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Abstract. We study a class of linear-quadratic stochastic differential games
in which each player interacts directly only with its nearest neighbors in a given
graph. We find a semi-explicit Markovian equilibrium for any transitive graph,
in terms of the empirical eigenvalue distribution of the graph’s normalized Lapla-
cian matrix. This facilitates large-population asymptotics for various graph
sequences, with several sparse and dense examples discussed in detail. In par-
ticular, the mean field game is the correct limit only in the dense graph case,
i.e., when the degrees diverge in a suitable sense. Even though equilibrium
strategies are nonlocal, depending on the behavior of all players, we use a cor-
relation decay estimate to prove a propagation of chaos result in both the dense
and sparse regimes, with the sparse case owing to the large distances between
typical vertices. Without assuming the graphs are transitive, we show also that
the mean field game solution can be used to construct decentralized approximate
equilibria on any sufficiently dense graph sequence.
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1. Introduction

Mean field game (MFG) theory has enjoyed rapid development and widespread
application since its introduction over a decade and a half ago by [23, 29]. It
provides a systematic framework for studying a broad class of stochastic dynamic
games with many interacting players, in terms of limiting models featuring a con-
tinuum of players which are often more tractable. There are by now various
rigorous results justifying the MFG approximation. On the one hand, the equilib-
ria of n-player games can be shown to converge to the MFG limit under suitable
assumptions. On the other hand, a solution of the continuum model may be used
to construct approximate equilibria for the n-player model with the particularly
desirable properties of being decentralized and symmetric, in the sense that each
player applies an identical feedback control which ignores the states of all other
players. We refer to the recent book of [9] for a thorough account of MFG theory
and its many applications.

A key structural assumption of the MFG paradigm is that the players inter-
act symmetrically, i.e., through an empirical measure which weights each player
equally. In many natural situations, however, players do not view each other as
exchangeable and instead interact directly only with certain subsets of players
to which they are connected, e.g., via some form of a graph or network. This
is the purview of the broad field of network games, and we refer to [24] for a
representative overview of mostly static models.

Our paper contributes to a very recent line of work bridging MFG theory and
network games by studying n-player stochastic dynamic games in which inter-
actions are governed by a graph Gn on n vertices. (When Gn is the complete
graph we recover the traditional MFG setting.) Roughly speaking, the goal is to
understand the robustness of the mean field approximation and, when it fails, a
substitute. Somewhat more precisely, two central questions are:

(1) For what kinds of graph sequences {Gn} is the usual MFG approximation
still valid?

(2) What is the right limit model for a general sequence {Gn}, and how well
does it approximate the corresponding n-player game?

Little progress has been made so far toward a systematic understanding of these
questions. The recent paper of [13] addresses (1) when Gn = G(n, p) is the Erdős-
Rényi graph on n vertices with fixed edge probability p ∈ (0, 1), showing that
the usual MFG limit is still valid. More recently, [17] study a linear-quadratic
model very similar to ours, but only considering directed path or cycle graphs. In
another direction, recent efforts on (2) have proposed continuum models based on
graphons, which describe limit objects for general dense graph sequences ([30]).
See recent work on graphon games for the static case ([8, 36]) or graphon MFGs
in the dynamic case ([5, 19, 40]).
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The combination of network, dynamic, and game-theoretic effects is essential
for many recent models of large economic and financial systems, and several recent
studies have attacked specific models combining some of these features; see [6, 10,
16, 33] and references therein. Even without game-theoretic (strategic) features,
incorporating network effects into large-scale dynamic models already presents
many mathematical challenges, which very recent work has begun to address;
see [2, 12, 32] and [14, 28, 34] for studies of dense and sparse graph regimes,
respectively. Notably, prior work studied dense graph regimes, and most questions
in the sparse regime (roughly defined as finite limiting neighborhood sizes) remain
open, as was highlighted in particular in the recent paper of [5].

The purpose of our article is to give comprehensive answers to (1) and (2), in
both dense and sparse regimes, in the setting of a specific yet rich linear-quadratic
model, inspired by the systemic risk (flocking) model of [10]. For a suitably dense
graph sequence {Gn} (meaning roughly that the degrees diverge as n → ∞),
we show (in Theorem 2.11) that the classical construction of MFG theory is still
valid: The MFG equilibrium gives rise to a sequence of decentralized and symmetric
approximate Nash equilibria for the n-player games. The dense regime includes the
complete graph, the Erdős-Rényi graph Gn = G(n, pn) with npn → ∞, and many
others. Our findings in the dense case conform to an increasingly well-understood
principle of statistical physics, that (static) interacting particle systems (e.g., the
Ising model) on sufficiently dense and regular graphs tend to behave like their mean
field counterparts (e.g., the Curie-Weiss model); see [1] and references therein.

The case of sparse graphs is more delicate, and the MFG approximation is no
longer valid. Here we restrict our attention to (vertex) transitive graphs, which
intuitively “look the same” from the perspective of any vertex (see Definition
2.3); transitive graphs have rich enough symmetry groups to make up for the
lack of exchangeability. We compute the Markovian Nash equilibrium explicitly
(in Theorem 2.5), up to the solution of a one-dimensional ordinary differential
equation (ODE) governed by the empirical eigenvalue distribution of the Laplacian
of the graph (i.e., the rate matrix of the simple random walk). As a consequence,
we show (in Theorem 2.6) that for a given graph sequence {Gn}, the limiting
law can be computed for a typical player’s state process, under the assumption
that the empirical eigenvalue distributions of the Laplacian matrices of the graphs
converge weakly. We also discuss (in Section 2.5) similar and much simpler results
for the corresponding cooperative problem, which we can explicitly solve for any
graph (not necessarily transitive).

The eigenvalue distribution of a graph Laplacian is reasonably tractable in
many interesting cases. The dense graph case is precisely the case where the
eigenvalue distribution converges weakly to a point mass. In the sparse case, the
eigenvalue distribution converges to a non-degenerate limit, and we characterize
the much different n → ∞ behavior in terms of this limit. We do not have a
complete answer to (2) in the sparse case, as it remains unclear how to identify
the limiting dynamics intrinsically, without relying on n → ∞ limits of n-player
models. In contrast, the MFG framework identifies an intrinsic continuum model,
the solution of which agrees with the n → ∞ limit of the n-player equilibria. See
Section 2.6 for further discussion of this point.
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A crucial challenge in the sparse setting is that equilibrium controls are not
local, even at the limit. Even though each player’s cost function depends only
on the player’s neighbors, the equilibrium (feedback) control depends on the en-
tire network, requiring each player to look beyond its nearest neighbors or even
its neighbors’ neighbors. That said, we prove a correlation decay estimate (Pro-
position 2.12), which shows that the covariance of two players’ equilibrium state
processes decays to zero with graph distance between these players. Correlation
decay is interesting in its own right, as it illustrates that asymptotic independence
of players can arise both in a dense graph (because degrees are large) and a sparse
graph (because typical vertices are very far apart). In addition, we use correlation
decay crucially in proving the convergence of the empirical distribution of state
processes in equilibrium to a non-random limit (propagation of chaos), for large
graph sequences {Gn}.

The key mathematical difficulty in the paper lies in the semi-explicit solution of
the n-player game. As is standard for linear-quadratic n-player games, we reduce
the problem to solving a coupled system of n matrix differential equations of
Riccati type. Riccati equations of this form do not often admit explicit solutions,
but assuming the graph is transitive gives us enough symmetry to work with to
derive a solution.

2. Main results

In this section we present all the main results of the paper, and we defer
proofs to later sections. We first give the precise setup of the n-player game
(Section 2.1). After describing the semi-explicit solution of the equilibrium for
transitive graphs (Section 2.2), we then consider the large-n behavior (Sections
2.3 and 2.4), paying particular attention to the distinction between the sparse and
dense regimes. Finally, we discuss the analogous cooperative game (Section 2.5).

2.1. The model setup. In this section we define a stochastic differential game
associated to any finite graph G = (V,E). All graphs will be simple and undir-
ected. We abuse notation at times by identifying G with its vertex set, e.g., by
writing v ∈ G instead of v ∈ V . Similarly, we write |G| = |V | for the cardinality
of the vertex set, and RG = RV for the space of vectors indexed by the vertices.

Each vertex v ∈ V is identified with a player, and we associate to this player
a state process on time horizon T > 0 with dynamics

dXG
v (t) = αv(t,X

G(t))dt+ σdWv(t), t ∈ [0, T ],(2.1)

where σ > 0 is given, (Wv)v∈V are independent one-dimensional standard Brownian
motions defined on a given filtered probability space (Ω,F ,F,P), and XG =
(XG

v )v∈V is the vector of state processes. Players choose controls αv from the set of
(full-information) Markovian controls AG, defined as the set of Borel-measurable
functions α : [0, T ]× RV → R such that

sup
(t,x)∈[0,T ]×RV

|α(t,x)|
1 + |x|

< ∞.

For any α1, . . . , αn ∈ AG, the SDE system (2.1) has a unique strong solution by
a result of [41] (see also [27, Theorem 2.1]). The given initial states XG(0) =
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(XG
v (0))v∈V are assumed non-random, and in many cases we will set them to zero

for simplicity.
Each player v ∈ V faces a quadratic cost function JGv : AV

G → R that depends
on the state processes of her nearest neighbors. For a non-isolated vertex v, we
set

JGv ((αu)u∈V ) :=
1

2
E

⎡⎣∫︂ T

0

|αv(t,XG(t))|2dt+ c

⃓⃓⃓⃓
⃓XG

v (T )−
1

degG(v)

∑︂
u∼v

XG
u (T )

⃓⃓⃓⃓
⃓
2
⎤⎦ ,

(2.2)

where c > 0 is a fixed constant, degG(v) denotes the degree of vertex v, and u ∼ v
means that (u, v) is an edge in G. For an isolated vertex v (i.e., if degG(v) = 0),
we set

JGv ((αu)u∈V ) :=
1

2
E
[︃∫︂ T

0

|αv(t,XG(t))|2dt+ c
⃓⃓
XG
v (T )

⃓⃓2]︃
.(2.3)

Remark 2.1. We gain little generality by allowing G to be disconnected. Indeed,
restricting attention to the connected components of G yields decoupled games of
the same form, which we can study separately. But when we discuss Erdős-Rényi
and other random graphs, it is useful to fix a convention for how to handle isolated
vertices. When discussing random graphs, we work always in the quenched regime,
with the realization of the graph frozen in the computation of the costs.

In comparison to the usual settings of mean field games (MFGs), the key
feature here is that the players do not interact with each other equally, but rather
each player interacts (directly) only with her nearest neighbors in the graph. The
form of the cost function implies indeed that each player, in addition to minimizing
a standard quadratic energy term, will try to be as close as possible to the average
of her nearest neighbors at the final time. For this reason, we can think of this as
a flocking model. The benchmark case to keep in mind is where G is the complete
graph on n vertices, which corresponds to the usual MFG setup.

The first goal is to find a Markovian Nash equilibrium for this game, form-
ally defined as follows, along with some generalizations. We write R+ = [0,∞)
throughout the paper.

Definition 2.2. For a graph G on vertex set V = {1, . . . , n} and a vector ϵ =
(ϵi)

n
i=1 ∈ Rn

+, we say that a vector α∗ = (α∗
i )
n
i=1 ∈ An

G of admissible strategies is a
(Markovian) ϵ-Nash equilibrium on G if

JGi (α
∗) ≤ inf

α∈AG

JGi (α
∗
1, ..., α

∗
i−1, α, α

∗
i+1, ..., α

∗
n) + ϵi, ∀ i = 1, . . . , n.

The corresponding equilibrium state process XG = (XG
i )

n
i=1 is the solution of the

SDE

dXG
i (t) = α∗

i (t,X
G(t))dt+ σdWi(t).

When the graph is understood from context, we may omit the qualifier “on G.”
When ϵ1 = · · · = ϵn = ϵ for some ϵ ≥ 0, we refer to α∗ as a ϵ-Nash equilibrium
instead of a (ϵ, . . . , ϵ)-Nash equilibrium. Naturally, a 0-Nash equilibrium is simply
called a Nash equilibrium.



6 DANIEL LACKER AND AGATHE SORET

The notion of ϵ-Nash equilibrium for ϵ ≥ 0 is standard and means that no
player can reduce her cost by more than ϵ by a unilateral change in control. The
more general notion of ϵ = (ϵi)

n
i=1-Nash equilibrium stated here is less standard,

and it simply means that different players may stand to improve their costs by
different amounts. Of course, a ϵ = (ϵi)

n
i=1-Nash equilibrium is also a δ-Nash

equilibrium for δ = maxni=1 ϵi. But this distinction will be useful in asymp-
totic statements (as in the discussion after Theorem 2.11), because the statement
limn→∞

1
n

∑︁n
i=1 ϵ

n
i = 0 is of course much weaker than limn→∞maxni=1 ϵ

n
i = 0 for

triangular arrays {ϵni : 1 ≤ i ≤ n} ⊂ R+.

2.2. The equilibrium. To solve the game described in Section 2.1, we impose
a symmetry assumption on the underlying graph. Let Aut(G) denote the set of
automorphisms of the graph G = (V,E), i.e., bijections φ : V → V such that
(u, v) ∈ E if and only if (φ(u), φ(v)) ∈ E. One should think of an automorphism
as simply a relabeling of the graph.

Definition 2.3. We say G is (vertex) transitive if for every u, v ∈ V there exists
φ ∈ Aut(G) such that φ(u) = v.

Essentially, a transitive graph “looks the same” from the perspective of each
vertex. Importantly, the game we are studying is clearly invariant under actions of
Aut(G), in the sense that the equilibrium state process (if unique) should satisfy

(XG
v )v∈V

d
= (XG

φ(v))v∈V for each φ ∈ Aut(G). In the MFG setting, i.e., when G is

the complete graph, Aut(G) is the set of all permutations of the vertex set, and the
Aut(G)-invariance of the random vector XG is better known as exchangeability.
For a general graph, Aut(G) is merely a subgroup of the full permutation group,
and we lose exchangeability. While the transitivity of G is a strong assumption,
it is not surprising that a sufficiently rich group of symmetries would help us
maintain some semblance of the tractability of MFG theory which stems from

exchangeability. Transitivity, in particular, ensures that we still have XG
v

d
= XG

u

in equilibrium, for each v, u ∈ V .
We need the following notation. Let AG denote the adjacency matrix of a

graph G on n verties, and let DG = diag(degG(1), ..., degG(n)) be the diagonal
matrix of the degrees. If G has no isolated vertices (i.e., all degrees are nonzero),
we define the Laplacian1 by

LG := D−1
G AG − I,

where I is the identity matrix. It is easy to see that a transitive graph G is always
regular, meaning each vertex has the same degree, which we denote δ(G). The
Laplacian matrix then becomes LG = 1

δ(G)
AG − I, which is notably a symmetric

matrix.

Remark 2.4. Throughout the paper, we will make frequent use of the fact that
LG has real eigenvalues, all of which are between −2 and 0. Indeed, note that

LG = D
−1/2
G

˜︁LGD1/2
G where ˜︁LG = D

−1/2
G AGD

−1/2
G − I is the symmetric normalized

Laplacian, and thus the eigenvalues of LG and ˜︁LG are the same; the properties of

1In the literature, there are several different matrices derived from a graph which go by the
name Laplacian. Our matrix LG is sometimes called the random walk normalized Laplacian (or
the negative thereof).
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˜︁LG are summarized by [11, Sections 1.2 and 1.3]. Note that the all-ones vector is
an eigenvector of LG with eigenvalue 0.

Our first main result is the following:

Theorem 2.5 (Characterization of equilibrium on transitive graphs). Suppose G
is a finite transitive graph on n vertices without isolated vertices. Define QG :
R+ → R+ by

QG(x) := (det(I − xLG))
1/n, for x ∈ R+.(2.4)

Then QG : R+ → R+ is well defined and continuously differentiable, and there
exists a unique solution fG : [0, T ] → R+ to the ODE

f ′
G(t) = cQ′

G(fG(t)), fG(0) = 0.

Define PG : [0, T ] → Rn×n by

PG(t) := −f ′
G(T − t)LG

(︁
I − fG(T − t)LG

)︁−1
,(2.5)

and finally define αGi ∈ AG for i ∈ G by

αGi (t,x) = −eTi PG(t)x,

where (ev)v∈G is the standard Euclidean basis in RG. Then (αGi )i∈G is a Nash
equilibrium. For each t ∈ (0, T ], the equilibrium state process XG(t) is normally
distributed with mean vector (I − fG(T − t)LG)(I − fG(T )LG)

−1XG(0) and cov-
ariance matrix

σ2(I − fG(T − t)LG)
2

∫︂ t

0

(I − fG(T − s)LG)
−2ds.

Finally, writing | · | for the Euclidean norm, the time-zero average value is

Val(G) :=
1

n

∑︂
v∈G

JGv ((α
G
i )i∈G) =

|PG(0)XG(0)|2

2Tr(PG(0))
− σ2

2
log

Tr(PG(0))

nf ′
G(T )

.(2.6)

The proof is given in Section 4. As usual, we first reduce our (linear-quadratic)
game to a system of matrix differential equations of Riccati type in Section 4.2.
In our setting we can explicitly solve these Riccati equations using symmetry
arguments based on the transitivity assumption. In Section 4.7, we discuss an
extension of Theorem 2.5 to a more general class of matrices L, or equivalently to
weighted graphs, satisfying a suitable generalization of the transitivity assumption.

It is important to note that the equilibrium controls αGi obtained in Theorem
2.5 are nonlocal, in the sense that the control of player i depends on the states
of all of the players, not just the neighbors. Naive intuition would suggest that
players should only look at the states of their neighbors, because the objective of
each player is to align at time T with those neighbors. On the contrary, a rational
player anticipates that her neighbors will in turn try to align with their own
neighbors, which leads the player to follow the states of the neighbors’ neighbors,
and similarly the neighbors’ neighbors’ neighbors, and so on.

It is worth noting that in the setting of Theorem 2.5 we have

E

[︄
1

n

∑︂
v∈G

XG
v (t)

]︄
=

1

n

∑︂
v∈G

XG
v (0).
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That is, the average location of the players stays constant over time, in equilibrium.
Indeed, this follows easily from the formula for the mean E[XG(t)] and from the
fact that the vector of all ones is an eigenvector with eigenvalue 0 for the symmetric
matrix LG.

We suspect that the Markovian Nash equilibrium identified in Theorem 2.5 is
the unique one. This could likely be proven using similar arguments to those of
[9, Section II.6.3.1], but for the sake of brevity we do not attempt to do so.

2.3. Asymptotic regimes. The form of the equilibrium computed in Theorem
2.5 lends itself well to large-n asymptotics after a couple of observations. First,
for simplicity, we focus on the case XG(0) = 0. Transitivity of the graph G (or

Lemma 4.1) ensures that XG
i (t)

d
= XG

j (t) for all i, j ∈ G and t > 0, and we deduce

that each XG
i (t) is a centered Gaussian with variance

Var(XG
i (t)) =

1

n

n∑︂
k=1

Var(XG
k (t))

=
σ2

n
Tr

[︃
(I − fG(T − t)LG)

2

∫︂ t

0

(I − fG(T − s)LG)
−2ds

]︃
=

σ2

n

n∑︂
k=1

∫︂ t

0

(︃
1− fG(T − t)λGk
1− fG(T − s)λGk

)︃2

ds,(2.7)

where λG1 , . . . , λ
G
n are the eigenvalues of LG, repeated by multiplicity. The average

over k = 1, . . . , n can be written as an integral with respect to the empirical
eigenvalue distribution,

µG :=
1

n

n∑︂
i=1

δλGi ,(2.8)

which we recall is supported on [−2, 0], as in Remark 2.4. The other quantities
in Theorem 2.5 can also be expressed in terms of µG. Indeed, the value Val(G)
becomes

(2.9) Val(G) = −σ2

2
log

Tr(PG(0))

nf ′
G(T )

= −σ2

2
log

∫︂
[−2,0]

−λ

1− fG(T )λ
µG(dλ),

and the function QG defined in (2.4) becomes

QG(x) =

(︄
n∏︂
i=1

(1− xλGi )

)︄1/n

= exp

∫︂
[−2,0]

log(1− xλ)µG(dλ).

Thus, if we are given a sequence of graphs Gn such that µGn converges weakly
to some probability measure, it is natural to expect the equilibrium computed in
Theorem 2.5 to converge in some sense. This is the content of our next main
result, which we prove in Section 7:

Theorem 2.6 (Large-scale asymptotics on transitive graphs). Let {Gn} be a se-
quence of finite transitive graphs without isolated vertices, with limn→∞ |Gn| = ∞.
Let XGn denote the equilibrium state process identified in Theorem 2.5, started
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from initial position XGn(0) = 0. Suppose µGn converges weakly to a probability
measure µ, and define Qµ : R+ → R+ by

Qµ(x) := exp

∫︂
[−2,0]

log(1− xλ)µ(dλ).

Then the following holds:

(1) There exists a unique solution fµ : [0, T ] → R+ of the ODE

f ′
µ(t) = cQ′

µ(fµ(t)), fµ(0) = 0.(2.10)

(2) For any vertex sequence kn ∈ Gn and any t ∈ [0, T ], the law of XGn
kn

(t)
converges weakly as n → ∞ to the Gaussian distribution with mean zero
and variance

Vµ(t) = σ2

∫︂ t

0

∫︂
[−2,0]

(︃
1− λfµ(T − t)

1− λfµ(T − s)

)︃2

µ(dλ)ds.(2.11)

(3) For any t ∈ [0, T ], the (random) empirical measure 1
|Gn|

∑︁
i∈Gn

δXGn
i (t) con-

verges weakly in probability as n → ∞ to the (non-random) Gaussian
distribution N (0, Vµ(t)).

(4) The time-zero values given in (2.6) with XGn(0) = 0 converge:

lim
n→∞

Val(Gn) = −σ2

2
log

∫︂
[−2,0]

−λ

1− λfµ(T )
µ(dλ).(2.12)

There are many concrete graph sequences {Gn} for which µGn can be shown to
converge to a tractable (typically continuous) limiting measure, and we document
several notable cases in Section 2.4. The Laplacian spectrum is in fact quite
tractable and well-studied. There is a substantial literature on the eigenvalues
of Laplacian (and other) matrices of graphs ([11, 22]), which are well known to
encode significant structural information about the graph.

In addition, graph convergence concepts like local weak convergence are known
to imply weak convergence of the spectral measure ([3]); see Section 2.6 for some
further discussion.

Remark 2.7. We develop in Section 3 some noteworthy qualitative and quantit-
ative properties of the equilibrium variance Vµ(t) given in (2.11). We show in Pro-
position 3.3 that Vµ(0) = 0, V ′

µ(0) = σ2, and V ′′
µ (0) = −2σ2(f ′

µ(T ))
2/cQµ(fµ(T )).

In particular, for short times, the leading-order behavior Vµ(t) = σ2t + o(t) does
not depend on the underlying graph. It is only at the second order or at longer
time horizons that the influence of the graph is felt.

Remark 2.8. The restriction to XGn(0) = 0 in Theorem 2.6 is merely to simplify
the resulting formulas. One could easily accommodate the more general setting
in which the empirical measure of initial states converges to some limiting distri-
bution. (Note, however, that if the graph is not transitive, then general initial
states may confound the convergence analysis; see [12], and especially Remark 1.2
therein for a relevant discussion of uncontrolled models.) In addition, a functional
version of Theorem 2.6 can likely be derived under no further assumptions, in
which the Gaussian process (XGn

kn
(t))t∈[0,T ] converges weakly in C([0, T ]) to a lim-

iting Gaussian process. We omit these generalizations, as the more complicated
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statements do not shed any light on the role of the network structure, which is
the main focus of our work.

2.3.1. Dense graphs. If Gn is the complete graph, then it turns out that µGn =
1
n
δ0 + n−1

n
δ−n/(n−1) → δ−1, which leads to a simpler form for the limiting law

in (2.11). More generally, the case µGn → δ−1 represents a “dense” regime, as
described in the following result. Recall that all transitive graphs are regular,
meaning each vertex has the same degree. The following is proven in Section 7.3:

Corollary 2.9 (Large-scale asymptotics on dense transitive graphs). Suppose
{Gn} is a sequence of transitive graphs, and suppose each vertex of Gn has com-
mon degree δ(Gn) ≥ 1. Then µGn → δ−1 if and only if δ(Gn) → ∞. In this case,
the limiting variance (2.11) and value (2.12) simplify to

Vδ−1(t) = σ2t
1 + c(T − t)

1 + cT
, lim

n→∞
Val(Gn) =

σ2

2
log(1 + cT ).(2.13)

Moreover, there is a constant C < ∞, depending only on c and T , such that

|VGn(t)− Vδ−1(t)|+
⃓⃓⃓
Val(Gn)− σ2

2
log(1 + cT )

⃓⃓⃓
≤ C/δ(Gn), ∀n ∈ N, t ∈ [0, T ].

(2.14)

Finally, the Gaussian law N (0, Vδ−1(t)) is precisely the time-t law of the unique
solution of the SDE

dX(t) = − cX(t)

1 + c(T − t)
dt+ σdW (t), X(0) = 0.(2.15)

Corollary 2.9 shows that the dense regime is particularly tractable. In particu-
lar, the mean field case (where Gn is the complete graph) is universal in the sense
that the same limit arises for any other transitive graph sequence with diverging
degree. Moreover, the rate C/δ(Gn) in (2.14) becomes C/n in the mean field case,
which is the best-known convergence rate for the value functions of well-behaved
MFGs ([7, Theorem 2.13]).

Remark 2.10. We show in Proposition 3.4 that the dense graph regime uniquely
achieves the lowest possible variance; precisely, we have Vµ(t) ≥ Vδ−1(t), recalling
the definitions (2.11) and (2.13), with equality only when µ = δ−1. The example
of the torus graphs in Section 2.4.3 below illustrates what appears to be a general
principle, that a highly connected graph has smaller variance in equilibrium. This
makes intuitive sense, as a higher degree means each player has a larger set of
neighbors to be attracted toward.

Our next result shows that in the dense regime we may use the limiting object
to construct approximate equilibria for n-player games on general large dense
graphs (not necessarily transitive), in the same way that the equilibrium of a
MFG can be used to build approximate equilibria for finite games.

Theorem 2.11 (Approximate equilibria on general dense graphs). Suppose G is
a finite graph. For each vertex v of G, define a control

αMF
v (t,x) :=

−cxv
1 + c(T − t)

, t ∈ [0, T ], x = (xu)u∈G ∈ RG.
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Finally, define ϵG = (ϵGv )v∈G ∈ RG
+ by

ϵGv :=

{︄
σ2 cT

1+cT

√︂
cT (2+cT )
degG(v)

if degG(v) ≥ 1

0 if degG(v) = 0.

Then, for each n, (αMF
v )v∈G is an ϵG-Nash equilibrium on G. In particular, if2

ϵG := σ2 cT

1 + cT

√︄
cT (2 + cT )

1 ∨ δ(G)
, where δ(G) := min

v∈G
degG(v),

then (αMF
v )v∈G is a ϵG-Nash equilibrium on G.

We use the notation αMF
v because this is precisely the control one obtains from

the corresponding MFG (see Lemma 7.2).
Hence, Theorem 2.11 says that on a graph sequence with “diverging degree”

in some sense, the MFG provides a (decentralized, symmetric) approximate Nash
equilibrium. More precisely, if {Gn} is a sequence of graphs with diverging min-
imal degree δ(Gn) → ∞, then the controls αn := (αMF

v )v∈Gn form an ϵGn-Nash
equilibrium for each n with limn ϵGn = 0. Of course, the now-classical theory of
MFGs tells us the same thing when Gn is the complete graph (see, e.g., [9, Section
II.6.1], or [23, Theorem 12] for the standard rate of ϵGn = O(1/

√
n)), but Theorem

2.11 gives a threshold of how dense the graph needs to be in order for the mean
field approximation to remain valid. The constant ϵGn shows quantitatively how
the accuracy of the mean field approximation depends on the “denseness” of the
graph, as measured by the minimal degree. Some examples beyond the complete
graph will be discussed in Section 2.4 below.

In fact, we may relax the denseness threshold if we are happy to assert that
(αMF

v )v∈Gn form an approximate equilibrium in a weaker sense, suggested by the
most general form of Definition 2.2. A small fraction of players (namely, those
with small degree) might have a lot to gain by deviating, but this potential gain
from deviation is small when averaged over all players. Precisely, suppose that
instead of the minimum degree diverging, we suppose merely that degrees diverge
in the following averaged sense:

lim
n→∞

1

|Gn|
∑︂
v∈Gn

(1 ∨ degGn
(v))−1/2 = 0.(2.16)

Then (αMF
v )v∈Gn is an ϵGn-Nash equilibrium, and limn

1
n

∑︁n
i=1 ϵ

Gn
i = 0.

In summary, different manners of quantifying the concept of approximate equi-
librium lead to different sparsity/denseness thresholds for the validity of the mean
field approximation. The Erdős-Rényi case in Section 2.4.4 gives a concrete ex-
ample.

2.3.2. Correlation decay and asymptotic independence. Before discussing examples,
we lastly present an estimate of correlation decay, which is crucial in the proof
of convergence of the empirical measure in Theorem 2.6, and which also reveals
what form of asymptotic independence between the players can be expected. See
Section 6 for the proof:

2As usual, we write a ∨ b := max{a, b}.
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Proposition 2.12 (Correlation decay on transitive graphs). Let G be a finite
transitive graph without isolated vertices, and let XG denote the equilibrium state
process identified in Theorem 2.5. Suppose each vertex of G has degree δ(G) ∈ N.
For vertices u, v ∈ G, let dG(u, v) denote the graph distance, defined as the length of
the shortest path from u to v (and ∞ if no such path exists). Let γ = cT/(1+cT ) ∈
(0, 1). Then

|Cov(XG
u (t), X

G
v (t))| ≤ 2σ2t

γdG(u,v)
(︁
1 + dG(u, v)(1− γ)

)︁
δ(G)(1− γ)2

1{dG(u,v)<∞}.(2.17)

Note that the right-hand side of (2.17) is a bounded function of δ(G) and
dG(u, v). If Gn is the complete graph on n vertices (i.e., the mean field case),
then δ(Gn) = n − 1 → ∞, and each pair of players (in equilibrium) becomes
asymptotically independent as n → ∞. This is an instance of the phenomenon of
propagation of chaos for mean field systems. More generally, this remains true for
any dense graph sequence, i.e., whenever δ(Gn) → ∞.

On the other hand, the picture is rather different for a sparse graphs sequence,
i.e., when supn δ(Gn) < ∞. An arbitrary pair of players can no longer be expected
to become asymptotically independent as n → ∞, but only distant players. More
precisely, two players un, vn ∈ Gn become asymptotically independent only if
dGn(un, vn) → ∞ (since γ < 1). For a transitive graph sequence with |Gn| →
∞ and supn δ(Gn) < ∞, it is always the case that the distance between two
uniformly random vertices converges to infinity in probability, and it follows that
two (uniformly) randomly chosen players are asymptotically independent.

In summary, for a sequence of (transitive) graphs Gn with |Gn| → ∞, asymp-
totic independence of a typical pair of players arises for one of two quite distinct
reasons. Either:

(1) The degree diverges, and each player interacts with many other players,
with pairwise interaction strengths of order 1/δ(Gn) → 0.

(2) The degrees stay bounded, but typical players are very far apart in the
graph and thus very weakly correlated.

The correlation decay estimate of Proposition 2.12 is the key ingredient which
allows us to deduce Theorem 2.6(iii) from Theorem 2.6(ii), i.e., to prove the em-
pirical measure convergence. Indeed, we will use this covariance bound along with
the Gaussian Poincaré inequality to prove that XGn

vn (t) and XGn
un (t) are asymptot-

ically independent as n → ∞, when un and vn are independent uniformly random
vertices in Gn for each n. That is, (XGn

vn (t), XGn
un (t)) converges in joint law to

N (0, Vµ(t))
⊗2. By a standard propagation of chaos argument, this is equivalent

to the convergence of the empirical measure 1
|Gn|

∑︁
i∈Gn

δXGn
i (t) to N (0, Vµ(t)). See

Section 7.1.2 for details.
Moreover, the empirical measure convergence is also equivalent to the conver-

gence in joint law of (XGn

vin
(t))ki=1 to N (0, Vµ(t))

⊗k as n → ∞ for fixed k ≥ 2, where

(v1n, . . . , v
k
n) are either independent uniformly random vertices or a uniformly ran-

dom choice from the n(n− 1) · · · (n− k + 1) possible k-tuples of distinct vertices.
Thus, in both the sparse and dense regime, we obtain a full picture of propagation
of chaos, up to a randomization of the choice of vertices.
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2.4. Examples. In this section we specialize the results of Section 2.3 to a short
(and by no means exhaustive) list of somewhat tractable natural large-graph mod-
els. We focus on cases where the minimum degree and/or the empirical eigenvalue
distribution of the graph are tractable, as these quantities are particularly relevant
to the main results of Section 2.3.

2.4.1. The complete graph. Let us summarize what we have mentioned regarding
the simplest (mean field) case, where Gn is the complete graph on n vertices. In
this case, the Laplacian matrix takes the form

LGn =
1

n− 1
(J − I)− I,

where J is the matrix of all ones. From this we easily deduce that the eigenvalues of
LGn are 0 and − n

n−1
, with respective multiplicities 1 and n−1. Hence, µGn → δ−1,

and the degree δ(Gn) = n − 1 → ∞. The complete graph is of course transitive,
and all of our main theorems apply, in particular Corollary 2.9.

In the complete graph setting, our model essentially becomes the ϵ = q = 0
case of [10]. The only difference is that in [10] each player is included in the
empirical average; that is, the terminal cost of player k is | 1

n

∑︁
xi − xk|2 instead

of | 1
n−1

∑︁
i ̸=k xi − xk|2. This can easily be fit into our framework, as the following

remark explains.

Remark 2.13. For a finite transitive graph G without isolated vertices, every
vertex has a common degree δ(G). Letting Nv(G) denote the union of {v} and
the set of neighbors of a vertex v in G, we can write the terminal cost function for
player v as⃓⃓⃓⃓

⃓ 1

δ(G)

∑︂
u∼v

xu − xv

⃓⃓⃓⃓
⃓
2

=

(︃
δ(G) + 1

δ(G)

)︃2

⃓⃓⃓⃓
⃓⃓ 1

δ(G) + 1

∑︂
u∈Nv(G)

xu − xv

⃓⃓⃓⃓
⃓⃓
2

.

Hence, we can modify our setup so that each each player is included in the average
in the terminal cost, simply by modifying the constant c by a factor of (1 +
1/δ(G))2.

2.4.2. The cycle graph. Suppose now that Gn = Cn is the cycle on n vertices.
This is a transitive graph in which every vertex has common degree δ(Cn) = 2.
The adjacency matrix ACn is a circulant matrix, which makes it easy to calculate
the eigenvalues as 2 cos(2πk/n) for k = 1, . . . , n. The eigenvalues of the Laplacian
LCn = 1

2
ACn − I are thus λCn

k = cos(2πk/n)− 1 for k = 1, . . . , n. In this case, for
a bounded continuous function f we compute∫︂

f dµCn =
1

n

n∑︂
k=1

f(cos(2πk/n)− 1) →
∫︂ 1

0

f(cos(2πu)− 1) du, as n → ∞,

which shows that µCn converges weakly to the probability measure µ given by the
law of cos(2πU)− 1, where U is uniform in [0, 1], i.e., µ(dx) = 1[−2,0](x)

dx

π
√

−x(2+x)
.

The function Qµ in Theorem 2.6 is then

Qµ(x) = exp

∫︂ 1

0

log
(︁
1 + x− x cos(2πu)

)︁
du, x ≥ 0.(2.18)
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In Section 7.3.2 we derive a semi-explicit solution of the ODE (2.10) in this setting:

Proposition 2.14. Define Qµ as in (2.18). Then Qµ(x) =
1
2
(
√
1 + 2x + x + 1),

and the unique solution of the ODE f ′
µ(t) = cQ′

µ(fµ(t)) with fµ(0) = 0 is given by

fµ(t) = Φ−1

(︃
log 2 +

ct− 1

2

)︃
,

where Φ−1 is the inverse of the strictly increasing function Φ : R+ → R+ defined
by

Φ(x) := log(1 +
√
1 + 2x)−

√
1 + 2x+ x+ 1

2
.

The variance from (2.11) then becomes

Vµ(t) = σ2

∫︂ t

0

∫︂ 1

0

⎛⎝1− (cos(2πu)− 1)Φ−1
(︂
log 2 + c(T−t)−1

2

)︂
1− (cos(2πu)− 1)Φ−1

(︂
log 2 + c(T−s)−1

2

)︂
⎞⎠2

du ds.(2.19)

This does not appear to simplify further, but Figure 1 gives plots for various c.
Note that the variance in the dense case is always lower than in the cycle case,
as we show in Proposition 3.3. In both cases, the variance at any fixed time t
decreases with c.

As c → ∞, the variance Vµ(t) in both the dense and cycle graph cases can
be shown to converge to σ2t(T − t)/T , which is the same as that of a Brownian
bridge.

Figure 1. Variance of a typical player over time in the dense graph
(line with markers, equation (2.13)) and in the cycle graph (markers
only, equation (2.19)) for different values of c. Here T = σ = 1.

2.4.3. The torus. For d ∈ N, consider the torus Gn = Zdn := Zd/nZd. That is, this
graph is the subgraph of the integer lattice Zd with vertex set {1, . . . , nd} and with
“wrapping around” at the boundary. The eigenvalues of LZd

n
are easily computed

from those of LCn , the cycle graph from the previous section, after noting that
Zdn is the d-fold Cartesian product of the cycle Cn with itself. In particular, if
G and H are two graphs, and AG and AH have eigenvalues (ηGv )v∈G and (ηHv )v∈H
respectively, then the eigenvalues of the adjacency matrix of the Cartesian product
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of G and H are given by (ηGv + ηHu )u∈G,v∈H .
3 In particular, the eigenvalues of AZd

n

are
d∑︂
i=1

2 cos(2πki/n), k = (k1, . . . , kd) ∈ Zdn.

Noting that each vertex in Zdn has degree 2d, we find that the eigenvalues of
LZd

n
= 1

2d
AZd

n
− I are

λ
Zd
n

k =
1

d

d∑︂
i=1

cos(2πki/n)− 1, k = (k1, . . . , kd) ∈ Zdn.

Hence, for a bounded continuous function f we compute∫︂
f dµZd

n
=

1

|Zdn|
∑︂
k∈Zd

n

fµ(λ
Zd
n

k ) =
1

nd

n∑︂
k1,...,kd=1

f

(︄
1

d

d∑︂
i=1

cos(2πki/n)− 1

)︄

→
∫︂
[0,1]d

f

(︄
1

d

d∑︂
i=1

cos(2πui)− 1

)︄
du, as n → ∞,

which shows that µZd
n
converges weakly to the probability measure µ given by the

law of 1
d

∑︁d
i=1 cos(2πUi) − 1, where U1, . . . , Ud are independent uniform random

variables in [0, 1]. The function Qµ in Theorem 2.6 is then

Qµ(x) = exp

∫︂
[0,1]d

log

(︄
1 + x− x

d

d∑︂
i=1

cos(2πui)

)︄
du.(2.20)

We cannot evaluate (2.20) or the solution f of the ODE (2.10) explicitly, for the
torus of dimension d > 1 (the case d = 1 is the cycle graph). But we can easily do
so numerically. Figure 2 shows the variance Vµ(t) of (2.11) for the torus of various
dimensions, compared with the dense graph case. Notably, the variance decreases
with the dimension d, supporting the intuition that a more highly connected graph
leads to a behavior closer to the mean field regime.

2.4.4. Erdős-Rényi graphs. Most of our main results require a transitive graph and
thus have little to say about classical random graph models, such as Erdős-Rényi,
random regular graphs, or the configuration model, which generate graphs which
are non-transitive with high probability. In particular, in applications of Theorems
2.5 and 2.6 we cannot take any advantage of the vast body of literature on the
behavior of the eigenvalue distribution of the adjacency and Laplacian matrices
of these (non-transitive) random graph models. That said, we mention here some
noteworthy dense random graph models, to which Theorem 2.11 applies and shows
that the MFG approximation is valid.

For the Erdős-Rényi graphG(n, pn), it is known that as n → ∞ with lim infn npn/ log n >
1, the minimal degree converges to infinity in probability ([15, Lemma 6.5.2]).
Hence, Theorem 2.11 applies in this regime to give a random sequence ϵn ≥ 0
converging to zero in probability such that (αMF

v )v∈Gn is an ϵn-Nash equilibrium
for each n. This is sharp in a sense, because pn > log n/n is precisely the threshold

3See Chapter 7.14 of [22] for definition of the Cartesian product of graphs and Chapter 9.7
for a derivation of the eigenvalues of the adjacency matrix of a Cartesian product.
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Figure 2. Variance of a typical player over time in the torus of
dimensions d = 1, 2, 4 and the dense case. Here T = c = σ = 1.

for connectedness: If lim supn npn/ log n < 1, then G(n, pn) contains isolated ver-
tices with high probability (in particular, the minimal degree is 1), and we cannot
expect αMF

v to be near-optimal for v in a small connected component. This might
be compared to the main result of [13], which keeps pn = p constant as n → ∞
and finds likewise that the usual MFG approximation is valid for a class of games
on the Erdős-Rényi graph.

If we relax our concept of approximate equilibrium, as in the discussion after
Theorem 2.11, then we may push the denseness threshold all the way to npn →
∞. That is, if npn → ∞, then a straightforward calculation using the fact that
degGn

(v) ∼ Binomial(n− 1, pn) shows that

E

[︄
1

n

n∑︂
v=1

(1 ∨ degGn
(v))−1/2

]︄
=

n−1∑︂
k=0

(︃
n− 1

k

)︃
pkn(1− pn)

n−k−1(1 ∨ k)−1/2 → 0,

which ensures by Theorem 2.11 that there exist random (graph-dependent) vari-
ables ϵn = (ϵnv )

n
v=1 such that 1

n

∑︁n
v=1 ϵ

n
v → 0 in probability and (αMF

v )v∈Gn forms a
ϵn-Nash equilibrium. Note that this threshold npn → ∞ means that the expected
degree (of a randomly chosen vertex) diverges.

In the extremely sparse (diluted) regime limn npn = θ ∈ (0,∞), the degree
of a typical vertex converges in law to Poisson(θ), and Theorem 2.11 yields no
information.

These thresholds are in line with recent work on interacting particle systems
(without game or control). For example, interacting particle systems on either the
complete graph or the Erdős-Rényi graph G(n, pn) converge to the same mean field
(McKean-Vlasov) limit as soon as npn → ∞ ([2, 35]). This is clearly the minimal
sparsity threshold for which we can expect a mean field behavior, as evidenced
by recent work in the extremely sparse (diluted) regime where npn converges to a
finite non-zero constant ([28, 34]).

The approach of [13] given for the Erdős-Rényi case, based on the master
equation, shows promise for a more general theory for dense graph models. But
there are many difficulties to overcome, particularly in obtaining optimal sparsity
thresholds as in our case study. It seems that the arguments of [13] may extend
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to any graph sequence (not necessarily transitive) satisfying the conclusion of
Proposition 7 therein, which is a fairly strong denseness assumption shown so far
to cover the Erdős-Rényi case only when pn = p is constant. We do not pursue this
any further, and we note also that [13] deals with open-loop equilibria, whereas
we work here with closed-loop.

2.4.5. Random regular graphs. Random regular graphs are well known to ad-
mit tractable large-scale behavior, in both the dense and sparse regimes. Let
dn ∈ N \ {1}, and let R(n, dn) denote a uniformly random choice of dn-regular
graph on n vertices. In the dense regime, where dn → ∞, Theorem 2.11 lets
us construct approximate equilibria. In the sparse regime, when dn = d is con-
stant, the empirical measure µR(n,d) is known to converge weakly to an explicit
continuous probability measure µ(dλ) known as (an affine transformation of) the
Kesten-McKay law ([25, 31]), with density given by

λ ↦→
√︁
4(d− 1)− d2(λ+ 1)2

2π(1− (λ+ 1)2)
1{|1+λ|≤2

√
d−1/d}.

The same limit µ arises for any sequenceGn of d-regular graphs satisfying limn→∞
Ck(Gn)
|Gn| =

0 for each k ∈ N, where Ck(Gn) is the number of cycles of length k in Gn, by
[31]. Note that we cannot apply our main results to the random regular graph
Gn = R(n, d) for d fixed, because Gn is then transitive with vanishing probabil-
ity as n → ∞; in fact, Gn has trivial automorphism group with high probability
([26]).

2.5. The cooperative game. For comparison, we discuss the corresponding co-
operative game, which can be solved easily even without assuming transitivity of
the underlying finite graph G = (V,E). In the setup of Section 2.1, consider the
optimal control problem

inf
α∈AV

G

∑︂
v∈V

JGv (α).

Let us abbreviate L = LG for the Laplacian. The corresponding Hamilton-Jacobi-
Bellman (HJB) equation is{︃

∂tv(t,x)− 1
2
|∇v(t,x)|2 + 1

2
σ2∆v(t,x) = 0, (t,x) ∈ (0, T )× RV ,

v(T,x) = c
2
|Lx|2 = c

2
x⊤L⊤Lx,

and the optimal control is α∗ = −∇v. Using the ansatz v(t,x) = 1
2
x⊤F (t)x+h(t),

for some symmetric matrix F (t),
the HJB equation becomes

1

2
xTF ′(t)x+ h′(t)− 1

2
x⊤F 2(t)x+

1

2
σ2Tr(F (t)) = 0, (t,x) ∈ (0, T )× RV ,

with terminal conditions F (T ) = cL⊤L and h(T ) = 0. Matching coefficients, we
deduce that F and h must solve{︃

F ′(t)− F 2(t) = 0, F (T ) = cL⊤L,
h′(t) + 1

2
σ2Tr(F (t)) = 0, h(T ) = 0.
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We find that the solution to this system is given by

F (t) = cL⊤L(I + c(T − t)L⊤L)−1 = − d

dt
log(I + c(T − t)L⊤L),

where the log of the positive definite matrix is defined via power series, and

h(t) =
σ2

2
Tr log(I + c(T − t)L⊤L) =

σ2

2
log det(I + c(T − t)L⊤L).

The optimal control is α(t,x) = −F (t)x, and the optimal state process follows

dX(t) = −F (t)X(t) + σdW (t).

This SDE can be explicitly solved, and the law of X(t) is Gaussian with mean
(I + cTL⊤L)(I + c(T − t)L⊤L)−1X(0) and covariance matrix

σ2

∫︂ t

0

(I + c(T − t)L⊤L)2(I + c(T − s)L⊤L)−2ds.

In particular, if the graph G is transitive, we compute for each i ∈ V as in the
beginning of Section 2.3 that

Var(Xi(t)) = σ2

∫︂ t

0

∫︂
[−2,0]

(︃
1 + c(T − t)λ2

1 + c(T − s)λ2

)︃2

µG(dλ)ds.

And if X(0) = 0, then the per-player value is

1

|V |
inf

α∈AV
G

∑︂
v∈V

JGv (α) =
1

|V |
v(0, 0) =

σ2

2

∫︂
[−2,0]

log(1 + cTλ2)µG(dλ).

It is interesting to compare these outcomes to the competitive equilibrium com-
puted in Theorem 2.6. In the competitive case, the function f(t) = fµ(t) may
be seen as determining the rate of flocking ; as f(t) increases over time, players
expend more effort to move toward the average. In the competitive case, this
function depends crucially on the graph, and it simplifies to f(t) = ct in the dense
graph case. In the cooperative case, we always have f(t) = ct, but the solution
is governed by the squared Laplacian instead of the Laplacian itself. Figure 3
shows the variance over time for the competitive and cooperative solutions on the
(limiting) cycle graph.

In addition to being an interesting point of comparison for the competitive
case, we highlight the cooperative model also in connection with mean field control
theory. We are not the first to study stochastic optimal control problems on large
graphs, but we do not know of much other work other than the recent papers of
[20, 21], which focus on the graphon setting and do not seem to offer any explicit
examples.

2.6. Comments on intrinsic limit models. A key strength of the MFG paradigm
is that it offers an intrinsic model, which gives information about the n-player
equilibrium for large n but which can be analyzed without reference to the latter.
There is no such intrinsic limiting model yet in the graph-based setting, aside
from the recently proposed graphon MFGs for dense regimes ([5, 19]). In the
dense regime, our Theorem 2.11 says that the usual MFG model already suffices
for the purpose of constructing approximate equilibria. The sparse regime is more
mysterious, and this section comments on some possibilities and difficulties.
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Figure 3. Variance of a typical player over time in the cycle graph,
in the competitive versus cooperative regimes. Here T = σ = c = 1.

In the sparse regime, it is natural to understand large graphs using the well-
developed notion of local weak convergence. See [39] for a thorough treatment, as
well as [28, 34] for some recent work applying this framework to analyze large-
scale interacting diffusion models on sparse graphs. We will not define local weak
convergence of graphs Gn → G here, but we highlight that it is known to imply
the weak convergence of µGn to a certain spectral measure µG ([3]). This spectral
measure is defined intrinsically on any finite or countable locally finite graph G =
(V,E), by applying the spectral theorem to an appropriately defined Laplacian
operator on the complex Hilbert space ℓ2(V ). In the finite (transitive) graph case,
it coincides exactly with the empirical eigenvalue distribution defined in (2.8).

Moreover, this formalism suggests an intrinsic description of the n → ∞ limit,
in the context of Theorem 2.6, in the sparse case. If Gn converges in the local weak
sense to an infinite graph G, we should expect the limit given in Theorem 2.6 to
coincide with the equilibrium of the game set on G, defined as in Section 2.1 but
with some extra care to handle the infinite population. The equilibrium solution
given in Theorem 2.5 should remain valid in the infinite transitive graph case,
using the Laplacian operator in place of the Laplacian matrix, and being careful
to interpret the countably infinite controlled SDE system in an appropriate (mild)
sense.

But it is not at all clear what we stand to gain from this abstraction. The usual
MFG model, while often described as a model of a continuum of agents, is really
characterized in terms of a single representative player. The natural candidate
for a sparse graph limit model, on the other hand, appears to be a game with
infinitely many players, and it is not clear if any simpler, low-dimensional charac-
terization is possible, even in the transitive case. The recent paper of [28] derives
low-dimensional marginal dynamics for uncontrolled models on regular (and un-
imodular Galton-Watson) trees, but this is only possible when the dynamics are
local in the sense that the drift of XG

v depends only on the neighbors (XG
u )u∼v.

This is not the case in equilibrium in our model.
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The issue of non-local equilibrium controls suggests an alternative strategy of
truncating the range of dependence, with each player basing its control only on
those other players within some pre-specified graph distance. This may give rise
to a sequence of more tractable approximate equilibria. We leave this and the
other speculations of this section for future work.

Organization of the rest of the paper. The rest of the paper is devoted to
the proofs of the results stated in this section. We begin in Section 3 with an
analysis of the functions QG and Qµ and the ODEs for fG and fµ which appear
in Theorems 2.5 and 2.6. Section 4 then gives the proof of Theorem 2.5. This
proof is essentially a verification argument and does not explain how to derive
the announced solution, so in Section 5 we give a sketch of a direct derivation.
Section 6 proves the covariance bound of Proposition 2.12. Finally, Section 7
proves Theorem 2.6, Theorem 2.11, and some claims of Section 2.4.

3. Analysis of the ODE

In this section, we derive several useful results about the ODEs encountered in
Theorems 2.5 and 2.6. For a probability measure µ on [−2, 0], define the function

Qµ(x) = exp

∫︂
[−2,0]

log(1− xλ)µ(dλ), x ≥ 0.(3.1)

Note that the support of µ ensures that Qµ(x) is well-defined and infinitely differ-
entiable for x ≥ 0. Note that if µ = µG for a finite graph G, recalling the notation
of Section 2.3, then Qµ = QG takes the form of a normalized determinant as in
(2.4).

We restrict to probability measures on [−2, 0] in this section precisely because
µG is supported on [−2, 0] for every finite graph G, as discussed in Remark 2.4.
In addition, because the adjacency matrix of a (simple) graph has zero trace, the
Laplacian matrix of a graph on n vertices therefore has trace −n. In particular,∫︂

[−2,0]

xµG(dx) =
1

n

n∑︂
i=1

λGi =
1

n
Tr(LG) = −1,(3.2)

for a finite graph G on n vertices with Laplacian eigenvalues (λG1 , . . . , λ
G
n ). We

thus restrict our attention to the set PLap of probability measures on [−2, 0] with
mean −1, equipped with the topology of weak convergence (i.e., µn → µ in PLap

if
∫︁
f dµn →

∫︁
f dµ for each continuous function f : [−2, 0] → R).

We will make repeated use of the following formulas for the first two derivatives
of Qµ, computed via straightforward calculus:

Q′
µ(x) = Qµ(x)

∫︂
[−2,0]

−λ

1− xλ
µ(dλ),(3.3)

Q′′
µ(x) = Qµ(x)

[︄(︃∫︂
[−2,0]

−λ

1− xλ
µ(dλ)

)︃2

−
∫︂
[−2,0]

λ2

(1− xλ)2
µ(dλ)

]︄
.

Proposition 3.1. For each µ ∈ PLap, the function Qµ : R+ → R+ defined in (3.1)
satisfies

1 ≤ Qµ(x) ≤ 1 + x, 0 < Q′
µ(x) ≤ 1, −4 ≤ Q′′

µ(x) ≤ 0,
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for all x ∈ R+, as well as

Q′
µ(x) ≥ 1− (x+ 1

2
x2)Var(µ), where Var(µ) :=

∫︂
[−2,0]

(λ+ 1)2µ(dλ).(3.4)

Proof. Proof of Proposition 3.1. First note that the support of µ ensures that
Qµ(x) ≥ 0 for all x ≥ 0. Jensen’s inequality yields

Qµ(x) ≤
∫︂
[−2,0]

(1− xλ)µ(dλ) = 1 + x.

and Q′′
µ(x) ≤ 0. Since Q′

µ(0) = 1, we deduce that Q′
µ(x) ≤ 1 for all x ≥ 0. The

next claims follow from the fact that, for each x ≥ 0, the function

[−2, 0] ∋ λ ↦→ −λ/(1− xλ) is nonnegative and strictly decreasing.(3.5)

Indeed, this first implies that Q′
µ(x) ≥ 0, and in fact the inequality must be strict

because µ has mean −1 and is thus not equal to δ0. In addition, (3.5) implies that

Q′′
µ(x) ≥ −Qµ(x)

∫︂
[−2,0]

λ2

(1− xλ)2
µ(dλ) ≥ −Qµ(x)

4

(1 + 2x)2
≥ −4,

where the last step uses Qµ(x) ≤ 1 + x ≤ (1 + 2x)2. To prove the final claim,
define

θ(x) :=

∫︂
[−2,0]

−λ

1− xλ
µ(dλ), x ≥ 0.

Using the Harris inequality (known as Chebyshev’s sum inequality in the discrete
case), we get

−2θ(x)θ′(x) =

∫︂
[−2,0]

−λ

1− xλ
µ(dλ)

∫︂
[−2,0]

2λ2

(1− xλ)2
µ(dλ)

≤
∫︂
[−2,0]

−2λ3

(1− xλ)3
µ(dλ) = θ′′(x),

since both integrands are decreasing functions of λ. Note that θ(0) = 1 and θ′(0) =
Var(µ) + 1, and integrate the above inequality to find θ2(x) + θ′(x) ≥ −Var(µ)
for x ≥ 0. The identity Q′′

µ(x) = Qµ(x)(θ
2(x) + θ′(x)) thus yields Q′′

µ(x) ≥
−(1 + x)Var(µ). Integrate, using Q′

µ(0) = 1, to complete the proof. □

Using these properties, we next justify the existence, uniqueness, and stability
for the ODEs appearing in Theorems 2.5 and 2.6:

Proposition 3.2. Let µ ∈ PLap. There is a unique continuous function fµ : R+ →
R+, continuously differentiable on (0,∞), satisfying

f ′
µ(t) = cQ′

µ(fµ(t)), t > 0, fµ(0) = 0.

Moreover, we have the bounds

0 ≤ fµ(t) ≤ ct, fµ(t) ≥ ct− (1
2
c2t2 + 1

6
c3t3)Var(µ).

Finally, if µn is a sequence in PLap converging to µ, then Q′
µn and fµn converge

uniformly to Q′
µ and fµ, respectively, on compact subsets of R+.
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Proof. Proof of Proposition 3.2. By Proposition 3.1, Q′
µ is nonnegative and

Lipschitz (with constant 4) on R+. A standard Picard iteration yields existence
and uniqueness of the ODE in question.

Next we prove the estimates for fµ. Note first that the bound Q′
µ ≤ 1 from

Proposition 3.1 ensures that 0 ≤ fµ(t) ≤ ct for all t ≥ 0. Use the lower bound on
Q′
µ from (3.4) to get

f ′
µ(t) = cQ′

µ(fµ(t)) ≥ c− c

(︃
fµ(t) +

1

2
fµ(t)

2

)︃
Var(µ) ≥ c− c(ct+ 1

2
c2t2)Var(µ).

Integrate both sides to get the desired lower bound on fµ(t).
We next prove that Q′

µn converges to Q′
µ uniformly on compacts. Because Q′

ν

is 4-Lipschitz and Q′
ν(0) = 1 for each ν ∈ PLap, the equicontinuous family {Q′

ν :
ν ∈ PLap} ⊂ C(R+;R) is precompact in the topology of uniform convergence on
compacts, by the Arzelà-Ascoli theorem. Hence, we need only prove the pointwise
convergence of Q′

µn to Q′
µ. But this follows easily from the assumed convergence

µn → µ and the form of Q′ in (3.3). Finally, since Q′
µn is 4-Lipschitz, for t ≥ 0 we

have

|fµn(t)− fµ(t)| ≤ c

∫︂ t

0

|Q′
µn(fµn(s))−Q′

µn(fµ(s))|ds+ c

∫︂ t

0

|Q′
µn(fµ(s))−Q′

µ(fµ(s))|ds

≤ 4c

∫︂ t

0

|fµn(s)− fµ(s)|ds+ c sup
u∈[0,ct]

|Q′
µn(u)−Q′

µ(u)|.

Use Gronwall’s inequality and the uniform convergence of Q′
µn to Q′

µ on compacts
to deduce that fµn → fµ uniformly on compacts. □

This concludes the basic analysis of fµ and Qµ needed for the proofs of the
main results of Sections 2.2 and 2.3. The rest of the section is devoted to some
properties of the variance computed in Theorem 2.6, which will not be needed
in the subsequent sections but which justify the claims in Remarks 2.7 and 2.10.
Extending the formula (2.11) for the variance, we define for µ ∈ PLap and t ∈ [0, T ]
the quantity

Vµ(t) := σ2

∫︂ t

0

∫︂
[−2,0]

(︃
1− λfµ(T − t)

1− λfµ(T − s)

)︃2

µ(dλ)ds.(3.6)

Proposition 3.3. For each µ ∈ PLap, fµ is strictly increasing and concave, with
0 < f ′

µ(t) ≤ c for all t ≥ 0. Moreover, Vµ satisfies

Vµ(0) = 0, V ′
µ(0) = σ2, and V ′′

µ (0) = −2σ2
(f ′
µ(T ))

2

cQµ(fµ(T ))
.

Proof. Proof of Proposition 3.3. Fix µ ∈ PLap. First, we note that

f ′
µ(t) = cQ′

µ(fµ(t)), and f ′′
µ(t) = cQ′′

µ(fµ(t))f
′
µ(t).

Using Proposition 3.1 we deduce that 0 < f ′
µ(t) ≤ c and f ′′

µ(t) ≤ 0 for all t ≥ 0,
which proves the first claim. Differentiating in (3.6) using Liebniz’s rule yields

V ′
µ(t) = σ2 − 2σ2f ′

µ(T − t)

∫︂ t

0

∫︂
[−2,0]

−λ(1− λfµ(T − t))

(1− λfµ(T − s))2
µ(dλ)ds.
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The claim V ′
µ(0) = σ2 follows. Differentiate again at t = 0 to get

V ′′
µ (0) = −2σ2f ′

µ(T )

∫︂
[−2,0]

−λ

1− λfµ(T )
µ(dλ)

= −2σ2 d

dt

⃓⃓⃓
t=T

∫︂
[−2,0]

log(1− λfµ(t))µ(dλ)

= −2σ2 d

dt

⃓⃓⃓
t=T

logQµ(fµ(t))

= −2σ2
Q′
µ(fµ(T ))f

′
µ(T )

Qµ(fµ(T ))

= −2σ2
(f ′
µ(T ))

2

cQµ(fµ(T ))
.

□

We next show that the dense graph regime uniquely minimizes the variance,
as announced in Remark 2.10.

Proposition 3.4. Let µ ∈ PLap. For each t ∈ (0, T ] we have

Vµ(t) ≥ σ2t
1 + c(T − t)

1 + cT
= Vδ−1(t),

with equality if and only if µ = δ−1.

Proof. Proof of Proposition 3.4. Note from Proposition 3.1 that Qµ(x) ≤ 1 + x =
Qδ−1(x) and Q′

µ(x) ≤ 1 = Q′
δ−1

(x) for x ≥ 0. By a standard comparison argument,

it follows that fµ(t) ≤ fδ−1(t) = ct for all t ≥ 0. Next, note that

R+ ∋ t ↦→ 1− λfµ(t)

1− λfδ−1(t)
=

1− λfµ(t)

1− λct
is non-increasing for each λ ∈ [−2, 0].

(3.7)

Indeed, the derivative is

−λf ′
µ(t)(1− λct) + λc(1− λfµ(t))

(1− λct)2
=

−λ(f ′
µ(t)− c) + cλ2(tf ′

µ(t)− fµ(t))

(1− λct)2
.

This is at most zero, because we know f ′
µ(t) ≤ c by Proposition 3.3, and the

concavity of fµ together with fµ(0) = 0 imply tf ′
µ(t) ≤ fµ(t). This proves (3.7),

which is equivalent to the fact that

1− λfµ(T − t)

1− λfµ(T − s)
≥

1− λfδ−1(T − t)

1− λfδ−1(T − s)
=

1− λc(T − t)

1− λc(T − s)
, for t > s > 0.

As both sides are non-negative, this implies∫︂
[−2,0]

(︃
1− λfµ(T − t)

1− λfµ(T − s)

)︃2

µ(dλ) ≥
∫︂
[−2,0]

(︃
1− λc(T − t)

1− λc(T − s)

)︃2

µ(dλ).(3.8)

Finally, the function

[−2, 0] ∋ λ ↦→
(︃
1− λc(T − t)

1− λc(T − s)

)︃2
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is strictly convex for t > s > 0, which by Jensen’s inequality implies∫︂
[−2,0]

(︃
1− λc(T − t)

1− λc(T − s)

)︃2

µ(dλ) ≥
(︃
1 + c(T − t)

1 + c(T − s)

)︃2

(3.9)

since µ has mean −1. Combine (3.8) and (3.9) with the definition of Vµ to get
Vµ(t) ≥ Vδ−1(t), as desired. The inequality (3.9) is strict unless µ = δ−1. □

4. The equilibrium on finite graphs: Proof of Theorem 2.5

This section gives the proof of Theorem 2.5. We begin with some general
symmetry considerations in Section 4.1. We then derive the HJB system in Section
4.2 and reduce it to a system of Riccati equations in Section 4.3; these two steps
are standard for linear-quadratic games. The explicit resolution of the system
of Riccati equations is where the difficulty lies. In Section 4.4 we show that
the proposed solution Theorem 2.5 does indeed work, and the remaining sections
4.5 and 4.6 provide the remaining computations of the equilibrium state process
dynamics and the average value of the game.

The proof given in this section, while complete and rigorous, is opaque in the
sense that it does not give any idea of how one might arrive at the solution of the
system of Riccati equations. For this reason, we give in Section 5 a sketch a direct
derivation of the solution.

We fix throughout the section a finite transitive graph G = (V,E), and write
V = {1, . . . , n} for some n ∈ N. We may assume without loss of generality that
G is connected (see Remark 2.1). Throughout this entire section, we omit G from
the notation by writing, e.g., L = LG and X = XG.

4.1. Symmetries. We first discuss some basic symmetry properties. Since the
graph G is transitive and thus regular, the Laplacian matrix is symmetric, i.e.,
L = L⊤.

We will make some use of the so-called regular representation of the auto-
morphism group. Recall from the beginning of Section 2.2 that Aut(G) denotes
the set of automorphisms of G. To each φ ∈ Aut(G) we associate an invertible
n × n matrix Rφ, defined by requiring Rφei = eφ(i) for each i ∈ V , where we
recall that (e1, ..., en) denotes the standard Euclidean basis in Rn. It is clear that
RφRψ = Rφ◦ψ, and in particular R−1

φ = Rφ−1 . We also have R⊤
φ = Rφ−1 , because

e⊤i Rφej = e⊤i eφ(j) = 1{i=φ(j)} = 1{j=φ−1(i)} = e⊤j Rφ−1ei.

The following elementary lemma summarizes some uses of transitivity (Definition
2.3). The third property will be used only in the alternative proof of Theorem 2.5
given in Section 5.

Lemma 4.1. Assume that G = (V,E) is transitive, with V = {1, . . . , n}.
(i) L commutes with Rφ for each φ ∈ Aut(G).
(ii) If Y ∈ Rn×n commutes with Rφ for every φ ∈ Aut(G), then

Yii =
1

n
Tr(Y ), ∀ i ∈ V.

(iii) If Y 1, . . . , Y n ∈ Rn×n satisfy RφY
i = Y φ(i)Rφ for every φ ∈ Aut(G) and

i ∈ V , then
Y i
ii = Y j

jj, ∀ i, j ∈ V.
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Proof. Proof of Lemma 4.1.

(i) For φ ∈ Aut(G) we compute

e⊤i R
⊤
φLRφej = e⊤φ(i)Leφ(j) = e⊤i Lej, ∀i, j ∈ V,

with the last equality using the fact that φ is an automorphism. This shows
that R⊤

φLRφ = L. Since R⊤
φ = R−1

φ , this shows LRφ = RφL.

(ii) It suffices to apply (iii) with Y 1 = · · · = Y n = Y to get Yii = Yjj for all
i, j ∈ V .

(iii) Let i, j ∈ V . By transitivity, there exists φ ∈ Aut(G) such that φ(i) = j.
Then

e⊤i Y
iei = e⊤i R

T
φY

φ(i)Rφei = e⊤φ(i)Y
φ(i)eφ(i) = e⊤j Y

jej.

□

4.2. The corresponding system of HJB equations. We can write the cost
function of (2.2) for player i ∈ V as

Ji(α1, . . . , αn) =
1

2
E
[︃∫︂ T

0

|αi(t,X(t))|2dt+ c
⃓⃓
e⊤i LX(T )

⃓⃓2]︃
.

A standard argument associates this n-player game to the following Nash system
of n coupled PDEs:

0 = ∂tvi(t,x)−
1

2
(∂ivi(t,x))

2 −
∑︂
k ̸=i

∂kvk(t,x)∂kvi(t,x) +
σ2

2

n∑︂
k=1

∂kkvi(t,x),

vi(T,x) =
1

2
c(e⊤i Lx)

2, i = 1, . . . , n.

(4.1)

Here, we write x = (x1, . . . , xn) for a typical vector in Rn, and for the functions
vi : [0, T ] × Rn → R we write ∂t and ∂k for the derivative with respect to t and
xk, respectively. If (v1, . . . , vn) is a classical solution of (4.1), then the controls

αi(t,x) = −∂ivi(t,x), i = 1, . . . , n,(4.2)

form a Markovian Nash equilibrium.
For a thorough derivation of PDEs of this form and a verification theorem,

we refer to the book of [9, Section I.2.1.4]. But let us briefly explain how to
check if some (α1, . . . , αn) ∈ An

G forms a Nash equilibrium. Considering player i’s
optimization problem,

inf
αi∈AG

Ji(α1, . . . , αi−1, αi, αi+1, . . . , αn).(4.3)

Standard stochastic control theory (see, e.g., [18, 37]) leads to the HJB equation

0 = ∂tvi(t,x)−
1

2
(∂ivi(t,x))

2 +
∑︂
k ̸=i

αk(t,x)∂kvi(t,x) +
σ2

2

n∑︂
k=1

∂kkvi(t,x),

vi(T,x) =
1

2
c(e⊤i Lx)

2.

(4.4)
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Indeed, the (reduced) Hamiltonian for player i is

Hi(x,p) = inf
a∈R

(︄
1

2
a2 + api +

∑︂
k ̸=i

αk(t,x)pk

)︄
= −1

2
p2i +

∑︂
k ̸=i

αk(t,x)pk, x,p ∈ Rn,

with the infimum attained at a = −pi. Hence, after solving the PDE (4.4), the
optimal control in (4.3) is given by αi(t,x) = −∂ivi(t,x). Applying this optimality
criterion for each player i = 1, . . . , n couples the PDEs (4.4), leading to the system
(4.1).

4.3. Reduction to Riccati equations. Linear-quadratic control problems and
games always relate to Riccati-type equations after a quadratic ansatz. For our
PDE system (4.1), we make the ansatz

vi(t,x) =
1

2
x⊤F i(t)x+ hi(t), (t,x) ∈ [0, T ]× Rn,(4.5)

where F i : [0, T ] → Rn×n and hi : [0, T ] → R are functions to be determined. We
assume without loss of generality that F i(t) is symmetric for each t.

Lemma 4.2. Any solution of the Nash system (4.1) of the form (4.5), must satisfy
the equations

0 = Ḟ
i
(t)−

n∑︂
j=1

F j(t)eje
⊤
j F

i(t)− F i(t)
n∑︂
j=1

eje
⊤
j F

j(t) + F i(t)eie
⊤
i F

i(t),(4.6)

0 = ḣi(t) +
σ2

2
Tr(F i(t)), i = 1, . . . , n,

and the boundary conditions

F i(T ) = cLeie
⊤
i L, hi(T ) = 0.(4.7)

Proof. Proof of Lemma 4.2. Recall that L = L⊤, and note that the boundary con-
dition vi(T,x) = 1

2
c(e⊤i Lx)

2 = 1
2
cx⊤Leie

⊤
i Lx leads to the boundary conditions.

We write F i̇ and ḣi for the derivatives of these functions. Once we check that this
ansatz is correct, the equilibrium controls are given by

αi(t,x) = −∂ivi(t,x) = −e⊤i F
i(t)x, i = 1, . . . , n.(4.8)

Applying the ansatz (4.5) to the PDE system (4.1), noting that ∂kvi(t,x) =
e⊤k F

i(t)x and ∂kkvi(t,x) = e⊤k F
i(t)ek, leads to

1

2
x⊤Ḟ

i
(t)x+ ḣi(t) +

1

2
(e⊤i F

i(t)x)2 −
n∑︂
k=1

(︁
e⊤k F

k(t)x
)︁ (︁

e⊤k F
i(t)x

)︁
+

σ2

2
Tr(F i(t)) = 0.

Collecting like terms, we find

x⊤
(︂1
2
Ḟ
i
(t)−

n∑︂
k=1

F k(t)eke
⊤
k F

i(t) +
1

2
F i(t)eie

⊤
i F

i(t)
)︂
x+ ḣi(t) +

σ2

2
Tr(F i(t)) = 0.

This must hold for each x ∈ Rn, and we note that a square matrix A satisfies
x⊤Ax = 0 if any only if A + A⊤ = 0. We conclude by recalling that F i(t) is
symmetric.

□
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Once we solve for F i using the first equation, the second equation and the
boundary condition hi(T ) = 0 yield

hi(t) =
σ2

2

∫︂ T

t

Tr(F i(s))ds.(4.9)

Hence, the main task ahead is to solve the system (4.6). A key role will be played
by the matrix

ˆ︁P (t) =
n∑︂
j=1

F j(t)eje
⊤
j ,(4.10)

which appears multiplied by F i(t) in equation (4.6). In equilibrium, ˆ︁P (t) will

agree with PG(t) defined in (2.5). If we freeze the function ˆ︁P (t) in (4.6), the
system of equations for (F 1, . . . , F n) decouples, and each F i satisfies the simpler
matrix Riccati equation
(4.11)

F i̇ (t)− ˆ︁P (t)F i(t)− F i(t) ˆ︁P (t) + ˆ︁P (t)eie
T
i
ˆ︁P (t) = 0, t ∈ (0, T ), i = 1, . . . , n,

which we can solve explicitly in terms of ˆ︁P (t). This direct strategy will be car-

ried out in Section 5, ultimately leading to a fixed point equation (5.7) that ˆ︁P (t)
must satisfy. But we will first complete this section by showing that the solution
proposed in Theorem 2.5 is indeed correct: We show that PG, and suitable func-
tions (F 1, . . . , F n) thereof, do indeed simultaneously solve the equations (4.10)
and (4.11), thus providing a solution of the system in Lemma 4.2.

4.4. Checking the solution. It follows from the results of Section 3 that the
ODE

f ′(t) = cQ′(f(t)), f(0) = 0,

is well-posed, where Q(x) = QG(x) = (det(I − xL))1/n, and the solution f is
nonnegative and strictly increasing since Q′ > 0. As a result, the matrix-valued
function defined in (2.5) by

P (t) = PG(t) := −f ′(T − t)L
(︁
I − f(T − t)L

)︁−1
(4.12)

is well-defined; the symmetric matrix I − f(T − t)L is invertible because L is
negative semidefinite and f ≥ 0. Moreover, P (t) satisfies the following useful
properties for each t ∈ [0, T ]:

(i) eTi P (t)ei =
1
n
Tr(P (t)) > 0 for all i = 1, . . . , n.

(ii) P (t) is symmetric and positive semidefinite. Both L and P (t) have 0 as an
eigenvalue, with the same multiplicity.

(iii) P (t) and L commute.

Indeed, the third property is trivial. The second follows from the facts that L is
negative semidefinite, f ≥ 0, and f ′ > 0; note that the vector of all ones is an
eigenvector of L with eigenvalue zero, and thus also an eigenvector of P (t) with
eigenvalue zero. To derive the first property, note that L commutes with Rφ for
all φ ∈ Aut(G) by Lemma 4.1(i), and thus so does P (t), which means Lemma
4.1(ii) applies. The strict positivity of Tr(P (t)) follows from the fact that P (t) is
positive semidefinite and is not the zero matrix.
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Since Tr(P (t)) > 0 by property (i), we may define F i for i = 1, . . . , n by

F i(t) :=
1

Tr(P (t))/n
P (t)eie

⊤
i P (t).(4.13)

Using property (i), we compute

e⊤i F
i(t) =

1

Tr(P (t))/n

(︁
e⊤i P (t)ei

)︁
e⊤i P (t) = e⊤i P (t).

In other words, the ith column of F i(t) is the same as that of P (t). In particu-
lar, the control α∗

i (t,x) = −e⊤i P (t)x defined in Theorem 2.5 satisfies α∗
i (t,x) =

−e⊤i F
i(t)x. Recall from (4.8) that this was indeed the form dictated by the PDE.

We next check that (F 1, . . . , F n) solve the equations (4.6) and boundary condi-
tions (4.7) identified in Lemma 4.2. Beginning with the boundary condition (4.7),
note first that f(0) = 0 and thus

P (T ) = −f ′(0)L = −cQ′(0)L = −cL.

This implies Tr(P (T ))
n

= c, and from which we immediately compute F i(T ) =

cLeie
⊤
i L, as desired. We next turn to the equations (4.6). Using property (i) once

again, we compute
n∑︂
i=1

F i(t)eie
⊤
i =

1

Tr(P (t))/n

n∑︂
i=1

P (t)ei
(︁
e⊤i P (t)ei

)︁
e⊤i = P (t)

n∑︂
i=1

eie
⊤
i = P (t).

Similarly,
F i(t)eie

⊤
i F

i(t) = P (t)eie
⊤
i P (t).

With these identifications, to show that (F 1, . . . , F n) solves (4.6), it suffices to
check the equations (4.11). For this purpose, let us define τ(t) := Tr(P (t))/n > 0.
Omitting the time-dependence, the equation (4.11) then becomes

− τ ′

τ 2
Peie

⊤
i P +

1

τ
Ṗ eie

⊤
i P +

1

τ
Peie

⊤
i Ṗ − 1

τ
P 2eie

⊤
i P − 1

τ
Peie

⊤
i P

2 + Peie
⊤
i P = 0,

or equivalently, multiplying by τ ,

(4.14) − τ ′

τ
Peie

⊤
i P + Ṗ eie

⊤
i P + Peie

⊤
i Ṗ − P 2eie

⊤
i P − Peie

⊤
i P

2 + τPeie
⊤
i P = 0.

Hence (F 1, ..., F n) are solutions of the ODEs (4.11) if and only if P solves the
ODEs (4.14) for i = 1, . . . , n, with τ(t) = Tr(P (t))/n.

Now let v1, . . . , vn denote an orthonormal basis of eigenvectors of the symmetric
matrix L, with associated eigenvalues λ1, . . . , λn. From the definition (4.12) of P (t)
it follows that v1, . . . , vn are eigenvectors of P (t), and the eigenvalue ρj(t) of P (t)
associated with the eigenvector vj is given by

ρj(t) =
−f ′(T − t)λj
1− f(T − t)λj

= −∂t log(1− f(T − t)λj).(4.15)

Note that because P (t) is symmetric, we have not only P (t)vk = ρk(t)vk but also
v⊤k P (t) = ρk(t)v

⊤
k for all k. Now, P (t) satisfies (4.14) for all i = 1, ..., n if and only

if for all i, j, k we have

v⊤j

(︃
−τ ′

τ
Peie

⊤
i P + Ṗ eie

⊤
i P + Peie

⊤
i Ṗ − P 2eie

⊤
i P − Peie

⊤
i P

2 + τPeie
⊤
i P

)︃
vk = 0,
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which is equivalent to

(v⊤j ei)(e
⊤
i vk)

(︃
−τ ′

τ
ρjρk + ρ′jρk + ρjρ

′
k − ρ2jρk − ρjρ

2
k + τρjρk

)︃
= 0,

where we omit the time-dependence from ρk = ρk(t). Notice that the term in the
parenthesis can be written as(︃

ρ′k − ρ2k −
ρk
2

(︃
τ ′

τ
− τ

)︃)︃
ρj +

(︃
ρ′j − ρ2j −

ρj
2

(︃
τ ′

τ
− τ

)︃)︃
ρk.

To complete the proof, it thus suffices to show that

ρ′k − ρ2k −
ρk
2

(︃
τ ′

τ
− τ

)︃
= 0.

For k such that Lvk = 0, this holds trivially because ρk ≡ 0; for all other k we
have ρk(t) > 0 for all t ∈ [0, T ], and by dividing by ρk, we may show instead that

(4.16)
ρ′k
ρk

− ρk =
1

2

(︃
τ ′

τ
− τ

)︃
, for k such that ρk(t) > 0 ∀t ∈ [0, T ],

where τ := 1
n
Tr(P ) = 1

n

∑︁n
k=1 ρk.

Now, using the form of ρk from (4.15), a straightforward computation yields

ρ′k(t)

ρk(t)
− ρk(t) = −f ′′(T − t)

f ′(T − t)
.(4.17)

To simplify the right-hand side of (4.16), we recall Q(x) := (det(I − xL))1/n =∏︁n
k=1(1− xλk)

1/n and compute

τ(t) =
1

n

n∑︂
k=1

ρk(t) = − 1

n

n∑︂
k=1

∂t log(1− f(T − t)λk)

= −∂t log
n∏︂
k=1

(1− f(T − t)λk)
1/n,

= − ∂

∂t
logQ(f(T − t)) =

f ′(T − t)Q′(f(T − t))

Q(f(T − t))
.

Therefore after computing the derivative of τ and rearranging we obtain

τ ′(t)

τ(t)
− τ(t) = −f ′′(T − t)

f ′(T − t)
− f ′(T − t)Q′′(f(T − t))

Q′(f(T − t))
.(4.18)

Now, since f solves the ODE f ′(t) = cQ′(f(t)), we have also f ′′(t) = cQ′′(f(t))f ′(t),
and we compute

f ′(T − t)Q′′(f(T − t))

Q′(f(T − t))
= cQ′′(f(T − t)) =

f ′′(T − t)

f ′(T − t)
.

Returning to (4.18), we deduce

τ ′(t)

τ(t)
− τ(t) = −2

f ′′(T − t)

f ′(T − t)
.

Recalling (4.17), this proves (4.16), which completes the proof that (F 1, . . . , F n)
defined in (4.13) solves the desired equations. Thus, the controls α∗

i (t,x) =
−e⊤i P (t)x form a Nash equilibrium as discussed above.
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4.5. State process dynamics in equilibrium. The state process in equilibrium
is

dXi(t) = −eTi P (t)X(t)dt+ σdWi(t), i = 1, . . . , n,

which can be written in vector form as

dX(t) = −P (t)X(t)dt+ σdW (t).

We can explicitly solve this SDE in terms of P , noting that P (t) and P (s) commute
for all t, s ∈ [0, T ], to obtain

X(t) = e−
∫︁ t
0 P (s)dsX(0) + σ

∫︂ t

0

e−
∫︁ t
s P (u)dudW (s).

Thus we deduce that in equilibrium the law of X(t) is

X(t) ∼ N
(︃
e−

∫︁ t
0 P (s)dsX(0), σ2

∫︂ t

0

e−2
∫︁ t
s P (u)duds

)︃
.

Using the expression P (t) = −∂t log(I − f(T − t)L), noting that the log of the
positive definite matrix is well-defined via power series, we have

exp

(︃
−
∫︂ t

s

P (u)du

)︃
= (I − f(T − t)L)(I − f(T − s)L)−1.

Hence, X(t) has mean vector

E[X(t)] = (I − f(T − t)L)(I − f(T )L)−1X(0)

and covariance matrix

Var(X(t)) = σ2(I − f(T − t)L)2
∫︂ t

0

(I − f(T − s)L)−2ds.

4.6. Computing the value of the game. We next justify (2.6). Returning to
the ansatz (4.5) and (4.9), and recalling the form of F i from (4.13), we find

1

n

n∑︂
i=1

vk(t,x) =
1

n

n∑︂
i=1

(︃
1

2
x⊤F i(t)x+ hi(t)

)︃
(4.19)

=
1

2Tr(P (t))

n∑︂
i=1

(e⊤i P (t)x)2 +
σ2

2n

n∑︂
i=1

∫︂ T

t

Tr(F i(s))ds.(4.20)
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To compute the second term, we define R(x) = log 1
n

∑︁n
k=1

−λk
1−xλk

for x ≥ 0, so
that

1

n

n∑︂
i=1

Tr(F i(t)) =
1

n

n∑︂
i,k=1

e⊤k F
i(t)ek =

1

Tr(P (t))

n∑︂
i,k=1

e⊤k P (t)eie
⊤
i P (t)ek

=
1

Tr(P (s))

n∑︂
k=1

e⊤k P (t)2ek

=
Tr(P (t)2)

Tr(P (t))

= −
n∑︂
k=1

(f ′(T − t))2λ2
k

(1− f(T − t)λk)2

/︄
n∑︂
k=1

f ′(T − t)λk
1− f(T − t)λk

= −R′(f(T − t))f ′(T − t)

= ∂tR(f(T − t)).

Thus, using f(0) = 0 and R(0) = 0, we get

σ2

2n

n∑︂
i=1

∫︂ T

t

Tr(F i(s))ds =
σ2

2
[R(f(0))−R(f(T − t))] = −σ2

2
R(f(T − t)).

Finally, note that

R(f(T − t)) = log
1

n

n∑︂
k=1

−λk
1− f(T − t)λk

= log
Tr(P (t))

nf ′(T − t)
.

Returning to (4.20), we get

1

n

n∑︂
i=1

vk(t,x) =
|P (t)x|2

2Tr(P (t))
− σ2

2
log

Tr(P (t))

nf ′(T − t)
.

Plugging in t = 0 and x = XG(0), the left-hand side equals Val(G), and the proof
of (2.6) is complete.

4.7. Extension to weighted graphs. The results of Theorem 2.5 can be exten-
ded to weighted graphs, by replacing the matrix L by a more general one. Suppose
we have n players V = {1, ..., n}, and let L ∈ Rn×n. Consider the following game:
Each player v ∈ V , associated with a state process with dynamics (2.1), wants to
minimize the cost

Jv((αu)u∈V ) =
1

2
E
[︃∫︂ T

0

|αv(t,X(t))|2dt+ c
⃓⃓
e⊤v LX(T )

⃓⃓2]︃
.

It can be shown that the conclusions of Theorem 2.5 remain true as long as L
satisfies the following:

(i) Let A(L) denotes the subgroup of permutations φ of V satisfying Lφ(i)φ(j) =
Lij for all i, j ∈ V . Then A(L) acts transitively on V . That is, for every
i, j ∈ V there exists φ ∈ A(L) such that φ(i) = j.

(ii) L is symmetric and negative semi-definite.
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The proof is exactly as in Sections 3 and 4. The first assumption (i) is a natural
generalization of the transitivity assumption. In fact, Lemma 4.1 was the only
place the structure of a graph Laplacian matrix was really used, and this assump-
tion (i) ensures that Lemma 4.1 remains valid when Aut(G) is replaced by A(L).
For examples, note that (i) holds if L is of the form Lij = w(d(i, j)), where w is
any function and d is the graph distance associated with some transitive graph
G on vertex set V ; then A(L) ⊃ Aut(G). The second assumption (ii) ensures
that the function Q(x) := (det(I − xL))1/n is smooth and increasing on R+, so
that the ODE f ′(t) = cQ′(f(t)) is uniquely solvable with f(0) = 0. Note that L
could instead be assumed positive semi-definite, as we can then replace it by −L
without affecting the cost function. Many cases of indefinite matrices L would
also work, but these cases require a more careful analysis of the ODE, in light of
the singularities of Q′(x).

Theorem 2.6 admits a similar extension, as long as one is careful to note that
the eigenvalue distributions µGn may now have unbounded support as n → ∞.
To ensure that the desired integrals converge, one should assume that µGn → µ in
a stronger (say, Wasserstein) topology.

5. A direct but heuristic proof of Theorem 2.5

In this section we aim to give a more enlightening derivation of the solution
given in Theorem 2.5, compared to the more concise “guess and check” style of
proof presented in Section 4. To keep this brief, we will avoid giving full details
and instead treat this section as a heuristic argument. Suppose throughout this
section that G is a given finite transitive graph with vertex set V = {1, . . . , n},
and omit G from the notations as in L = LG.

5.1. More on symmetries. As a first step, we elaborate on the symmetry dis-
cussion of Section 4.1. Recall the notation Aut(G) and Rφ introduced therein,
and note that Aut(G) acts naturally on RV via (φ,x) ↦→ Rφx.

Suppose we have a solution (v1, . . . , vn) of the HJB system (4.1). The structure
of the game described in Section 2.1 is invariant under automorphisms of G. More
precisely, this should translate into the following symmetry property for the value
functions:

vi(t,x) = vφ(i)(t, Rφx), i ∈ V, φ ∈ Aut(G), x ∈ RV .(5.1)

In particular, if (vi(t,x))i∈V solves the HJB system (4.1), then a straightforward
calculation shows that so does (vφ(i)(t, Rφx))i∈V . Hence, if uniqueness holds for
(4.1), then we would deduce (5.1). Plugging the quadratic ansatz (4.5) into both
sides of (5.1) yields

x⊤F i(t)x+ hi(t) = x⊤R⊤
φF

φ(i)(t)Rφx+ hφ(i)(t), i ∈ V, φ ∈ Aut(G), x ∈ RV .

Matching coefficients yields

F i(t) = R⊤
φF

φ(i)(t)Rφ, hi(t) = hφ(i)(t), i ∈ V, φ ∈ Aut(G).(5.2)

This immediately shows that the map i ↦→ hi(t) is constant on orbits of the
action of Aut(G) on V . That is, if i ∈ V and

Orbit(i) := {φ(i) : φ ∈ Aut(G)},
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then hk(t) = hj(t) for all k, j ∈ Orbit(i). Note that the orbits {Orbit(i) : i ∈ V }
form a partition of V , and the assumption that G is transitive (Definition 2.3)
means precisely that V itself is the only orbit. Similarly, elaborating on the first
identity in (5.2), for any i, j, k ∈ V we find

(5.3) e⊤k F
i(t)ej = e⊤k R

⊤
φF

φ(i)(t)Rφej = e⊤φ(k)F
φ(i)(t)eφ(j).

In the Riccati equation (4.6), a key role was played by the matrix P (t) :=∑︁n
j=1 F

j(t)eje
⊤
j . Under a stronger transitivity assumption on the graph, the sym-

metry property (5.2) is enough to ensure that P (t) is symmetric and commutes
with L for each t:

Definition 5.1. We say that a graph G is generously transitive if for each i, j ∈ V
there exists φ ∈ Aut(G) such that φ(i) = j and φ(j) = i.

Proposition 5.2. If G is generously transitive and (5.2) holds, then for each
t ∈ [0, T ] the matrix P (t) :=

∑︁n
j=1 F

j(t)eje
⊤
j satisfies:

(i) P (t) = P (t)⊤.
(ii) P (t) and L commute.

Proof. Proof of Proposition 5.2. For brevity, we write F k = F k(t) and P = P (t).
Note that Pek = F kek for each k = 1, . . . , n. Let j, k ∈ V , and let φ ∈ Aut(G) be
such that φ(j) = k and φ(k) = j.

(i) We find from (5.3) that

e⊤j Pek = e⊤j F
kek = e⊤φ(j)F

φ(k)eφ(k) = e⊤k F
jej = e⊤k Pej.

(ii) Using the identities ej = Rφek and ek = Rφej, then the fact that L commutes
with R⊤

φ , and finally that R⊤
φF

kRφ = R⊤
φF

φ(j)Rφ = F j we get

e⊤j LPek = e⊤j LF
kek = e⊤k R

⊤
φLF

kRφej = e⊤k LR
⊤
φF

kRφej = e⊤k LF
jej = e⊤k LPej.

□

In our “guess and check” proof of Theorem 2.5 given in Section 4, the two
properties of Proposition 5.2 followed automatically from the asserted formula
(2.5) for P (t). Here we see, on the other hand, that these properties follow from
purely algebraic arguments.

5.2. Heuristic solution of the HJB system. In this section we will explain how
to find the expressions of P and F i. We start here from the Riccati equation (4.6),
and assume from now on that the graph G is generously transitive. The objective
is to find F 1, . . . , F n such that each F i is a solution of the matrix differential
equation

(5.4) F i̇ − PF i − F iP⊤ + F ieie
⊤
i F

i = 0,

with terminal condition F i(T ) = cLeie
⊤
i L, and with P =

∑︁n
i=1 F

ieie
⊤
i . We use a

fixed point approach: Treating P as given, this is a system of n decoupled Ricatti
differential equations which we can solve. The solutions F 1, ..., F n give rise to a
new P , which we then match to the original P .



34 DANIEL LACKER AND AGATHE SORET

Now fix P , which by Proposition 5.2 we can assume to be symmetric and
commuting with L, and let us solve for F 1, . . . , F n. From [38], we know that if
(Y i,Λi) is solution of the equation[︄

Y i̇

Λi̇

]︄
=

[︃
P 0

eie
⊤
i −P

]︃ [︃
Y i

Λi

]︃
.

on [0, T ] with Λi nonsingular on [0, T ] then F i = Y i(Λi)−1 is a solution of (5.4).
Since P (t) is symmetric and commutes with L, the two matrices are simul-

taneously diagonalizable. If we further assume that P (t) and P (s) commute for
all s and t, then the matrices L and {P (t) : t ∈ [0, T ]} are all simultaneously
diagonalizable. We can then choose an orthonormal basis V = (v1, . . . , vn) of ei-
genvectors of P (t) and L, such that L and P (t) are diagonalizable in this basis for
all t ∈ [0, T ]. For each t, let ρ1(t), . . . , ρn(t) denote the eigenvalues of P (t) with
corresponding eigenvectors v1, . . . , vn.

We can now easily solve the equation for Y i to get

Y i(t) = P̃ (t)Y i(T ), where P̃ (t) := exp

(︃
−
∫︂ T

t

P (s)ds

)︃
.

We deduce from the expression of Y i that Λi solves the equation Λ̇
i
(t) = eie

⊤
i P̃ (t)Y i(T )−

P (t)Λi(t), and it follows that

Λi(t) = P̃
−1
(t)

[︃
Λi(T )−

∫︂ T

t

P̃ (s)eie
⊤
i P̃ (s)Y i(T )ds

]︃
.

If we now choose the boundary values

Λi(T ) = I, Y i(T ) = cLeie
⊤
i L,

then F i = Y i(Λi)−1 is symmetric and the terminal condition is satisfied. Plugging
these terminal conditions into Λi and Y i yields

Λi(t) = P̃
−1
(t)

[︄
I − c

∫︂ T

t

Tr(P̃ (s)L)

n
P̃ (s)eie

⊤
i Lds

]︄
, Y i(t) = cP̃ (t)Leie

⊤
i L.

Here we used the identity e⊤i P̃ (s)Lei =
Tr(P̃L)

n
which holds by Lemma 4.1(ii), since

P̃L commutes with Rφ for all φ ∈ Aut(G).
Now that we have our explicit solutions (Y i,Λi), assuming that Λi(t) is invert-

ible, we deduce that the Ricatti equation (5.4) admits the following solution

(5.5) F i(t) = cP̃ (t)Leie
⊤
i L
[︁
I − cΞi(t)

]︁−1
P̃ (t),

where we define

Ξi(t) :=

∫︂ T

t

Tr(P̃ (s)L)

n
P̃ (s)eie

⊤
i Lds.

The objective is now to solve for P . To that end, we first note that

(5.6) F i(t)ei = cηi(t)P̃ (t)Lei, where ηi(t) := e⊤i L[I − cΞi(t)]−1P̃ (t)ei.

Recalling that both L and P̃ commute with Rφ, a simple computation shows

that RφΞ
i(t) = Ξφ(i)(t)Rφ for φ ∈ Aut(G). It follows that RφL[I−cΞi(t)]−1P̃ (t) =
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L[I−cΞφ(i)(t)]−1P̃ (t)Rφ, and using Lemma 4.1(iii) we deduce that η1(t) = η2(t) =
· · · = ηn(t), and we let η(t) denote the common value. We then compute

(5.7) P (t) =
n∑︂
i=1

F i(t)eie
⊤
i = c

n∑︂
i=1

η(t)P̃ (t)Leie
⊤
i = cη(t)P̃ (t)L.

Because P , P̃ , and L are simultaneously diagonalizable, we deduce the following
relationship between the eigenvalues:

ρk(t)e
∫︁ T
t ρk(s)ds = cη(t)λk, k = 1, . . . , n,

where λ1, . . . , λn are the eigenvalues of L, corresponding to eigenvectors v1, . . . , vn.
Integrating from t to T , taking the logarithm, and finally differentiating leads to

(5.8) ρk(t) =
cλkη(t)

1 + cλk
∫︁ T
t
η(s)ds

,

which we can rewrite in matrix form as

(5.9) P (t) = cη(t)L

(︃
I + c

∫︂ T

t

η(s)dsL

)︃−1

.

This completes our fixed point argument, provided we identify η.

Using once more that e⊤i LP̃ (s)ei = Tr(P̃ (s)L)
n

for all s, a quick computation

shows (Ξi(t))2 =
(︂ ∫︁ T

t

(︁Tr(P̃ (s)L)
n

)︁2
ds
)︂
Ξi(t). Thus, assuming the validity of the

power series (I − cΞi(t))−1 =
∑︁∞

k=0(cΞ
i(t))k, we have

[I − cΞi(t)]−1 =
∞∑︂
k=0

(cΞi(t))k = I + c

[︄
1− c

∫︂ T

t

(︂Tr(P̃ (s)L)

n

)︂2
ds

]︄−1

Ξi(t).

(5.10)

Plugging this back into the definition (5.6) of η, we get (for any i)

(5.11) η(t) = e⊤i L[I − cΞi(t)]−1P̃ (t)ei =
Tr(P̃ (t)L)

n

1

1− c
∫︁ T
t

(︂
Tr(P̃ (s)L)

n

)︂2
ds

.

Using (5.7) and (5.8) we get Tr(P̃ (t)L) = 1
cη(t)

Tr(P (t)) =
∑︁n

k=1
λk

1+cλk
∫︁ T
t η(s)ds

, and

from (5.11) we then obtain

(5.12) η(t) =

1
n

∑︁n
k=1

λk
1+cλk

∫︁ T
t η(s)ds

1− c
∫︁ T
t

(︂
1
n

∑︁n
k=1

λk
1+cλk

∫︁ T
s η(s)ds

)︂2
ds

.

Multiplying both sides by 1
n

∑︁n
k=1

λk
1+cλk

∫︁ T
t η(s)ds

, integrating from t to T , and ex-

ponentiating yield

(5.13)
n∏︂
k=1

(︃
1 + cλk

∫︂ T

t

η(s)ds

)︃1/n

=
1

1− c
∫︁ T
t

(︂
1
n

∑︁n
k=1

λk
1+cλk

∫︁ T
s η(s)ds

)︂2
ds

.
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Defining Q(x) = (det(I − xL))1/n and f(t) = −c
∫︁ T
T−t η(s)ds, we find from (5.12)

and (5.13) that f must satisfy f(0) = 0 and f ′(t) = cQ′(f(t)). Returning to (5.9),
and noting that f ′(T − t) = −η(t), we have thus proved that P can be written as

P (t) = −f ′(T − t)L (I − f(T − t)L)−1 ,

justifying the expression of P in Theorem 2.5.
We can also simplify the expression of F i in (5.5) to recover the expression we

introduced in (4.13) our first the proof of Theorem 2.5. Use (5.10) to get

F i(t) =
c

1− c
∫︁ T
t

(︂
Tr(P̃ (s)L)

n

)︂2
ds

P̃ (t)Leie
⊤
i LP̃ (t).

From (5.7) and (5.11), we deduce 1− c
∫︁ T
t

(︂
Tr(P̃ (s)L)

n

)︂2
ds = 1

cµ(t)2
Tr(P (t))

n
and

F i(t) =
1

Tr(P (t))/n
P (t)eie

⊤
i P (t).

6. Correlation decay: Proof of Proposition 2.12

The purpose of this section is to prove Proposition 2.12, which is essential in
the proof of the convergence of the empirical measure given in the next section.

Throughout this section, we fix a finite transitive graph G = (V,E) without
isolated vertices and with vertex set V = {1, ..., n} for some n ∈ N. We may
without loss of generality assume G to be connected, as otherwise XG

v (t) and
XG
u (t) are independent for u and v in distinct connected components and the

right-hand side of (2.17) is zero. Since G is fixed throughout the section we omit
it in the notations, e.g., L = LG, X(t) = XG(t), δ = δ(G), and f = fG. As
before, (e1, ..., en) denotes the standard Euclidean basis in Rn. We make some use
of the adjacency matrix A = AG in this section, and we repeatedly use the well
known fact that e⊤uA

ℓev counts the number of paths of length ℓ from v to u, for
each ℓ ∈ N and vertices v, u ∈ V .

Proof. Proof of Proposition 2.12. Recall from (2.7) that Xu(t) is Gaussian with
variance

σ2

n

n∑︂
k=1

∫︂ t

0

(︃
1− f(T − t)λk
1− f(T − s)λk

)︃2

ds ≤ σ2T.

Indeed, the inequality follows from the fact that −2 ≤ λk ≤ 0 and f is increasing.
Since 0 < γ < 1, this proves the claim (2.17) in the case u = v (noting also that
δ(G) ≥ 1). We thus focus henceforth on the case of distinct vertices.

From Theorem 2.5, we know that in equilibrium the state process X is nor-
mally distributed with covariance matrix

σ2(I − f(T − t)L)2
∫︂ t

0

(I − f(T − s)L)−2ds.

Our objective is to find a bound for the off-diagonal elements of this matrix. Fix
two distinct vertices u, v ∈ V . We have

(6.1) Cov(Xu(t), Xv(t)) = σ2

∫︂ t

0

n∑︂
k=1

e⊤u (I−f(T−t)L)2eke
⊤
k (I−f(T−s)L)−2evds.



STOCHASTIC GAMES ON LARGE GRAPHS 37

Let us first develop e⊤u (I − f(T − t)L)2ek. Using L = 1
δ
A − I, where A is the

adjacency matrix of the graph, we find

e⊤u (I − f(T − t)L)2ek = (1 + f(T − t))2

(︄
e⊤u ek − 2

f(T − t)

δ(1 + f(T − t))
e⊤uAek

+

(︃
f(T − t)

δ(1 + f(T − t))

)︃2

e⊤uA
2ek

)︄
.

Recall that d(i, j) = dG(i, j) denotes the distance between two vertices i and j
in the graph, i.e., the length of the shortest path from i to j in G. Let us write
P (i,m) the set of vertices which can be reached in exactly m steps from i. By
definition of A, e⊤uAek = 1 if d(u, k) = 1 and zero otherwise. Similarly, e⊤uA

2ek is
the number of paths of length 2 from u to k, so, in particular, e⊤uA

2ek = 0 unless
k ∈ P (u, 2). Plugging this into (6.1), we get

Cov(Xu(t), Xv(t)) = σ2(1 + f(T − t))2
∫︂ t

0

{︄
e⊤u (I − f(T − s)L)−2ev

−
∑︂

k∈P (u,1)

2
f(T − t)

δ(1 + f(T − t))
eTk (I − f(T − s)L)−2ev(6.2)

+
∑︂

k∈P (u,2)

(︃
f(T − t)

δ(1 + f(T − t))

)︃2

e⊤uA
2eke

T
k (I − f(T − s)L)−2ev

}︄
ds.

Next, we estimate the term

eTk (I − f(T − s)L)−2ev = (1 + f(T − s))−2eTk

(︃
I − f(T − s)

δ(1 + f(T − s))
A

)︃−2

ev.

To simplify the notations, we define the function

γ(s) :=
f(T − s)

1 + f(T − s)
.

From Proposition 3.2, we know that 0 ≤ f(t) ≤ ct for all t ∈ [0, T ], and thus
0 ≤ γ(s) < 1 for all s ∈ [0, T ]. Moreover, the spectral radius of the adjacency
matrix A is always bounded by the degree δ. We can thus use the series 1

(1−x)2 =∑︁∞
ℓ=0(ℓ+ 1)xℓ for |x| < 1 to get

e⊤k (I − f(T − s)L)−2ev = (1 + f(T − s))−2

∞∑︂
ℓ=0

(ℓ+ 1)

(︃
γ(s)

δ

)︃ℓ
e⊤k A

ℓev

= (1 + f(T − s))−2

∞∑︂
ℓ=d(k,v)

(ℓ+ 1)

(︃
γ(s)

δ

)︃ℓ
e⊤k A

ℓev,

(6.3)

where in the last line we used the fact that eTkA
ℓev = 0 if ℓ < d(k, v), since the

latter implies there are no paths of length ℓ from k to v. Next, note the elementary
bound 0 ≤ eTkA

ℓev ≤ δℓ−1, since each vertex has exactly δ neighbors. Indeed, for
each of the first ℓ− 1 steps of a path of length ℓ from k to v, there are at most δ
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choices of vertex, and for the last step there is at most one choice which terminates
the path at v. Hence, using the identity

∞∑︂
ℓ=k

(ℓ+ 1)xℓ =
d

dx

(︄
∞∑︂
ℓ=k

xℓ+1

)︄
=

d

dx

(︃
xk+1

1− x

)︃
=

xk

(1− x)2
(1 + k(1− x))

for |x| < 1, we deduce from (6.3) that

0 ≤ e⊤k (I − f(T − s)L)−2ev ≤
1

δ(1 + f(T − s))2
γ(s)d(k,v)(1 + d(k, v)(1− γ(s))

(1− γ(s))2
.

Now notice that in (6.2) the first term and all the terms in the last sum on the
right hand side are positive, whereas all the terms in the second line sum are
negative. Therefore we have the following upper bound

Cov(Xu(t), Xv(t)) ≤σ2

∫︂ t

0

(1 + f(T − t))2

δ(1 + f(T − s))2

{︄
γ(s)d(u,v)(1 + d(u, v)(1− γ(s)))

(1− γ(s))2

(6.4)

+
∑︂

k∈P (u,2)

e⊤uA
2ek

(︃
γ(t)

δ

)︃2
γ(s)d(k,v)(1 + d(k, v)(1− γ(s)))

(1− γ(s))2

}︄
ds.

The function d ↦→ γ(t)d(1 + d(1 − γ(t))) is non-increasing on [0,∞) since γ(t) ∈
[0, 1). Moreover, for all k such that d(k, u) ≤ 2, we have |d(k, v) − d(u, v)| ≤ 2,
and in particular d(k, v) ≥ d(u, v)− 2. We consider two cases separately:

(1) First, suppose d(u, v) ≥ 2. Since d(k, v) ≥ d(u, v) − 2 by the above argu-
ment, monotonicity of d ↦→ γ(t)d(1 + d(1− γ(t))) lets us estimate

∑︂
k∈P (u,2)

e⊤uA
2ek

(︃
γ(t)

δ

)︃2
γ(s)d(k,v)(1 + d(k, v)(1− γ(s)))

(1− γ(s))2

≤
(︃
γ(t)

δ

)︃2
γ(s)d(u,v)−2(1 + (d(u, v)− 2)(1− γ(s)))

(1− γ(s))2

∑︂
k∈P (u,2)

e⊤uA
2ek

≤ γ(t)2
γ(s)d(u,v)−2(1 + (d(u, v)− 2)(1− γ(s)))

(1− γ(s))2
.

Indeed, the last step uses the fact that
∑︁

k∈P (u,2) e
⊤
uA

2ek is precisely the
number of paths of length two originating from vertex u, which is clearly
bounded from above by δ2. Moreover, since f is increasing by Proposition
3.3, it is straightforward to check that γ is decreasing. Therefore 0 ≤
γ(t) ≤ γ(s) ≤ 1 for all t ≥ s ≥ 0, and the above quantity is further
bounded from above by

γ(s)d(u,v)(1 + d(u, v)(1− γ(s)))

(1− γ(s))2
.
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Plugging this back in (6.4), and using the inequality 1+f(T−t)
1+f(T−s) ≤ 1 which

again follows from the fact that f is increasing and nonnegative, we get

(6.5) Cov(Xu(t), Xv(t)) ≤
2σ2

δ

∫︂ t

0

γ(s)d(u,v)(1 + d(u, v)(1− γ(s)))

(1− γ(s))2
ds.

(2) Suppose next that d(u, v) = 1. We then use the bounds γ(t)d(1 + d(1 −
γ(t))) ≤ 1 and

∑︁
k∈P (u,2) e

⊤
uA

2ek ≤ δ2 to estimate∑︂
k∈P (u,2)

e⊤uA
2ek

(︃
γ(t)

δ

)︃2
γ(s)d(k,v)(1 + d(k, v)(1− γ(s)))

(1− γ(s))2

≤ γ(t)2

(1− γ(s))2
≤ γ(s)2

(1− γ(s))2
≤ γ(s)d(u,v)+1(1 + d(u, v)(1− γ(s))

(1− γ(s))2
.

Plugging this into (6.4) shows that the same bound (6.5) is valid for
d(u, v) = 1.

Now, recall that γ(·) is decreasing. Since f(T ) ≤ cT by Proposition 3.2, we

have 0 < γ(0) = cf(T )
1+cf(T )

≤ cT
1+cT

< 1. Set γ := cT
1+cT

. The function y ↦→ yd(1+d(1−y))
(1−y)2

is easily seen to be increasing on [0, 1) for any d ≥ 0. Thus, from (6.5) we finally
deduce the desired upper bound

Cov(Xu(t), Xv(t)) ≤ 2σ2t
γd(u,v)(1 + d(u, v)(1− γ))

δ(1− γ)2
.

Using the same arguments for the second term in (6.2), which is the only negat-
ive term, we obtain a similar lower bound for Cov(Xu(t), Xv(t)), which concludes
the proof. □

Remark 6.1. The arguments given here could likely be adapted to estimate the
dependence of the equilibrium control of one player on a distant player’s state,
which would provide an interesting alternative notion of “correlation decay”. To
be precise, recall the equilibrium control α = αG from Theorem 2.5. For two
vertices (i, j), we have ∂xjαi(t,x) = f ′(T − t)e⊤i L(I − f(T − t)L)−1ej, and we
suspect that similar arguments to those given above could show that this matrix
entry decays exponentially with the graph distance d(i, j). We do not pursue this,
as it is not directly suited to our application to empirical measure convergence of
the next section.

7. Asymptotic regimes

In this section, we provide the derivations of the large-n asymptotics of the
in-equilibrium processes. We will first prove Theorem 2.6, then Theorem 2.11, and
lastly we will focus on the examples we discussed in Section 2.4, and in particular
prove Corollary 2.9 and Proposition 2.14.

7.1. Large-scale asymptotics on transitive graphs: Proof of Theorem 2.6.
Part (1) of Theorem 2.6 is a consequence of Proposition 3.2, so we focus on parts
(2–4). Let {Gn} be a sequence of finite transitive graphs, and let {µGn} be the
corresponding sequence of empirical eigenvalue distributions defined by (2.8). We
assume that {µGn} converges weakly to a probability measure µ. Recall that the
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initial states are XGn(0) = 0, and recall from (2.7) that each XGn
i (t) is Gaussian

with mean zero and variance

VGn(t) := σ2

∫︂ t

0

∫︂
[−2,0]

(︃
1− fGn(T − t)λ

1− fGn(T − s)λ

)︃2

µGn(dλ)ds.

7.1.1. Convergence of XGn
kn

(t): Proof of (2). By Proposition 3.2, we know fGn =
fµGn

converges uniformly to the function fµ given by (2.10). Defining Vµ(t) as
in (2.11), it follows from this uniform convergence and the weak convergence of
µGn to µ that VGn(t) → Vµ(t). Therefore XGn

kn
(t) ∼ VGn(t) converges weakly to

N (0, Vµ(t)) as n → ∞.

7.1.2. Convergence of the empirical measure: Proof of (3). We next show that the
(random) empirical measure

mGn(t) :=
1

|Gn|
∑︂
v∈Gn

δXGn
v (t)

converges to the Gaussian measure N (0, Vµ(t)), for each t ∈ [0, T ]. In fact, it
suffices to show that mGn(t) concentrates around its mean, in the following sense:
For any bounded 1-Lipschitz function h, it holds that

(7.1) lim
n→∞

E

[︄⃓⃓⃓⃓∫︂
h dmGn(t)− E

∫︂
h dmGn(t)

⃓⃓⃓⃓2]︄
= 0.

Indeed, once (7.1) is established, it follows from the transitivity ofGn that E
∫︁
h dmGn(t) =

E[h(XGn
kn

(t))], where kn ∈ Gn is arbitrary. Since the law of XGn
kn

(t) converges

weakly to m(t) := N (0, Vµ(t)), we deduce that
∫︁
h dmGn(t) →

∫︁
h dm(t) in prob-

ability, and the claim follows.
Before proving (7.1), we digress to state a lemma pertaining to the degrees.

Recall that each vertex in the transitive graph Gn has the same degree, denoted
δ(Gn).

Lemma 7.1. We have µGn → δ−1 if and only if δ(Gn) → ∞. If µGn → µ ̸= δ−1,
then supn δ(Gn) < ∞.

Proof. Proof of Lemma 7.1. Recall that LGn = 1
δ(Gn)

AGn − I, where AGn is the

adjacency matrix of the graph Gn. Then

Var(µGn) =

∫︂
[−2,0]

(1 + λ)2 µGn(dx) =
1

n
Tr
(︂ 1

δ(Gn)2
A2
Gn

)︂
=

1

nδ(Gn)2

n∑︂
i=1

(A2
Gn

)ii.

Since (A2
Gn

)ii = δ(Gn) is exactly the number of paths of length 2 starting and
ending at vertex i, we get Var(µGn) = 1/δ(Gn). Thus, if µGn → µ weakly for some
probability measure µ on [−2, 0], we have

Var(µ) =

∫︂
[−2,0]

(1 + λ)2 µ(dx) = lim
n→∞

1

δ(Gn)
.(7.2)

The second claim follows immediately. It is straightforward to check that µGn →
δ−1 if and only if Var(µGn) → 0, and the first claim follows. □
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We now turn toward the proof of (7.1), for a fixed bounded 1-Lipschitz function
h. We achieve this by applying the Gaussian Poincaré inequality and then using
the covariance estimate of 2.12. To this end, fix t ∈ [0, T ] and n, and suppose for
simplicity that Gn has n vertices. Let Σn denote the n × n covariance matrix of

XGn(t), and let M denote its symmetric square root. Then XGn(t)
d
= MZ for a

standard Gaussian Z in Rn. Define F : Rn → R by

F (x) :=
1

n

n∑︂
i=1

h(e⊤i Mx).

Then F (Z)
d
=
∫︁
h dmGn(t). Noting that ∂iF (x) = 1

n

∑︁n
j=1 h

′(e⊤j Mx)Mji, we get

|∇F (x)|2 =
n∑︂
i=1

1

n2

(︂ n∑︂
j=1

h′(e⊤j Mx)Mji

)︂2
≤ 1

n2

n∑︂
j,k=1

h′(e⊤j Mx)h′(e⊤kMx)Σjk

≤ 1

n2

n∑︂
j,k=1

|Σn
jk|,

where in the last inequality we used the fact that h is 1-Lipschitz. Now, applying
the Gaussian Poincaré inequality (see [4, Theorem 3.20]), we find

E

[︄⃓⃓⃓⃓∫︂
h dmGn(t)− E

∫︂
h dmGn(t)

⃓⃓⃓⃓2]︄
= Var(F (Z)) ≤ E[|∇F (Z)|2] ≤ 1

n2

n∑︂
j,k=1

|Σn
jk|.

(7.3)

It remains to show that this converges to zero as n → ∞.
Let ϵ > 0. By Proposition 2.12, |Σn

jk| converges to 0 as dGn(j, k) → ∞, where
dGn denotes the graph distance in Gn. Choose m ∈ N large enough so that
|Σn

jk| ≤ ϵ for all n ∈ N and j, k ∈ Gn with dGn(j, k) > m. For k ∈ Gn let Bn(j,m)
denote the set of vertices in Gn of distance at most m from j. Because Gn is
transitive, the cardinality |Bn(j,m)| does not depend on j ∈ Gn, and we denote
by |Bn(m)| this common value. Then, we use the bound on |Σn

jk| from Proposition
2.12 to get

1

n2

n∑︂
j,k=1

|Σn
jk| ≤ ϵ+

1

n2

n∑︂
j=1

∑︂
k∈Bn(j,m)

|Σn
jk| ≤ ϵ+

|Bn(m)|
nδ(Gn)

2σ2T

(1− γ)2
,

where we used the fact that γd(1 + d(1 − γ)) is decreasing in d ≥ 0 since 0 ≤
γ < 1 and is thus bounded by 1. We now distinguish two cases. If δ(Gn) → ∞,
then we use |Bn(m)|/n ≤ 1 to send n → ∞ and then ϵ → 0 to get that (7.3)
converges to zero. On the other hand, suppose δ(Gn) does not converge to infinity.
Then necessarily supn δ(Gn) < ∞ by Lemma 7.1, since µGn converges weakly by
assumption. Using the obvious bound |Bn(m)| ≤ δ(Gn)

m, we can again send
n → ∞ and then ϵ → 0 to get that (7.3) converges to zero. This completes the
proof of part (3) of Theorem 2.6.
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7.1.3. Convergence of the value: Proof of (4). Recall the identity for the value of
the game from (2.9). Since fGn(T ) → fµ(T ) by Proposition 3.2 and µGn → µ
weakly, it follows that

Val(Gn) = −σ2

2
log

∫︂
[−2,0]

−λ

1− fGn(T )λ
µGn(dλ) → −σ2

2
log

∫︂
[−2,0]

−λ

1− fµ(T )λ
µ(dλ).

This gives (4) and completes the proof of Theorem 2.6.

7.2. Approximate equilibria: Proof of Theorem 2.11. We begin toward
proving Theorem 2.11 by first studying the control αMF introduced therein. The
following lemma shows that it arises essentially as the equilibrium of a mean field
game, or equivalently as the optimal control for a certain control problem:

Lemma 7.2. Define αMF : [0, T ]× R → R

(7.4) αMF(t, x) := − cx

1 + c(T − t)
.

Let (Ω′,F ′,F′,P′) be any filtered probability space supporting an F′-Brownian mo-
tion W and a F′-progressively measurable real-valued process (β(t))t∈[0,T ] satisfying

E
∫︁ T
0
β(t)2dt < ∞. Let X be the unique strong solution of the SDE

dX(t) = αMF(t,X(t))dt+ σdW (t), X(0) = 0,

and define (Y (t))t∈[0,T ] by

dY (t) = β(t)dt+ σdW (t), Y (0) = 0.

Then

1

2
E
[︃∫︂ T

0

|αMF(t,X(t))|2dt+ c|X(T )|2
]︃
≤ 1

2
E
[︃∫︂ T

0

|β(t)|2dt+ c|Y (T )|2
]︃

Proof. Proof of Lemma 7.2. We study the HJB equation corresponding to this
control problem, which is

∂tv(t, x) + inf
a∈R

(︃
a∂xv(t, x) +

1

2
a2
)︃
+

1

2
σ2∂xxv(t, x) = 0,

or equivalently

∂tv(t, x)−
1

2
|∂xv(t, x)|2 +

1

2
σ2∂xxv(t, x) = 0,

with terminal condition v(T, x) = cx2/2. The ansatz v(t, x) = a(t)x2 + b(t) yields
a classical solution, where a and b are functions satisfying

a′(t)− 2a(t)2 = 0, b′(t) + σ2a(t) = 0,

with terminal conditions a(T ) = c/2 and b(T ) = 0. We deduce

a(t) =
1

2

c

1 + c(T − t)
, b(t) =

σ2

2
log(1 + c(T − t)).

Therefore the optimal Markovian control is −∂xv(t, x) = −2a(t)x = αMF(t, x).
This completes the proof, by a standard verification argument (see [37, Theorem
3.5.2]). □
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Now let G be a fixed finite graph with vertex set V = {1, . . . , n}. Let us again
omit the G superscripts from the notation, with A = AG and J = JG denoting the
control set and value function from Section 2.1. Let α = (αMF

i )ni=1, and for β ∈ A
and i ∈ V let (β,α−i) := (αMF

1 , . . . , αMF
i−1, β, α

MF
i+1, . . . , α

MF
n ). To be clear about the

notation, we write αMF without a subscript to denote the control in (7.4), whereas
αMF
i (t,x) = αMF(t, xi) for i ∈ V and x ∈ Rn. If v ∈ V has degG(v) = 0, then

(recalling the definition (2.3) of the cost function for isolated vertices) Lemma 7.2
ensures that

Jv(α) = inf
β∈A

Jv(β,α
−v),

so we may take ϵv = 0 as claimed in Theorem 2.11. Thus, we assume henceforth
that v ∈ G is a fixed non-isolated vertex, so that degG(v) ≥ 1.

Now define

β := argmin
β′∈A

Jv(β
′,α−v).

(Or take a δ-optimizer in case no optimizer exists, and send δ → 0 at the end of
the proof.) We aim to prove that

Jv(β,α
−v) ≥ Jv(α)− σ2cT

1 + cT

√︄
cT (2 + cT )

degG(v)
.(7.5)

Define the state processes X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) as the unique
strong solutions of the SDEs

dXi(t) = αMF(t,Xi(t))dt+ σdWi(t), Xi(0) = 0, i ∈ V,(7.6)

dYi(t) = αMF(t, Yi(t))dt+ σdWi(t), Yi(0) = 0, i ∈ V \ {v},
dYv(t) = β(t,Y (t))dt+ σdWv(t), Yv(0) = 0.

Note that Yi ≡ Xi for i ̸= v. The values for the player v, under αMF and the
deviation β, are then, respectively,

Jv(α) =
1

2
E

⎡⎣∫︂ T

0

|αMF(t,Xv(t))|2dt+ c

⃓⃓⃓⃓
⃓ 1

degG(v)

∑︂
u∼v

Xu(T )−Xv(T )

⃓⃓⃓⃓
⃓
2
⎤⎦ ,

Jv(β,α
−v) =

1

2
E

⎡⎣∫︂ T

0

|β(t,Y (t))|2dt+ c

⃓⃓⃓⃓
⃓ 1

degG(v)

∑︂
u∼v

Xu(T )− Yv(T )

⃓⃓⃓⃓
⃓
2
⎤⎦ ,

where we recall that u ∼ v means that u is adjacent to v. We prove (7.5) in three
steps:

(1) We show that

Jv(β,α
−v) ≥ 1

2
E
[︃∫︂ T

0

|β(t,Y (t))|2dt+ c|Yv(T )|2
]︃
+

cσ2T

2 degG(v)(1 + cT )

− c

√︄
σ2T 2

degG(v)(1 + cT )
E
∫︂ T

0

|β(t,Y (t))|2dt.
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(2) We then estimate

E
∫︂ T

0

|β(t,Y (t))|2dt ≤ cσ2T
2 + cT

1 + cT
.

(3) Finally, we show that

1

2
E
[︃∫︂ T

0

|β(t,Y (t))|2dt+ c|Yv(T )|2
]︃
≥ Jv(α

MF )− cσ2T

2 degG(v)(1 + cT )
.

which will conclude the proof.

Step 1. We start with

Jv(β,α
−v)− 1

2
E
[︃∫︂ T

0

|β(t,Y (t))|2dt+ c|Yv(T )|2
]︃

=
c

2
E

⎡⎣⃓⃓⃓⃓⃓ 1

degG(v)

∑︂
u∼v

Xu(T )− Yv(T )

⃓⃓⃓⃓
⃓
2

− |Yv(T )|2
⎤⎦

=
c

2
E

⎡⎣(︄ 1

degG(v)

∑︂
u∼v

Xu(T )

)︄2
⎤⎦− cE

[︄
1

degG(v)

∑︂
u∼v

Xu(T )Yv(T )

]︄
.

From the form of the SDE (7.6) and the definition of αMF, we find that (Xu(T ))u∈V
are i.i.d. Gaussians with mean zero and variance σ2T/(1 + cT ). We deduce

(7.7) E

⎡⎣(︄ 1

degG(v)

∑︂
u∼v

Xu(T )

)︄2
⎤⎦ =

σ2T

degG(v)(1 + cT )
.

For the second term, we note

E

[︄
1

degG(v)

∑︂
u∼v

Xu(T )Yv(T )

]︄
= E

[︄
1

degG(v)

∑︂
u∼v

Xu(T )

∫︂ T

0

β(t,Y (t))dt

]︄
,

and we use Cauchy-Schwarz to bound this term in absolute value by√︄
σ2T 2

degG(v)(1 + cT )
E
∫︂ T

0

|β(t,Y (t))|2dt.

Plugging these two terms back in our first inequality we obtain claim (1) above.

Step 2. To find a bound for E
∫︁ T
0
|β(t,Y (t))|2dt, we use the definition of β as

the minimizer of Jv(β,α
−v). In particular, Jv(β,α

−v) ≤ Jv(0,α
−v). Expand

this inequality, discarding the non-negative terminal cost on the left-hand side,
and noting that the state process of player v when adopting the zero control is
precisely (σWv(t))t∈[0,T ], to get

E
∫︂ T

0

|β(t,Y (t))|2dt ≤ cE

[︄⃓⃓⃓ 1

degG(v)

∑︂
u∼v

Xu(T )− σWv(T )
⃓⃓⃓2]︄

.
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Using (7.7) and the independence of the Xu(T ) and Wv(T ), the right-hand side
equals

cσ2T

degG(v)(1 + cT )
+ cσ2T ≤ cσ2T

2 + cT

1 + cT
.

Step 3. We use Lemma 7.2 to deduce that

1

2
E
[︃∫︂ T

0

|β(t,Y (t))|2dt+ c|Yv(T )|2
]︃
≥ 1

2
E
[︃∫︂ T

0

|αMF(t,Xv(t))|2dt+ c|Xv(T )|2
]︃
.

The right-hand side can be written as

Jv(α) +
c

2
E

[︄
|Xv(T )|2 −

⃓⃓⃓ 1

degG(v)

∑︂
u∼v

Xu(T )−Xv(T )
⃓⃓⃓2]︄

.

Since (Xu(T ))u∈V are i.i.d. with mean zero and variance σ2T/(1+ cT ), as in (7.7)
we get

c

2
E

[︄
|Xv(T )|2 −

⃓⃓⃓ 1

degG(v)

∑︂
u∼v

Xu(T )−Xv(T )
⃓⃓⃓2]︄

= − cσ2T

2degG(v)(1 + cT )
.

7.3. Examples. We next specialize the results to the examples discussed in Sec-
tion 2.4. In particular, we prove Corollary 2.9 and Proposition 2.14.

7.3.1. Dense case: Proof of Corollary 2.9. As in Corollary 2.9, let {Gn} be a
sequence of transitive graphs such that each vertex of Gn has common degree
δ(Gn) ≥ 1. The claim that µGn → δ−1 if and only if δ(Gn) → ∞ holds as a
consequence of Lemma 7.1. In this case, we apply Theorem 2.6 with µ = δ−1.
The function Qµ therein is then Qδ−1(x) = 1 + x, and the function fδ−1 satisfies
f ′
δ−1

(t) = c with fδ−1(0) = 0. Hence, fδ−1(t) = ct, and the variance in (2.11)
simplifies to

Vδ−1(t) = σ2

∫︂ t

0

(︃
1 + c(T − t)

1 + c(T − s)

)︃2

ds = σ2 t(1 + c(T − t))

1 + cT
.

Recall now from the proof of Lemma 7.1 that Var(µGn) = 1/δ(Gn). Letting C0 =
1
2
c2t2 + 1

6
c3T 3, the bounds of Proposition 3.2 show that |fGn(t)− ct| ≤ C0/δ(Gn).

The function (1 − λx)/(1 − λy) is Lipschitz in (x, y) ∈ [0, cT ]2, uniformly in λ ∈
[−2, 0]. From this it is straightforward to argue that |VGn(t)−Vδ−1(t)| ≤ C1/δ(Gn)
for some constant C1, and similarly for the convergence of the value using the iden-

tity (2.9). Lastly, the SDE (2.15) admits the solution X(t) =
∫︁ t
0

1+c(T−t)
1+c(T−s)σdW (s),

and it is then straightforward to identify the Gaussian law X(t) ∼ N (0, Vδ−1(t)).

7.3.2. Cycle graph case: Proof of Proposition 2.14. We begin by simplifying the
expression of Q′, with Q = Qµ defined as in 2.18. Differentiate under the integral
sign to get

Q′(x) = Q(x)

∫︂ 1

0

1− cos (2πu)

1 + x− x cos (2πu)
du =

Q(x)

2π

∫︂ π

−π

1− cos (u)

1 + x− x cos (u)
du.
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We will first assume that x > 0 and then show that the formula is still valid for
x = 0. We perform the change of variable t = tan(u/2), using cos(u) = 1−t2

1+t2
, to

get∫︂ π

−π

1− cos(u)

1 + x− x cos(u)
du =

∫︂ ∞

−∞

1− 1−t2
1+t2

1 + x− x1−t2
1+t2

2

1 + t2
dt =

∫︂ ∞

−∞

4t2

(1 + t2(1 + 2x))(1 + t2)
dt

=
2

x

∫︂ ∞

−∞

(︃
1

1 + t2
− 1

1 + t2(1 + 2x)

)︃
dt

=
2

x

[︃
arctan(t)− 1√

1 + 2x
arctan(t

√
1 + 2x)

]︃∞
t=−∞

= 2π
1 + 2x−

√
1 + 2x

x(1 + 2x)
=: 2πh(x).

We thus find Q′(x) = Q(x)h(x) for x > 0, and if we define h(0) := 1 then
the formula extends by continuity to x = 0. Using Q(0) = 1, we find Q(x) =
exp

∫︁ x
0
h(u)du, and we compute this integral using the change of variables v =√

1 + 2u:∫︂ x

0

h(u)du =

∫︂ x

0

1 + 2u−
√
1 + 2u

u(1 + 2u)
du =

∫︂ √
1+2x

1

2

v + 1
dv = log

(︃
1

2
(
√
1 + 2x+ 1 + x)

)︃
.

Therefore

Q(x) =
1

2
(
√
1 + 2x+ 1 + x), and Q′(x) =

1

2

(︃
1√

1 + 2x
+ 1

)︃
.

Recall from Proposition 2.14 that we defined Φ(x) = log(1+
√
1 + 2x)−

√
1 + 2x+

x+ 1
2
, and f(t) := fµ(t) := Φ−1

(︁
log 2 + ct−1

2

)︁
. It remains to show that f satisfies

the desired ODE f ′(t) = cQ′(f(t)) with f(0) = 0, where we recall that this ODE
is well-posed by Proposition 3.2. Note that Φ is continuous and increasing on
R+ and maps R+ to [log 2 − 1/2,∞). Hence, the inverse Φ−1 is well defined
on [log 2 − 1/2,∞) with f(0) = Φ−1(log 2 − 1/2) = 0. Straightforward calculus

yields Φ′(x) =
√
1+2x

1+
√
1+2x

and thus Q′(x) = 1
2Φ′(x)

, and we find that indeed f ′(t) =
c

2Φ′(f(t))
= cQ′(f(t)), which concludes the proof of Proposition 2.14.
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