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Abstract

We develop a Proper Orthogonal Decomposition (POD)-Galerkin based Re-
duced Order Model (ROM) for the efficient numerical simulation of the para-
metric Navier-Stokes equations in the stream function-vorticity formulation.
Unlike previous works, we choose different reduced coefficients for the vortic-
ity and stream function fields. In addition, for parametric studies we use a
global POD basis space obtained from a database of time dependent full order
snapshots related to sample points in the parameter space. We test the perfor-
mance of our ROM strategy with the well-known vortex merger benchmark and
a more complex case study featuring the geometry of the North Atlantic Ocean.
Accuracy and efficiency are assessed for both time reconstruction and physical
parametrization.

Keywords: Navier-Stokes equations, stream function-vorticity formulation,
Proper Orthogonal Decomposition, Reduced order model, Galerkin projection

1. Introduction

The formulation of the 2D Navier–Stokes equations in terms of stream func-
tion and vorticity represents an attractive alternative to the model in primitive
variables for two main reasons: (i) there are only two scalar unknowns and (ii)
the divergence free constraint for the velocity is automatically satisfied by the
definition of the stream function. Computational studies on this formulation
can be found in, e.g., [1, 2, 3, 4, 5].

While there exists an abundance of literature on Reduced Order Models
(ROMs) for the Navier–Stokes equations formulated in primitive variables start-
ing from different Full Order Methods (FOMs), e.g. Finite Element methods
[6, 7, 8] or Finite Volume methods [9, 10, 11], it is only relatively recently
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that ROMs have been applied to the stream function-vorticity formulation
[12, 13, 14, 15, 16, 17, 18].

In this paper, we develop a POD–Galerkin ROM for the stream function-
vorticity formulation. The main building blocks of our approach are:

- the collection of a database of simulations using a computationally efficient
finite volume method;

- the extraction of the most energetic modes representing the system dy-
namics through Proper Orthogonal Decomposition (POD);

- a Galerkin projection on the space spanned by these most energetic modes
for the computation of stream function and vorticity reduced coefficients.

Two are the main novelties of our approach. First, unlike previous works
[13, 12, 17, 15, 16, 18] we consider different coefficients for the approximation
of the vorticity and stream function fields. This choice leads to two important
consequences: (i) the stream function basis functions do not depend on the
particular vorticity basis functions, but are instead computed directly from the
stream function high-fidelity solutions during the offline phase; (ii) the reduced
spaces for the stream function and vorticity can have different dimensions. Both
points increase the accuracy of the ROM approximation. The second novelty
pertains the parametric study with respect to two crucial model parameters
(Reynolds number and strength of the forcing term) for which we use a global
POD basis space computed by time dependent FOM snapshots associated to
sample points in the parameter space. This is a difference with respect to
[16, 15, 13, 12, 17], where a POD basis is computed for each parameter in the
training set and the the basis functions for new parameter values are found via
interpolation of the basis functions associated to the training set.

The work in this paper represents an intermediate step towards the devel-
opment of new FOM and ROM approaches for the quasi-geostrophic equations
(see [19] for a recent review) that are usually written in terms of stream func-
tion and (potential) vorticity. In particular, in [20] we developed a Large Eddy
Simulation model for such equations at the full order level and associated ROMs
are currently under investigation. We believe that once our ROM framework is
fully developed it could be used for ocean and weather forecast.

All the FOM simulations presented in this work have been performed with
OpenFOAM® [21], an open source Finite Volume C++ library widely used by
commercial and academic organizations. For the Navier–Stokes equations in
primitive variables, OpenFOAM features several partitioned algorithms (PISO
[22], PIMPLE [23] and SIMPLE [24]) based on the Chorin-Temam projection
scheme [25]. To the best of our knowledge, no solver for the stream function-
vorticity formulation has been shared with the large OpenFOAM® community.
Thus, we have implemented such solver at the FOM level. The ROM computa-
tions have been carried out with ITHACA-FV [10], an in-house implementation
of several ROM techniques within OpenFOAM®.
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The rest of this paper is organized as follows. In Sec. 2, we describe the full
order model and the numerical method we use for its time and space discretiza-
tion. Sec. 3 presents the reduced order model. The numerical experiments are
reported in Sec. 4. Finally, conclusions and future perspectives are provided in
Sec. 5.

2. The Full Order Model

2.1. The Navier-Stokes equations in stream function-vorticity formulation

We consider the motion of a two-dimensional incompressible, viscous fluid
in a fixed domain Ω ⊂ R2 over a time interval of interest (t0, T ). The flow is
described by the incompressible Navier-Stokes equations:

∂tu+∇ · (u⊗ u)− 1

Re
∆u+∇p = f in Ω× (t0, T ), (1)

∇ · u = 0 in Ω× (t0, T ), (2)

where eq. (1) states the conservation of linear momentum and eq. (2) represents
the conservation of mass. Here, u(x, y, t) = (u(x, y, t), v(x, y, t), 0) is the fluid
velocity, ∂t denotes the time derivative, p(x, y, t) is the pressure and Re is the
Reynolds number. In (1), we take into account possible body forces f(x, y, t).
We focus on forcing terms that can be expressed as product of two functions:
one function that depends only on space and the other that depends only on
time, i.e. f(x, y, t) = f2(t)f1(x, y). See Remark 3.1 for more details about this
choice.

Let ∂x and ∂y denote the derivative with respect to the x and y spatial
coordinate, respectively. By applying the curl operator ∇× to eq. (1), we obtain
the governing equation for the vorticity field ω(x, y, t) = ∇ × u = (0, 0, ω) =
(0, 0, ∂xv − ∂yu)

∂tω +∇ · (uω)− 1

Re
∆ω = F in Ω× (t0, T ),

where F = (0, 0, F ) = ∇× f . The incompressibility constraint (2) leads to the
introduction of the stream function ψ(x, y, t) = (0, 0, ψ) such that u = ∇× ψ,
or, equivalently, (∂yψ,−∂xψ) = (u, v) . The stream function ψ and vorticity ω
are linked by a Poisson equation

−∆ψ = ω in Ω× (t0, T ).

To close problem (1)-(2), we need to provide initial data u(x, y, t0) = u0 and
enforce proper boundary conditions. In this work, we consider either homoge-
neous Dirichelt conditions on the entire boundary, i.e.

u = 0 on ∂Ω× (t0, T ), (3)

or the following slip condition:

u · n = 0 and ∂n (u · t) = 0 on ∂Ω× (t0, T ), (4)

3
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where n is the outward unit normal and t the unit tangent vector to ∂Ω.
Summarizing, the Navier-Stokes equations in stream function-vorticity for-

mulation, which represent our full order model, are given by

∂tω +∇ · ((∇×ψ)ω)− 1

Re
∆ω = F in Ω× (t0, T ), (5)

−∆ψ = ω in Ω× (t0, T ), (6)

endowed with boundary conditions

ψ = 0 on ∂Ω× (t0, T ), (7)

∂nω = 0 on ∂Ω× (t0, T ), (8)

or

ψ = 0 on ∂Ω× (t0, T ), (9)

ω = 0 on ∂Ω× (t0, T ), (10)

and initial data ω(x, y, t0) = ω0. Notice that while (7)-(8) correspond to (4),
homogeneous Dirichlet conditions (9)-(10) do not correspond to (3).

Remark 2.1. As mentioned in Sec. 1, the stream function-vorticity formula-
tion of the 2D Navier-Stokes equations has important advantages. However,
there are some notable difficulties associated with the convection term in the
vorticity transport equation, lack of boundary condition for the vorticity at no-
slip boundaries, and determination of the value of the stream function at the
internal boundaries for multiply connected domains. While these issues have
been successfully addressed at the full order level (see, e.g., [26]), they remain
open at the reduced order level. Addressing these non-trivial difficulties is be-
yond the scope of this work, which focuses on an improved POD–Galerkin ROM
for the stream function-vorticity formulation in mono-connectedy domains with
boundary conditions (7)-(8) or (9)-(10).

Remark 2.2. If one is interested in the pressure, a possible way to obtain it
is with a pressure Poisson equation. At the FOM level, such equation could be
solved at each time step once the stream function is computed. At the ROM
level, one could collect the pressure snapshots and perform the POD to obtain
the pressure modes, onto which the Poisson equation would be projected. We
omit the details here and refer the interested reader to, e.g., [27].

2.2. Time and space discretization

Let us start with the time discretization of the FOM (5)-(6). Let ∆t ∈ R,
tn = t0 + n∆t, with n = 0, ..., NT and T = t0 + NT∆t. We denote by yn the
approximation of a generic quantity y at the time tn. Problem (5)-(6) discretized
in time by a Backward Differentiation Formula of order 1 (BDF1) reads: given
ω0 = ω0, for n ≥ 0 find the solution (ψn+1, ωn+1) of system:

1

∆t
ωn+1 +∇ ·

((
∇×ψn+1

)
ωn+1

)
− 1

Re
∆ωn+1 = bn+1, (11)

∇ψn+1 = ωn+1, (12)

4
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where bn+1 = Fn+1 + ωn/∆t. In order to contain the computational cost re-
quired to approximate the solution to problem (11)-(12), we opt for a segregated
algorithm. Given the vorticity ωn, at tn+1 such algorithm requires to:

i) Find the vorticity ωn+1 such that

1

∆t
ωn+1 +∇ ·

(
(∇×ψ∗)ωn+1

)
− 1

Re
∆ωn+1 = bn+1, (13)

where ψn+1 in (11) is replaced by an extrapolation ψ∗. Since we are using
BDF1, we set ψ∗ = ψn.

ii) Find ψn+1 such that

∇ψn+1 = −ωn+1. (14)

For the space discretization of problem (13)-(14), we adopt a Finite Vol-
ume (FV) approximation that is derived directly from the integral form of the
governing equations. For this purpose, we partition the computational domain
Ω into cells or control volumes Ωi, with i = 1, . . . , Nc, where Nc is the total
number of cells in the mesh. The integral form of eq. (13) for each volume Ωi
is given by:

1

∆t

∫

Ωi

ωn+1dΩ+

∫

Ωi

∇ ·
(
(∇×ψn)ωn+1

)
dΩ

− 1

Re

∫

Ωi

∆ωn+1dΩ =

∫

Ωi

bn+1dΩ. (15)

By applying the Gauss-divergence theorem, eq. (15) becomes:

1

∆t

∫

Ωi

ωn+1dΩ+

∫

∂Ωi

(
(∇×ψn)ωn+1

)
· dA

− 1

Re

∫

∂Ωi

∇ωn+1 · dA =

∫

Ωi

bn+1dΩ, (16)

where A is the surface vector associated with the boundary of Ωi.
Let Aj be the surface vector of each face of the control volume, with j =

1, . . . ,M . Each term in eq. (16) is approximated as follows:

- Convective term:
∫

∂Ωi

(
(∇×ψn)ωn+1

)
· dA ≈

∑

j

((
∇×ψnj

)
ωn+1
j

)
·Aj =

∑

j

ϕnj ω
n+1
j ,

(17)

ϕnj =
(
∇×ψnj

)
·Aj . (18)

In (17), ∇ × ψnj is the extrapolated convective velocity and ωn+1
j is the

vorticity, both relative to the centroid of each control volume face. In

5
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(18), ϕnj is the convective flux associated to ∇×ψn through face j of the

control volume. In OpenFOAM® solvers, the convective flux at the cell
faces is typically a linear interpolation of the values from the adjacent cells.
We also need to approximate ωn+1 at cell face j. Different interpolation
methods can be applied, including central, upwind, second order upwind,
and blended differencing schemes [28]. In this work, we use a Central
Differencing (CD) scheme.

- Diffusion term:

∫

∂Ωi

∇ωn+1 · dA ≈
∑

j

(∇ωn+1)j ·Aj ,

where (∇ωn+1)j is the gradient of ωn+1 at face j. Let us briefly explain
how (∇ωn+1)j is approximated with second order accuracy on a struc-
tured, orthogonal mesh. Let P and Q be two neighboring control volumes
(see Fig. 1). The term (∇ωn+1)j is evaluated by subtracting the value

Figure 1: Close-up view of two orthogonal control volumes in a 2D configuration.

of vorticity at the cell centroid on the P -side of the face (denoted with
ωn+1
P ) from the value of vorticity at the centroid on the Q-side (denoted

with ωn+1
Q ) and dividing by the magnitude of the distance vector dj con-

necting the two cell centroids:

(∇ωn+1)j ·Aj =
ωn+1
Q − ωn+1

P

|dj |
|Aj |.

Let us denote with ωn+1
i and bn+1

i the average vorticity and source term in
control volume Ωi, respectively. Moreover, we denote with ωn+1

i,j the vorticity
associated to the centroid of face j normalized by the volume of Ωi. Then, the
discretized form of eq. (16), divided by the control volume Ωi, can be written
as:

1

∆t
ωn+1
i +

∑

j

ϕnj ω
n+1
i,j −

1

Re

∑

j

(∇ωn+1
i )j ·Aj = bn+1

i . (19)

Next, we deal with the space approximation of the eq. (14). After using

6
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Gauss-divergence theorem, the integral form of eq. (14) reads:

−
∫

∂Ωi

∇ψn+1 · dA =

∫

Ωi

ωn+1dΩ. (20)

Once we approximate the integrals and divide by the control volume Ωi, eq. (20)
becomes:

−
∑

j

(∇ψn+1
i )j ·Aj = ωn+1

i . (21)

In eq. (21), (∇ψn+1
i )j is the gradient of ψn+1 at faces j and it is approximated

in the same way as (∇ωn+1
i )j . Finally, the fully discretized form of problem

(13)-(14) is given by system (19), (21).
As mentioned in Sec. 1, for the implementation of the numerical scheme

described in this section we chose the finite volume C++ library OpenFOAM®

[21].

3. The Reduced Order Model

The main idea of reduced order modeling for parametrized PDEs is the
assumption that solutions live in a low dimensional manifold. Thus, any solution
can be approximated as a linear combination of a reduced number of global basis
functions.

We approximate vorticity field ω and stream function ψ as linear combina-
tions of the dominant modes (basis functions), which are assumed to be depen-
dent on space variables only, multiplied by scalar coefficients that depend on
time and/or parameters. We arrange all the parameters the problem depends
upon in a vector π that belongs to a d-dimensional parameter space P in Rd,
where d is the number of parameters. Thus, we have:

ω ≈ ωr =
Nrω∑

i=1

βi(π, t)ϕi(x), ψ ≈ ψr =
Nrψ∑

i=1

γi(π, t)ξi(x). (22)

In (22), Nr
Φ, Φ = ω, ψ, denotes the cardinality of a reduced basis for the space

field Φ belongs to. We remark that we consider different coefficients for the
approximation of the vorticity ω and stream function ψ fields, unlike previous
works [12, 13, 15, 16, 17, 18]. This choice will be justified numerically in Sec. 4.2.

Remark 3.1. As mentioned earlier, we only consider a body force given by the
product between a space dependent function and a time dependent function. For
the stream function-vorticity formulation, this means:

F (x, y, z) = F2(t)F1(x, y).

Thanks to this assumption, the forcing term is already expressed in the form of
(22) and does not require further treatment.

7



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Using (22) to approximate ωn+1 and ψn+1 in (13)-(14), we obtain

1

∆t
ωn+1
r +∇ ·

(
(∇×ψ∗

r)ω
n+1
r

)
− 1

Re
∆ωn+1

r = bn+1
r , (23)

∇ψn+1
r = −ωn+1

r , (24)

where bn+1
r = Fn+1 + ωnr /∆t and we set ψ∗

r = ψ
n
r .

In the literature, one can find several techniques to generate the reduced basis
spaces, e.g., Proper Orthogonal Decomposition (POD), the Proper Generalized
Decomposition and the Reduced Basis with a greedy sampling strategy. See,
e.g., [29, 30, 31, 32, 33, 34, 35]. We generate the reduced basis spaces with the
method of snapshots. Next, we briefly describe how this method works.

Let K = {π1, . . . ,πNk} be a finite dimensional training set of samples chosen
inside the parameter space P. We solve the FOM described in Sec. 2 for each
πk ∈ K and for each time instant tj ∈ {t1, . . . , tNt} ⊂ (t0, T ]. The snapshots
matrices are obtained from the full-order snapshots:

SΦ = [Φ(π1, t1), . . . ,Φ(πNk , tNt)] ∈ RN
h
Φ×Ns for Φ = {ωh, ψh}, (25)

where Ns = Nt ·Nk is the total number of the snapshots, Nh
Φ is the dimension

of the space Φ belong to in the FOM, and the subscript h indicates a solution
computed with the FOM. The POD problem consists in finding, for each value
of the dimension of the POD space NPOD = 1, . . . , Ns, the scalar coefficients
a1

1, . . . , a
Ns
1 , . . . , a1

Ns
, . . . , aNsNs and functions ζ1, . . . , ζNs , that minimize the error

between the snapshots and their projection onto the POD basis. In the L2-norm,
we have

ENPOD = arg min

Ns∑

i=1

||Φi −
NPOD∑

k=1

aki ζk|| ∀NPOD = 1, . . . , Ns

with (ζi, ζj)L2(Ω) = δi,j ∀i, j = 1, . . . , Ns. (26)

It can be shown [36] that problem (26) is equivalent to the following eigen-
value problem

CΦQΦ = QΦΛΦ, (27)

CΦ
ij = (Φi,Φj)L2(Ω) for i, j = 1, . . . , Ns, (28)

where CΦ is the correlation matrix computed from the snapshot matrix SΦ, Q
Φ

is the matrix of eigenvectors and ΛΦ is a diagonal matrix whose diagonal entries
are the eigenvalues of CΦ. Then, the basis functions are obtained as follows:

ζi =
1

NsΛΦ
i

Ns∑

j=1

ΦjQ
Φ
ij . (29)

The POD modes resulting from the aforementioned methodology are:

LΦ = [ζ1, . . . , ζNrΦ ] ∈ RN
h
Φ×NrΦ , (30)

8
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where the values of Nr
Φ < Ns are chosen according to the eigenvalue decay of

the vectors of eigenvalues Λ. Then, the reduced order model can be obtained
through a Galerkin projection of the governing equations onto the POD spaces.

In order to write the algebraic system associated with the reduced problem
(23)-(24), we introduce the following matrices:

Mrij = (ϕi, ϕj)L2(Ω), M̃rij = (ξi, ϕj)L2(Ω), Arij = (ϕi,∆ϕj)L2(Ω), (31)

Brij = (ξi,∆ξj)L2(Ω), Grijk = (ϕi,∇ · ((∇× ξj)ϕk))L2(Ω), (32)

Hrij = (ϕi, F1)L2(Ω), (33)

where ϕi and ξi are the basis functions in (22). At time tn+1, the reduced
algebraic system for (23)-(24) reads: given βn and γn find vectors βn+1 and
γn+1 containing the values of coefficients βi and γi in (22) at time tn+1 such
that

M r

(
βn+1 − βn

∆t

)
+ (γn)

T
Grβ

n+1 − 1

Re
Arβ

n+1 =HrF
n+1
2 , (34)

Brγ
n+1 + M̃ rβ

n+1 = 0. (35)

Finally, the initial conditions for the ROM algebraic system (34)-(35) are
obtained performing a Galerkin projection of the initial full order condition
onto the POD basis spaces:

β0
i = (ω0, ϕi)L2(Ω). (36)

Remark 3.2. We consider homogeneous boundary conditions (7)-(8) and (9)-
(10). So, the approximated vorticity ωr and stream function ψr automatically
satisfy the boundary conditions and no special treatment (such as lifting function
and penalty methods [11, 9, 10, 37]) is necessary.

4. Numerical results

For the validation of FOM and ROM, we choose the two benchmarks de-
scribed below.

Vortex merger. This widely used benchmark consists in fluid motion in-
duced by a pair of co-rotating vortices separated from each other by a certain
distance. One of the reasons why this test has been extensively investigated in
two-dimensions is that it explains the average inverse energy and direct enstro-
phy cascades observed in two-dimensional turbulence [38]. The computational
domain is a 2π × 2π rectangle. The initial condition for the vortex merger test
case is given by:

ω(x, y, 0) = ω0(x, y) =

2∑

i=1

e(−π[(x−xi)
2+(y−yi)2]),

where (xi, yi) = (3π/4, π) and (x2, y2) = (5π/4, π) are the initial locations
of the centers of the vortices. Fig. 2 shows the initial vorticity ω0 (left) and

9
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corresponding initial velocity u0 (right). We note that the initial condition
u0(x, y) = u(x, y, 0) = ∇ × ψ0 is computed by solving ∆ψ0 = ω0. We let the
system evolve until time T = 20. We enforce boundary conditions (7)-(8) for the
ψ − ω formulation and (4) for the formulation in primitive variables. Following
[12, 13, 15, 16, 17], we consider a computational grid with 2562 = 65536 cells
for all the simulations.

Figure 2: Vortex merger: initial conditions for ω0 (left) and u0 (right).

North Atlantic Ocean. This second benchmark features a more complex
geometry representing the North Atlantic Ocean. The geometry was recon-
structed from satellite images of the geographic area under consideration. More
details on this are available in [39, 40, 41]. Therein, the North Atlanic Ocean
dynamics have been described with the quasi-geostrophic equations discretized
in space with finite elements. Since our focus is not on the quasi-geostrophic
equations, we will neglect the Coriolis effect. We set f = F = 0 and enforce
the following initial condition:

ω(x, y, 0) = ω0(x, y) =
3∑

i=1

e(−7.5e−3[(x−xi)2+(y−yi)2]), (37)

where (x1, y1)=(80, 70), (x2, y2)= (155, 125) and (x3, y3) = (160, 70) are the
initial locations of the centers of the vortices. Fig. 3 (left) shows the initial vor-
ticity ω0 and the corresponding initial velocity u0 = ∇×ψ0, with ∆ψ0 = ω0, is
reported in Fig. 3 (center). Notice that because of initial condition (37) this test
could be considered as an extension of the vortex merger benchmark in a more
complex domain domain and with a more complex dynamics. The associated
Reynolds number is about 5, which is a typical value for oceanographic simula-
tions (see, e.g., [42]). We set final time T = 200 and focus on the solution in
time interval [100, 200], when the vortex merging is at an advanced stage. We
enforce boundary condition (3) for the solver in primitive variables as in [39]
and boundary conditions (9)-(10) for the stream function-vorticity formulation
as in [39, 40, 41]. Following [39, 40, 41], we use a computational grid with 2425
triangles shown in Fig. 3 (right).

The vortex merger benchmark is used for the validation of the FOM in
Sec. 4.1 and to test time reconstruction (Sec. 4.2) and physical parametrization

10
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Figure 3: North Atlantic Ocean: initial conditions for ω0 (left) and u0 (center) and compu-
tational mesh (right).

(Sec. 4.3) for the ROM. The ROM time reconstruction is further assessed with
the more challenging North Atlantic Ocean benchmark. For both benchmarks,
we show a comparison between ROM for the Navier-Stokes equations in the
stream function-vorticity formulation and ROM for the Navier-Stokes equations
in primitive variables. For the latter, we use a supremizer enrichment strategy
for the stabilization of the pressure. The reader is referred to [10, 11, 27] for
more details.

4.1. Validation of the FOM with the vortex merger benchmark

Let us start with the validation of our implementation of the stream function-
vorticity formulation at the FOM level. We compare the results obtained with
such formulation against the results produced by the standard Navier–Stokes
solver in OpenFOAM icoFoam, which is based on a partitioned algorithm called
PISO [22]. We set ∆t = 0.01, f = F = 0 and Re = 800 [15, 16]. For the
simulations with icoFoam, we enforce boundary condition (4). The partitioned
algorithm requires also a boundary condition for the pressure problem: we set
∇p · n = 0 on ∂Ω.

Figures 4, 5, and 6 display a qualitative comparison in terms of u, ψ, and ω
computed by the solvers in primitive variables and in stream function-vorticity
formulation at four different times. As we can see from these figures, the so-
lutions are very close to each other with the maximum relative difference in
absolute value not exceeding 4.4e− 3 for u, 2.5e− 3 for ψ, and 6.8e− 3 for ω.

With these results, we consider the FOM validated. Next, we are going to
validate our ROM approach. Our goal is a thorough assessment of our ROM
model on two fronts: (i) the reconstruction of the time evolution of the flow
field and (ii) a physical parametric setting. Let us start from the former.

4.2. Validation of the ROM: time reconstruction

Let us start with the vortex merger benchmark. We collect 250 FOM snap-
shots, one every 0.08, i.e. we use an equispaced grid in time. Fig. 7 shows the
eigenvalues decay for the stream function and the vorticity, as well as for the
velocity and pressure. We observe that the eigenvalues decay for ω is much
slower than the eigenvalues decay for ψ. We suspect that this larger number
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t = 4

NSE
u, p

t = 8 t = 16 t = 20

NSE
ψ, ω

Diff.

Figure 4: FOM validation with the vortex merger benchmark: velocity u computed by the
solver in velocity-pressure formulation (first row) and stream function-vorticity formulation
(second row), and difference between the two fields in absolute value (third row) at t = 4 (first
column), t = 8 (second column), t = 16 (third column) and t = 20 (fourth column).

of modes for ω is due to the richer structure of ω. On the other hand, we see
that the eigenvalues decays for u and p are very close to each other. We set the
threshold for the selection of the eigenvalues to 1e− 5, resulting in 6 modes for
ψ and 14 modes for ω, and in 9 modes for u and 8 modes for p. We consider
the same dimension of the pressure space for the supremizer space.

We calculate the relative L2 error in percentage:

EΦ(t) = 100 · ||Φh(t)− Φr(t)||L2(Ω)

||Φh(t)||L2(Ω)
, (38)

where Φh is a field computed with the FOM (ψh, ωh, uh or ph) and Φr is the
corresponding field computed with the ROM (ψr, ωr, ur or pr). Moreover, we
evaluate the relative error in percentage for the enstrophy e =

∫
Ω
ω2dΩ, i.e.:

Ee(t) = 100 · eh(t)− er(t)
eh(t)

, (39)

and the kinetic energy k =
∫

Ω
|u|2dΩ, i.e.

Ek(t) = 100 · kh(t)− kr(t)
kh(t)

, (40)

where eh and er, kh and kr are the values of the enstrophy and kinetic energy
computed by the FOM and the ROM.
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t = 4

NSE
u, p

t = 8 t = 16 t = 20

NSE
ψ, ω

Diff.

Figure 5: FOM validation with the vortex merger benchmark: stream function ψ computed by
the solver in velocity-pressure formulation (first row) and stream function-vorticity formulation
(second row), and difference between the two fields in absolute value (third row) at t = 4 (first
column), t = 8 (second column), t = 12 (third column) and t = 20 (fourth column).

Fig. 8 shows error (38) for the stream function and vorticity and error for the
enstrophy (39) over time. Fig. 9 shows error (38) for the velocity and pressure
and error for the kinetic energy (40) over time. We see that all relative errors in
percentage achieve very low values. In particular, over the entire time interval
the error for ψ is lower than 0.4%, the error for ω is lower than 1.6%, and the
error for the enstrophy is lower than 0.1% in absolute value. Similarly, the error
for u is lower than 0.6%, the error for p is lower than 0.7%, and the error for
the kinetic energy is lower than 0.04% in absolute value. So, we conclude that
the performance of the ROM for the stream function-vorticity formulation is
comparable to the ROM for the formulation in primitive variables.

In order to justify our choice to use different reduced coefficients to ap-
proximate stream-function and vorticity in (22), we show in Fig. 10 the time
evolution of the first three reduced coefficients for ψ and ω: the differences
are significant. Thus, using the same reduced coefficients would lead to a less
accurate reconstruction of ψ and ω.

Finally, we compare the solutions computed by FOM and ROM. Fig. 11 and
12 display such comparison for ψ and ω at four different times, respectively.
From these figures, we see that our ROM approach provides a good global
reconstruction of both stream function and vorticity. In fact, the maximum
relative difference in absolute value does not exceed 4.7e− 3 for ψ and 1.7e− 2
for ω.

We conclude this subsection by proving some information about the effi-
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t = 4
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u, p

t = 8 t = 16 t = 20

NSE
ψ, ω

Diff.

Figure 6: FOM validation with the vortex merger benchmark: vorticity ω computed by the
solver in velocity-pressure formulation (first row) and stream function-vorticity formulation
(second row), and difference between the two fields in absolute value (third row) at t = 4 (first
column), t = 8 (second column), t = 16 (third column) and t = 20 (fourth column).

ciency of our ROM approach for the ψ − ω formulation. The total CPU time
required by a FOM simulation is about 64 s, while the computation of the modal
coefficients over the entire time window of interest takes 0.47 s. The resulting
speed-up is about 136.

Next, we consider the North Atlantic Ocean benchmark. We set ∆t = 0.001
and collect 1000 FOM snapshots, one every 0.1, in the time interval [100, 200].
Fig. 13 shows the eigenvalues decay for the stream function and the vorticity, as
well as for the velocity and pressure. Also for this benchmark, the eigenvalues
decay for ω is much slower than the eigenvalues decay for ψ and the eigenvalues
decays for u and p are close to each other. We set the threshold for the selection
of the eigenvalues to 1e− 5, resulting in 9 modes for ψ and 35 modes for ω, and
in 16 modes for u and 12 modes for p and supremizer. The number of modes to
be retained for all the variables is larger than for the vortex merger benchmark.
This is an indication of the fact that the system has a richer modal content and
more complex flow patterns.

Fig. 14 shows error (38) for the stream function and vorticity and error
for the enstrophy (39) over time. Fig. 15 shows error (38) for velocity and
pressure and error for the kinetic energy (40) over time. As for the vortex
merger benchmark, we see all the relative errors in percentage achieve very low
values. In particular, over the entire time interval the error for ψ is lower than
1.9%, the error for ω is lower than 2.3%, and the error for the enstrophy is lower
than 0.5% in absolute value. The error for u is lower than 3.2%, the error for
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Figure 7: ROM validation - time reconstruction for the vortex merger benchmark: eigenvalue
decay for the stream function and the vorticity (left) and for the velocity and pressure (right).

p is lower than 4.4%, and the error for the kinetic energy is lower than 3.5% in
absolute value. Also for this benchmark, we can conclude that the ROM for the
stream function-vorticity formulation and the ROM for primitive variables are
comparable in terms of accuracy.

Finally, we compare the solutions computed by FOM and ROM. Fig. 16 and
17 display such comparison for ψ and ω at three different times. From these
figures, we see that our ROM approach provides a good global reconstruction
of both stream function and vorticity. In fact, the maximum relative difference
in absolute value does not exceed 5.4e− 1 for ψ and 1.1e− 2 for ω.

4.3. Validation of the ROM: physical parametrization for the vortex merger
benchmark

In this section, we are going to consider a physical parametric setting. We
set an arbitrary array of decaying Taylor–Green vortices as source term in the
vorticity equation (5) given by

F = −γe−t/Re cos(3x) cos(3y), (41)

where γ is the strength of the source term. We consider Re and γ as the control
parameters. We remark that a Re parameterization has been considered in
[13] and parameterization with respect to both Re and γ has been studied
in [15, 16, 17] where the aim was to develop a ROM framework to account
for hidden physics through data-driven strategies based on machine learning
techniques. We will proceed by fixing one parameter (e.g., γ) and varying the
other (Re if γ is fixed). Since time is treated as a parameter, when we vary
one physical parameter we are effectively running a study in a two-dimensional
parameter space. This is what is typically done for a parametric study involving
a time dependent PDE problem [10, 11, 13, 15, 16, 17].

In order to reduce the offline cost, i.e. the time needed to collect the FOM
snapshots and the time required to compute the POD basis space, we will focus
on the first half of the time interval of interest considered in Sec. 4.2, i.e. (0, 10].
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Figure 8: ROM validation - time reconstruction for the vortex merger benchmark: evolution of
error (38) for stream function ψ (top left) and vorticity ω (top right), and error for enstrophy
e (39) (bottom).

Figure 9: ROM validation - time reconstruction for the vortex merger benchmark: evolution
of error (38) for velocity u (top left) and pressure p (top right), and error for kinetic energy
k (40) (bottom).
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Figure 10: ROM validation - time reconstruction for the vortex merger benchmark: evolution
of the first three reduced coefficients for ψ and ω.

t = 4

FOM

t = 8 t = 16 t = 20

ROM

Diff.

Figure 11: ROM validation - time reconstruction for the vortex merger benchmark: stream
function ψ computed by the FOM (first row) and the ROM (second row), and difference
between the two fields in absolute value (third row) at times t = 4 (first column), t = 8
(second column), t = 16 (third column) and t = 20 (fourth column). We consider 6 modes.
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t = 8 t = 16 t = 20

ROM

Diff.

Figure 12: ROM validation - time reconstruction for the vortex merger benchmark: vorticity
ω computed by the FOM (first row) and the ROM (second row), and difference between the
two fields in absolute value (third row) at times t = 4 (first column), t = 8 (second column),
t = 16 (third column) and t = 20 (fourth column). We consider 14 modes.

In addition, we recall that the ROM time reconstruction has been thoroughly
validated in Sec. 4.2.

Let us start with the parametrization with respect to Re and set γ = 0.09.
To train the ROM, we choose a uniform sample distribution in the range Re ∈
[200, 800] with 4 sampling points: 200, 400, 600, and 800. For each value of
the Reynolds number in the training set, a simulation is run over time interval
(0, 10]. Fig. 18 displays the stream function and vorticity fields computed by
the FOM throughout the training set under consideration at t = 10. We observe
that the stream function does not significantly vary as Re changes, while the
differences in the vorticity are more evident.

Based on the results presented for the time reconstruction (Sec. 4.2), the
snapshots are collected every 0.08 s. So, we collect a total of 4 × 125 = 500
snapshots. We set the threshold for the selection of the eigenvalues to 1e − 5,
resulting in 6 modes for ψ and 11 modes for ω. We take three different test values
to evaluate the performance of the parametrized ROM: one value (Re = 500)
in the range under consideration but not in the training set and two values
(Re = 100, 1000) outside the range under consideration. The latter cases are
more challenging. Fig. 19 shows error (38) for the stream function and vorticity
over time for the three values of Re. We see that for the interpolatory test value
Re = 500 both the errors are below 1% over the entire time interval. As for
the extrapolatory test values, the errors for Re = 1000 are comparable to the
errors for Re = 500, while the errors for Re = 100 are much larger for Re = 100
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Figure 13: ROM validation - time reconstruction for the North Atlantic Ocean benchmark:
eigenvalue decay for the stream function and the vorticity (left) and for the velocity and
pressure (right).

(up to about 3% for ψ and up to about 7% for ω). The poorer performance
of our ROM at Re = 100 could be due to the fact that the vorticity computed
for Re = 200 looks pretty different from the vorticity at the higher Re included
in the offline database (see Fig. 18). Thus, we suspect that more solutions for
lower values of Re would have to be included into the training set in order to
obtain a more accurate reconstruction of the flow field at Re = 100. Finally, we
note that for a given Re the errors for the vorticity are larger than the errors
for the stream function. Once again, we suspect that this is due to the richer
structure of ω (compare the bottom row of Fig. 18 with the top row) that might
require a larger number of modes to obtain errors comparable to those for ψ.

Fig. 20 and 21 present a qualitative comparison of the solutions computed by
FOM and ROM at t = 10 for the the three test value of Re. We observe that our
ROM approach provides a good global reconstruction of both stream function
and vorticity. In fact, the maximum relative difference in absolute value does
not exceed 3.1e− 2 for ψ and 6.7e− 2 for ω.

Next, we consider γ as a variable parameter and fix Re to 800. Similarly to
the Re parameterization, the training of the ROM is carried out by a uniform
sample distribution in the range γ ∈ [0.06, 0.09] consisting of 4 sampling points:
0.06, 0.07, 0.08 and 0.09. For each value of γ inside the training set, a simulation
is run over time interval (0, 10]. Fig. 22 shows the stream function and vorticity
fields computed by the FOM at t = 10 for the four sampling values of γ. We see
that both stream function and vorticity do not significantly vary as γ changes
value.

Analogously to what we have done for the previous parametric test case, the
snapshots are collected every 0.08 s for a total of 4 × 125 = 500 snapshots. We
set the threshold for the selection of the eigenvalues to 1e−5, which results in 6
modes for ψ and 12 modes for ω. Once again, we take three different test values
to evaluate the performance of the parametrized ROM: γ = 0.075 (in the range
under consideration but not in the training set) and γ = 0.05, 0.1 (outside the
range under consideration). Fig. 23 shows error (38) for the stream function
and vorticity over time for these three values of γ. For the interpolatory test
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Figure 14: ROM validation - time reconstruction for the North Atlantic Ocean benchmark:
evolution of error (38) for stream function ψ (top left) and vorticity ω (top right), and error
for enstrophy e (39) (bottom).

Figure 15: ROM validation - time reconstruction for the North Atlantic Ocean benchmark:
evolution of error (38) for velocity u (top left) and pressure p (top right), and error for kinetic
energy k (39) (bottom).
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t = 105

FOM

t = 140 t = 200

ROM

Diff.

Figure 16: ROM validation - time reconstruction for North Atlantic Ocean benchmark: stream
function ψ computed by the FOM (first row) and the ROM (second row), and difference
between the two fields in absolute value (third row) at times t = 105 (first column), t = 140
(second column) and t = 200 (third column). We consider 9 modes.

value (γ = 0.075), the error for ψ is lower than 0.4% and the error for ω is lower
than 1% over the entire time interval of interest. As for the extrapolatory test
values (γ = 0.05, 0.1), the error for ψ is lower than 1.2% and the error for ω
is lower than 2.5%. So, unlike the Re parametric case, the errors obtained for
all test values are comparable. This is obviously due to the fact that there is
no abrupt change in the solution as γ varies in [0.06, 0.09] (see Fig. 22) and the
POD space seems to include enough information for a very good reconstruction
of the flow field also at values of γ right outside the training set.

To conclude, we qualitatively compare the solutions computed by FOM and
ROM for the three test values of γ at t = 10 in Fig. 24 and 25. Once again, we see
that our ROM approach provides a good global reconstruction of both stream
function and vorticity. In fact, the maximum relative difference in absolute
value does not exceed 6.3e− 3 for ψ and 6.1e− 2 for ω.

5. Conclusions and future developments

This work presents a POD-Galerkin based Reduced Order Method for the
Navier–Stokes equations in stream function-vorticity formulation within a Fi-
nite Volume environment. The main novelties of the proposed ROM approach
are: (i) the use of different coefficients to approximate the stream function
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Figure 17: ROM validation - time reconstruction for North Atlantic Ocean benchmark: vor-
ticity ω computed by the FOM (first row) and the ROM (second row), and difference between
the two fields in absolute value (third row) at times t = 105 (first column), t = 140 (second
column) and t = 200 (third column). We consider 35 modes.

ψ

Re = 200 Re = 400 Re = 600 Re = 800

ω

Figure 18: ROM validation - Re parameterization: stream function ψ (first row) and vorticity
ω (second row) computed by the FOM at Re = 200 (first column), Re = 400 (second column),
Re = 600 (third column), and Re = 800 (fourth column), at time t = 10 for γ = 0.09.

and vorticity fields and (ii) the use of a global POD basis space for paramet-
ric studies. We assessed our ROM approach with the vortex merger problem, a
classical benchmark used for the validation of numerical methods for the stream
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Figure 19: ROM validation - Re parameterization: time history of error (38) for stream
function ψ (left) and vorticity ω (right) for three different test values: Re = 100, Re = 500
and Re = 1000.

Re = 100

FOM

Re = 500 Re = 1000

ROM

Diff.

Figure 20: ROM validation - Re parameterization: stream function ψ computed by the FOM
(first row) and the ROM (second row), and difference between the two fields in absolute value
(third row) for Re = 100 (first column), Re = 500 (second column) and Re = 1000 (third
one) at time t = 10. Six modes for ψ were considered.

function-vorticity formulation of the Navier–Stokes equations, and with an ex-
tension of the vortex merger problem to a more complex domain representing
the North Atlantic Ocean. The numerical results show that our ROM is able
to capture the flow features with a good accuracy both in the reconstruction of
the flow field evolution and in a physical parametric setting. In addition, for the
simple vortex merger problem we observed that our ROM enables substantial
computational time savings.

Next, we are going to extend the ROM approach presented here to the Quasi-
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Figure 21: ROM validation - Re parameterization: vorticity ω computed by the FOM (first
row) and the ROM (second row), and difference between the two fields in absolute value (third
row) for Re = 100 (first column), Re = 500 (second column) and Re = 1000 (third one) at
time t = 10. Eleven modes for ω were considered.

ψ

γ = 0.06 γ = 0.07 γ = 0.08 γ = 0.09

ω

Figure 22: ROM validation - γ parameterization: stream function ψ (first row) and vorticity
ω (second row) computed by the FOM for Re = 800 and γ = 0.06 (first column), γ = 0.07
(second column), γ = 0.08 (third column), and γ = 0.09 (fourth column) at time t = 10.

Geostrophic Equations (see [20] for the development of the FOM). In particular,
we intend to couple such equations with a differential filter [43, 27, 44, 11, 45] in
order to simulate two-dimensional turbulent geophysical flows on under-refined
meshes in the spirit of [46, 47].
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Figure 23: ROM validation - γ parameterization: time history of error (38) for stream function
ψ (left) and vorticity ω (right) for the three different test values γ = 0.05, γ = 0.075 and
γ = 0.1 at Re = 800.
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Highlights

Novel ROM approach for the Navier-Stokes equations in stream function-vorticity form
tion.

Use of different reduced coefficients to approximate the stream function and vorticity fie

Parametric studies with respect to the Reynolds number and forcing term.

Use of a global POD basis space for the parametric studies.

Assessment of accuracy and efficiency of the ROM approach with the vortex merger be
mark.
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