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ABSTRACT

Conventional origin-destination (OD) matrices record the count
of trips between pairs of start and end locations, and have been
extensively used in transportation, traffic planning, etc. More
recently, due to use case scenarios such as COVID-19 pandemic
spread modeling, it is increasingly important to also record in-
termediate points along an individual’s path, rather than only
the trip start and end points. This can be achieved by using a
multi-dimensional frequency matrix over a data space partition-
ing at the desired level of granularity. However, serious privacy
constraints occur when releasing OD matrix data, and especially
when adding multiple intermediate points, which makes individ-
ual trajectories more distinguishable to an attacker. To address
this threat, we propose a technique for privacy-preserving pub-
lication of multi-dimensional OD matrices that achieves differ-
ential privacy (DP), the de-facto standard in private data release.
We propose a family of approaches that factor in important data
properties such as data density and homogeneity in order to build
OD matrices that provide provable protection guarantees while
preserving query accuracy. Extensive experiments on real and
synthetic datasets show that the proposed approaches clearly
outperform existing state-of-the-art.

1 INTRODUCTION

Origin-destination (OD) matrices have been extensively used to
characterize the demand for transportation between pairs of start
and end trip points. Using OD matrices, one can provision appro-
priate capacity for a transportation infrastructure, by determining
what is the demand (or trip frequency) for each source-destination
pair. However, novel applications require more level of detail, for
which conventional OD matrices are insufficient, due to the fact
that they have a 2D structure, and intermediate points along a
trajectory cannot be captured. Consider, for instance, the study
of COVID-19 spread patterns in the ongoing pandemic, where
an analyst needs to determine not only the end points of a tra-
jectory, but also the intermediate points that a certain individual
has visited, and where possible exposure to the virus occurred. In
this case, it is necessary to record several distinct points across
a trajectory, which leads to an increase in the dimensionality of
OD matrices. We denote such enhanced data structures as OD
matrices with intermediate stops.

While such detailed OD matrices capture additional informa-
tion, they also pose a more serious privacy threat for the individ-
uals included in the data, since the finer level of granularity of
trajectory representation allows an adversary to pinpoint a user
with better accuracy. For instance, there may be a large number
of users that travel between a suburban neighborhood and the
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city center. However, when intermediate stops are also included,
e.g., a specific type of store that sells ethnic products, a gym
specializing on a certain type of yoga, and a fertility clinic, there
are far fewer individuals who follow such a path (and sometimes,
perhaps just one individual), which may lead to serious privacy
breaches related to that individual’s gender, race and lifestyle
details. It is thus essential to protect the privacy of individuals
whose trajectories are aggregated to build detailed OD matrices,
and differential privacy (DP) [7] is the model of choice to achieve
an appropriate level of protection.

Specifically, DP bounds the ability of an adversary such that
s/he cannot determine with significant probability whether the
trajectory data of a target individual is present in the released
OD matrix or not. The OD matrix with intermediate stop points
is equivalent to a multi-dimensional frequency matrix, in which
an element represents the number of individuals who took a trip
that includes that specific sequence of start, intermediate and end
points. According to DP, carefully calibrated noise is added to
each count to bound the identification probability of any single
individual.

Several approaches tackled the problem of protecting fre-
quency matrices for location data, but they do have serious limi-
tations. For instance, solutions for DP-compliant location data
histograms [4, 15, 20, 21] build data-independent structures that
do not adapt well to data density, and assume a fixed dimension-
ality of the indexing structure, typically 2D only. As we show in
Section 6, they do not handle well skewed datasets, which are the
most typical ones in the case of geospatial data. Another category
of approaches attempts to capture trajectories using prefix trees
or n-grams [1, 2], but those approaches transform cells in the
data domain into a sequence of abstract string labels, and lose
the proximity semantics that are so important when querying
location-based data.

We propose a novel technique for sanitization of OD matrices
with intermediate stops such that location proximity semantics
are preserved, and at the same time the characteristics of the data
are carefully factored in to boost query accuracy. Specifically, we
build custom data structures that tune important characteristics
like index fan-out and split points to account for data properties.
This way, we are able to achieve superior accuracy while at the
same time enforcing the strong protection guarantees of DP.

Our specific contributions are:

o We identify important properties of indexing data struc-
tures that have a high impact on query accuracy when
representing location frequency matrices;

e We design customized approaches that are guided by in-

trinsic data properties and automatically tune structure

parameters, such as fan-out, split points and index height;

We perform a detailed analysis of the obtained data struc-

tures that allows us to allocate differential privacy budget

in a manner that is conducive to preserving as much data
accuracy as possible under a given privacy constraint;
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Figure 1: System model for private frequency matrices.

o We perform an extensive experimental evaluation on both
real and synthetic datasets which shows that our proposed
techniques adapt well to data characteristics and outper-
form existing state-of-the-art in terms of query accuracy.

Section 2 introduces necessary background concepts and defi-
nitions. Section 3 outlines data-independent techniques, followed
by data-adaptive approaches in Section 4. Section 5 surveys re-
lated work. We present experimental evaluation results in Sec-
tion 6, followed by conclusions in Section 7.

2 BACKGROUND AND DEFINITIONS

We assume the two-party system model shown in Fig. 1: a trusted
data curator/owner collects the frequency matrix directly from
individuals and sanitizes the data. Untrusted data analysts are
interested in querying the private frequency matrix.

Let F1 X Fy X ... X Fy be a d-dimensional array representing
a frequency matrix F. Each entry f; € F is a number denoting a
frequency or count. For example, a two-dimensional frequency
matrix can model a map with each entry indicating the number
of individuals located in a particular area. The frequency matrix
corresponds to a d-dimensional finite space hyper-rectangle, or
d-orthotope. According to the differential privacy model, a pro-
tection mechanism adds to each matrix element noise from a
carefully selected random distribution to prevent an adversary
from learning with significant probability whether a particular
individual’s data was used or not when creating the matrix.

2.1 Differential Privacy

Differential privacy (DP) [7] is a popular privacy model which
provides strong protection guarantees. It presents an aggregate
query interface (i.e., count queries) and ensures that the presence
or absence of an individual in the data does not significantly
change the results of a query. Consider two frequency matrices
F and F’ that differ in a single record ¢, i.e., F/ = F|J{t} or
F’ = F\{t}. F and F’ are commonly referred to as neighboring
or sibling datasets.

Definition 1 (e-Differential Privacy). A randomized mechanism
A provides e-DP if for any pair of neighboring frequency matri-
ces F and F’, and any output value S € Range(A),

Prif=9) _ e
Pr(F’ =)
Parameter € is the privacy budget: lower values result in stricter

privacy, but also require addition of noise with larger magnitude,
decreasing query accuracy. The sequential composability property
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Table 1: Summary of notations.

Symbol Description

F Frequency matrix

F; Dimension cardinality

N Total count of F

N Sanitized total count of F
m Partitioning constant

S Sensitivity

Etot Total privacy budget

€prt Partitioning budget

€data Data perturbation budget
H(F) Entropy of F

Lap(s/e€) Laplace noise with sensitivity s and budget €

of DP states that running in succession multiple mechanisms that
each satisfy DP with privacy budgets €1, €2, ..., €5 respectively,
is equivalent to the execution of a single mechanism with € =
i1 Ei-
An essential concept of DP is the sensitivity of queries, which
measures the maximal difference that can be achieved by the
addition or removal of a single individual’s record in the database.

Definition 2 (L;-Sensitivity). Given two sibling datasets F, F’
and a set of real-valued functions G = {g1,92, ....gm}, the L1-
sensitivity of F is measured as

m
- (F) — AF/
s %;mm gi(F")

The Laplace mechanism is a widely used technique to achieve
€-DP. It adds to the output of a query function g noise drawn
from a Laplace distribution with scale b, where b depends on two
factors: sensitivity and privacy budget.

1
Pr(x|b) = %elxl/b where b = Z (2)

In the rest of the paper, we denote Laplace noise by Lap( f). In the
€

case of query functions that are modeled through a partitioning
of the dataspace (e.g., a set of non-overlapping histogram bins),
sensitivity is equal to 1, since a record can fall in exactly one
partition.

2.2 Problem Statement

Starting with an input frequency matrix, we create a set of non-
overlapping partitions of the matrix and then publish a set of
noisy counts for each of these partitions, according to the Laplace
mechanism. The sanitized, DP-compliant frequency matrix con-
sists of the boundaries of all partitions and their noisy counts. Since
partitions are non-overlapping, we keep sensitivity low (i.e., 1).
We refer to each input cell in the original frequency matrix as
an entry, hence a partition is a group of matrix entries. Analysts
(i.e., users of the sanitized matrix) ask multi-dimensional range
queries.

Definition 3. (Range Query) A range query on the frequency
matrix F is a d-orthotope with dimensions denoted as d; X dy X
... X dn, where d; represents a continuous interval in dimension i.

For example, consider the 3 X 2 X 3 frequency matrix shown in
Fig. 1. The generation of partitions is referred to as partitioning
and the addition of noise to total sums is referred to as saniti-
zation. The example shows a sample partitioning of the matrix



generating three partitions P;, P, and P3 with total counts of
2, 4 and 12, respectively. In a simplified setup, the sanitization
follows by adding Laplace noise to the partitions’ total count
and answering queries based on the resulting private frequency
matrix. Moreover, a uniformity assumption [4] is made within
each partition to answer queries with varying shapes and sizes.
For example, if the sanitized counts are 2 + nq, 4+ ny, and 12 + ns,
where n; denotes Laplace noise added for sanitization, and an
analyst asks a query including two cells whose borders are shown
12+n3 2+n;
+ T

in bold red color, the answer is

Suppose that the total count of a partition entailing g entries
is p, and its noisy count is denoted by p. One can see that there
are two sources of error while answering a query. The first type
of error is referred to as noise error, which is due to Laplace
noise added to the partition counts. The second source of error is
referred to as uniformity error. The uniformity error arises as the
assumption of uniformity is made within each partition so that
the noisy count of a cell in the partition can be calculated as p/q.

To evaluate accuracy of query results, we use the mean relative
error (MRE). For a query g with the true count p and noisy count
D, MRE is calculated as

MRE(q) = X 100

lp - pl
Y ®3)

PrROBLEM 1. Given a frequency matrix F, generate an e-differentially

private version of F such that the expected value of relative error
(MRE) is minimized.

In the design of methods for the publication of private fre-
quency matrices, we make extensive use of entropy to understand
the amount of information contained in the frequency matrix
and the effect that partitioning has on information loss.

Definition 4. (Entropy) Given a frequency matrix F and a set of

partitions P = {Py, Py, ..., Pp} with the total counts p1, p2, ..., P,
the entropy of F is defined as:
n
pi pi
H(F|P) = - log 4)
; i Pj ’ 2j=1Pj

Table 1 summarizes notations used throughout the paper.

2.3 Trajectory Modeling with OD Matrices

Conventional OD matrices allow analysts to determine how many
individuals traveled between pairs of locations, e.g., between the
central business district (CBD) and a suburb. Increasing availabil-
ity of mobile data and their use in complex planning problems
makes it important to expand the expressiveness of OD matrices,
by allowing one to include intermediate stops, which essentially
amounts to supporting queries on trajectories. Furthermore, con-
ventional OD matrices tend to use abstract representations of
locations, where the spatial information may be lost, e.g., by
tabulating counts of individuals traveling between pairs of zip-
codes. Proximity of zipcodes may be lost in the process, and if
one wishes to change the representation granularity, or perform
range-based queries (e.g., find how many users traveled from a
1km circle centered at point A to a 1km circle centered at B), such
functionality is not possible.

Our proposed multi-dimensional histograms produce a hierar-
chical partitioning of the data domain that preserves locality and
proximity information. It allows flexible queries, and captures
intermediate points along a trajectory, as shown in Figure 2. As-
sume a trajectory representation where one wishes to capture
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Figure 2: Capturing trajectory data using OD matrices.

daily activities across several time frames, e.g., morning->noon-
>evening. Trajectory Tj corresponds to a person who lives in
a suburb, works in CBD and goes to see a play in the evening.
This can be captured using a multi-dimensional histogram where
the first pair of spatial coordinates corresponds to the morning
location (suburb), followed by another pair in the CBD, and fi-
nally the evening in the theater district. Each of the time frames
can be partitioned independently, resulting in the structure on
the right half of Figure 2 (due to space constraints, we do not
represent the evening time frame). Each trajectory corresponds
to a single entry in this multi-dimensional matrix, according to
each location at each time frame.

An important advantage of this representation is that the
specific partitioning used for a particular dimension is customized
to the data corresponding to that time frame. For instance, the
same part of the space can be present in different frames, but
with different granularities. In this example, the CBD area has
low granularity for the morning time frame, since few people
live there, but high granularity in the noon frame. Similarly, a
theater district will not present interest in queries for the first
or second time frame, but will likely be of high interest in the
evening frame. Conventional OD matrices cannot accommodate
such scenarios.

3 DATA-INDEPENDENT APPROACHES

In this section, we introduce two data-independent approaches
for the sanitization of frequency matrices with arbitrary dimen-
sionality. These are extensions of existing work, particularly the
technique in [15]. In Section 4 we will introduce more advanced
data-dependent techniques that account for data distribution.

3.1 Extended Uniform Grid (EUG)

We extend the work in [15], originally proposed for two-dimensional

frequency matrices. We refer to that algorithm as Uniform Grid
(UG). The main idea of UG was to sanitize the total count of the
frequency matrix and substitute it in a formula that results in
a constant value m that represents the granularity of dividing
each dimension of a 2D frequency matrix. After partitioning,
the count in each of the partitions is sanitized using the Laplace
mechanism.

While the approach in [15] only works for two-dimensional
data, EUG provides a detailed analytical model that finds the
optimal m value for uniform partitioning in any number of di-
mensions. EUG is formally presented in Algorithm 1. Suppose
that the frequency matrix F has d dimensions represented by
a F; X F3 X ... X F; array, and let N denote the total count of



F. The objective is to find a value of m such that, by updating
the granularity of F to m? and applying the Laplace mechanism,
the utility of the published private histogram is maximized. The
algorithm starts by utilizing a small amount of budget denoted
as € to obtain a noisy count of the total number of entries in the
frequency matrix.

N =N + Lap(s/eo), (5)

where N denotes the sanitized count. The sanitized count is used
for the estimation of m by formulating an optimization problem.

The value of m can be estimated by considering the existing
error sources, i.e., noise error and non-uniformity error. The for-
mer is used for sanitization of counts, and the latter is due to
the assumption that data in each partition are uniform. Consider
a query that selects r portions of F, calculated by dividing its
covered entries over the total number of entries. Hence, the query
entails rm? entries of F. On the one hand, given that the noise
added to each partition has a variance of 2/€2, the total additive

d

. . m
noise variance sums up to ——
€

Varm/?
v

, or equivalently standard devia-
tion of

On the other hand, the query can be seen as a d-orthotope
where the side length is proportional to {/r. Thus, each side
of the orthotope spans €/r x m cells, and the number of points

N
located inside the query is on average €/r x m x — The term
m

N/m? comes from the assumption of data uniformity in F. By
further assuming that the non-uniformity error on average is
some portion of the total density of the cells on the query border,

we have the non-uniformity error as r x — for some
com“—
constant cg. Therefore, the aim is to find the optimal value of m

that minimizes the summation of two errors, i.e.,

_ Va2rmd/?
-+
€

N

comd-1

min
m

rX

(6)

Solving based on stationary conditions of the above convex prob-
lem results in the optimal m given by:

N
—d-1D)¥rx — =0
com?d

d-1
—dﬁe’" @)

_ (Z(d —D  /d-1/2) Ne

)2/(3d—2)
d V2eg

®)

The base case of the problem occurs when the frequency matrix
has two dimensions and results in the same equation proposed

by [15]:
Ne
\ v2co

For higher dimensions, if query size is known in advance, Equa-
tion (8) can be used with the given r to estimate the value of m;
otherwise, by assuming that all query sizes are equally likely,
integration over r leads to Equation (13). For derivation, let us
define an auxiliary variable « as

©

2(d -1 Ne _
( d-1 )2/(34-2)

7 Vaco (10)
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Algorithm 1 Extended Uniform Grid (EUG)
Input: F, €, €0, S;
1: N « SUM(F) + Lap(s/eo)
2: €tot < €tot ~ €0
3: d < Number of dims in F _
oome (297D o arayz o NE
d V2cg
: // UPDATE GRANULARITY
: Divide each dimension by m
: for each new partition i do
N’ « SUM(i)
N « N+ Lap(s/e€tot)
for each entry j in i do
. v .
Jj < N/l
return F

)2/(3d-2)

© ® N @

10:
11:
12:

Integration over r leads to

. 2—d 2—-d "
e - % .
/ axrd3d=2) g = 2_3 rd(3d-2) (11)
0 —+1 0
d(3d - 2)
d(3d - 2)
—_—), 12
“ G 3a+2) (12)
and ultimately, results in:
2(d-1) _ Ne y/(34-2) d(3d - 2)
(L — —_—). 13
( d \/Eco) X(3d2—3d+2) (13)

Once the value of m is calculated, each dimension of matrix F
is divided into m equal intervals generating md partitions. The
entries in each partition are set to the partition’s sanitized total
count divided by the number of entries it contains. The sanitized
total count of a partition is generated by adding its entries and
using Laplace mechanism with the privacy budget of eiot — €.

3.2 Entropy-based Partitioning (EBP)

A critical point in the EUG algorithm is how to determine the
value of m. We propose Entropy-based Partitioning (EBP), a
method for estimating a good value of m based on the concept
of entropy. In addition to providing better accuracy, EBP also
addresses the issue with EUG’s arbitrary choice of constant ¢
which is empirically set to 10/ V2. EBP proposes a more informed
parameter selection process that does not require arbitrary value
settings.

Consider a d-dimensional frequency matrix F with dimensions
FiXFyX...xFy, andlet N represent the total count of F. Moreover,
denote the privacy budget allocated for the calculation of m by e.
As in the case of Algorithm 1, the objective is to find a value of
m that, by updating the granularity of F to m?, and applying the
Laplace mechanism, the utility of the published private histogram
is maximized. We look at the problem from an information theory

perspective. Once the granularity of F is updated, the variance
d
2m
of total Laplace noise used to sanitize partitions adds up to —-,
€

/2

leading to total standard deviation of . The entropy of

the noise imposed on the frequency matrix is therefore,

\amd/?

H( ) (14)

1 €
=-log, ——.
g2 \/imd/z



On the other hand, consider the amount of information loss that
occurs due to the change in granularity. To calculate the informa-
tion loss, the amount of information before and after changing
the granularity F is required. The information contained in F
before change of granularity can be calculated as H(F), denoting
the entropy of F. After partitioning is conducted, the entropy is
reduced to H(F|m), denoting entropy calculated based on the
updated frequency matrix with the granularity of m9_Thus, the
amount of information loss incurred due to change in granularity
is:

Information Loss = H(F) — H(F|m). (15)
An optimization problem can be formulated to find the optimal
value of m that minimizes the average query error.

dj2

) + H(F) — H(F|m). (16)

By increasing the value of m, information loss becomes smaller,
but the induced noise grows larger. The optimal value of m is
reached when the noise is equal to information loss. Unfortu-
nately, entropy cannot be directly calculated due to privacy con-
cerns; however, an approximation can be employed as follows.
We assume that the number of entries is in the order of the num-
ber of data points, and data points are uniformly distributed over
the m? partitions. Entropy before/after changing granularity can
be approximated as

min H(
m €

H(F) ~ —log,(1/N), H(F|M) ~ —log,(1/m%)  (17)

To preserve the privacy of users, the value of N is sanitized
beforehand based on the Laplace mechanism. The value of m
minimizing the optimization problem is derived as

—logy(1/N) +logy(1/m*%) (18)

1 €
—log, —— =
g2 \/imd/z

€ Ne
— log, W = logz(md/N) —m= 3d/2’$ (19)

The derived formula in Equation (19) is an alternative method
to calculate the value of m in the EUG algorithm. Therefore,
the pseudocode in Algorithm 1 applies to EBP by replacing the
formula in line 4 with Equation (19).

4 DATA-DEPENDENT APPROACHES

4.1 Overview

Data-independent algorithms overlook critical information about
the distribution of data points, as they always assume uniform dis-
tribution. This is particularly problematic for higher dimensional
frequency matrices, due to their tendency to be sparse.

To improve accuracy when publishing higher dimensional
frequency matrices, we propose a tree-based approach called
Density-Aware Framework (DAF) that takes into account density
variation across different regions of the space. In addition, DAF
introduces a key feature that enables custom stop conditions for
partitioning. Intuitively, denser parts of the space should be split
in more granular fashion, while for sparse areas the partitioning
can stop earlier, since most likely large regions of the space are
empty. The decision of when to stop partitioning the frequency
matrix is made privately, and avoids over-partitioning which can
lead to large errors in higher dimensional frequency matrices.

DAF is a hierarchical partitioning approach that resembles a
tree index. Each node covers a portion of the frequency matrix,
with the root node covering all entries. Descendants of a node are
generated by a non-overlapping split of the parent node’s entries.
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Algorithm 2 DAF-Entropy

1: Global Constants: €;ot, mg
2: function DAF-ENTROPY(x, acc)

3 d < Number of dimensions
4 d’ « x.depth
5: if d’ =d then
6: x.ncount «— x.count + Lap(1/(etot — acc))
7: return TRUE
8: if d’ = 0 then
9 x.ncount = x.count + Lap(1/(€;0¢/100))
10: acc « acc + €01 /100
o — 3(dd,)/,\z/(x.ncount) X (€tot — acc)
V2
12: else )
€tot ><mg/3 X (1 —m(l)/3
13: mem <— 13 /3
my"”"(1—=my"")
14: x.ncount « x.count + Lap(1/mem)
15: acc « acc + mem
” m e 3(dd,)/\2/(x.ncount) X (€tot — acc)
V2
17: if Stop Conditions= TRUE then
18: mem <— €got — aAccC
19: x.ncount «— x.count + Lap(1/mem)
20: return TRUE
21: M « Split (d” + 1)th dimension into m intervals
22: for i=1tom do
23: create a new node x’
24: x'.F « x.F with ith dimension set to M[i]
25: x".depth — d’ +1
26: x".count « SUM(x’.F)
27: DAF-Entropy(x’, acc)

The split is conducted based on the depth of the node, such that
nodes at depth i are created by dividing dimension i of their
parent node’s partition. The maximum index height is d + 1. The
fanout and the split point are customized at each node based on
sanitized local information about the data. We propose two DAF
alternatives based on different split objective functions: (i) DAF-
Entropy (Section 4.2) which uses entropy information to estimate
good split parameters, and (ii) DAF-Homogeneity (Section 4.3)
which focuses on creating partitions with high intra-region ho-
mogeneity. Section 4.4 introduces privacy budget allocation con-
siderations that are relevant to both approaches.

4.2 DAF-Entropy

DAF-Entropy has the recursive structure presented in Algo-
rithm 2. It receives as inputs the current node to split denoted by
x, privacy budget €ot, variable acc tracking the budget spent so
far (initially set to zero), and a constant my set in the first round
of the recursion which is used for budget allocation purposes at
all levels of the tree (more details are provided in Section 4.4).
Each tree node x is an object with four attributes: (i) x.F; the
node’s associated entries in the frequency matrix, (ii) x.count; the
actual sum of entries in x.F, (iii) x.ncount; the sanitized (or noisy)
count, and (iv) x.depth; the node’s depth in the tree. The initial
run of the function is performed for the root node, representing
the whole frequency matrix.



DAF-Entropy sanitizes the total count of the root node and
utilizes Equation (19) to partition the first dimension of the fre-
quency matrix. New nodes are generated for each new partition
assigned as one of the node’s children. The algorithm recursively
visits children and repeats the same process with the key differ-
ence that the split is done based on the second dimension. More
generally, upon reaching a node at depth i, the split is conducted
in the (i + 1)-th dimension.

Once a new node is visited, its count is sanitized, and stop
conditions are tested on the sanitized count. If satisfied, the tree is
pruned, and the node turns into a leaf. A special technique is used
in such a scenario to enhance accuracy. The algorithm uses the
remaining amount of budget that was supposed to be used while
visiting children to update the sanitized count. This technique
improves accuracy as budget allocation is such that lower levels of
the tree are allocated more budget. Thus, it is worth updating the
sanitized count based on the remaining amount of budget. Note
that, stop conditions can be selected based on application-specific
details; however, the most prominent stop condition that can help
avoid over-partitioning is to stop when the sanitized count is
below a certain threshold. The algorithm continues until reaching
depth d, indicating that partitioning on all d dimensions has been
implemented successfully or a stop condition is reached. Finally,
the sanitized counts of the leaves are published, representing the
private frequency matrix.

4.3 DAF-Homogeneity

The partitioning process plays a critical role in the private publi-
cation of frequency matrices. Hence, several attempts have been
made in prior work [8, 19] to find an efficient splitting mechanism,
including partitioning independent of data, based on medians
or using the frequency matrix’s total count to estimate a viable
partitioning granularity. Our earlier work in [16] shows that par-
titioning based on homogeneity can significantly improve the
utility of private frequency matrices in 2D. The principal idea is
to have mechanisms that can cluster the entries such that data
density is homogeneous within each cluster. Recall that parti-
tioning needs to follow the DP constraint as with any other part
of the algorithm. Here, we extend the approach in [16] to higher
dimensional frequency matrices. The approach is built on top of
Algorithm 2, with a key difference that once fanout is calculated
for a node, an alternative method is used to partition the space
based on homogeneity.

Suppose that while executing Algorithm 2, a node with depth
i is visited. DAF-Homogeneity starts by dividing the calculated
amount of budget into two parts: sanitization budget (€;,44), and
partitioning budget (eprt).

€prt = q€i, €data = (1-9qe (20)

Constant g denotes the ratio of the budget assigned for partition-
ing. This value is experimentally set to 0.3. Next, the node’s count
is sanitized based on the Laplace mechanism with the privacy
budget €;,:4, and substituted in Equation (19) to calculate the
fanout m.

Suppose that m = 3 and recall that for nodes with depth i, the
split is conducted on dimension i + 1. Let us denote the interval
corresponding to the (i + 1)-th dimension by [kstart, Kend]. In the
case of DAF-Homogeneity, given that the fanout is calculated to
be 3, the generated intervals for the i + 1 dimension of children
would be [kstart, k1), [k1, k2), and [kg, kend], where

kend -k

k1 = Lko + 3 StartJ,kz = |ko +2 X

@J (1)

136

Algorithm 3 DAF-Homogeneity

1: Global Constants: p, g, €iot, Mo
2: function DAF-HOMOGENEITY(x, acc)
3 d < Number of dimensions
4 d’ « x.depth
5: if d’ =d then
6: x.ncount «— x.count + Lap(1/(etot — acc))
7: return TRUE
8: if d’ = 0 then
9 x.ncount = x.count + Lap(1/(€;0¢/100))
10: acc « acc + €01 /100
o — 3(dd,)/,\z/(x.ncount) X (€tot — acc)
V2

12: K1, ...‘7(p «— Use m to generate candidate sets
13: Compute O(K1), O(Kz), .., O(Kp)
14: O(Ki) « O(K;) + Lap(2/(p X €prt)), Vi=1..p
15: K « Minimize O(K;) Vi=1l..p

1
16: else ,

etotxmg/3 X (1—m(1)/3)

17: €= 1/3 dJ3

my"”(1—my'")
18: acc <« acc+e€
19: €prt < g€
20: €data < (1= q)€
21: x.ncount «— x.count + Lap(1/€gata)
. m e 3 (x.ncount) X (egot — acc)

V2

23: Execute lines 12 to 15
24: if Stop Conditions= TRUE then
25: x.ncount « x.count + Lap(1/(eor — acc))
26: return TRUE
27: else
28: M « Split (d” + 1)th dimension based on K
29: for i=1tom do
30: create a new node x’
31 x’.F « x.F with ith dimension set to M[i]
32: x".depth — d’ +1
33: x’.count « SUM(x’.F)
34: DAF-Homogeneity(x’, acc)

Instead of simply selecting kq and k as splitting points, DAF-
Homogeneity follows an alternative method: it generates p sets of
candidate partitioning sets K1, Kz, .,.7(p, where p is an input to
the algorithm. Each set % has a cardinality equal to the desired
fanout, and is generated by drawing uniformly random split
positions from every partition. For example, consider the first
candidate set to be Ky = {kj,k, k?’)}, where ki, k;, and kg are
uniformly random coordinates drawn from intervals [kgtart, k1),
[k1,k2), and [k2, kend], respectively. Furthermore, let us denote
the frequency matrix generated by setting the i + 1 dimension
into the jth interval by F/. Next, the algorithm computes the
homogeneity objective function for candidate sets, resulting in
O(%1), O(Kz), ... O(Kp), where

| K |+1
oK)= > > Ifi - el (22)
i=1 fjeFi



In the above equation, yip: denotes the average of entries in F'.

ijeFifj

7 &

HFi =
Then, the output values are sanitized based on the Laplace mech-
anism with the reserved privacy budget for partitioning.

0(7G) = O(K:) + Lap(s/eprt), Vi = 1...p (24)

The optimal candidate set is chosen as the one that results in the
minimum sanitized output.
Minimize O(K;) Vi=l..p (25)
1
LEmMA 4.1. Sensitivity of the homogeneity objective function is
2.

ProoF. In the calculation of objective function O(K) for a
given split index set K, a data entry’s existence or absence only
affects one cell and the corresponding cluster. Let us denote the
objective function after addition or removal of one data record

by O(K)’.

|KC|+1
0K = > > Iff — il (26)
i=1 fj’eFi

Without loss of generality assume that the additional record
is located in the first cluster which results in #;;1 = pp1 +1/|FY,
and ,ul’m. = ppi foralli = 2, ..., k+1. Similarly, the counts are equal
(ff = fi) for all entries except a single entry denoted by x for
which we have we have f; = f; + 1. Writing triangle inequality
results in

lfi—m——|-1fi—pull <

IF1 |F1|

i=1...|F!| - {x}

(27)

The sensitivity of the objective function can have the maximum

value of two, as proven by the following inequality:

[F'] -1
1]

ot 1= i = =] = 1 — ]| < (28)

|F1|

O

The DAF-Homogeneity pseudocode is shown in Algorithm 3.

To better understand the reason why the proposed DAF ap-
proaches outperform competitor techniques, Fig. 3 provides a
heatmap representation of Los Angeles city with 500,000 sampled
from the Veraset dataset (experimental setup details are provided
in Section 6.1). The partitioning conducted in the first and second
dimensions are shown by green and yellow lines, respectively.
For non-adaptive approaches, only the sanitized total population
count is used for partitioning, and therefore, both dimensions are
divided equally without considering user distribution (Fig. 3a).
Conversely, the DAF-Entropy approach is adaptively adjusting
the number of partitioning as the dimension changes (Fig. 3b).
The DAF-Homogeneity technique goes one step further, and ad-
justs the number of partitions generated in each dimension, by
selecting the split point such that resulting areas will exhibit ho-
mogeneous intra-bin density, hence reducing the negative effects
of uniformity assumption and increasing query accuracy.
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Figure 3: Intuition behind DAF sanitization approaches.

4.4 Budget Allocation

The derivation of the optimal amount of privacy budget allocated
for different levels of the hierarchy is a challenging task as nodes
have varying fanouts. We formulate an optimization problem to
achieve a good quality budget allocation. Denote the fanout of
the root node by my. We assume that the progression of fanout
is geometric. At depth i, there exist approximately mé nodes.
Furthermore, we denote the budget allocated to depth i of the
tree by €;. The goal is to minimize the variance of the noise added
to each level:

mzn Zmo/el,Zei =€ € >0 Vi=1.d (29)

where, €/, = €tot — €. We have intentionally separated the root
node’s budget, as it will be used to calculate mo. The optimization
problem can be solved by writing Lagrangian and KKT condi-
tions.

d d
L(et,....€gA) = Z mf)/ei2 +/1(Z € —¢€)

(30)
i=1 i=1
oL —2m) (Zmé)l/3
— = +A=0=¢=——, (31
O€; gi3 € 21/3 (31)
which leads to
3 3 1/3
€fot X m(l)/ Efot X ml/ x(1- o/ )
= d i3 1/3 d/3 ) (32)
Li=1 Mg my (1= my™)

A question arises on how to calculate the value my upon which
the above optimization problem is formulated. Note that the
formulation only considers depths 1 to d, and the root node is
excluded from the equation. The value of my is calculated in the
first run of the recursive algorithm 2, and we set the budget to:

€tot
€ =700 (33)
Therefore, a comparably small amount of budget is allocated to
the root node to derive mg. Based on the above formulation, one
can see that lower levels of the tree benefit from significantly

higher levels of budget. This helps to improve the utility of the



published private histogram, as the sanitized leaf set of the tree
represents the counts published by our approach.

5 RELATED WORK

Prior works on private publication of frequency matrices can be
classified into three categories: data independent, partially data
dependent, and data dependent algorithms. The algorithms in
the first category are independent of the underlying dataset. The
partial data dependent algorithms are the category of algorithms
where the number of data points is used to generate the private
FMs, but no consideration is made for the data distribution. The
algorithms in the last category take the distribution of data points
into consideration to improve the utility. Most algorithms are
developed to address only the publication of 1D and 2D FMs.

In the category of data-independent approaches, two baseline
algorithms that stand out are called singular and identity. The
singular algorithm [8] considers the frequency matrix as a single
partition and adds Laplace noise to the total count. The queries
are answered based on the sanitized total count only, considering
the assumption of data uniformity. The identity algorithm [7] on
the other hand, adds Laplace noise to each entry of the frequency
matrix. The number of partitions in this algorithm is equal to
the total number of entries. The Privlet algorithm [18] enhances
the performance of the identity algorithm by transforming the
frequency matrix based on wavelets and by adding noise in the
new domain. Then, the algorithm converts back to the noisy
matrix and releases the DP counts. The authors in [4] build a
quadtree on top of the FM: a tree-based spatial indexing struc-
ture that splits each node into four equal quarters, regardless of
data placement. The so-called binning or partitioning of space
without observing the histograms is studied in [3]. The authors
consider the amount of overlap between bins and propose an al-
gorithm called *varywidth’ that provides improved performance
in terms of the trade-off between the spatial precision and the
accumulated variance over differentially private queries. The use
of summaries for private publication of histograms is explored
in [5]. The authors show it is possible to reduce the two-step
approach of generating private summaries, in which first the pri-
vate histogram is generated and then the summaries are released,
to a one-step approach. The one-step method prevents the data
owner and data user from getting overwhelmed with the large
computational complexity overhead.

In contrast to the data independent algorithms, data depen-
dent approaches exploit the distribution of data in the FM to
answer queries with higher accuracy. General purpose mecha-
nisms [13, 14] and their workload-aware counterpart DAWA [12]
operate over a discrete 1D domain; however, they can be applied
to the 2D domain by dimensional reduction transformations such
as Hilbert curves [8]. Unfortunately, dimensionality reduction
can prevent range queries from being answered accurately, and
also increases computational complexity. This significantly lim-
its their practicality, particularly for higher-dimensional data.
Data-aware tree-based algorithms such as k-d-trees [19] allocate
a portion of the budget to partitioning, and generate split points
based on density. Hybrid approaches between data-independent
and data-dependent algorithms have also been proposed, e.g.,
UG and AG [15]. We refer to these approaches as partially data-
dependent. Only the sanitized total count of the FM is used in the
partitioning process. The UG algorithm and its extension [15]
sanitize the total count of FMs and use it to alter the granularity of
FM such that the utility of the published private FM is improved.
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Table 2: Summary of Compared Approaches

Strategy Symbol
Baseline Algorithms IDENTITY [7]
UNIFORM [7]
Non-adaptive Sanitization EUG
Approaches EBP
MKM [11]
With partitioning budget DAF-Entropy
Without partitioning budget DAF-Homogeneity

The MKM approach proposed in [11] provides an alternative
formula to partition FM considering its dimensionality. As is the
case in UG, the formula only takes as input the total count of the
frequency matrix and determines the granularity of FM based on
the sanitized total count. In some cases, such approaches have
been shown to provide superior performance to more complex
methods [8].

There is prior work in storage, processing, and compression of
histograms, but without considerations for privacy. The authors
in [9] focus on lowering the computational complexity of matrix
multiplication and storage. The proposed approach generates an
execution plan for the multiplication of dense and sparse matri-
ces. A cost model is also proposed to understand the sparsity of
matrices and the estimation of density. The execution plan tends
to optimize the overall cost overhead. An adaptive tile matrix
representation is proposed in [10] for large matrix multiplica-
tion. An operator called ATMULT with the capability of shared
memory parallel matrix multiplication is proposed for dynamic
tile-granular optimizations, conducted based on the density esti-
mation. The work in [6] studies the problem of density estimation
for higher dimensional histograms. The main idea is to estimate
the distribution of data for a given set of samples. The algorithm
provides near-optimal sample complexity, i.e. close to theoretical
information limit, and runs in polynomial time.

6 EXPERIMENTAL EVALUATION
6.1 Experimental Setup

Synthetic Datasets. We generate synthetic frequency matrices
according to both Gaussian and Zipf distribution. To generate
a d-dimensional Gaussian frequency matrix F with dimensions
F1 X Fy X ... X Fg, a uniformly random integer is sampled in
each dimension: ¢; ~ Uniform(1, F;), Vi = 1...d. The generated
point (c1, 2, ..., ¢g) is selected as the cluster center and 1 million
datapoints are generated with respect to the cluster center ac-
cording to a normal distribution. Specifically, each data point
(x1,%2, ..., Xg) € Z4 s sampled from a multivariate Gaussian
distribution (X1, X2, ..., Xz), where X; ~ N(cj,var). Changing
the variance var allows us to adjust the degree of data skew-
ness (lower values of var will correspond to more skewed data).

Zipfian data are generated by sampling each datapoint from a
—a

x
multivariate Zipf distribution (Y3, Y, ..., Yy), where V; ~ m
a
{(.) denotes the Riemann Zeta function and parameter a con-
trols the skew in the frequency matrix. As opposed to variance
in Gaussian distribution, a higher value of a results in a more

skewed distribution for the Zipf distribution.
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Figure 4: Synthetic dataset results, Gaussian distribution, random shape and size queries.

Real-world datasets. We use a subset of the Veraset! dataset [17],

including location measurements of cell phones in three US cities:
New York, Denver and Detroit. For each city, we consider a large
geographical region covering a 70 x 70 km? area centered at the
city’s central latitude and longitude. These are chosen to repre-
sent cities with high, moderate and low densities, respectively.
Cities are modeled by a 1000 X 1000 frequency matrix where each
entry represents the number of data points in the corresponding
region of the city. The selected data generates a frequency matrix
of 1 million data points during the time period March 1-7, 2020.
Based on the real location data, we construct origin-destination
matrices: in each city, 300, 000 trajectories are sampled, and their
origin, destination and intermediate points are included in the
OD matrix. The data are stored as a multi-dimensional frequency
matrix generated as follows: the map of each city is discretized
to a 1000 X 1000 grid, and for every trajectory with the origin co-
ordinates of (xo,yo) and destination coordinates of (x4, y4), the
element F[xo, Yo, X4, y4] in the frequency matrix is incremented
by one. A similar process is conducted for intermediate points,
with the distinction that the matrix dimension count increases.
The evaluation metric used to compare the results is Mean
Relative Error (MRE), formally defined in Section 2, Eq. (3). We
evaluate the accuracy of considered approaches on the basis of:

Veraset is a data-as-a-service company that provides anonymized population
movement data collected through signals of cell phones across the USA.
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o Varying Data Skewness/Distribution. The generation of
synthetic datasets is conducted for Gaussian and Zipfian
random variables with distinct variances; for real-world
datasets we select cities with a wide range of skewness
properties.

Varying Query Shape/Size. Each data point in our experi-
ments is the average MRE result of 1000 queries generated
based on random shapes and sizes. Additionally, the im-
pact of small, medium and large queries is evaluated.
Varying Privacy Budget. The experiments consider three
privacy budget values of 0.1, 0.3, 0.5 modeling high, mod-
erate, and low privacy constraints.

Varying dimensionality. We run experiments on frequency
matrices with dimensionality from two to six.

Compared Approaches. Table 2 provides a summary and
corresponding references for each of the algorithms used in our
evaluation. More details about each of the baselines are provided
in Section 5. In total, we consider six techniques: IDENTITY,
EUG, EBP, MKM, DAF-Entropy, and DAF-Homogeneity.

6.2 Results on Synthetic Datasets

Figure 4 presents evaluation results on synthetic datasets. For
each distinct dimensionality (i.e., row), we consider low, medium
and high privacy budget settings. The width of frequency matri-
ces in each dimension is set to 4/N.
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Figure 5: Synthetic dataset results, Zipf distribution, random shape and size queries, €tot = 0.1.
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Figure 6: Population histograms in 2D for real datasets.

For the 2D case, results are shown in Figures 4a-4c. EBP and
DAF-Entropy provide superior accuracy compared to other tech-
niques, followed by DAF-Homogeneity and EUG. The MKM and
IDENTITY algorithms exhibit similar performance, and we ob-
served that MKM is reaching the maximum granularity for the
frequency matrix. This is justified by the fact that the MKM
approach does not follow the epsilon-scale exchangeability prin-
ciple identified in [8]. In general, there exist two scenarios in
which data-independent algorithms perform better: (i) the data
points are distributed almost uniformly, (i.e., high variance) and
(ii) the data points are densely populated in the cluster center
in a handful of matrix entries (i.e., low variance). The superior
performance of the DAF framework becomes more evident in
higher dimensions. In almost all experiments conducted, the DAF
framework outperformed the data-independent sanitization ap-
proaches. Among the two objective functions that we developed
for DAF, DAF-Entropy generally outperforms DAF-Homogeneity.

We also evaluate the studied approaches for Zipf synthetic
distribution of data. Figure 5 shows similar relative trends, with
the proposed approaches outperforming existing work by an
order of magnitude. The error increases as the skew parameter a
increases.

6.3 Results on Real-World Datasets

Figure 6 shows the accuracy of all studied methods on 2D data,
for various query workloads: a mix of random queries, as well
as fixed coverage queries with range from 1% to 10% of datas-
pace side. As in the case of synthetic data, the IDENTITY and
MKM benchmarks underperform by an order of magnitude. For
all methods, the error decreases when the query range increases,
which is expected, since coarser queries can be accurately an-
swered using most methods. However, the more challenging
case is that of small query ranges, which provide more detailed
information to the analyst.
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Figure 7: Population histograms in 2D on real datasets, no baselines.

Due to their poor performance, we exclude IDENTITY and
MKM from the rest of the results, and focus on studying the
relative performance of the proposed approaches, illustrated in
Figure 7 on linear scale. The EUG algorithm results in poorer
accuracy overall. For Detroit and New York EBP has performed
better than competing techniques. The EBP and DAF results are
comparable for the Denver datasets, with DAF-Homogeneity
providing the highest accuracy. The EBP algorithm performs
better in cities where the entropy of the population histogram is
higher. This aligns with our expectations, as greater entropy can
be an indicator of higher skewness, where EUG performs worse.
When increasing the privacy budget, the error of all algorithms
decreases consistently, since the noise required to satisfy the
privacy bound becomes lower. Fig. 8 presents the results for
higher-dimensionality matrices. Similar to the results observed
for synthetic datasets, DAF-Entropy has superior accuracy on
average compared to the other techniques. The relative accuracy
gain achieved by DAF is observed to increase as the number of
dimensions increases.

Table 3 shows the execution time for all techniques. The DAF
methods have faster execution time, because they adapt to data
and do not perform unnecessary splits. In all cases, the proposed
techniques complete execution in less than five minutes.

Discussion. Data-independent methods perform better when
data are highly uniform or highly concentrated around the clus-
ter center. However, most location datasets do not fall in either
of these cases, hence there is need for carefully-designed density-
aware approaches, like the ones we proposed. In lower dimen-
sions, the EBP algorithm outperforms competitor approaches
on both real-world and synthetic datasets. In higher dimensions,
the density-aware algorithms outperform data-independent al-
gorithms. The improvement margin increases as the number of
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Table 3: Running time of algorithms (seconds), 2D, € = 0.1

IDENTITY | EUG | EBP | MKM | DAF-Entropy | DAF-Homogeneity
New York | 89 87 87 177 .47 0.5
Denver 91 91 94 182 0.38 0.46
Detroit 111 111 110 | 272 0.34 0.48

dimensions grows. On average, DAF-Entropy outperforms its
homogeneity-based counterpart due to the additional budget re-
quired for evaluating homogeneity metrics of candidate splits in
the latter.

7 CONCLUSION

We proposed a customized privacy-preserving approach for the
publication of origin-destination matrices with intermediate stops
in the context of differential privacy. Our proposed approaches
provide the strong formal protection guarantees of differential
privacy, while achieving superior accuracy to existing techniques
that are designed for low-dimensionality location data and do not
adapt well to data properties such as density variation. In future
work, we plan to further improve accuracy by considering more
sophisticated mechanisms in addition to Laplace noise addition.
We will also investigate the correlation between location and se-
mantic features of the geographical dataspace, which can provide
additional accuracy in the case of semantic-centric queries (e.g.,
an analyst may be interested in trajectories that satisfy some se-
mantic constraint, like workplace-entertainment-sports sequences,
where the type of feature visited is more important than the
actual geographical placement).
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Figure 8: Origin-Destination matrices in 4D, real datasets.
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