning from Observations with Uniformity Error. We gen-

erate the training data by purposefully inducing uniformity error

when answering queries in our training set,𝑄 . We first superimpose

a coarse partitioning of 20×20 blocks over the original 200×200
cell grid, with each block covering exactly 100 cells. To answer the

queries in 𝑄 , we first obtain the true answer for each block, and

then divide that value by 100 to obtain the answer for each cell

within the block (assuming uniformity within the block). The result

is shown in Fig. 12 (b2). Note that the set of queries that fall within

the same block (in the 20×20 grid) all receive the same answers due

to the uniformity assumption. Next, we train a neural network with

queries in 𝑄 (corresponding to the cells in the 200×200 grid). The
result in Fig. 12 (c2) shows that the neural network smoothens the

observations and brings them closer to the true answers. In Fig. 13

(b) we evaluate the effect of increasing skewness (i.e., decreasing 𝜎):

“No Learning” yields larger errors, whereas SNH, through learning,

keeps the error steady for different skewness levels.

7 RELATEDWORK
Privacy preservingmachine learning. A learnedmodel can leak

information about the data it was trained on [20, 38]. Recent efforts

have developed differentially private versions of ML algorithms,

e.g., empirical risk minimization [9, 22] and deep neural networks

[4, 37]. For DP sanitization, existing approaches add noise to the

output of the trained model [39], add a random regularization term

to the objective function [9, 22], or add noise to the gradient of the

loss function during training [4]. Our approach is different in that

we sanitize the training data before learning. Furthermore, the work

of [4] achieves (𝜀, 𝛿)-DP [5, 14, 31], a weaker privacy guarantee.

AnsweringRCQs. In the one dimensional case, the data-independent

Hierarchical method [18] uses a strategy consisting of hierarchi-

cally structured range queries typically arranged as a tree. Similar

methods (e.g., HB [35]) differ in their approach to determining the

tree’s branching factor and allocating appropriate budget to each

of its levels. Data-dependent techniques, on the other hand, exploit

the redundancy in real-world datasets to boost the accuracy of

histograms. The main idea is to first lossily compress the data. For

example, EFPA [6] applies the Discrete Fourier Transform whereas

DAWA [25] uses dynamic programming to compute the least cost

partitioning. The compressed data is then sanitized, for example,

directly with Laplace noise [6] or with a greedy algorithm that

tunes the privacy budget to an expected workload [25]).

While some approaches such as DAWA and HB extend to 2D

naturally, others specialize to answer spatial range queries. Uniform

Grid (UG) [34] partitions the domain into a𝑚 ×𝑚 grid and releases

a noisy count for each cell. The value of 𝑚 is chosen in a data-

dependent way, based on dataset cardinality. Adaptive Grid (AG)

[34] builds a two-level hierarchy: the top-level partitioning utilizes

a granularity coarser than UG. For each bucket of the top-level par-

tition, a second partition is chosen in a data-adaptive way, using a

finer granularity for regions with a larger count. QuadTree [11] first

generates a quadtree, and then employs the Laplace mechanism to

inject noise into the point count of each node. Range-count queries

are answered via a top-down traversal of the tree. Privtree [48] is

another hierarchical method that allows variable node depth in the

indexing tree (as opposed to fixed tree heights in AG, QuadTree

and HB). It utilizes the Sparse-Vector Technique [26] to determine

a cell’s density prior to splitting the node.

The case of high-dimensional data was addressed by [28, 40, 47].

The most accurate algorithm in this class is High-Dimensional Ma-

trix Mechanism (HDMM) [28] which represents queries and data

as vectors, and uses optimization and inference techniques to an-

swer RCQs. PrivBayes [47] is a mechanism that privately learns a

Bayesian network over the data that generates a synthetic dataset

which can consistently answer workload queries. Due to the use of

sampling to estimate data distribution, it is a poor fit for skewed spa-

tial datasets. Most similar to our work is PGM [29], which utilizes

Probabilistic Graphical Models to measure a compact representa-

tion of the data distribution, while minimizing a loss function. Data

projections over user-specified subgroups of attributes are sani-

tized and used to learn the model parameters. PGM is best used in

the inference stage of privacy mechanisms (such as HDMM and

PrivBayes) that can already capture a good model of the data.

Private parameter tuning. Determining the system parameters

of a private data representation must also be DP-compliant. Several

approaches utilize the data themselves to tune system parameters

such as depth of a hierarchical structure (e.g., in QuadTree or HB)

or spatial partition size (e.g. k-d trees), without privacy consider-

ation [18]. Using public datasets to tune system parameters is a

better strategy [9]. Our strategy to determine a good cell width for

a differentially-private grid is similar to that in UG [34]. However,

our proposed strategy for parameter selection vastly improves gen-

eralization ability over UG [34] by exploiting additional dataset

features and their non-linear relationships.

8 CONCLUSION
We proposed SNH: a novel method for answering range count

queries on location datasets while preserving differential privacy.

To address the shortcomings of existing methods (i.e., over-reliance

on the uniformity assumption and noisy local information when

answering queries), SNH utilizes the power of neural networks to

learn patterns from location datasets. We proposed a two stage

learning process: first, noisy training data is collected from the

database while preserving differential privacy; second, models are

trained using this sanitized dataset, after a data augmentation step.

In addition, we devised effective machine learning strategies for

tuning system parameters using only public data. Our results show
SNH outperforms the state-of-the-art on a broad set of input data

with diverse characteristics. In future work, we plan to extend SNH

to releasing high data dimensional user trajectories datasets.

ACKNOWLEDGMENTS
This research has been funded in part by NSF grants IIS-1910950,

IIS-1909806, CNS-2027794, CNS-2125530 and IIS-2128661, and an

unrestricted cash gift from Microsoft Research. Any opinions, find-

ings, conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the views

of any of the sponsors such as the NSF.

REFERENCES
[1] 2021. List of United States cities by population. https://en.wikipedia.org/wiki/

List_of_United_States_cities_by_population. Accessed July 2021.

[2] 2021. Veraset. https://www.veraset.com/about-veraset. Accessed: 2021-05-10.

[3] 2021. Veraset Movement Data for the OCONUS. https://datarade.ai/data-

products/veraset-movement-data-for-the-oconus-the-largest-deepest-and-

broadest-available-movement-dataset-veraset. Accessed: 2021-07-20.

[4] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In

Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 308–318.

[5] John M. Abowd. 2018. The U.S. Census Bureau Adopts Differential Privacy.

In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery, Data Mining (London, United Kingdom) (KDD ’18). 2867.

[6] Gergely Acs, Claude Castelluccia, and Rui Chen. 2012. Differentially private

histogram publishing through lossy compression. In 2012 IEEE 12th International
Conference on Data Mining. IEEE, 1–10.

[7] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris

Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye

Wanderman-Milne, and Qiao Zhang. 2018. JAX: composable transformations of

Python+NumPy programs. http://github.com/google/jax

[8] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. 2001. STHoles: A Multidi-

mensional Workload-Aware Histogram. In Proceedings of the 2001 ACM SIGMOD
International Conference on Management of Data. Association for Computing

Machinery, New York, NY, USA, 211–222.

[9] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. 2011. Differen-

tially private empirical risk minimization. Journal of Machine Learning Research
12, 3 (2011).

[10] Eunjoon Cho, Seth A Myers, and Jure Leskovec. 2011. Friendship and mobility:

user movement in location-based social networks. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and data mining.
1082–1090.

[11] Graham Cormode, Cecilia Procopiuc, Divesh Srivastava, Entong Shen, and Ting

Yu. 2012. Differentially private spatial decompositions. In 2012 IEEE 28th Interna-
tional Conference on Data Engineering. IEEE, 20–31.

[12] Bolin Ding, Marianne Winslett, Jiawei Han, and Zhenhui Li. 2011. Differentially

private data cubes: optimizing noise sources and consistency. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management of data. 217–228.

[13] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-

ential privacy. Foundations and Trends® in Theoretical Computer Science 9, 3–4
(2014), 211–407.

[14] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. Rappor: Random-

ized aggregatable privacy-preserving ordinal response. In Proceedings of the 2014
ACM SIGSAC conference on computer and communications security. 1054–1067.

[15] Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer, and

Frank Hutter. 2020. Auto-sklearn 2.0: The next generation. arXiv preprint
arXiv:2007.04074 24 (2020).

[16] Pierre Geurts, Damien Ernst, and Louis Wehenkel. 2006. Extremely randomized

trees. Machine learning 63, 1 (2006), 3–42.

[17] Michael Hay, Ashwin Machanavajjhala, Gerome Miklau, Yan Chen, and Dan

Zhang. 2016. Principled evaluation of differentially private algorithms using

dpbench. In Proceedings of the 2016 International Conference on Management of
Data. 139–154.

[18] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. 2009. Boosting the

accuracy of differentially-private histograms through consistency. arXiv preprint
arXiv:0904.0942 (2009).

[19] BenjaminHilprecht, Andreas Schmidt, Moritz Kulessa, AlejandroMolina, Kristian

Kersting, and Carsten Binnig. 2019. DeepDB: Learn from Data, not from Queries!

Proceedings of the VLDB Endowment 13, 7 (2019).
[20] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. 2017. Deep models

under the GAN: information leakage from collaborative deep learning. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 603–618.

[21] Tin Kam Ho. 1995. Random decision forests. In Proceedings of 3rd international
conference on document analysis and recognition, Vol. 1. IEEE, 278–282.

[22] Daniel Kifer, Adam Smith, and Abhradeep Thakurta. 2012. Private convex empiri-

cal risk minimization and high-dimensional regression. In Conference on Learning
Theory. JMLR Workshop and Conference Proceedings, 25–1.

[23] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-

cation with deep convolutional neural networks. Advances in neural information

processing systems 25 (2012), 1097–1105.
[25] Chao Li, Michael Hay, Gerome Miklau, and Yue Wang. 2014. A Data- and

Workload-Aware Algorithm for Range Queries under Differential Privacy. Proc.
VLDB Endow. 7, 5 (Jan. 2014), 341–352.

[26] Min Lyu, Dong Su, and Ninghui Li. 2017. Understanding the Sparse Vector

Technique for Differential Privacy. Proc. VLDB Endow. 10, 6 (Feb. 2017), 637–648.
[27] Qingzhi Ma and Peter Triantafillou. 2019. Dbest: Revisiting approximate query

processing engines with machine learning models. In Proceedings of the 2019
International Conference on Management of Data. 1553–1570.

[28] Ryan McKenna, Gerome Miklau, Michael Hay, and Ashwin Machanavajjhala.

2018. Optimizing error of high-dimensional statistical queries under differential

privacy. arXiv preprint arXiv:1808.03537 (2018).

[29] Ryan McKenna, Daniel Sheldon, and Gerome Miklau. 2019. Graphical-model

based estimation and inference for differential privacy. In International Conference
on Machine Learning. PMLR, 4435–4444.

[30] Henry B Moss, David S Leslie, and Paul Rayson. 2018. Using JK fold cross valida-

tion to reduce variance when tuning NLP models. arXiv preprint arXiv:1806.07139
(2018).

[31] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. 2007. Smooth sensitivity

and sampling in private data analysis. In Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing. 75–84.

[32] Rafael Pérez-Torres, César Torres-Huitzil, and Hiram Galeana-Zapién. 2016. Full

on-device stay points detection in smartphones for location-based mobile appli-

cations. Sensors 16, 10 (2016), 1693.
[33] Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Grossglauser. 2009.

CRAWDAD data set epfl/mobility (v. 2009-02-24).

[34] Wahbeh Qardaji, Weining Yang, and Ninghui Li. 2013. Differentially private grids

for geospatial data. In 2013 IEEE 29th international conference on data engineering
(ICDE). IEEE, 757–768.

[35] Wahbeh Qardaji, Weining Yang, and Ninghui Li. 2013. Understanding hierarchical

methods for differentially private histograms. Proceedings of the VLDB Endowment
6, 14 (2013), 1954–1965.

[36] Douglas A Reynolds. 2009. Gaussian mixture models. Encyclopedia of biometrics
741 (2009), 659–663.

[37] Adam Sealfon and Jonathan Ullman. 2021. Efficiently Estimating Erdos-Renyi

Graphs with Node Differential Privacy. Journal of Privacy and Confidentiality 11,

1 (2021).

[38] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-

bership inference attacks against machine learning models. In 2017 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 3–18.

[39] Xi Wu, Fengan Li, Arun Kumar, Kamalika Chaudhuri, Somesh Jha, and Jeffrey

Naughton. 2017. Bolt-on differential privacy for scalable stochastic gradient

descent-based analytics. In Proceedings of the 2017 ACM International Conference
on Management of Data. 1307–1322.

[40] Yonghui Xiao, Li Xiong, Liyue Fan, and Slawomir Goryczka. 2012. Dpcube:

differentially private histogram release through multidimensional partitioning.

arXiv preprint arXiv:1202.5358 (2012).
[41] Anatoly Yakovlev, Hesam Fathi Moghadam, Ali Moharrer, Jingxiao Cai, Nikan

Chavoshi, Venkatanathan Varadarajan, Sandeep R Agrawal, Sam Idicula, Tomas

Karnagel, Sanjay Jinturkar, et al. 2020. Oracle automl: a fast and predictive automl

pipeline. Proceedings of the VLDB Endowment 13, 12 (2020), 3166–3180.
[42] Yang Ye, Yu Zheng, Yukun Chen, Jianhua Feng, and Xing Xie. 2009. Mining

individual life pattern based on location history. In 2009 tenth international
conference on mobile data management: Systems, services and middleware. IEEE,
1–10.

[43] Sepanta Zeighami, Ritesh Ahuja, Gabriel Ghinita, and Cyrus Shahabi. 2021. Pri-

vate STHoles Implementation. https://github.com/szeighami/stholes.

[44] Sepanta Zeighami, Ritesh Ahuja, Gabriel Ghinita, and Cyrus Shahabi. 2021. SNH

Implementation. https://github.com/szeighami/snh.

[45] Sepanta Zeighami, Ritesh Ahuja, Gabriel Ghinita, and Cyrus Shahabi. 2021. SNH

Technical Report. https://infolab.usc.edu/DocsDemos/snh.pdf.

[46] Sepanta Zeighami and Cyrus Shahabi. 2021. NeuroDB: A Neural Network Frame-

work for Answering Range Aggregate Queries and Beyond. arXiv preprint
arXiv:2107.04922 (2021).

[47] Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and Xi-

aokui Xiao. 2017. Privbayes: Private data release via bayesian networks. ACM
Transactions on Database Systems (TODS) 42, 4 (2017), 1–41.

[48] Jun Zhang, Xiaokui Xiao, and Xing Xie. 2016. Privtree: A differentially private

algorithm for hierarchical decompositions. In Proceedings of the 2016 International
Conference on Management of Data. 155–170.

[49] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. 2020. Random

erasing data augmentation. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34. 13001–13008.

https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population
https://en.wikipedia.org/wiki/List_of_United_States_cities_by_population
https://www.veraset.com/about-veraset
https://datarade.ai/data-products/veraset-movement-data-for-the-oconus-the-largest-deepest-and-broadest-available-movement-dataset-veraset
https://datarade.ai/data-products/veraset-movement-data-for-the-oconus-the-largest-deepest-and-broadest-available-movement-dataset-veraset
https://datarade.ai/data-products/veraset-movement-data-for-the-oconus-the-largest-deepest-and-broadest-available-movement-dataset-veraset
http://github.com/google/jax
https://github.com/szeighami/stholes
https://github.com/szeighami/snh
https://infolab.usc.edu/DocsDemos/snh.pdf

0.05 0.1 0.2 0.4 0.8
ε

10−1

100

101

re
la
tiv

e
er

ro
r

SNH
AG
UG
PrivTree

DAWA
STHole
HB
QuadTree

Uniform
Privelet
DPcube

Figure 14: Milwaukee
(VS) 𝜖 = 0.2, 𝑛 = 100𝑘

0.05 0.1 0.2 0.4 0.8
ε

0.0

0.1

0.2

re
la

tiv
e

er
ro

r

SNH No Unif. SNH

Figure 15: Replacing unifor-
mity error with noise

0.05 0.1 0.2 0.4 0.8
ε

0.00

0.05

0.10

0.15

0.20

re
la

tiv
e

er
ro

r

SNH@ParamSelect
SNH@UG

Figure 16: Study
of ParamSelect

1 2 4 6 8
k

0.00

0.05

0.10

0.15

re
la

tiv
e

er
ro

r

ε=0.05
ε=0.2

ε=0.8

Figure 17: Impact of
𝑘

5 10 20 40
Model depth

0.00

0.05

0.10

0.15

re
la

tiv
e

er
ro

r

ε=0.05
ε=0.2

ε=0.8

Figure 18: Impact
of model depth

A DP PROOF AND SECURITY DISCUSSION
Proof of Theorem 5.1. SNH, represented as the mechanism M

is the composition of mechanisms M𝜙 and M𝑓 . Furthermore, M𝑓

can be written as a composition of the data collection mechanism,

denoted as M𝐷 , which outputs the data collection grid, and a func-

tion h that performs the arbitrary transformations on this grid

during data augmentation and training. That is M(𝐷 |𝜀, 𝑆𝑅,D) =
h(M𝐷 (𝐷 |𝜀, 𝑆𝑅,MΦ (D, 𝑆𝑅)),D). MΦ (D, 𝑆𝑅)) is the ParamSelect

mechanism that obtains system parameters utilizing only public

information D and 𝑆𝑅 to predict the system parameters. Thus it

does not access private records in 𝐷 , consequently, it also does

not consume privacy budget. Note that ParamSelect mechanism

does use the size of the private dataset for prediction, which we

assume is publicly available and, if not, an estimate can be obtained

by spending negligible privacy budget. Next, M𝐷 is called, which

creates a grid of cell width 𝜌 , where 𝜌 is the output of M𝜙 , on the

spatial extent 𝑆𝑅. For each cell in the grid created, it then access

the database to obtain the number of records in the cell and adds

noise 𝐿𝑎𝑝 (1𝜀) to the true count. Thus, a noisy count for each cell

is obtained with 𝜀-DP. Furthermore, since cells do not overlap par-

allel composition theorem of DP applies, and the computation of

noisy count for all the cells is still 𝜀-DP. Finally, the transformation

h is applied to the output of M𝐷 , which due to the post process-

ing property of DP does not consume any privacy budget. Thus,

the mechanism M, which is a composition of M𝜙 , M𝐷 and h is

𝜀-differentially private.

□
Security Discussion. DP has different requirements and guaran-

tees compared to alternative security models such as encryption.

With encryption, one protects the data values of an individual (i.e.,

locations visited by a person), whereas the presence of an individual

in the data is known (either a real identity or a pseudo-identity).

In the context of cryptography, leaking the distribution of visited

locations is not permitted. In contrast, DP allows statistical infor-
mation (including density distribution) to be released, as long as an

adversary cannot pinpoint the presence of a targeted individual in

the data. The purpose of SNH is to publish DP-compliant density

statistics while protecting against individual presence inference. In

this context, density information is actually needed by the applica-

tion (e.g., identifying hotspots), and leakage of DP-sanitized density
information is desired and permitted. Moreover, due to the robust-

ness of DP to side-channel information, this privacy guarantee is

independent of available public information in D.

B COMPLEMENTARY EXPERIMENTAL
RESULTS

B.1 Comparison against all baselines
We compare our method against all existing baselines in Figure 14

(note the log scale). To the best of our knowledge, the figure con-

tains all differentially private algorithms applicable to 2D location

datasets. Existing methods are predominantly domain partition-

ing methods that utilize traditional data structures. For instance,

DPCube[12] exploits a kd-tree structure, QuadTree[11] uses a full

quadtree, HB[35] invokes a hierarchical tree with variable fanout,

Privtree[48] also uses a hierarchical tree but without height con-

straints, UG [34] is a single level grid and AG[34] is a two level

grid. A detailed description of each method is available in Section 7.

Missing from the excerpt is DPCube [40], which in particular is a

method best sutiable to high-dimensional data. DPCube searches for

dense ‘subcubes’ of the datacube representation to release privately.

A part of the privacy budget is used to obtain noisy counts using

Laplace mechanism over a straightforward partitioning, which is

then improved to a standard kd-tree. Fresh noisy counts for the

partitions are obtaining with the remaining budget and a final infer-

ence step resolves inconsistencies between the two sets of counts,

and improves accuracy. Methods that perform worse than Unifrom

Grid (UG), have been omitted in our experiments in Section 6 due

to their poor performance.

B.2 Data Augmentation: Uniformity error or
Large Scale Noise

In this section, we present our empirical results motivating our

design principle “P2: Spatial Data Augmentation through Partition-

ing”. Recall that, as discussed in Sec. 3.2, neural networks perform

best when trained with queries of different sizes (as shown in exper-

iments in Sec. 6.3.2, Figs 17 and 10). However, queries of different

sizes may overlap. Hence, due to DP constraints, answering such

queries can either be done by introducing more noise or more uni-

formity error due to sequential composition property of DP (see

Sec. 2.1).

Here, we present our results that show a considerable advantage

in adding noise once and collecting more training data through

data augmentation (and thereby using uniformity assumption) com-

pared with adding more noise but avoiding uniformity assumption.

To substantiate this claim we design an experiment (in Fig. 15),

where for any location we generate training queries with 8 differ-

ent sizes, creating 8 overlapping queries per location. Lines labelled

“SNH No Unif.” and “SNH” both use the same query set for training,

however the answers (i.e., labels) to the training queries are gener-

ated differently. “SNH No Unif.” answers all queries directly from

the database records (and thus more noise is added per query due to

sequential decomposition of DP, but avoids completely uniformity

assumption). On the other hand, SNH as presented in the paper and

(discussed in Sec. 3.3) first uses a grid for data collection and then

answers queries based on the grid (so it incurs uniformity error, but

adds less noise per query than “SNH No Unif.”). The result shows

that it is better to use uniformity assumption than to increase noise,

justifying its use in data augmentation. However note that the uni-

formity error is introduced in the training set before learning, and
mitigated through learning.

B.3 Benefit of ParamSelect
ParamSelect selects the best grid granularity 𝜌 for SNH. An existing

alternative for setting the grid granularity is using the guideline of

UG [34], which, by making assumptions about the query and data

distribution, analytically formulates the error for using a uniform

grid. It then proposes creating an𝑚 ×𝑚 grid, setting𝑚 =
√
𝑛𝜀/𝑐

for a constant 𝑐 empirically set to 𝑐 = 10. We call SNH with grid

granularity chosen this way SNH@UG. We compare this method

with SNH (referred to SNH@ParamSelect to emphasize the use of

ParamSelect to set 𝜌).

We compare the error in the 𝜌 predicted by ParamSelect to that

by the UG guideline. To do so, we first empirically find 𝜌∗, the cell
width at which SNH achieves highest accuracy. Then we calculate

the mean absolute error (MAE), |𝜌 −𝜌∗ |, of the suggested cell width
𝜌 by either UG or ParamSelect. Averaged across several privacy

budgets, ParamSelect achieves MAE of 3.3m while UG results in

MAE of 281.3m. That is, UG recommends a cell width far from the

optimal cell width.

Fig. 16 shows how cell width impacts the accuracy of SNH.We ob-

serve a significant difference between SNH@UGand SNH@ParamSelect,

establishing the benefits of ParamSelect. Overall, the results of this

ablation study, and the ablation study in Sec. 6.3.2, show that both

good modelling choices and system parameter selection are imper-

ative in order to achieve high accuracy.

B.4 System parameters analysis
Impact of 𝑘 . Fig. 17 shows the impact of 𝑘 on the accuracy of the

models. The result shows that for large values of 𝜀, increasing 𝑘

can substantially improve the performance. Fig. 17 also shows the

need for having access to queries of multiple sizes during training,

as this is required when 𝑘 > 1.

Impact of Model Depth. We study how the neural network archi-

tecture impacts SNH’s performance in Fig.18. Specifically, we vary

the depth (i.e., the number of layers) of the network. Increasing

model depth improves slightly the accuracy of SNH due to having

better expressive power from deep neural networks. However, net-

works that are too deep quickly decrease accuracy as the gradients

during model training diminish dramatically as they are propagated

backward through the very deep network. Furthermore, larger 𝜀

values are able to benefit more from the increase in depth, as more

complex patterns can be captured in the data when it is less noisy.

B.5 Further GMM Visualizations
We extend the discussion of Sec. 6.3.4 and visualize in various

settings the ability of neural networks to reduce the errors by

learning from imprecise observations. We study this behavior for

𝜀 = 0.05 (i.e. in high-privacy regime) in Figures 19, 21, 23, and for

𝜀 = 0.2 (i.e. low-privacy regime) in Figures 20, 22, 24 for different

values of standard deviation, 𝜎 , of the GMM components. SNH is

especially capable in the low-privacy regime, and when the data

are heavily skewed or non-uniform, justifying their use in location

datasets that exhibit similarly skewed distributions. To conclude,

given a set of imprecise observations, by fitting a neural network to

all such observations simultaneously, we obtain a neural network

with lower error than in the observations themselves.

C DIFFERENTIALLY PRIVATE STHOLES
IMPLEMENTATION

We describe the general structure of the STHoles histograms and

the specific modifications that we make to achieve DP-compliance

and good utility for answering RCQs. STHoles [8] is a histogram

construction technique that exploits query workload. It generates

a domain partitioning in the form of nested buckets assembled

as a tree structure. In contrast to traditional domain partitioning

methods, STHoles allows buckets to overlap by permitting inclusion
relationships between ancestor nodes of the tree structure, i.e., some

buckets can be completely included inside others. We defer the

details of the histogram’s construction, and instead refer the reader

to [8]. Our implementation is publicly available at [43].

Our DP-compliant STHoles implementation makes two adjust-

ments to the original STHoles algorithm to allow for better accuracy

when accounting for privacy. First, we allow the algorithm to use

unlimited memory, so that it does not need to merge any of the

buckets to reduce memory usage. This not only avoids incurring

the merge penalty (discussed in the paper [8]) but also lowers the

privacy budget consumption, since we can avoid calculating merge

penalties that would require budget consuming accesses to 𝐷 . Sec-

ond, we separate the process of calculating the frequency counts for

each bucket from the process of building the nested bucket struc-

ture. That is, we first build the bucket structure based on the query

workload and then calculate the frequency counts within each

bucket. This separation significantly reduces the privacy budget

consumption, since it allows us to avoid asking overlapping queries

from the database and thus, final privacy budget accounting can

be done with only parallel composition theorem. Next, we present

how we build the buckets and calculate the frequency counts in

more details.

First, we generate the nested budget structure using the query

workload𝑄𝑊 (Algorithm 4). Modified from the original algorithm,

in this step, we do not calculate database related statistics such

as the number of records in each bucket 𝑏 ∈ 𝐻𝑆𝑅 as that would

necessitate spending scarce privacy budget. For the same reason,

we also skip the step which merges buckets together based on a

penalty caculated from database records. From the privacy analysis

perspective, the query workload is public and using information

therein incurs no privacy leakage. Hence, Algorithm 4 doesn’t use

any privacy budget. In the second step (Algorithm 5), we gener-

ate sanitized frequency counts for STHoles’ buckets in the data

structure. For each bucket, we query the database for the number

0 50 100 150
0

50

100

150

(a) True Answers

0 50 100 150
0

50

100

150

(b) Noisy Answers

0 50 100 150
0

50

100

150

(c) SNH Predictions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

0

50

100

150

0.0

2.5

5.0

7.5

10.0

Figure 19: 𝜀 = 0.05, 𝜎 = 14

0 50 100 150
0

50

100

150

(a) True Answers

0 50 100 150
0

50

100

150

(b) Noisy Answers

0 50 100 150
0

50

100

150

(c) SNH Predictions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

0

10

20

30

40

2

4

6

Figure 20: 𝜀 = 0.2, 𝜎 = 14

0 50 100 150
0

50

100

150

(a) True Answers

0 50 100 150
0

50

100

150

(b) Noisy Answers

0 50 100 150
0

50

100

150

(c) SNH Predictions

0

10

20

30

0

50

100

150

200

0

5

10

15

20

Figure 21: 𝜀 = 0.05, 𝜎 = 7

0 50 100 150
0

50

100

150

(a) True Answers

0 50 100 150
0

50

100

150

(b) Noisy Answers

0 50 100 150
0

50

100

150

(c) SNH Predictions

0

10

20

30

0

10

20

30

40

50

5

10

15

20

Figure 22: 𝜀 = 0.2, 𝜎 = 7

0 50 100 150
0

50

100

150

(a) True Answers

0 50 100 150
0

50

100

150

(b) Noisy Answers

0 50 100 150
0

50

100

150

(c) SNH Predictions

0

20

40

60

80

100

0

50

100

150

0

20

40

60

80

Figure 23: 𝜀 = 0.05, 𝜎 = 3.5

0 50 100 150
0

50

100

150

(a) True Answers

0 50 100 150
0

50

100

150

(b) Noisy Answers

0 50 100 150
0

50

100

150

(c) SNH Predictions

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

Figure 24: 𝜀 = 0.2, 𝜎 = 3.5

Algorithm 4 STHoles Domain Partitioning

Input: Query Workload 𝑄𝑊 for the spatial region 𝑆𝑅

Output: Domain Partitioning 𝜃

1: procedure BuildPartitioning(𝑄𝑊 , 𝑆𝑅)

2: 𝐻𝑆𝑅 ← Initialize histogram with fixed size root bucket of

3: spatial extent 𝑆𝑅.

4: for all 𝑞 ∈ 𝑄𝑊 do
5: Identify 𝑏 ∈ 𝐻𝑆𝑅 that have 𝑞 ∩ 𝑏 ≠ ∅.
6: Shrink candidate holes according to Sec. 4.2.1 of [8]

7: Add new holes as buckets to histogram 𝐻𝑆𝑅

8: return 𝐻𝑆𝑅

Algorithm 5 DP-compliant sanitization of STHoles

Input: Private Dataset 𝐷 , Buckets 𝑏 ∈ 𝐻𝑆𝑅 , privacy budget 𝜀

Output: DP-compliant STHoles model 𝜃𝑆𝑇𝐻𝑜𝑙𝑒𝑠

1: procedure SanitizeHistogram(𝐻𝑆𝑅 , 𝐷 , 𝜀)

2: for all 𝑏 ∈ 𝐻𝑆𝑅 do
3: Set frequency of𝑏 to be ¯𝑓 (𝑏) (i.e., true count + Lap(1/𝜀))
4: return 𝜃𝑆𝑇𝐻𝑜𝑙𝑒𝑠

of records that fall within its extent, sanitizing these counts using

the Laplace Privacy Mechanism (see Section 2.1 for details of the

mechanism).

D PARAMSELECT FEATURE ENGINEERING
AND FEATURE SELECTION

We present experimental results supporting that we have care-

fully selected features for ParamSelect that accurately capture the

privacy-utility trade-off across spatial datasets and allow for reliable

system parameter estimation.

Since the training data is comprised of public datasets D, the

feature extraction process is a typical ML problem. Our feature
extraction process follows two steps: (I) feature engineering where

we transform raw data into a number of features that better rep-

resent the dataset for learning our regression model, and (II) fea-
ture selection, where we select a subset of the engineered features

that provide reliable accuracy across datasets. Feature Engineer-
ing. We engineered various features according to relations (such as

epsilon-scale exchangeability) well studied in the literature [17]

and proposed novel features to capture data distribution in location

datasets. While data-independent features were straightforward,

data region specific features posed a challenged since they need

to summarize location datasets while capturing the differences in

the pattern of originating location signal (e.g., cell phone location

signals vs user-checkins in geo-social networks), and differences

in skewness between cities (e.g., dense sprawls of New York vs

the spares expanses in Kansas City). We generated the following

features; (1) Population density (𝑃𝑂𝑃𝐷), calculated as the number

of people resident per square mile (as reported by the US Census)

(2) Entropy profile (ℎ𝐷), which computes over a flattened grid rep-

resentation of the region the Shannon’s Entropy of the probabilities

Feature Set 𝜙 Relative Error of regressor Φ
on cross-validation set

𝜙 (𝑛) 0.312

𝜙 (𝑛, 𝜀) 0.237

𝜙 (𝑛, 𝜀, 1/𝑛𝜀,
√

1/𝑛𝜀) 0.193

𝜙 (𝑛, 𝜀, 1/𝑛𝜀,
√

1/𝑛𝜀, 𝑃𝑂𝑃𝐷) 0.207

𝜙 (𝑛, 𝜀, 1/𝑛𝜀,
√

1/𝑛𝜀,𝐴𝑁𝑁𝐷) 0.225

𝜙 (𝑛, 𝜀, 1/𝑛𝜀,
√

1/𝑛𝜀, 𝑆𝑁𝑅𝐷) 0.187

𝜙 (𝑛, 𝜀, 1/𝑛𝜀,
√

1/𝑛𝜀, ℎ𝐷) 0.151

Table 3: Validation set error of ParamSelect in predicting 𝜌

of counts in each cell; (3) Average Nearest Neighbor (𝐴𝑁𝑁𝐷) dis-

tance feature averages the distance to the nearest neighbor for all

users in the city; and (4) Signal-to-Noise ratio (𝑆𝑁𝑅𝐷) evaluates

how many cells in an overlaid grid have enough signal (in terms of

number of user counts in a cell) to not be obliterated by DP noise

(average noise is 2/𝜀 when sampled from distribution Lap(1/𝜀)).

Feature Selection. The proposed features are filtered through a fea-

ture selection process that evaluates the accuracy achieved by candi-

date feature subset across different datasets. This step finds a subset

of the engineered features that can help genearlize the model across

datasets. This selection process is conducted on a validation set

(J-K cross-validation folds [30] in our case, with J=3 and K=5). We

utilize an iterative feature selection technique that incrementally

adds features one at a time and evaluates the subset’s validation

performance, ignoring features that do not contribute. In Table 3 we

report the validation performance (relative error) for the evaluated

feature subset. The proposed data region specific feature, entropy

ℎ𝐷 , is the most valuable for ParamSelect (relative error of 0.151).

In brief, features used in ParamSelect are highly performant. In

Section B.3, we show that ParamSelect with its use of our feature

extraction function vastly improves generalization ability over ex-

isting method for system parameter selection by exploiting the

additional dataset features and, with the use of ML, their non-linear

relationships.

We conclude with a discussion on potential future work per-

taining to datasets used in ParamSelect module. Recall that, data

region specific features (such as ℎ𝐷) are obtained from a proxy

dataset. This comprises public domain auxiliary information that

is, at a very high-level, similar to our private dataset. In our empir-

ical evaluation we use data sources that were collected a decade

apart. While not included in the evaluation, we report that static

datasets too perform well such as the positions of points of in-

terests in a city. Other DP-compliant public releases of location

datasets, such as that from “Facebook Data For Good” initiative, are

also viable. Nevertheless, for regions where an auxiliary source of

public information is unavailable, the data-independent features

can be utilized to good effect (relative error of 0.193 for feature set

𝜙 (𝑛, 𝜀, 1/𝑛𝜀,
√

1/𝑛𝜀)).

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Differential Privacy
	2.2 Problem Definition

	3 Spatial Neural Histograms (SNH)
	3.1 Baseline Solution using DP-SGD
	3.2 A different learning paradigm for RCQs
	3.3 Proposed approach: SNH

	4 Technical Details
	4.1 Step 1: Data Collection
	4.2 Step 2: SNH Training
	4.3 Model Utilization

	5 End-to-End System Aspects
	5.1 System Tuning with ParamSelect
	5.2 Privacy and Security Discussion

	6 Experimental Evaluation
	6.1 Experimental Settings
	6.2 Comparison with Baselines
	6.3 Ablation Study for SNH

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A DP Proof and Security Discussion
	B Complementary Experimental Results
	B.1 Comparison against all baselines
	B.2 Data Augmentation: Uniformity error or Large Scale Noise
	B.3 Benefit of ParamSelect
	B.4 System parameters analysis
	B.5 Further GMM Visualizations

	C Differentially Private STHoles Implementation
	D ParamSelect Feature Engineering and Feature Selection

