QUANTITATIVE APPROXIMATE INDEPENDENCE FOR
CONTINUOUS MEAN FIELD GIBBS MEASURES
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ABSTRACT. Many Gibbs measures with mean field interactions are known to be chaotic,
in the sense that any collection of k particles in the n-particle system are asymptotic-
ally independent, as n — oo with k fixed or perhaps k = o(n). This paper quantifies
this notion for a class of continuous Gibbs measures on Euclidean space with pairwise
interactions, with main examples being systems governed by convex interactions and
uniformly convex confinement potentials. The distance between the marginal law of
k particles and its limiting product measure is shown to be O((k/n)*"?), with ¢ pro-
portional to the squared temperature. In the high temperature case, this improves
upon prior results based on subadditivity of entropy, which yield O(k/n) at best. The
bound O((k/n)?) cannot be improved, as a Gaussian example demonstrates. The
results are non-asymptotic, and distance is quantified via relative Fisher information,
relative entropy, or the squared quadratic Wasserstein metric. The method relies on
an a priori functional inequality for the limiting measure, used to derive an estimate
for the k-particle distance in terms of the (k + 1)-particle distance.

1. INTRODUCTION

This paper focuses on continuous Gibbs measures of mean field type on Euclidean
spaces, discussed starting in Section [2] below. But the ideas developed in this specific
context are suggestive of a more general phenomenon, and so we focus on the latter in
this short introduction. We first recall, with somewhat unconventional terminology, the
classical concept of chaos formalized in Kac’s work on the kinetic theory of gases [33].

Let E be a Polish space, and let P(FE) denote the space of Borel probability measures
on E. Spaces of probability measures are equipped with the topology of weak conver-
gence, unless stated otherwise. For each n € N let P" be an exchangeable probability
measure on E™, and let P’ denote its marginal on E¥ for k < n. For u € P(E), we say
that (P™)nen is locally p-chaotic if

(1.1) 1i_>m PP = pu®%  in P(E), for each k € N,

where p®* denotes the k-fold product measure. Let L, : E® — P(E) denote the
empirical measure map, Ly (z1,...,2n) = + 31| 05, We say that (P"),en is globally
u-chaotic if

(1.2) lim P"o Lt =4, inP(P(E)).

Local and global chaos are well known to be equivalent; that is, holds if and only if
holds, and we may then say more simply that (P™),en is pu-chaotic [44, Proposition
2.2]. However, quantitative forms of this qualitative equivalence are not straightforward
or canonical. For this reason, it will help to distinguish them via the terms local, dealing
only with boundedly many coordinates (or, later, o(n) coordinates), and global, dealing
with the full n-particle system or its empirical measure.

This work was partially supported by the Air Force Office of Scientific Research Grant FA9550-19-1-
0291.
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Recent years have seen substantial progress on quantifying chaos in various contexts,
most notably its propagation along the dynamics of various interacting particle systems.
Most existing methods are fundamentally global in nature, with local estimates deduced
from global ones. One common strategy for passing from global to local rates of chaos,
appearing in many previous papers such as [3), 29, [30, B1I], is to use the well known
subadditivity inequality for relative entropy defined in ,

(1.3) H(PE | 0%%) < 2 H (P o),

See [13, Lemma 3.9]. Then, by proving a global estimate of the form
(1.4) H(P" | p®") = O(1),

one can immediately deduce the local estimate

(15) H(PL | 5) = O(k/n).

See Section for further discussion, including an alternative strategy proposed in
[27].

The main results of the paper, stated in Section [2| show that the local estimate
can be improved to O((k/n)?) for a class of continuous Gibbs measures arising as
invariant measures of interacting diffusions, at least at high temperature. We also show
that this local estimate is optimal, via explicit computations for a Gaussian example
given in Section |5 We make no claims about improving the global estimate , which
is typically impossible. This suggests what we suspect to be a more general phenomenon,
that local rates deduced from global rates are often suboptimal. The companion paper
[34] develops similar results and techniques for dynamic models.

From the perspective of physical applications, the class of Gibbs measures covered
by our results is somewhat limited, consisting essentially of interaction functions having
either bounded or Lipschitz gradient. In particular, we do not treat singular interactions
or discrete models. Moreover, our results apply only in settings with unique equilibria
(no phase transition). The novelty in this work, rather, is in obtaining optimal quant-
itative bounds. In addition, we expect the method to be more broadly applicable.

The following Section [2] presents the setting and main results, along with a discussion
of related literature in Section The remaining sections are devoted to proofs.

2. MAIN RESULTS

Let d € N. We study exchangeable probability measures on (R%)" of the form

(2.1) P"(dx) = iexp < — % Z V(xi,wj)) A" (dx),

Zn —
1<i<j<n

where Z,, > 0 is a normalization constant. Here 3 is the inverse temperature, A is the
reference measure, and V is the interaction function.

Assumption A. We are given 8 > 0, A € P(R?), and V : R? x R? — R satisfying:

e )\ is absolutely continuous with respect to Lebesgue measure.
e V is bounded from below and symmetric, meaning V (z,y) = V(y, z) for all z,y.
e The weak gradient V1V of V in its first argument belongs to Li (R? x R?).

loc

Assumption [A]is more than enough to ensure that P™ is well-defined. The bounded-
ness of V' from below simplifies the exposition but could be sharpened. Of course, 3
may be absorbed into V', but we prefer to keep it separate to illustrate its role more
clearly. The following strengthening of Assumption [A]is an important special case:
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Assumption B. We have § > 0 and \(dz) = e PU®)dz for some function U. The
function V' takes the form V(z,y) = V(2 — y), and the functions U,V : R — R are
even. There exist x, L > 0 such that V2U(z) > kI and 0 < V2V (x) < LI in the sense
of positive definite order, for all z € R?.

The evenness of (U,V) in Assumption [B| is convenient for ensuring that P™ is
centered, but it could certainly be relaxed.

The n — oo behavior of P" is well understood, especially in the regime we consider
where 3 is fixed. The limiting behavior is described in terms of solutions p € P(R%) of
the fixed point equation

(2.2) (d) = %exp (= B(u V(z, ) Mdz), Z >0,

When there is a unique p satisfying , one expects (P™),en to be p-chaotic. There are
other perspectives on P" and i which are worth mentioning but which will not be used.
These formulations are valid under Assumption and in many more general cases
in which A(dz) = e #V®@)dz with (U, V) sufficiently nice. Then, P™ is the invariant
measure of the Markov process (X!,..., X™) governed by the stochastic differential
equation (SDE)

. . 1 o )
(2.3) dX;{=-p <VU(X§) + —] Z Vﬂ/(XZ,Xg))dt + \/ing, 1=1,...,n,
T A
where B!,..., B" are independent d-dimensional Brownian motions. The fixed point

equation ([2.2)) characterizes invariant measures for the corresponding McKean-Vlasov
SDE

(24) dXt = —6 (VU(Xt) + <,Ltt, V1V(Xt, ))) dt + \@dBt, He = LaW(Xt)

For yet another perspective, it is known that (P"o L, 1),cny C P(P(RY)) satisfies a large
deviation principle with good rate function J — inf J, where

(2.5) JW) =B VY+ H(v|\), vePRY

and where H denotes the relative entropy, defined in (2.6). The solutions of ([2.2])
correspond to the minimizers of J. See Section for further discussion and references.

Remark 2.1. Our results below will assume the existence of u satisfying , which
is well understood under various hypotheses on (5, A\, V). Existence can be approached
directly, e.g., by applying Schauder’s fixed point theorem as in [4, Section 4]. Altern-
atively, after rigorously linking them to , the SDE or the variational problem
can be used to prove existence and sometimes uniqueness [9, [10]. For instance,
existence and uniqueness for follows from [9, Theorem 2.1], under Assumption

A probability measure on a product space E™ is said to be exchangeable if it is
invariant with respect to coordinate permutations. Clearly P" is exchangeable, so any
group of k coordinates share the same marginal law, denoted P}’ € P((RH*). We
will use various notions of distance to compare P with @ where p is a solution of
(2.2). The relative entropy between any two probability measures (v,7') on the same
measurable space is defined by

(2.6) (v|v) / og — dI/ if v< v/, and H(v|V) =00 otherwise.
For a bounded signed measure v the total variation is given by

vtV := sup (v, f),
FI<1
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where the supremum is over measurable functions f with |f| < 1. For probability
measures (v, ') on a Euclidean space, the relative Fisher information is defined by

I(w|V) = {f ‘Vlog% dv ifv < v/, and Vlog% exists in L?(v)

%) otherwise,

and the p-Wasserstein distance for p > 1 is given by
Wy /) =it [ o = yl? n(do.dy),

where the infimum is over all couplings of (v,7), and | - | denotes the usual Euclidean
norm.
Our first theorem estimates (P} | p®*), under a smallness-type assumption for V1 V.

Theorem 2.2. Suppose (B,\, V') satisfies Assumption . Let n > k > 1 be integers.

Define P € P((RH™) by [2.1), and suppose there exists ;i € P(R?) satisfying (2.2)).
Assume the following:

(1) Square-integrability:
(27) M= [V V) P dy) < oo

(2) Transport-type inequality: There exists 0 < v < 372 such that
(2.8) (e — v, ViV (@, )P <AI(v|p), VzeR?, vePRY),
Then we have

2
(29 1B |0 < ot (O + (0P

for a constant C > 0 satisfying

8 1 2 4
(2.10) o< " Sl — .
logm (1—=58v7) elog%

We suppress in the dependence of the constant M on n, for ease of notation
and to highlight that Theorem is non-asymptotic in nature; in particular, if M can
be bounded independently of n, we obtain I(P}" | u®*) = O((k/n)?). This proves a form
of increasing propagation of chaos as in [3], in the sense that I (P} | p®k) = 0asn — oo
even if k diverges, as long as k = o(n). The constant C' was not optimized, but note
that it goes to zero as %y — 0.

Example 2.3. A Gaussian example shows that the rate (k/n)? in Theorem is op-
timal. Consider the case 8 = 1, d = 1, V(z,y) = b(x — y)?/2, and A = N(0,1/a),
where a,b > 0. Then P" is Gaussian, and p© = N(0,1/(a + b)) can be shown to
be the unique solution of (2.2). When n — oo and k = o(n), we show in Section
that (n/k)*W3(PP, u®%) is bounded away from zero. By Talagrand’s inequality
and the log-Sobolev inequality, this implies the same for (n/k)2H(Py|p®*¥) > 0 and
(n/k)*I(PP | u®*) > 0. (Actually, all of these quantities can be computed explicitly.)
To see that this case fits the assumptions of Theorem note (again using Talagrand’s
inequality and log-Sobolev) that u satisfies

2
W2(u,v) < ——H(v|p) <

P I(v|p), Vv € P(R).

(a+b)?
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Note also that ViV (z,y) = b(x — y), and so Kantorovich duality implies

b2

The assumptions of Theorem [2.2 hold here with v = b%*/(a + b)? <1 = 372

|<V - M vlv(x7 )>|2 < b2W12(M7 V) <

Remark 2.4. As mentioned above, the existence of y € P(R?) satisfying the fixed point
equation ([2.2) is taken as an assumption in Theorem In fact, the transport-type
inequality (2.8 implies that there can be no other solution, up to integrability. Indeed,
if 1z is another solution, then

1(i| 1) = B2 /}R G~ 1V ()P i) < A5G ).

If |[V1V] € L2((fi + 1) ® [i), which can easily be established a priori in many cases, then
I(ji| 1) < oo, and the assumption 732 < 1 implies that i = p.

The most difficult assumption to check in Theorem is typically the transport-
type inequality , and the crucial assumption that 82 < 1/ can be interpreted as a
high-temperature condition. It is well known that the invariant measure of a McKean-
Vlasov SDE often fails to be unique at low temperature [12] 28], and this would be an
obvious impediment to our result. Related smallness conditions are pervasive, at least
in the absence of ample convexity, in the literature on uniform-in-time propagation of
chaos [25], 20].

Natural corollaries of Theorem arise in settings where a transport-information
inequality holds. That is, suppose there exist L,+ > 0 and a metric p on R? such that
VVi(zx,-) is L-Lipschitz with respect to p for every z, and

(2.11) W2, (v 1) <A I(v| ), Vo € P(RY),

where the 1-Wasserstein distance W , is defined relative to p. Then holds with
constant /'L?. Transport-information inequalities of this form were studied in [24] for
characterizing concentration inequalities for Markov processes, and we refer to [24] [36]
for further details and tractable sufficient conditions. Using some of their ideas, we
will show that inequality can be verified in two noteworthy cases. Essentially,

Corollary uses (2.11) with the trivial metric p(z,y) = 1{,-,;, and Corollary uses
(2.11) with the usual Euclidean metric p(z,y) = | — y|.

Corollary 2.5. Suppose (8, \, V) satisfies Assumption[A] and assume L := |||[V1V |00 <
oo. Define P" by [2.1), and suppose u € P(RY) satisfies ([2.2). Assume there eists
¢y < (BL)™2 such that the Poincaré inequality holds:

(2.12) Var,(f) < cu(u, |V,  for f:RY = R such that Vf exists in L*(1).

Then the conclusion of Theorem holds with ~ := cuL2 and M = 2L?*. Moreover,
if 1 <k <n and Wy g denotes the 1-Wasserstein distance on (RHE defined using the
Hamming metric ((z1,...,2k), (Y1,---,Yk)) — Zle Lz, £y}, then we have

(2.13) WE (P 1) < ke, I(P | ).
Remark 2.6. There are various easy sufficient conditions for the Poincaré inequality
(12.12)):

o If Assumption [B] holds, then (2.12) holds with ¢, = 1/8k (see Section [4.1)).

e If \ satisfies the Poincaré inequality with constant ¢y, and if osc(V) :=supV —
inf V' is finite, then (2.12)) holds with ¢, = cxe2oV) (see [26], Property 2.6]).
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e If A is the uniform measure on a bounded connected set and V' is bounded, then
(2.12) holds for some c,. This follows from the previous bullet point and the
Poincaré-Wirtinger inequality.

Our second example covers the case of convex potentials, for which the famous
Bakry-Emery criterion makes it fairly straightforward to check the hypotheses of The-
orem [2.2)

Corollary 2.7. Suppose (B,\, V') satisfies Assumption @ Then there exists a unique

p € P(RY) satisfying [2.2). Define P by R.1). If L < k, then for integers n > k > 1,
we have

Wi (B, n®F) < @H(Pk | ) < 52,{21(& | u®F),  and
2
0t e o BLA k—1 (L\""
I(P | p®") < k C + (= :
K n—1 K

for a constant C > 0 satisfying

4 1+ (L/k)? 2
€= (1= (L/r))?log(r/L) ((1 —(@/mp " elog(ﬂ/L)) '

Note by Pinsker’s inequality that the estimate H (P} | u®*) = O((k/n)?) of Corollary
implies also

(2.14) 1P = 1l = O(k/n).

2.1. Reversed relative entropy. By reversing the order of arguments in the relat-
ive entropy, we obtain a result for all temperatures in Theorem below, in contrast
with Theorem which is limited to small 8. The price, however, is that Theorem
assumes functional inequalities for P™ and its conditional measures, which are more dif-
ficult to check. In the following, let PI?HI (71, ..., 21) denote a version of the conditional

law of X1 given (X1,...,X%) = (x1,...,z), when (Xi,...,X,) has law P".

Theorem 2.8. Suppose (B,\, V) satisfies Assumption . Let n > k > 1 be integers.
Define P by [2.1), and suppose p € P(R?) satisfies (2.2). Assume the following:

(1) Square-integrability:
(2.15) M = / ViV (z,y) — (1, ViV (z, )|* p®2(dz,dy) < co.
(R)2

(2) Transport-type inequality: There exists v < 0o such that
(216) (= PPy mi) ViVias, )2 < yH(u| Py o)),

foralll1 <k <n and xq,... 3 € R
(8) Log-Sobolev inequality: There exists n < oo such that, for each 1 < k <mn,

(2.17) H(u* | PY) < nl(u | BY), v € P((RYP).
Let € > 0 be such that
o =Bl +¢) £ 1/2.

Then we have

2v(1/a) Lok \2A/)
®k | pny < (A +20)™07 2\ ( _L1tak
@1 P = ( eyB2all — 2a +2nMp 1+a(n—1) ’
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In Theorem [2.8, we suppress the dependence of the constants v and n on n. Note
that if & = 1/2 then we may choose € smaller to make a < 1/2. If n — oo and k = o(n),
and if (,n) stay bounded, then Theorem and Pinsker’s inequality yield

O((k/m) 7 %) for all 6 > 0 if nyB2 > 1/2
O((k/n)?) if nyB2 < 1/2.

In the high-temperature case 17y3? < 1/2, the rate (k/n)? cannot be improved. But it
is not clear if the exponent 1/7y/3? is optimal in the low-temperature case ny3% > 1/2.
In either case, we have H(u®*|PP) — 0 as long as k = o(n).

1P — p®F ||y < 2H(u®F | P = {

Remark 2.9. Note that the functional inequalities in assumptions (2) and (3) Theorem
[2.8] are required to hold only at u, rather than an arbitrary measure. However, in
every example we considered, it is simpler to check more general criteria which ensure
that conditions (2) and (3) hold with u and p®* replaced by arbitrary v € P(R?)
and v € P((R%)¥), respectively. On a related note, Theorem remains true, with
the same proof, if the the assumption (2) therein is required to hold only for v €
{P1?+1|k($17 coomg) k<n, a2 € R,

The assumption (2) in Theorem is a strong one, requiring a transport inequality
holding uniformly over a family of conditional measures. It holds in the case V1V is
bounded by Pinsker’s inequality, but also in the strongly convex setting:

Corollary 2.10. Suppose (5,\, V) satisfies Assumption @ Then there exists a unique
1€ P(RY) satisfying [2.2). Define P™ by [@2.1). Let € > 0 be such that

o= (1+€)(L/k)*#1/2.
Then, for integers n >k > 1, we have

1+ ak 20(1/@)
H ®k ry<cC|—""
for a constant C' > 0 satisfying

2Bka?|1 — 2a ad.

We prove Corollary by checking that P™ satisfies a Bakry-Emery curvature
condition (i.e., that the density is uniformly log-concave) uniformly in n, which was
essentially due to [37]. This curvature condition is preserved under conditioning and
marginalizing, which allows us to check (2) and (3). The recent paper [25] establishes
uniform (in n) log-Sobolev and Poincaré inequalities beyond the convex setting, which
are not directly applicable here but similarly involve checking functional inequalities for
conditional measures.

2v(1/a)
C< (1+1> (1 + 2a)

€

2.2. Related literature. The companion paper [34] develops similar ideas in the dy-
namic context. Precisely, suppose we initialize the SDE system at some distribution
P™(0), and let P"(t) denote the law at time ¢ of the solution. Similarly, let u(t) de-
note the time-t law of a solution of (2.4)), initialized from some 4(0). Using an entropic
iteration technique similar to that of this paper, it is shown in [34, Theorem 2.2] that

H(PE(0) | n(0)%%) = O((k/n)?) = H(PL(t)|u(t)**) = O((k/n)?), ¥t >0,

again with explicit constants. A similar result is shown when the order of arguments
is reversed in the relative entropy. This is the optimal rate of propagation of chaos in
this context, in the sense that we cannot improve the O((k/n)?) in general, even for
i.i.d. initializations P™(0) = p(0)®™. The results of the present paper provide broad
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classes of non-i.i.d. examples of P"(0) such that H(P{(0) | (0)®*) or H(u(0)%* | PP(0))
is O((k/n)?). See [34] for details and related literature on dynamic models.

2.2.1. Mean field Gibbs measures. There is an extensive literature on mean field Gibbs
measures of much more general forms than (2.1). For instance, consider a Polish space
E, a functional F' : P(E) — R, and a reference measure A € P(FE). Consider the
Gibbs measure dQ"/d\®" = e ol /7 where L, : E™ — P(E) is again the empirical
measure. For F' continuous and bounded from below, Sanov’s theorem and Varadhan’s
lemma imply that Q™ o L ! satisfies a large deviation principle with good rate function

PE)>v—Fv)+HWI|\) — Vlei%f(’E)(F(l/) +H'|N).

For pairwise interactions, i.e., F(v) = (v®2, V) for some V : E? — R, this large deviation
principle is now known to hold under much broader assumptions which cover singular
interactions V'; these results require much more care, particularly when the temperature
is allowed to depend on n [11} 19, 35, 22]. When F' + H(- | A) admits a unique minimizer
u, the large deviation principle implies the law of large numbers Q" o L' — 0y, which
in turn implies the local chaos Q) — p®* as n — oo for each fixed k. It was shown in [3]
Theorem 1], using large deviation techniques, that this can be made more quantitative
when F' is a finite-range interaction. In particular, if there is a unique minimizer pu
which is moreover non-degenerate in a suitable sense, then H(P™|u®") = O(1) by
[3, Theorem 1]. By subadditivity (I.3), this implies H (P | u®*) = O(k/n). See also
[3, Theorem 2] for the case of finitely many non-degenerate minimizers. These large
deviations techniques, however, are global in nature and do not appear to be capable of
producing the non-asymptotic O((k/n)?) local estimates given in Theorem or

2.2.2. Finite de Finetti-type theorems. Quantitative local chaos can be interpreted as de-
scribing “how approximately i.i.d.” a measure is. The optimal estimate || P}’ — pk |y =
O(k/n) obtained in (2.14]) appears to be new for Gibbs measures, though it is known for
other specific chaotic sequences. The first famous example is when P" is the uniform
measure on the sphere of radius \/n in R™, which is well known to be -chaotic for the
standard Gaussian measure v on R. It was shown by Diaconis-Freedman [16, Theorem
1] that | PP —~%*|rv < 2(k+3)/(n—k—3) for n > k+4. When the uniform measure P"
is on the simplex instead of the sphere (i.e., on the sphere in ¢! instead of £2), a similar
O(k/n) estimate holds with « replaced by the exponential distribution [16, Theorem
2]. Extensions to ¢P-spheres were developed in [42], 39, [40], and very recently to Orlicz
balls [32]. Generalizing in a different direction, earlier work of Diaconis-Freedman [17]
gives an O(k/n) local chaos estimate for certain i.i.d. random vectors conditioned to
the sphere, and see [27), Section 4] and [8, Section 4] for entropic perspectives on similar
questions.

Also relevant here is yet another theorem of Diaconis-Freedman, on approximating
finite exchangeble sequences by mixtures of product measures, essentially quantifying
the famous theorems of de Finetti and Hewitt-Savage. They show in [I5] that any
symmetric probability measure P™ on E™, where F is a finite set, satisfies

HP,? — /73(E) m®k pn(alm)HTV < 2|E|k/n,

for some p, € P(P(FE)). If E is infinite, they give instead a bound of k(k — 1)/n. Each
bound is optimal absent further assumptions. In fact, one can always take p, = P"o L !
for the latter bound; underlying this argument is the observation that P represents the
law of k particles chosen at random without replacement, whereas [ En L%@k dP" represents
the law of k particles chosen at random with replacement. One consequence of our main
results is an identification of certain classes of finite exchangeable measures on continuous
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state space for which this k(k — 1) /n bound may be improved to O(k/n), matching the
finite state space case. In our case, of course, we are dealing with exchangeable measures
that are in fact approximately i.i.d., and so our “mixing measure” p, is taken to be J,,.

Recent work in random matrix theory has explored similar quantitative approximate
independence properties for various natural models. Using explicit forms of the densities,
[14] gives non-asymptotic estimates of the total variation distance between a p x ¢ matrix
of i.i.d. Gaussians and the upper-left p x ¢ submatrix of a uniformly random n x n
orthogonal matrix. In a similar spirit, the recent work [6] bounds the total variation
distance between Wishart and Wigner matrices of high dimension, via an inductive
argument relying on the chain rule for relative entropy which is not terribly distant
from our method.

2.2.3. Local propagation of chaos. As we have mentioned, there are apparently not many
methods for quantitatively relating global chaos and local chaos . Subaddit-
ivity inequalities like give one method for passing from global to local estimates,
which our results show to be suboptimal in our setting. The only alternative technique
we are aware of is due to the recent work [27]. The approach of [27, Theorem 2.4] starts
from the triangle inequality,

WP 1) < Wy (P,?, [ dP") i w1< [ritar M@k).

Under a suitable moment assumption, using the same combinatorial argument underly-
ing the Diaconis-Freedman estimate k(k —1)/n mentioned above, the first term is shown
to be O(k?/n). The second term can be bounded from above by

W1</L;9;k dp", u®k> < /Wl(Lﬁ’f,Mm)dP” = k:/Wl(Ln,u) dp",

with the first bound coming from convexity of W; and the second from an additivity
argument [27, Proposition 2.6(i)]. Ultimately, the first O(k?/n) term bound already
falls short of our optimal local estimate of Wi (P, u®") = O(k/n) (see Corollary ,
and the second will surely be no better than O(k/n1/2N1/9) as it is governed by the
mean rate of convergence of the (global) empirical measure in Wasserstein distance [21].

3. PROOFS OF MAIN THEOREMS

This section is devoted to the proofs of Theorems and In both cases, we
may assume without loss of generality that 5 = 1, noting that the general case can be
recovered from the 3 = 1 case by changing M and v to MfB? and /32, respectively.
Both theorems make use of the following simple calculation of the logarithmic gradients

of marginal densities. Recall that PI?+1\ () denotes the conditional law of X}, given

(X1,...,X}) = x, under P". For 1 <i < k and a function f on (R%)*, we write V,f for
the gradient in the i'" argument.

Lemma 3.1. Let 1 <i < k <n. The marginal distribution P’ satisfies

by 1
—Vilog W($1, X)) = o1 Z | (VlV(ZL’i,{L‘j) — (u, V1V (x5, )>)
J<k,j#i
n—k, .
o) — TV ()
Proof. Let f! = dP}} /du®*. From the formulas ([2.1)) and (2.2)),

i, ap) = ZZneXP < - ﬁ Y (Viwnzg) - <uaV(xi7')>)>-

T 1<i<i<n
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Start from the identity
fi(z, . k) =/ fa(@y, o @) pldags) - - - pldan).
(Rd)nfk

Since V' is bounded from below, we may exchange differentiation and integration to

express —V;log f/'(x1,...,x) as the conditional expectation
Sy 51 X (ViV @iy ay) = (1, ViV (@i, ) fr (@, o) pldagn) - - p(day)
(e, . o) '

Note this also used symmetry of V. The j < k terms can be pulled out of the integral,
as they are not integrated. For each j > k, exchangeability implies

Jityr ViV (@) fan, ) () - ey

iy, o)

This completes the proof. O

= <P£+1|,€(a:1, ca), ViV (g, ).

3.1. Proof of Theorem 2.2
Step 1. The first step will yield an O(k3/n?) estimate, which we improve to O(k?/n?)
in the second step. Let 1 < k < n. Define Jp > 0 by

2
apy,

n

aPp,
Vl log k

1 13

(Re)*

where the second identity follows from exchangeability. Lemma [3.1] yields

Ji = /
(R)

k
n i 2> (ViVian @) — (1 VaV(a, )
j=2

n—k

+ m<P1?+1|k<$) — i, ViV (21,-))

2
Pl (dz).

By the triangle inequality, we have

: 2 1/2
Ji < </(Rd)k nil Z (V1V(m1,xj) —{u, V1V(:L‘1,-)>) p]?(dx)>
(3.1) =2
n — 2 1/2
" </(Rd)k ni—];P’?Jrllk(x) — i, ViVi(z1,-)) P]?(dx)) .

Using exchangeability and the triangle inequality, the first term of (3.1)) is bounded by

k=L g

n—1

where M was defined in (2.7). Similarly, we note here for later use that if k¥ = n then

(3.2) Jn = (/(Rd)k

n

ST (ViV (1, ay) — (0, ViV (21, )

Jj=2

1 2

n—1

1/2
p,g(m)) <VM.
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To estimate the second term of (3.1)) for general k, let (z, ;1) denote a generic element
of (R4)**1 and use the assumption (2.8) to get

(PR (@) = VAV (@1, DP < AL la) | )

dpPl
R4

2
w1k (2)
= 7/ ‘leog ey (@ Ths1)

P£+1|k($)(d$k+1)

2
B (@) (dega),

Viy1log T(ﬂckﬂ)

where the last step above follows from the identity

dPp AP (@) apy
m(%xkﬂ) = T dn Lh+ )d ®k( ).

Thus, discarding the factor (n — k)/(n — 1), the second term of is bounded by

Lo

which is exactly equal to /yJg11 by exchangeability. Putting it together, we deduce

from (3.1)) that

d‘PI?Jrl ? n m 2
Vi1 log W(ﬂf, Trt1)| Pre (@) (dog 1) P (da) |

k—1
I < HVM + VY kt1-
Iterate this inequality to get

mn

|
—

1
(3.3) Ji < ~2E=R) (g - )+72(” ) I,..

S
—_

)
o

Since v < 1, for k > 2 we have the estimate

n—1 1 n—k—1 1 00 0

St P—1y =3 2 e+k-1) Z U+ + (k—2)) 72

=k £=0 =0 £=0
1 k—2

SO
_ Vit yk-Y)

(=3P
< k—1
(=)
Thus, using also (3.2)), the estimate (3.3 implies
VM k=1 1,
3.4 Jp < 2=k /M
34 CCa—Ara-1
Finally, this yields
1 k-1 1 2
: I(P} | u®%) = kJ} < kM an=h )
55 (P |0 = K} < 0 (g +

This is O(k3/n?) instead of the desired O(k?/n?), so we perform one more step.
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Step 2. Knowing the inequality (3.5)), we can now use it to improve the estimate of first
term in (3.1)) as follows. Expand the square and use exchangeability to get

b 2
/(Rd)k n i 1 Z (V1V($1,xj) - </.L, V1V($17 )>) Pl?(diﬂ)
j=2
_ kol (k —1)(k —2)
_(”—1)2M+ (n —1)2 R,
where we define
R := (ViV(z1,22) — (1, ViV (21,-))) - (ViV (21, 23) — (1, ViV (21, ) P (dz).

(R4)3

Condition on (z1,z2) and use Cauchy-Schwarz to get

R= /(Rd)2 (VaV (1, 22) — (1, V1V (21,-))) - (P§l|2(x1,x2) — 1, ViV(z1, ) PY(day, dzs)

1/2
< (o /( P, = 94V o, WP Pydon.d))
R

Use the assumption (2.8)) to bound the integrand by ~I (P??'2 (z1,22) | 1), which yields

we (0 fuf7

(R¥)3
= J3\/YM.
Applying (3.4) with k = 3,
1

3|2 l‘l,x‘g) 2

2 1/2
aPy >

1/2
x3) P§1|2(x1,x2)(dx3)PQ”(dxl,d:cg)>

dPy

Vlogd =3

“(1-y7)?in—-1
Note since n > 3 that (n — 1) < 2(n — 2). Use also sup,-o27*/% = 2/elog(1/7) to get
MC 2 4
R < 1, where (] := vl 5+
-1 (1—y7)?  elog(1/7)
Putting it together, we have thus improved the bound on the first term of (3.1)) to
1< ’
/ > (ViV(@,a5) = (, ViV(a, )| PR (dx)
(Rd)k |10 — 1 o
kE—1 (k—1)(k—-2)
< M —M
S o1y + (=173 Cy
kE—1
< —M((1+Ch).
S o2 (1+Ch)

The bound on the second term of (| - ) remains the same as before, and we thus get

M(1
n—l +Ch) +\FJ]€+1

Iterate this inequality to get

nfl

— 1 1
(3.6) 5o < YMOFO) S S 7= 4 homn g,
=k
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Estimate the summation by noting that v < 1 implies
n—1 1 n—k—1 1 © ©
2t IVi—T= 3 VI =1 VI VE=TY 42
=k £=0 £=0 (=0

1
This is bounded by Covk — 1, where we define Cy := 2 Zz.io 754\/2. We deduce from
(3.6) and also (3.2) that

-1 1
Jp <Oy M(1+Cl)\?/zi+72(n—k)m‘

Finally, this yields

2
k—1 1
(3.7) I(P | u®F) = kJ} < kM <c§(1 +Cy) \E + 72<n—k>> '
The constant C2(1 + C) can be simplified by noting that
14~ n 4
(1=y7)?  elog(l/v)

To estimate C5, note for 0 < y < 1 that

1+C =
& o0 00 )
Z\/Ey€</ \/:Ey$dw:2/ 22e* 108V dz = /7 /1og(1/y).
= 0 0
Apply this with y = /7 to get Co < 24/27/log(1/7). Hence,

2 8 1+ 4
CA+C) < T <(1 — T 610g(1/’y)> ' .

3.2. Proof of Corollary We first borrow an argument from [24, Theorem 3.1]:
Let v € P(RY) with v < p and f = dv/du. By Cauchy-Schwarz,

v — plly = (/!f—lldu>2= (/y(ﬂ+ 1)(\/?—1)|du>2
< [WF+ Ve [(VF = VP dp = tVar (VP

Apply the assumed Poincaré inequality (2.12)) to get

(3.8) Iv—uldy < ulwlp), e P®Y.
Using the boundedness assumption (1), we deduce
i — v, ViV (x,)|? < L%c, I (v|p), Yo €R?Y veP(RY).

This shows that the assumption of Theorem holds, and clearly the assumption
also holds with M < 2L?. We may thus apply Theorem Lastly, note that
the inequality above is precisely the case k = 1 of the claim ([2.13]). Tensorize this
transport inequality as in [24] Corollary 2.13] to get the claim. O

Remark 3.2. Corollary [2.5could likely be generalized, using a more involved inequality
such as [24, Theorem 5.1] instead of to deduce a weighted Pinsker-type inequality
from the assumed Poincaré inequality. This would allow us to relax the assumption of
boundedness of V1V, but for the sake of brevity we do not pursue this.
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3.3. Proof of Theorem We again assume without loss of generality that § = 1.
Abbreviate Hy := H(u®* | PP) and Ij, := I(u®* | P}'). First, expand the square, using
the definition of M from ({2.15)) and exchangeability to compute

2
I, = /
Z e 11 2

n
(V1V($i, xj) - <:u7 V1V($Z’, )>) ,u®”(d:c) =
Using the assumption ([2.17)), this implies, for each k = 1,...,n, that

M.

n—1

n—1
J

(3.9) Hy < Hy <l < ——nM.

Now fix n > k > 1. By Lemma
Z (V1V(l‘i,$]’) - <M7 V1V(Q?i, )>)

k 1
< f
=1 DT L

n—*k, .
+ m< k(@) — 1, VaVi(@i, )

2
pEF(d).

Let € > 0. Use exchangeability and the inequality (a + b)? < (14 €)a® + (1 + e 1)b? to
get

1 2

I, < (14 el)k/(Rd)k — Z (V1V($i,xj —(u, V1V (x5, )>) M®k(dx)
J<k,j#i
2
F gk [ AR P (o) 0 TV (@i, ) | 5 o).
(RE)F

The first term, using independence, is equal to

k(k — 1)

(14+eh) =12

The second term we bound by first discarding the term (n — k)/(n — 1). Then use the
assumption ([2.16)) followed by the chain rule for relative entropy [7, Theorem 2.6] to get

fuo

<P’?“"“(x)_“’Vlv(x""»r“@k(dx)<7/ H (| Pl ay()) 1" (d)

Rd)k

= v(Hp1 — Hy).

Putting it together, and using the assumption (2.17)), we find
1 k(E—1
H <1l <01+ €D P D 4 (1 k(i — )

Rearrange this to get

1y k(k—1)

n(l+et) 1+ o)k
Hy <ayp+cpHgy1, where ay:= (n—1)" CL = M

T+m(d+ok > 7 1+m(1+eok
Iterate this inequality to get

(3.10) 3 (ﬁ[ ) <ﬁcj> H,

|
—

~
Il
ol
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Abbreviate o := ny(1 + €), so that ¢; = aj/(1 + aj). We then have the estimate

1 S
Hc] H1+aj—exp210g(l—l+ ><eXp(_Zl+aj>

=k j=k
0
1 1 14+ al
< — du | = —lo
_eXp( /k I+au u) exp( 1+ak>
1
_(1+ak\a
S \1l+o
Thus, using also , and noting that a‘ = 76(2 nzs We deduce from (3.10]) that
1
1+ ak 5 n 1+ ak a
H M .
S e 22 <1+a£> +n n—l<1+a(n—1)>
We lastly estimate the sum
n—1 1 1 n—1
(-l t+a)a<=) (1+a)' " a
o=k Rt
Case 1. Suppose a > 1/2. Then
n—1
-+ " -+ 1 2—
Z(1+o¢€) ag/(1+ozx) adr = (1+an) «
0 20— 1
l=k
and we get
(1 + ak)a Eye
14 ak)a 91 n 14+« o
H, < 1 M
b= (20[*1)0&’)/6(11*1)2( Fan)e 4 n—1 (1+a(n1))

1
1 1+an)? n 1+ ak o
<
_<(2a—1)a76<n—1> +77Mn—1> (1—|—a(n—1)>
1
< (1+2a)? +onM 1+ ak a
~ \(2a — 1)aye g l+a(n—-1))

where the last step used 1 + an < (1 +2a)(n—1) for n > 2, and n < 2(n — 1).
Case 2. Now suppose 1/2 > a > 0. Use the estimate

n—1 )
S (1+af)'"a < / (1+az) " de = ——(1+alk— 1))
l=k

k—1 1 -2«
and we get
1 1
(14 ak)e g1 n 1+ak a
H 1 k—1))""a+nM
P = 1= 2a)ave( 1)2( o ) L aa— 1+a(n—1)
1
(1+a)§ l1+ak—-1) 2+2 Y, 1+ ak o
~ (1 —2a)ave n—1 1 l4an-1)) ~’

where we used 1+ ak < (1 + a(k —1))(1 + «) for £ > 1. Noting that 1/a > 2 and
l+an—1)<n-—1fora<1/2and n> 2, we get

(1—}—@)5 1+ ak 2
i <<12a>cwe“”M> (ao-m)



16 DANIEL LACKER

4. THE CASE OF CONVEX POTENTIALS

This section is devote to the proofs of Corollaries and In each case, existence
and uniqueness of € P(RY) satisfying (2.2)) follows from Assumption by [9, Theorem
2.1]. We first collect some useful and well known facts that will be used in each proof.

4.1. The Bakry-Emery curvature condition. This short section summarizes a num-
ber of classical facts about strongly log-concave probability measures; see [43] for an
overview and references. We say a function on R” is k-convex if its Hessian is pointwise
bounded from below by kI, in semidefinite order. Let v be a probability measure on
R* with strictly positive density, also denoted v, such that —log v is k-convex. Then v
satisfies the log-Sobolev inequality

2 1 1
H(fvlv) <2 [ IV =5 [ IViog P v = o 17010,

This is a famous result of Bakry-Emery [I], and see [2, Corollary 5.7.2] or [23, Corollary
7.3] for English references. It was later shown by Otto-Villani [41] that this implies the
quadratic transport inequality

2
W) < 2H ()
We also have the Poincaré inequality (see [41, Section 7])

(4.1) Var, (1) = [(F = p)Pav < < [195P .

We will also make use of the fact that strong log-concavity is preserved under condi-
tioning and marginalization. The first of these properties is immediate, and the second
is due to Brascamp-Lieb [0, Theorem 4.3] (see also [43, Theorem 3.8]):

Lemma 4.1. Suppose v(x,y) is a strictly positive probability density function on R+,
Define the conditional and marginal densities

v(z,y) ~ /

ve(y) = ————, viz) = viz,y)dy.
:)3( ) fRd, ]/(x,y/)dy/ ( ) Rd' ( )

Let k > 0. If —logv is k-convex on R then —log v, () is k-convex on RY for each

z € RY, and —log v is k-convex on R,

4.2. Proofs of Corollaries and We now specialize to the context of P™ and
w as defined in Section 2] under Assumption [B] Identifying the measures P™ and u with
their densities, Assumption [B] implies that —log P™ and — log u are both [k-convex.
The latter is straightforward from the assumed convexity of V' and U, and the former
requires a calculation for which we refer to [37, Lemma 3.5] or [38, Proposition 3.1].
As in Section [4.1], we deduce that p satisfies the log-Sobolev and quadratic transport
inequalities
2 1
(4.2) Wil ) < goH( 1) < g3 51 (1w

The same inequalities hold with P™ in place of p.

Proof of Corollary Recall the definition of the constant L from Assumption
Note for any unit vector u € R? that the function z — u - VV () is L-Lipschitz since
0 < V2V < LI. Hence, using Kantorovich duality, for each 2 € R? and v € P(R?) we
have

(v =, VV(@ =)= sup (v—pu-VV(z—")><LPW(uv).

u€R?, Ju|=1
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Combining this with the inequalities (4.2]), we deduce that condition (2) of Theorem
holds with v = (L/Bk)*
12

(4.3) (v = 1, VV (@ =) < LPW3 (u,v) < Gl win):
It remains finally to estimate the constant
M = - IVV (21 — 22) — (10, VV (21 — ))[* PR (day, dxs).
R

By Jensen’s inequality and Assumption

M < / |VV($1 — x9) — VV (21 — 23)|* p(das) P (dxy, das)
R xRd

<1 /R/ &~y p(dy) Py (d)

<or? (/Rd ]2 pu(da) + /Rd |x|2pf(dx)> .

Noting that U and V are even functions, we deduce that P and p have mean zero. The
Poincaré inequality (4.1]), applied to the coordinate functions f(z) = z; fori =1,...,d,
then shows that [p, |z|* P{"(dz) and [p, |z|* p(dz) are both bounded by d/fk. Thus

M < Lﬁ—id. Theorem now applies, noting that 5,/y = L/k. O

Proof of Corollary We check the hypotheses of Theorem Condition (1)
follows exactly as in the proof of Corollary with M < %. To check the log-

Sobolev inequality in condition (3), we use Lemma to deduce that —log P is (k-
convex, and thus (3) holds with n = 1/28k. To check condition (2), first note that

—log Pk+1\k(x17 oo, k) (Tp41) i Br-convex in x4 for each zq,...,zE, by Lemma
Thus, as in Section we deduce the quadratic transport inequality

n 2 n
W22(7 Pk+1|k(x17 W) < %H( | Pk+1|k(x17 s TE)),

for 1 <k <nand ...,z € R Arguing as in ([4.3)), we get

n 2L° n
](,u — Pk+1|k($17 e ,Il'k),VV(wl — )>‘2 < %H(Iu, | Pk+1|k(a;1, ce ,l’k))

This shows condition (2) of Theorem [2.8| with v = 2L2/3k.
We now have all of the ingredients we need to apply Theorem Let € > 0 and set

a =182 (1+¢€) = (1+¢)(L/r)>.

Note that v3? = 2L?B/k = 2Bka/(1 + €) and 2nMB? < L?d/k? = ad/(1 + €) < ad.
Apply Theorem with these substitutions to complete the proof. O

5. THE GAUSSIAN CASE

This section documents Example which illustrates that the O((k/n)?) estimate
from Theorem cannot be improved. Throughout the section, J, denotes the n x n
matrix of all ones, and I,, is the identity matrix.

Fix a,b > 0. Consider the Gaussian probability measure on R™ defined by

n

&) P”<dw>=zle"p(‘32f?—mlin D <xi—:cj>2>d”
" i=1

1<i<j<n
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We will show that, if n — co and k — k* € NU {oo} with k£ = o(n), then

b? a® 1 2
E)W2(PP k) - ———— [ — 1—— b > 0.
(n/ ) 2( k ,U ) 4a2(a+b)3 k*—i_ k* CL"‘
To see this, we begin by rewriting the exponent in as

_;< n—l)z Pt ZWJ _*-’L’ e

zgl

%Jn. In other words, P" is the centered Gaussian

-1 ._ bn
where ¥ ° = (a—i— ﬁ> I, —
measure with covariance matrix
1 b

—F—, and ¢, = —.
a+ 2 " a(n—1)

Yp =dn(In + cpdy), where d,:=

The k-dimensional marginal P! is then a centered Gaussian with covariance matrix
Yok = dn(Ip + cnJi).
Note since ¢, — 0 and d,, — 1/(a + b) that

1
lim Enk—ifk, Vk € N.

n—00 a-+b

This implies that P’ converges weakly to u®* as n — oo, for each k € N, where p is
defined as the 1-dimensional centered Gaussian measure with variance 1/(a + b).

As shown in [18], the quadratic Wasserstein distance between two centered Gaussian
measures 1 and 9 with commuting covariance matrices »; and Yo is precisely

(52) Wi (1, 72) = Tr((2)7 = 25%)?).
For k € N, suppose ¥; = a;I; + b;Ji for some a; > 0 and b; € R. Note that X; has

eigenvalues a; and a; + b;k, with respective multiplicities £ — 1 and 1. Apply (5.2)) along
with a simultaneous diagonalization of 31 and Y9 to find

2 2
(5:3) Wi = (k= 1) (0" =) + (a1 +01k) 2 = (a2 + bak) )
Apply this in our context, with ay; = dy, ag = 1/(a +b), by = d,c,, and by = 0, to get
Wi (P, p®%) = (k = 1)(a+b) "' (dy/*(a + b)'/* = 1)?

2
+(a+b)! (d,l/Q(a F )Y+ ken)V? - 1)

Computing derivatives shows that

1/2 1/2 _ a+b —1_ 1 b 1
dY?(a 4 b) ‘/7““% 2(a+b)n—1+o( /n).

Asn — oo and k — k* € NU {00}, this implies

(5.4)

n\ 2 b?
. n —1)(gM? 1/2 _ 12 .
(55) (3) = DU +0)2 =1 o o
Moreover, noting that (1+2)%? =1+2/2+o(x) as  — 0 and ke, = O(k/n), we have
b 1
1/2 1/2(1 1/2 _ 1 _
d,/“(a+b)"7*(1 + kcy) atb)n—1 + k‘cn+o(k/n)

which (using nec, — b/a) leads to

P (df2(a+5) 21+ ke)V? 1) - b b

(5:6) k 20 2k*(a+Db)
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Finally, plug (5.5) and (5.6)) into (5.4]) to conclude that

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

n\2. o b? 1 b b :
" P k _ ] .
(k‘) Wy (B, )_>4(a+b)3k*+a+b(2a 2k*(a+b)>
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