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Abstract. Many Gibbs measures with mean field interactions are known to be chaotic,
in the sense that any collection of k particles in the n-particle system are asymptotic-
ally independent, as n → ∞ with k fixed or perhaps k = o(n). This paper quantifies
this notion for a class of continuous Gibbs measures on Euclidean space with pairwise
interactions, with main examples being systems governed by convex interactions and
uniformly convex confinement potentials. The distance between the marginal law of
k particles and its limiting product measure is shown to be O((k/n)c∧2), with c pro-
portional to the squared temperature. In the high temperature case, this improves
upon prior results based on subadditivity of entropy, which yield O(k/n) at best. The
bound O((k/n)2) cannot be improved, as a Gaussian example demonstrates. The
results are non-asymptotic, and distance is quantified via relative Fisher information,
relative entropy, or the squared quadratic Wasserstein metric. The method relies on
an a priori functional inequality for the limiting measure, used to derive an estimate
for the k-particle distance in terms of the (k + 1)-particle distance.

1. Introduction

This paper focuses on continuous Gibbs measures of mean field type on Euclidean
spaces, discussed starting in Section 2 below. But the ideas developed in this specific
context are suggestive of a more general phenomenon, and so we focus on the latter in
this short introduction. We first recall, with somewhat unconventional terminology, the
classical concept of chaos formalized in Kac’s work on the kinetic theory of gases [33].

Let E be a Polish space, and let P(E) denote the space of Borel probability measures
on E. Spaces of probability measures are equipped with the topology of weak conver-
gence, unless stated otherwise. For each n ∈ N let Pn be an exchangeable probability
measure on En, and let Pn

k denote its marginal on Ek for k < n. For µ ∈ P(E), we say
that (Pn)n∈N is locally µ-chaotic if

lim
n→∞

Pn
k = µ⊗k, in P(Ek), for each k ∈ N,(1.1)

where µ⊗k denotes the k-fold product measure. Let Ln : En → P(E) denote the
empirical measure map, Ln(x1, . . . , xn) :=

1
n

∑︁n
i=1 δxi . We say that (Pn)n∈N is globally

µ-chaotic if

lim
n→∞

Pn ◦ L−1
n = δµ, in P(P(E)).(1.2)

Local and global chaos are well known to be equivalent; that is, (1.1) holds if and only if
(1.2) holds, and we may then say more simply that (Pn)n∈N is µ-chaotic [44, Proposition
2.2]. However, quantitative forms of this qualitative equivalence are not straightforward
or canonical. For this reason, it will help to distinguish them via the terms local, dealing
only with boundedly many coordinates (or, later, o(n) coordinates), and global, dealing
with the full n-particle system or its empirical measure.
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Recent years have seen substantial progress on quantifying chaos in various contexts,
most notably its propagation along the dynamics of various interacting particle systems.
Most existing methods are fundamentally global in nature, with local estimates deduced
from global ones. One common strategy for passing from global to local rates of chaos,
appearing in many previous papers such as [3, 29, 30, 31], is to use the well known
subadditivity inequality for relative entropy defined in (2.6),

H(Pn
k |µ⊗k) ≤ 2k

n
H(Pn |µ⊗n).(1.3)

See [13, Lemma 3.9]. Then, by proving a global estimate of the form

H(Pn |µ⊗n) = O(1),(1.4)

one can immediately deduce the local estimate

H(Pn
k |µ⊗k) = O(k/n).(1.5)

See Section 2.2.3 for further discussion, including an alternative strategy proposed in
[27].

The main results of the paper, stated in Section 2, show that the local estimate
(1.5) can be improved to O((k/n)2) for a class of continuous Gibbs measures arising as
invariant measures of interacting diffusions, at least at high temperature. We also show
that this local estimate is optimal, via explicit computations for a Gaussian example
given in Section 5. We make no claims about improving the global estimate (1.4), which
is typically impossible. This suggests what we suspect to be a more general phenomenon,
that local rates deduced from global rates are often suboptimal. The companion paper
[34] develops similar results and techniques for dynamic models.

From the perspective of physical applications, the class of Gibbs measures covered
by our results is somewhat limited, consisting essentially of interaction functions having
either bounded or Lipschitz gradient. In particular, we do not treat singular interactions
or discrete models. Moreover, our results apply only in settings with unique equilibria
(no phase transition). The novelty in this work, rather, is in obtaining optimal quant-
itative bounds. In addition, we expect the method to be more broadly applicable.

The following Section 2 presents the setting and main results, along with a discussion
of related literature in Section 2.2. The remaining sections are devoted to proofs.

2. Main results

Let d ∈ N. We study exchangeable probability measures on (Rd)n of the form

Pn(dx) =
1

Zn
exp

(︃
− β

n− 1

∑︂
1≤i<j≤n

V (xi, xj)

)︃
λ⊗n(dx),(2.1)

where Zn > 0 is a normalization constant. Here β is the inverse temperature, λ is the
reference measure, and V is the interaction function.

Assumption A. We are given β > 0, λ ∈ P(Rd), and V : Rd × Rd → R satisfying:

• λ is absolutely continuous with respect to Lebesgue measure.
• V is bounded from below and symmetric, meaning V (x, y) = V (y, x) for all x, y.
• The weak gradient ∇1V of V in its first argument belongs to L1

loc(Rd × Rd).

Assumption A is more than enough to ensure that Pn is well-defined. The bounded-
ness of V from below simplifies the exposition but could be sharpened. Of course, β
may be absorbed into V , but we prefer to keep it separate to illustrate its role more
clearly. The following strengthening of Assumption A is an important special case:
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Assumption B. We have β > 0 and λ(dx) = e−βU(x)dx for some function U . The
function V takes the form V (x, y) = V (x − y), and the functions U, V : Rd → R are
even. There exist κ, L > 0 such that ∇2U(x) ≥ κI and 0 ≤ ∇2V (x) ≤ LI in the sense
of positive definite order, for all x ∈ Rd.

The evenness of (U, V ) in Assumption B is convenient for ensuring that Pn is
centered, but it could certainly be relaxed.

The n → ∞ behavior of Pn is well understood, especially in the regime we consider
where β is fixed. The limiting behavior is described in terms of solutions µ ∈ P(Rd) of
the fixed point equation

µ(dx) =
1

Z
exp

(︁
− β⟨µ, V (x, ·)⟩

)︁
λ(dx), Z > 0.(2.2)

When there is a unique µ satisfying (2.2), one expects (Pn)n∈N to be µ-chaotic. There are
other perspectives on Pn and µ which are worth mentioning but which will not be used.
These formulations are valid under Assumption B, and in many more general cases
in which λ(dx) = e−βU(x)dx with (U, V ) sufficiently nice. Then, Pn is the invariant
measure of the Markov process (X1, . . . , Xn) governed by the stochastic differential
equation (SDE)

dXi
t = −β

(︃
∇U(Xi

t) +
1

n− 1

∑︂
j ̸=i

∇1V (Xi
t , X

j
t )

)︃
dt+

√
2 dBi

t, i = 1, . . . , n,(2.3)

where B1, . . . , Bn are independent d-dimensional Brownian motions. The fixed point
equation (2.2) characterizes invariant measures for the corresponding McKean-Vlasov
SDE

dXt = −β (∇U(Xt) + ⟨µt,∇1V (Xt, ·)⟩) dt+
√
2 dBt, µt = Law(Xt).(2.4)

For yet another perspective, it is known that (Pn ◦L−1
n )n∈N ⊂ P(P(Rd)) satisfies a large

deviation principle with good rate function J − inf J , where

J(ν) := β⟨ν⊗2, V ⟩+H(ν |λ), ν ∈ P(Rd)(2.5)

and where H denotes the relative entropy, defined in (2.6). The solutions of (2.2)
correspond to the minimizers of J . See Section 2.2.1 for further discussion and references.

Remark 2.1. Our results below will assume the existence of µ satisfying (2.2), which
is well understood under various hypotheses on (β, λ, V ). Existence can be approached
directly, e.g., by applying Schauder’s fixed point theorem as in [4, Section 4]. Altern-
atively, after rigorously linking them to (2.2), the SDE (2.4) or the variational problem
(2.5) can be used to prove existence and sometimes uniqueness [9, 10]. For instance,
existence and uniqueness for (2.2) follows from [9, Theorem 2.1], under Assumption B.

A probability measure on a product space En is said to be exchangeable if it is
invariant with respect to coordinate permutations. Clearly Pn is exchangeable, so any
group of k coordinates share the same marginal law, denoted Pn

k ∈ P((Rd)k). We

will use various notions of distance to compare Pn
k with µ⊗k, where µ is a solution of

(2.2). The relative entropy between any two probability measures (ν, ν ′) on the same
measurable space is defined by

H(ν | ν ′) =
∫︂

dν

dν ′
log

dν

dν ′
dν ′, if ν ≪ ν ′, and H(ν | ν ′) = ∞ otherwise.(2.6)

For a bounded signed measure ν the total variation is given by

∥ν∥TV := sup
|f |≤1

⟨ν, f⟩,
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where the supremum is over measurable functions f with |f | ≤ 1. For probability
measures (ν, ν ′) on a Euclidean space, the relative Fisher information is defined by

I(ν | ν ′) =

{︄∫︁ ⃓⃓
∇ log dν

dν′

⃓⃓2
dν if ν ≪ ν ′, and ∇ log dν

dν′ exists in L2(ν)

∞ otherwise,

and the p-Wasserstein distance for p ≥ 1 is given by

Wp
p (ν, ν

′) := inf
π

∫︂
|x− y|p π(dx, dy),

where the infimum is over all couplings of (ν, ν ′), and | · | denotes the usual Euclidean
norm.

Our first theorem estimates I(Pn
k |µ⊗k), under a smallness-type assumption for∇1V .

Theorem 2.2. Suppose (β, λ, V ) satisfies Assumption A. Let n > k > 1 be integers.
Define Pn ∈ P((Rd)n) by (2.1), and suppose there exists µ ∈ P(Rd) satisfying (2.2).
Assume the following:

(1) Square-integrability:

M :=

∫︂
(Rd)2

|∇1V (x, y)− ⟨µ,∇1V (x, ·)⟩|2 Pn
2 (dx, dy) < ∞.(2.7)

(2) Transport-type inequality: There exists 0 < γ < β−2 such that

|⟨µ− ν,∇1V (x, ·)⟩|2 ≤ γI(ν |µ), ∀x ∈ Rd, ν ∈ P(Rd).(2.8)

Then we have

I(Pn
k |µ⊗k) ≤ kMβ2

(︃
C

√
k − 1

n− 1
+ (β

√
γ)n−k

)︃2

,(2.9)

for a constant C > 0 satisfying

C ≤ 8π

log 1
β2γ

(︄
1 + β2γ

(1− β
√
γ)2

+
4

e log 1
β2γ

)︄
.(2.10)

We suppress in (2.7) the dependence of the constant M on n, for ease of notation
and to highlight that Theorem 2.2 is non-asymptotic in nature; in particular, if M can
be bounded independently of n, we obtain I(Pn

k |µ⊗k) = O((k/n)2). This proves a form

of increasing propagation of chaos as in [3], in the sense that I(Pn
k |µ⊗k) → 0 as n → ∞

even if k diverges, as long as k = o(n). The constant C was not optimized, but note
that it goes to zero as β2γ → 0.

Example 2.3. A Gaussian example shows that the rate (k/n)2 in Theorem 2.2 is op-
timal. Consider the case β = 1, d = 1, V (x, y) = b(x − y)2/2, and λ = N(0, 1/a),
where a, b > 0. Then Pn is Gaussian, and µ = N(0, 1/(a + b)) can be shown to
be the unique solution of (2.2). When n → ∞ and k = o(n), we show in Section
5 that (n/k)2W2

2 (P
n
k , µ

⊗k) is bounded away from zero. By Talagrand’s inequality

and the log-Sobolev inequality, this implies the same for (n/k)2H(Pn
k |µ⊗k) > 0 and

(n/k)2I(Pn
k |µ⊗k) > 0. (Actually, all of these quantities can be computed explicitly.)

To see that this case fits the assumptions of Theorem 2.2, note (again using Talagrand’s
inequality and log-Sobolev) that µ satisfies

W2
2 (µ, ν) ≤

2

a+ b
H(ν |µ) ≤ 1

(a+ b)2
I(ν |µ), ∀ν ∈ P(R).
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Note also that ∇1V (x, y) = b(x− y), and so Kantorovich duality implies

|⟨ν − µ,∇1V (x, ·)⟩|2 ≤ b2W2
1 (µ, ν) ≤

b2

(a+ b)2
I(ν |µ), ∀x ∈ R, ν ∈ P(R).

The assumptions of Theorem 2.2 hold here with γ = b2/(a+ b)2 < 1 = β−2.

Remark 2.4. As mentioned above, the existence of µ ∈ P(Rd) satisfying the fixed point
equation (2.2) is taken as an assumption in Theorem 2.2. In fact, the transport-type
inequality (2.8) implies that there can be no other solution, up to integrability. Indeed,
if ˜︁µ is another solution, then

I(˜︁µ |µ) = β2

∫︂
Rd

|⟨˜︁µ− µ,∇1V (x, ·)⟩|2 ˜︁µ(dx) ≤ γβ2I(˜︁µ |µ).

If |∇1V | ∈ L2((˜︁µ+µ)⊗ ˜︁µ), which can easily be established a priori in many cases, then
I(˜︁µ |µ) < ∞, and the assumption γβ2 < 1 implies that ˜︁µ = µ.

The most difficult assumption to check in Theorem 2.2 is typically the transport-
type inequality (2.8), and the crucial assumption that β2 < 1/γ can be interpreted as a
high-temperature condition. It is well known that the invariant measure of a McKean-
Vlasov SDE often fails to be unique at low temperature [12, 28], and this would be an
obvious impediment to our result. Related smallness conditions are pervasive, at least
in the absence of ample convexity, in the literature on uniform-in-time propagation of
chaos [25, 20].

Natural corollaries of Theorem 2.2 arise in settings where a transport-information
inequality holds. That is, suppose there exist L, γ′ > 0 and a metric ρ on Rd such that
∇V1(x, ·) is L-Lipschitz with respect to ρ for every x, and

W2
1,ρ(ν, µ) ≤ γ′I(ν |µ), ∀ν ∈ P(Rd),(2.11)

where the 1-Wasserstein distance W1,ρ is defined relative to ρ. Then (2.8) holds with
constant γ′L2. Transport-information inequalities of this form were studied in [24] for
characterizing concentration inequalities for Markov processes, and we refer to [24, 36]
for further details and tractable sufficient conditions. Using some of their ideas, we
will show that inequality (2.11) can be verified in two noteworthy cases. Essentially,
Corollary 2.5 uses (2.11) with the trivial metric ρ(x, y) = 1{x ̸=y}, and Corollary 2.7 uses
(2.11) with the usual Euclidean metric ρ(x, y) = |x− y|.

Corollary 2.5. Suppose (β, λ, V ) satisfies Assumption A, and assume L := ∥|∇1V |∥∞ <
∞. Define Pn by (2.1), and suppose µ ∈ P(Rd) satisfies (2.2). Assume there exists
cµ < (βL)−2 such that the Poincaré inequality holds:

Varµ(f) ≤ cµ⟨µ, |∇f |2⟩, for f : Rd → R such that ∇f exists in L2(µ).(2.12)

Then the conclusion of Theorem 2.2 holds with γ := cµL
2 and M := 2L2. Moreover,

if 1 ≤ k ≤ n and W1,H denotes the 1-Wasserstein distance on (Rd)k defined using the

Hamming metric ((x1, . . . , xk), (y1, . . . , yk)) ↦→
∑︁k

i=1 1{xi ̸=yi}, then we have

W2
1,H(Pn

k , µ
⊗k) ≤ kcµI(P

n
k |µ⊗k).(2.13)

Remark 2.6. There are various easy sufficient conditions for the Poincaré inequality
(2.12):

• If Assumption B holds, then (2.12) holds with cµ = 1/βκ (see Section 4.1).
• If λ satisfies the Poincaré inequality with constant cλ, and if osc(V ) := supV −
inf V is finite, then (2.12) holds with cµ = cλe

2osc(V ) (see [26, Property 2.6]).
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• If λ is the uniform measure on a bounded connected set and V is bounded, then
(2.12) holds for some cµ. This follows from the previous bullet point and the
Poincaré-Wirtinger inequality.

Our second example covers the case of convex potentials, for which the famous
Bakry-Emery criterion makes it fairly straightforward to check the hypotheses of The-
orem 2.2.

Corollary 2.7. Suppose (β, λ, V ) satisfies Assumption B. Then there exists a unique
µ ∈ P(Rd) satisfying (2.2). Define Pn by (2.1). If L < κ, then for integers n > k > 1,
we have

W2
2 (P

n
k , µ

⊗k) ≤ 2

βκ
H(Pn

k |µ⊗k) ≤ 1

β2κ2
I(Pn

k |µ⊗k), and

I(Pn
k |µ⊗k) ≤ k

βL2d

κ

(︄
C

√
k − 1

n− 1
+

(︃
L

κ

)︃n−k
)︄2

,

for a constant C > 0 satisfying

C ≤ 4π

(1− (L/κ))2 log(κ/L)

(︃
1 + (L/κ)2

(1− (L/κ))2
+

2

e log(κ/L)

)︃
.

Note by Pinsker’s inequality that the estimateH(Pn
k |µ⊗k) = O((k/n)2) of Corollary

2.7 implies also

∥Pn
k − µ⊗k∥TV = O(k/n).(2.14)

2.1. Reversed relative entropy. By reversing the order of arguments in the relat-
ive entropy, we obtain a result for all temperatures in Theorem 2.8 below, in contrast
with Theorem 2.2 which is limited to small β. The price, however, is that Theorem 2.8
assumes functional inequalities for Pn and its conditional measures, which are more dif-
ficult to check. In the following, let Pn

k+1|k(x1, . . . , xk) denote a version of the conditional

law of Xk+1 given (X1, . . . , Xk) = (x1, . . . , xk), when (X1, . . . , Xn) has law Pn.

Theorem 2.8. Suppose (β, λ, V ) satisfies Assumption A. Let n > k ≥ 1 be integers.
Define Pn by (2.1), and suppose µ ∈ P(Rd) satisfies (2.2). Assume the following:

(1) Square-integrability:

M :=

∫︂
(Rd)2

|∇1V (x, y)− ⟨µ,∇1V (x, ·)⟩|2 µ⊗2(dx, dy) < ∞.(2.15)

(2) Transport-type inequality: There exists γ < ∞ such that

|⟨µ− Pn
k+1|k(x1, . . . , xk),∇1V (x1, ·)⟩|2 ≤ γH(µ |Pn

k+1|k(x1, . . . , xk)),(2.16)

for all 1 ≤ k < n and x1, . . . , xk ∈ Rd.
(3) Log-Sobolev inequality: There exists η < ∞ such that, for each 1 ≤ k ≤ n,

H(µ⊗k |Pn
k ) ≤ ηI(µ⊗k |Pn

k ), ∀ν ∈ P((Rd)k).(2.17)

Let ϵ > 0 be such that

α := ηγβ2(1 + ϵ) ̸= 1/2.

Then we have

H(µ⊗k |Pn
k ) ≤

(︄
(1 + 2α)2∨(1/α)

ϵγβ2α|1− 2α|
+ 2ηMβ2

)︄(︃
1 + αk

1 + α(n− 1)

)︃2∧(1/α)
.
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In Theorem 2.8, we suppress the dependence of the constants γ and η on n. Note
that if α = 1/2 then we may choose ϵ smaller to make α < 1/2. If n → ∞ and k = o(n),
and if (γ, η) stay bounded, then Theorem 2.8 and Pinsker’s inequality yield

∥Pn
k − µ⊗k∥2TV ≤ 2H(µ⊗k |Pn

k ) =

{︄
O((k/n)

1
ηγβ2

−δ
) for all δ > 0 if ηγβ2 ≥ 1/2

O((k/n)2) if ηγβ2 < 1/2.

In the high-temperature case ηγβ2 < 1/2, the rate (k/n)2 cannot be improved. But it
is not clear if the exponent 1/ηγβ2 is optimal in the low-temperature case ηγβ2 ≥ 1/2.
In either case, we have H(µ⊗k |Pn

k ) → 0 as long as k = o(n).

Remark 2.9. Note that the functional inequalities in assumptions (2) and (3) Theorem
2.8 are required to hold only at µ, rather than an arbitrary measure. However, in
every example we considered, it is simpler to check more general criteria which ensure
that conditions (2) and (3) hold with µ and µ⊗k replaced by arbitrary ν ∈ P(Rd)
and ν ∈ P((Rd)k), respectively. On a related note, Theorem 2.2 remains true, with
the same proof, if the the assumption (2) therein is required to hold only for ν ∈
{Pn

k+1|k(x1, . . . , xk) : k < n, x1, . . . , xk ∈ Rd}.

The assumption (2) in Theorem 2.8 is a strong one, requiring a transport inequality
holding uniformly over a family of conditional measures. It holds in the case ∇1V is
bounded by Pinsker’s inequality, but also in the strongly convex setting:

Corollary 2.10. Suppose (β, λ, V ) satisfies Assumption B. Then there exists a unique

µ ∈ P(Rd) satisfying (2.2). Define P (n) by (2.1). Let ϵ > 0 be such that

α := (1 + ϵ)(L/κ)2 ̸= 1/2.

Then, for integers n > k ≥ 1, we have

H(µ⊗k |Pn
k ) ≤ C

(︃
1 + αk

1 + α(n− 1)

)︃2∧(1/α)
,

for a constant C > 0 satisfying

C ≤
(︃
1 +

1

ϵ

)︃
(1 + 2α)2∨(1/α)

2βκα2|1− 2α|
+ αd.

We prove Corollary 2.10 by checking that Pn satisfies a Bakry-Emery curvature
condition (i.e., that the density is uniformly log-concave) uniformly in n, which was
essentially due to [37]. This curvature condition is preserved under conditioning and
marginalizing, which allows us to check (2) and (3). The recent paper [25] establishes
uniform (in n) log-Sobolev and Poincaré inequalities beyond the convex setting, which
are not directly applicable here but similarly involve checking functional inequalities for
conditional measures.

2.2. Related literature. The companion paper [34] develops similar ideas in the dy-
namic context. Precisely, suppose we initialize the SDE system (2.3) at some distribution
Pn(0), and let Pn(t) denote the law at time t of the solution. Similarly, let µ(t) de-
note the time-t law of a solution of (2.4), initialized from some µ(0). Using an entropic
iteration technique similar to that of this paper, it is shown in [34, Theorem 2.2] that

H(Pn
k (0) |µ(0)⊗k) = O((k/n)2) =⇒ H(Pn

k (t) |µ(t)⊗k) = O((k/n)2), ∀t > 0,

again with explicit constants. A similar result is shown when the order of arguments
is reversed in the relative entropy. This is the optimal rate of propagation of chaos in
this context, in the sense that we cannot improve the O((k/n)2) in general, even for
i.i.d. initializations Pn(0) = µ(0)⊗n. The results of the present paper provide broad
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classes of non-i.i.d. examples of Pn(0) such that H(Pn
k (0) |µ(0)⊗k) or H(µ(0)⊗k |Pn

k (0))
is O((k/n)2). See [34] for details and related literature on dynamic models.

2.2.1. Mean field Gibbs measures. There is an extensive literature on mean field Gibbs
measures of much more general forms than (2.1). For instance, consider a Polish space
E, a functional F : P(E) → R, and a reference measure λ ∈ P(E). Consider the
Gibbs measure dQn/dλ⊗n = e−nF◦Ln/Zn, where Ln : En → P(E) is again the empirical
measure. For F continuous and bounded from below, Sanov’s theorem and Varadhan’s
lemma imply that Qn ◦L−1

n satisfies a large deviation principle with good rate function

P(E) ∋ ν ↦→ F (ν) +H(ν |λ)− inf
ν′∈P(E)

(F (ν ′) +H(ν ′ |λ)).

For pairwise interactions, i.e., F (ν) = ⟨ν⊗2, V ⟩ for some V : E2 → R, this large deviation
principle is now known to hold under much broader assumptions which cover singular
interactions V ; these results require much more care, particularly when the temperature
is allowed to depend on n [11, 19, 35, 22]. When F +H(· |λ) admits a unique minimizer
µ, the large deviation principle implies the law of large numbers Qn ◦ L−1

n → δµ, which

in turn implies the local chaos Qn
k → µ⊗k as n → ∞ for each fixed k. It was shown in [3,

Theorem 1], using large deviation techniques, that this can be made more quantitative
when F is a finite-range interaction. In particular, if there is a unique minimizer µ
which is moreover non-degenerate in a suitable sense, then H(Pn |µ⊗n) = O(1) by
[3, Theorem 1]. By subadditivity (1.3), this implies H(Pn

k |µ⊗k) = O(k/n). See also
[3, Theorem 2] for the case of finitely many non-degenerate minimizers. These large
deviations techniques, however, are global in nature and do not appear to be capable of
producing the non-asymptotic O((k/n)2) local estimates given in Theorem 2.2 or 2.8.

2.2.2. Finite de Finetti-type theorems. Quantitative local chaos can be interpreted as de-
scribing “how approximately i.i.d.” a measure is. The optimal estimate ∥Pn

k −µ⊗k∥TV =
O(k/n) obtained in (2.14) appears to be new for Gibbs measures, though it is known for
other specific chaotic sequences. The first famous example is when Pn is the uniform
measure on the sphere of radius

√
n in Rn, which is well known to be γ-chaotic for the

standard Gaussian measure γ on R. It was shown by Diaconis-Freedman [16, Theorem
1] that ∥Pn

k −γ⊗k∥TV ≤ 2(k+3)/(n−k−3) for n ≥ k+4. When the uniform measure Pn

is on the simplex instead of the sphere (i.e., on the sphere in ℓ1 instead of ℓ2), a similar
O(k/n) estimate holds with γ replaced by the exponential distribution [16, Theorem
2]. Extensions to ℓp-spheres were developed in [42, 39, 40], and very recently to Orlicz
balls [32]. Generalizing in a different direction, earlier work of Diaconis-Freedman [17]
gives an O(k/n) local chaos estimate for certain i.i.d. random vectors conditioned to
the sphere, and see [27, Section 4] and [8, Section 4] for entropic perspectives on similar
questions.

Also relevant here is yet another theorem of Diaconis-Freedman, on approximating
finite exchangeble sequences by mixtures of product measures, essentially quantifying
the famous theorems of de Finetti and Hewitt-Savage. They show in [15] that any
symmetric probability measure Pn on En, where E is a finite set, satisfies⃦⃦⃦

Pn
k −

∫︂
P(E)

m⊗k ρn(dm)
⃦⃦⃦
TV

≤ 2|E|k/n,

for some ρn ∈ P(P(E)). If E is infinite, they give instead a bound of k(k − 1)/n. Each
bound is optimal absent further assumptions. In fact, one can always take ρn = Pn◦L−1

n

for the latter bound; underlying this argument is the observation that Pn
k represents the

law of k particles chosen at random without replacement, whereas
∫︁
En L

⊗k
n dPn represents

the law of k particles chosen at random with replacement. One consequence of our main
results is an identification of certain classes of finite exchangeable measures on continuous
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state space for which this k(k− 1)/n bound may be improved to O(k/n), matching the
finite state space case. In our case, of course, we are dealing with exchangeable measures
that are in fact approximately i.i.d., and so our “mixing measure” ρn is taken to be δµ.

Recent work in random matrix theory has explored similar quantitative approximate
independence properties for various natural models. Using explicit forms of the densities,
[14] gives non-asymptotic estimates of the total variation distance between a p×q matrix
of i.i.d. Gaussians and the upper-left p × q submatrix of a uniformly random n × n
orthogonal matrix. In a similar spirit, the recent work [6] bounds the total variation
distance between Wishart and Wigner matrices of high dimension, via an inductive
argument relying on the chain rule for relative entropy which is not terribly distant
from our method.

2.2.3. Local propagation of chaos. As we have mentioned, there are apparently not many
methods for quantitatively relating global chaos (1.2) and local chaos (1.1). Subaddit-
ivity inequalities like (1.3) give one method for passing from global to local estimates,
which our results show to be suboptimal in our setting. The only alternative technique
we are aware of is due to the recent work [27]. The approach of [27, Theorem 2.4] starts
from the triangle inequality,

W1(P
n
k , µ

⊗k) ≤ W1

(︃
Pn
k ,

∫︂
L⊗k
n dPn

)︃
+W1

(︃∫︂
L⊗k
n dPn, µ⊗k

)︃
.

Under a suitable moment assumption, using the same combinatorial argument underly-
ing the Diaconis-Freedman estimate k(k−1)/n mentioned above, the first term is shown
to be O(k2/n). The second term can be bounded from above by

W1

(︃∫︂
L⊗k
n dPn, µ⊗k

)︃
≤
∫︂

W1(L
⊗k
n , µ⊗k) dPn = k

∫︂
W1(Ln, µ) dP

n,

with the first bound coming from convexity of W1 and the second from an additivity
argument [27, Proposition 2.6(i)]. Ultimately, the first O(k2/n) term bound already
falls short of our optimal local estimate of W1(P

n
k , µ

⊗n) = O(k/n) (see Corollary 2.7),

and the second will surely be no better than O(k/n(1/2)∧(1/d)) as it is governed by the
mean rate of convergence of the (global) empirical measure in Wasserstein distance [21].

3. Proofs of main theorems

This section is devoted to the proofs of Theorems 2.2 and 2.8. In both cases, we
may assume without loss of generality that β = 1, noting that the general case can be
recovered from the β = 1 case by changing M and γ to Mβ2 and γβ2, respectively.
Both theorems make use of the following simple calculation of the logarithmic gradients
of marginal densities. Recall that Pn

k+1|k(x) denotes the conditional law of Xk+1 given

(X1, . . . , Xk) = x, under Pn. For 1 ≤ i ≤ k and a function f on (Rd)k, we write ∇if for
the gradient in the ith argument.

Lemma 3.1. Let 1 ≤ i ≤ k < n. The marginal distribution Pn
k satisfies

−∇i log
dPn

k

dµ⊗k
(x1, . . . , xk) =

1

n− 1

∑︂
j≤k, j ̸=i

(︁
∇1V (xi, xj)− ⟨µ,∇1V (xi, ·)⟩

)︁
+

n− k

n− 1

⟨︁
Pn
k+1|k(x1, . . . , xk)− µ,∇1V (xi, ·)

⟩︁
.

Proof. Let fn
k = dPn

k /dµ
⊗k. From the formulas (2.1) and (2.2),

fn
n (x1, . . . , xk) =

Z

Zn
exp

(︃
− 1

n− 1

∑︂
1≤i<j≤n

(︁
V (xi, xj)− ⟨µ, V (xi, ·)⟩

)︁)︃
.
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Start from the identity

fn
k (x1, . . . , xk) =

∫︂
(Rd)n−k

fn
n (x1, . . . , xn)µ(dxk+1) · · ·µ(dxn).

Since V is bounded from below, we may exchange differentiation and integration to
express −∇i log f

n
k (x1, . . . , xk) as the conditional expectation∫︁

(Rd)n−k
1

n−1

∑︁
j ̸=i

(︁
∇1V (xi, xj)− ⟨µ,∇1V (xi, ·)⟩

)︁
fn
n (x1, . . . , xn)µ(dxk+1) · · ·µ(dxn)

fn
k (x1, . . . , xk)

.

Note this also used symmetry of V . The j ≤ k terms can be pulled out of the integral,
as they are not integrated. For each j > k, exchangeability implies∫︁
(Rd)n−k ∇1V (xi, xj)f

n
n (x1, . . . , xn)µ(dxk+1) · · ·µ(dxn)

fn
k (x1, . . . , xk)

=
⟨︁
Pn
k+1|k(x1, . . . , xk),∇1V (xi, ·)

⟩︁
.

This completes the proof. □

3.1. Proof of Theorem 2.2.
Step 1. The first step will yield an O(k3/n2) estimate, which we improve to O(k2/n2)
in the second step. Let 1 ≤ k < n. Define Jk ≥ 0 by

J2
k :=

1

k
I(Pn

k |µ⊗k) =

∫︂
(Rd)k

⃓⃓⃓⃓
∇1 log

dPn
k

dµ⊗k

⃓⃓⃓⃓2
dPn

k ,

where the second identity follows from exchangeability. Lemma 3.1 yields

J2
k =

∫︂
(Rd)k

⃓⃓⃓⃓
⃓ 1

n− 1

k∑︂
j=2

(︁
∇1V (x1, xj)− ⟨µ,∇1V (x1, ·)⟩

)︁
+

n− k

n− 1
⟨Pn

k+1|k(x)− µ,∇1V (x1, ·)⟩

⃓⃓⃓⃓
⃓
2

Pn
k (dx).

By the triangle inequality, we have

Jk ≤
(︃∫︂

(Rd)k

⃓⃓⃓⃓
1

n− 1

k∑︂
j=2

(︁
∇1V (x1, xj)− ⟨µ,∇1V (x1, ·)⟩

)︁⃓⃓⃓⃓2
Pn
k (dx)

)︃1/2

+

(︃∫︂
(Rd)k

⃓⃓⃓⃓
n− k

n− 1
⟨Pn

k+1|k(x)− µ,∇1V (x1, ·)⟩
⃓⃓⃓⃓2
Pn
k (dx)

)︃1/2

.

(3.1)

Using exchangeability and the triangle inequality, the first term of (3.1) is bounded by

k − 1

n− 1

√
M,

where M was defined in (2.7). Similarly, we note here for later use that if k = n then

Jn =

(︃∫︂
(Rd)k

⃓⃓⃓⃓
1

n− 1

n∑︂
j=2

(︁
∇1V (x1, xj)− ⟨µ,∇1V (x1, ·)⟩

)︁⃓⃓⃓⃓2
Pn
k (dx)

)︃1/2

≤
√
M.(3.2)
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To estimate the second term of (3.1) for general k, let (x, xk+1) denote a generic element
of (Rd)k+1, and use the assumption (2.8) to get

|⟨Pn
k+1|k(x)− µ,∇1V (x1, ·)⟩|2 ≤ γI(Pn

k+1|k(x) |µ)

= γ

∫︂
Rd

⃓⃓⃓⃓
⃓∇k+1 log

dPn
k+1|k(x)

dµ
(xk+1)

⃓⃓⃓⃓
⃓
2

Pn
k+1|k(x)(dxk+1)

= γ

∫︂
Rd

⃓⃓⃓⃓
∇k+1 log

dPn
k+1

dµ⊗(k+1)
(x, xk+1)

⃓⃓⃓⃓2
Pn
k+1|k(x)(dxk+1),

where the last step above follows from the identity

dPn
k+1

dµ⊗(k+1)
(x, xk+1) =

dPn
k+1|k(x)

dµ
(xk+1)

dPn
k

dµ⊗k
(x).

Thus, discarding the factor (n− k)/(n− 1), the second term of (3.1) is bounded by[︄
γ

∫︂
(Rd)k

∫︂
Rd

⃓⃓⃓⃓
∇k+1 log

dPn
k+1

dµ⊗(k+1)
(x, xk+1)

⃓⃓⃓⃓2
Pn
k+1|k(x)(dxk+1)P

n
k (dx)

]︄1/2
,

which is exactly equal to
√
γJk+1 by exchangeability. Putting it together, we deduce

from (3.1) that

Jk ≤ k − 1

n− 1

√
M +

√
γJk+1.

Iterate this inequality to get

Jk ≤
√
M

n− 1

n−1∑︂
ℓ=k

γ
1
2 (ℓ−k)(ℓ− 1) + γ

1
2 (n−k)Jn.(3.3)

Since γ < 1, for k ≥ 2 we have the estimate

n−1∑︂
ℓ=k

γ
1
2 (ℓ−k)(ℓ− 1) =

n−k−1∑︂
ℓ=0

γ
1
2 ℓ(ℓ+ k − 1) ≤

∞∑︂
ℓ=0

γ
1
2 ℓ(ℓ+ 1) + (k − 2)

∞∑︂
ℓ=0

γ
1
2 ℓ

=
1

(1−√
γ)2

+
k − 2

1−√
γ

=

√
γ + (1−√

γ)(k − 1)

(1−√
γ)2

≤ k − 1

(1−√
γ)2

.

Thus, using also (3.2), the estimate (3.3) implies

Jk ≤
√
M

(1−√
γ)2

k − 1

n− 1
+ γ

1
2 (n−k)

√
M.(3.4)

Finally, this yields

I(Pn
k |µ⊗k) = kJ2

k ≤ kM

(︃
1

(1−√
γ)2

k − 1

n− 1
+ γ

1
2 (n−k)

)︃2

.(3.5)

This is O(k3/n2) instead of the desired O(k2/n2), so we perform one more step.
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Step 2. Knowing the inequality (3.5), we can now use it to improve the estimate of first
term in (3.1) as follows. Expand the square and use exchangeability to get∫︂

(Rd)k

⃓⃓⃓⃓
⃓ 1

n− 1

k∑︂
j=2

(︁
∇1V (x1, xj)− ⟨µ,∇1V (x1, ·)⟩

)︁⃓⃓⃓⃓⃓
2

Pn
k (dx)

=
k − 1

(n− 1)2
M +

(k − 1)(k − 2)

(n− 1)2
R,

where we define

R :=

∫︂
(Rd)3

(︁
∇1V (x1, x2)− ⟨µ,∇1V (x1, ·)⟩

)︁
·
(︁
∇1V (x1, x3)− ⟨µ,∇1V (x1, ·)⟩

)︁
Pn
3 (dx).

Condition on (x1, x2) and use Cauchy-Schwarz to get

R =

∫︂
(Rd)2

(︁
∇1V (x1, x2)− ⟨µ,∇1V (x1, ·)⟩

)︁
· ⟨Pn

3|2(x1, x2)− µ,∇1V (x1, ·)⟩Pn
2 (dx1, dx2)

≤
(︃
M

∫︂
(Rd)2

|⟨Pn
3|2(x1, x2)− µ,∇1V (x1, ·)⟩|2 Pn

2 (dx1, dx2)

)︃1/2

.

Use the assumption (2.8) to bound the integrand by γI(Pn
3|2(x1, x2) |µ), which yields

R ≤
(︃
γM

∫︂
(Rd)2

∫︂
Rd

⃓⃓⃓⃓
∇ log

dPn
3|2(x1, x2)

dµ
(x3)

⃓⃓⃓⃓2
Pn
3|2(x1, x2)(dx3)P

n
2 (dx1, dx2)

)︃1/2

=

(︃
γM

∫︂
(Rd)3

⃓⃓⃓⃓
∇ log

dPn
3

dµ⊗3

⃓⃓⃓⃓2
dPn

3

)︃1/2

= J3
√︁
γM.

Applying (3.4) with k = 3,

R ≤
M

√
γ

(1−√
γ)2

2

n− 1
+ γ

1
2 (n−2)M.

Note since n ≥ 3 that (n− 1) ≤ 2(n− 2). Use also supx>0 xγ
x/2 = 2/e log(1/γ) to get

R ≤ MC1

n− 1
, where C1 :=

2
√
γ

(1−√
γ)2

+
4

e log(1/γ)

Putting it together, we have thus improved the bound on the first term of (3.1) to∫︂
(Rd)k

⃓⃓⃓⃓
⃓ 1

n− 1

k∑︂
j=2

(︁
∇1V (x1, xj)− ⟨µ,∇1V (x1, ·)⟩

)︁⃓⃓⃓⃓⃓
2

Pn
k (dx)

≤ k − 1

(n− 1)2
M +

(k − 1)(k − 2)

(n− 1)3
MC1

≤ k − 1

(n− 1)2
M(1 + C1).

The bound on the second term of (3.1) remains the same as before, and we thus get

Jk ≤
√
k − 1

n− 1

√︁
M(1 + C1) +

√
γJk+1.

Iterate this inequality to get

Jk ≤
√︁
M(1 + C1)

n− 1

n−1∑︂
ℓ=k

γ
1
2 (ℓ−k)

√
ℓ− 1 + γ

1
2 (n−k)Jn.(3.6)
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Estimate the summation by noting that γ < 1 implies

n−1∑︂
ℓ=k

γ
1
2 (ℓ−k)

√
ℓ− 1 =

n−k−1∑︂
ℓ=0

γ
1
2 ℓ
√
ℓ+ k − 1 ≤

∞∑︂
ℓ=0

γ
1
2 ℓ
√
ℓ+

√
k − 1

∞∑︂
ℓ=0

γ
1
2 ℓ.

This is bounded by C2

√
k − 1, where we define C2 := 2

∑︁∞
ℓ=0 γ

1
2 ℓ
√
ℓ. We deduce from

(3.6) and also (3.2) that

Jk ≤ C2

√︁
M(1 + C1)

√
k − 1

n− 1
+ γ

1
2 (n−k)

√
M.

Finally, this yields

I(Pn
k |µ⊗k) = kJ2

k ≤ kM

(︃
C2
2 (1 + C1)

√
k − 1

n− 1
+ γ

1
2 (n−k)

)︃2

.(3.7)

The constant C2
2 (1 + C1) can be simplified by noting that

1 + C1 =
1 + γ

(1−√
γ)2

+
4

e log(1/γ)
.

To estimate C2, note for 0 < y < 1 that

∞∑︂
ℓ=0

√
ℓyℓ ≤

∫︂ ∞

0

√
xyx dx = 2

∫︂ ∞

0
z2ez

2 log y dz =
√︁

π/ log(1/y).

Apply this with y =
√
γ to get C2 ≤ 2

√︁
2π/ log(1/γ). Hence,

C2
2 (1 + C1) ≤

8π

log(1/γ)

(︃
1 + γ

(1−√
γ)2

+
4

e log(1/γ)

)︃
. □

3.2. Proof of Corollary 2.5. We first borrow an argument from [24, Theorem 3.1]:
Let ν ∈ P(Rd) with ν ≪ µ and f = dν/dµ. By Cauchy-Schwarz,

∥ν − µ∥2TV =

(︃∫︂
|f − 1| dµ

)︃2

=

(︃∫︂
|(
√︁

f + 1)(
√︁

f − 1)| dµ
)︃2

≤
∫︂
(
√︁
f + 1)2 dµ

∫︂
(
√︁
f − 1)2 dµ = 4Varµ(

√︁
f).

Apply the assumed Poincaré inequality (2.12) to get

∥ν − µ∥2TV ≤ cµI(ν |µ), ∀ν ∈ P(Rd).(3.8)

Using the boundedness assumption (1), we deduce

|⟨µ− ν,∇1V (x, ·)⟩|2 ≤ L2cµI(ν |µ), ∀x ∈ Rd, ν ∈ P(Rd).

This shows that the assumption (2.8) of Theorem 2.2 holds, and clearly the assumption
(2.7) also holds with M ≤ 2L2. We may thus apply Theorem 2.2. Lastly, note that
the inequality (3.8) above is precisely the case k = 1 of the claim (2.13). Tensorize this
transport inequality as in [24, Corollary 2.13] to get the claim. □

Remark 3.2. Corollary 2.5 could likely be generalized, using a more involved inequality
such as [24, Theorem 5.1] instead of (3.8) to deduce a weighted Pinsker-type inequality
from the assumed Poincaré inequality. This would allow us to relax the assumption of
boundedness of ∇1V , but for the sake of brevity we do not pursue this.
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3.3. Proof of Theorem 2.8. We again assume without loss of generality that β = 1.
Abbreviate Hk := H(µ⊗k |Pn

k ) and Ik := I(µ⊗k |Pn
k ). First, expand the square, using

the definition of M from (2.15) and exchangeability to compute

In =
n∑︂

i=1

∫︂
(Rd)n

⃓⃓⃓⃓
⃓ 1

n− 1

∑︂
j ̸=i

(︁
∇1V (xi, xj)− ⟨µ,∇1V (xi, ·)⟩

)︁⃓⃓⃓⃓⃓
2

µ⊗n(dx) =
n

n− 1
M.

Using the assumption (2.17), this implies, for each k = 1, . . . , n, that

Hk ≤ Hn ≤ ηIn ≤ n

n− 1
ηM.(3.9)

Now fix n > k ≥ 1. By Lemma 3.1,

Ik ≤
k∑︂

i=1

∫︂
(Rd)k

⃓⃓⃓⃓
1

n− 1

∑︂
j≤k, j ̸=i

(︁
∇1V (xi, xj)− ⟨µ,∇1V (xi, ·)⟩

)︁
+

n− k

n− 1
⟨Pn

k+1|k(x)− µ,∇1V (xi, ·)⟩
⃓⃓⃓⃓2
µ⊗k(dx).

Let ϵ > 0. Use exchangeability and the inequality (a+ b)2 ≤ (1 + ϵ)a2 + (1 + ϵ−1)b2 to
get

Ik ≤ (1 + ϵ−1)k

∫︂
(Rd)k

⃓⃓⃓⃓
1

n− 1

∑︂
j≤k, j ̸=i

(︁
∇1V (xi, xj − ⟨µ,∇1V (xi, ·)⟩

)︁⃓⃓⃓⃓2
µ⊗k(dx)

+ (1 + ϵ)k

∫︂
(Rd)k

⃓⃓⃓⃓
n− k

n− 1

⟨︁
Pn
k+1|k(x)− µ,∇1V (xi, ·)

⟩︁⃓⃓⃓⃓2
µ⊗k(dx).

The first term, using independence, is equal to

(1 + ϵ−1)
k(k − 1)

(n− 1)2
.

The second term we bound by first discarding the term (n− k)/(n− 1). Then use the
assumption (2.16) followed by the chain rule for relative entropy [7, Theorem 2.6] to get∫︂

(Rd)k

⃓⃓⃓⟨︁
Pn
k+1|k(x)− µ,∇1V (xi, ·)

⟩︁⃓⃓⃓2
µ⊗k(dx) ≤ γ

∫︂
(Rd)k

H
(︁
µ |Pn

k+1|k(x)
)︁
µ⊗k(dx)

= γ(Hk+1 −Hk).

Putting it together, and using the assumption (2.17), we find

Hk ≤ ηIk ≤ η(1 + ϵ−1)
k(k − 1)

(n− 1)2
+ ηγ(1 + ϵ)k(Hk+1 −Hk).

Rearrange this to get

Hk ≤ ak + ckHk+1, where ak :=
η(1 + ϵ−1)k(k−1)

(n−1)2

1 + ηγ(1 + ϵ)k
, ck :=

ηγ(1 + ϵ)k

1 + ηγ(1 + ϵ)k
.

Iterate this inequality to get

Hk ≤
n−1∑︂
ℓ=k

(︃ ℓ∏︂
j=k

cj

)︃
aℓ
cℓ

+

(︃ n−1∏︂
j=k

cj

)︃
Hn.(3.10)
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Abbreviate α := ηγ(1 + ϵ), so that cj = αj/(1 + αj). We then have the estimate

ℓ∏︂
j=k

cj =
ℓ∏︂

j=k

αj

1 + αj
= exp

ℓ∑︂
j=k

log

(︃
1− 1

1 + αj

)︃
≤ exp

(︃
−

ℓ∑︂
j=k

1

1 + αj

)︃

≤ exp

(︃
−
∫︂ ℓ

k

1

1 + αu
du

)︃
= exp

(︃
− 1

α
log

1 + αℓ

1 + αk

)︃

=

(︃
1 + αk

1 + αℓ

)︃ 1
α
.

Thus, using also (3.9), and noting that aℓ
cℓ

= ℓ−1
γϵ(n−1)2

, we deduce from (3.10) that

Hk ≤ 1

γϵ(n− 1)2

n−1∑︂
ℓ=k

(ℓ− 1)

(︃
1 + αk

1 + αℓ

)︃ 1
α
+ ηM

n

n− 1

(︃
1 + αk

1 + α(n− 1)

)︃ 1
α
.

We lastly estimate the sum

n−1∑︂
ℓ=k

(ℓ− 1)(1 + αℓ)−
1
α ≤ 1

α

n−1∑︂
ℓ=k

(1 + αℓ)1−
1
α .

Case 1. Suppose α > 1/2. Then

n−1∑︂
ℓ=k

(1 + αℓ)1−
1
α ≤

∫︂ n

0
(1 + αx)1−

1
α dx =

1

2α− 1
(1 + αn)2−

1
α .

and we get

Hk ≤ (1 + αk)
1
α

(2α− 1)αγϵ(n− 1)2
(1 + αn)2−

1
α + ηM

n

n− 1

(︃
1 + αk

1 + α(n− 1)

)︃ 1
α

≤

(︄
1

(2α− 1)αγϵ

(︃
1 + αn

n− 1

)︃2

+ ηM
n

n− 1

)︄(︃
1 + αk

1 + α(n− 1)

)︃ 1
α

≤
(︃

(1 + 2α)2

(2α− 1)αγϵ
+ 2ηM

)︃(︃
1 + αk

1 + α(n− 1)

)︃ 1
α
,

where the last step used 1 + αn ≤ (1 + 2α)(n− 1) for n ≥ 2, and n ≤ 2(n− 1).
Case 2. Now suppose 1/2 > α > 0. Use the estimate

n−1∑︂
ℓ=k

(1 + αℓ)1−
1
α ≤

∫︂ ∞

k−1
(1 + αx)1−

1
α dx =

1

1− 2α
(1 + α(k − 1))2−

1
α ,

and we get

Hk ≤ (1 + αk)
1
α

(1− 2α)αγϵ(n− 1)2
(1 + α(k − 1))2−

1
α + ηM

n

n− 1

(︃
1 + αk

1 + α(n− 1)

)︃ 1
α

≤ (1 + α)
1
α

(1− 2α)αγϵ

(︃
1 + α(k − 1)

n− 1

)︃2

+ 2ηM

(︃
1 + αk

1 + α(n− 1)

)︃ 1
α
,

where we used 1 + αk ≤ (1 + α(k − 1))(1 + α) for k ≥ 1. Noting that 1/α > 2 and
1 + α(n− 1) ≤ n− 1 for α < 1/2 and n ≥ 2, we get

Hk ≤

(︄
(1 + α)

1
α

(1− 2α)αγϵ
+ 2ηM

)︄(︃
1 + αk

1 + α(n− 1)

)︃2

.
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4. The case of convex potentials

This section is devote to the proofs of Corollaries 2.7 and 2.10. In each case, existence
and uniqueness of µ ∈ P(Rd) satisfying (2.2) follows from AssumptionB, by [9, Theorem
2.1]. We first collect some useful and well known facts that will be used in each proof.

4.1. The Bakry-Émery curvature condition. This short section summarizes a num-
ber of classical facts about strongly log-concave probability measures; see [43] for an
overview and references. We say a function on Rk is κ-convex if its Hessian is pointwise
bounded from below by κI, in semidefinite order. Let ν be a probability measure on
Rk with strictly positive density, also denoted ν, such that − log ν is κ-convex. Then ν
satisfies the log-Sobolev inequality

H(fν | ν) ≤ 2

κ

∫︂
|∇
√︁
f |2 dν =

1

2κ

∫︂
|∇ log f |2f dν =

1

2κ
I(fν | ν).

This is a famous result of Bakry-Émery [1], and see [2, Corollary 5.7.2] or [23, Corollary
7.3] for English references. It was later shown by Otto-Villani [41] that this implies the
quadratic transport inequality

W2
2 (ν, ·) ≤

2

κ
H(· | ν).

We also have the Poincaré inequality (see [41, Section 7])

Varν(f) :=

∫︂
(f − ⟨ν, f⟩)2 dν ≤ 1

κ

∫︂
|∇f |2 dν.(4.1)

We will also make use of the fact that strong log-concavity is preserved under condi-
tioning and marginalization. The first of these properties is immediate, and the second
is due to Brascamp-Lieb [5, Theorem 4.3] (see also [43, Theorem 3.8]):

Lemma 4.1. Suppose ν(x, y) is a strictly positive probability density function on Rd+d′.
Define the conditional and marginal densities

νx(y) =
ν(x, y)∫︁

Rd′ ν(x, y′)dy′
, ˜︁ν(x) = ∫︂

Rd′
ν(x, y) dy.

Let κ ≥ 0. If − log ν is κ-convex on Rd+d′, then − log νx(·) is κ-convex on Rd′ for each
x ∈ Rd, and − log ˜︁ν is κ-convex on Rd.

4.2. Proofs of Corollaries 2.7 and 2.10. We now specialize to the context of Pn and
µ as defined in Section 2, under Assumption B. Identifying the measures Pn and µ with
their densities, Assumption B implies that − logPn and − logµ are both βκ-convex.
The latter is straightforward from the assumed convexity of V and U , and the former
requires a calculation for which we refer to [37, Lemma 3.5] or [38, Proposition 3.1].
As in Section 4.1, we deduce that µ satisfies the log-Sobolev and quadratic transport
inequalities

W2
2 (µ, ·) ≤

2

βκ
H(· |µ) ≤ 1

β2κ2
I(· |µ).(4.2)

The same inequalities hold with Pn in place of µ.

Proof of Corollary 2.7. Recall the definition of the constant L from Assumption B.
Note for any unit vector u ∈ Rd that the function x ↦→ u · ∇V (x) is L-Lipschitz since
0 ≤ ∇2V ≤ LI. Hence, using Kantorovich duality, for each x ∈ Rd and ν ∈ P(Rd) we
have

|⟨ν − µ,∇V (x− ·)⟩|2 = sup
u∈Rd, |u|=1

⟨ν − µ, u · ∇V (x− ·)⟩2 ≤ L2W2
1 (µ, ν).
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Combining this with the inequalities (4.2), we deduce that condition (2) of Theorem 2.2
holds with γ = (L/βκ)2:

|⟨ν − µ,∇V (x− ·)⟩|2 ≤ L2W2
2 (µ, ν) ≤

L2

β2κ2
I(ν |µ).(4.3)

It remains finally to estimate the constant

M :=

∫︂
(Rd)2

|∇V (x1 − x2)− ⟨µ,∇V (x1 − ·)⟩|2 Pn
2 (dx1, dx2).

By Jensen’s inequality and Assumption B,

M ≤
∫︂
Rd×Rd

∫︂
Rd

|∇V (x1 − x2)−∇V (x1 − x3)|2 µ(dx3)P
n
2 (dx1, dx2)

≤ L2

∫︂
Rd

∫︂
Rd

|x− y|2 µ(dy)Pn
1 (dx)

≤ 2L2

(︃∫︂
Rd

|x|2 µ(dx) +
∫︂
Rd

|x|2 Pn
1 (dx)

)︃
.

Noting that U and V are even functions, we deduce that Pn and µ have mean zero. The
Poincaré inequality (4.1), applied to the coordinate functions f(x) = xi for i = 1, . . . , d,
then shows that

∫︁
Rd |x|2 Pn

1 (dx) and
∫︁
Rd |x|2 µ(dx) are both bounded by d/βκ. Thus

M ≤ L2d
βκ . Theorem 2.2 now applies, noting that β

√
γ = L/κ. □

Proof of Corollary 2.10. We check the hypotheses of Theorem 2.8. Condition (1)

follows exactly as in the proof of Corollary 2.7, with M ≤ L2d
βκ . To check the log-

Sobolev inequality in condition (3), we use Lemma 4.1 to deduce that − logPn
k is βκ-

convex, and thus (3) holds with η = 1/2βκ. To check condition (2), first note that
− logPn

k+1|k(x1, . . . , xk)(xk+1) is βκ-convex in xk+1 for each x1, . . . , xk, by Lemma 4.1.

Thus, as in Section 4.1, we deduce the quadratic transport inequality

W2
2 (·, Pn

k+1|k(x1, . . . , xk)) ≤
2

βκ
H(· |Pn

k+1|k(x1, . . . , xk)),

for 1 ≤ k < n and x1, . . . , xk ∈ Rd. Arguing as in (4.3), we get

|⟨µ− Pn
k+1|k(x1, . . . , xk),∇V (x1 − ·)⟩|2 ≤ 2L2

βκ
H(µ |Pn

k+1|k(x1, . . . , xk)).

This shows condition (2) of Theorem 2.8 with γ = 2L2/βκ.
We now have all of the ingredients we need to apply Theorem 2.8. Let ϵ > 0 and set

α := ηγβ2(1 + ϵ) = (1 + ϵ)(L/κ)2.

Note that γβ2 = 2L2β/κ = 2βκα/(1 + ϵ) and 2ηMβ2 ≤ L2d/κ2 = αd/(1 + ϵ) ≤ αd.
Apply Theorem 2.8 with these substitutions to complete the proof. □

5. The Gaussian case

This section documents Example 2.3, which illustrates that the O((k/n)2) estimate
from Theorem 2.2 cannot be improved. Throughout the section, Jn denotes the n × n
matrix of all ones, and In is the identity matrix.

Fix a, b > 0. Consider the Gaussian probability measure on Rn defined by

Pn(dx) =
1

Zn
exp

(︃
− a

2

n∑︂
i=1

x2i −
b

2(n− 1)

n∑︂
1≤i<j≤n

(xi − xj)
2

)︃
dx.(5.1)
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We will show that, if n → ∞ and k → k∗ ∈ N ∪ {∞} with k = o(n), then

(n/k)2W2
2 (P

n
k , µ

⊗k) → b2

4a2(a+ b)3

(︃
a2

k∗
+

(︃(︃
1− 1

k∗

)︃
a+ b

)︃2)︃
> 0.

To see this, we begin by rewriting the exponent in (5.1) as

−1

2

(︃
a+

bn

n− 1

)︃ n∑︂
i=1

x2i +
b

2(n− 1)

n∑︂
i,j=1

xixj = −1

2
x⊤Σ−1

n x,

where Σ−1
n :=

(︂
a+ bn

n−1

)︂
In − b

n−1Jn. In other words, Pn is the centered Gaussian

measure with covariance matrix

Σn = dn(In + cnJn), where dn :=
1

a+ bn
n−1

, and cn :=
b

a(n− 1)
.

The k-dimensional marginal Pn
k is then a centered Gaussian with covariance matrix

Σn,k := dn(Ik + cnJk).

Note since cn → 0 and dn → 1/(a+ b) that

lim
n→∞

Σn,k =
1

a+ b
Ik, ∀k ∈ N.

This implies that Pn
k converges weakly to µ⊗k as n → ∞, for each k ∈ N, where µ is

defined as the 1-dimensional centered Gaussian measure with variance 1/(a+ b).
As shown in [18], the quadratic Wasserstein distance between two centered Gaussian

measures γ1 and γ2 with commuting covariance matrices Σ1 and Σ2 is precisely

W2
2 (γ1, γ2) = Tr

(︁
(Σ

1/2
1 − Σ

1/2
2 )2

)︁
.(5.2)

For k ∈ N, suppose Σi = aiIk + biJk for some ai > 0 and bi ∈ R. Note that Σi has
eigenvalues ai and ai+ bik, with respective multiplicities k− 1 and 1. Apply (5.2) along
with a simultaneous diagonalization of Σ1 and Σ2 to find

W2
2 (γ1, γ2) = (k − 1)

(︂
a
1/2
1 − a

1/2
2

)︂2
+
(︂
(a1 + b1k)

1/2 − (a2 + b2k)
1/2
)︂2

.(5.3)

Apply this in our context, with a1 = dn, a2 = 1/(a+ b), b1 = dncn, and b2 = 0, to get

W2
2 (P

n
k , µ

⊗k) = (k − 1)(a+ b)−1(d1/2n (a+ b)1/2 − 1)2

+ (a+ b)−1
(︂
d1/2n (a+ b)1/2(1 + kcn)

1/2 − 1
)︂2

.
(5.4)

Computing derivatives shows that

d1/2n (a+ b)1/2 =

√︄
a+ b

a+ b+ b
n−1

= 1− 1

2(a+ b)

b

n− 1
+ o(1/n).

As n → ∞ and k → k∗ ∈ N ∪ {∞}, this implies(︂n
k

)︂2
(k − 1)(d1/2n (a+ b)1/2 − 1)2 → b2

4(a+ b)2k∗
.(5.5)

Moreover, noting that (1+ x)1/2 = 1+ x/2+ o(x) as x → 0 and kcn = O(k/n), we have

d1/2n (a+ b)1/2(1 + kcn)
1/2 = 1− b

2(a+ b)

1

n− 1
+

1

2
kcn + o(k/n),

which (using ncn → b/a) leads to

n

k

(︂
d1/2n (a+ b)1/2(1 + kcn)

1/2 − 1
)︂
→ b

2a
− b

2k∗(a+ b)
.(5.6)
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Finally, plug (5.5) and (5.6) into (5.4) to conclude that(︂n
k

)︂2
W2

2 (P
n
k , µ

⊗k) → b2

4(a+ b)3k∗
+

1

a+ b

(︃
b

2a
− b

2k∗(a+ b)

)︃2

.
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