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Abstract. This paper studies stochastic games on large graphs and their graphon limits. 
We propose a new formulation of graphon games based on a single typical player’s label- 
state distribution. In contrast, other recently proposed models of graphon games work 
directly with a continuum of players, which involves serious measure-theoretic technical
ities. In fact, by viewing the label as a component of the state process, we show in our for
mulation that graphon games are a special case of mean field games, albeit with certain 
inevitable degeneracies and discontinuities that make most existing results on mean field 
games inapplicable. Nonetheless, we prove the existence of Markovian graphon equilibria 
under fairly general assumptions as well as uniqueness under a monotonicity condition. 
Most importantly, we show how our notion of graphon equilibrium can be used to con
struct approximate equilibria for large finite games set on any (weighted, directed) graph 
that converges in cut norm. The lack of players’ exchangeability necessitates a careful defi
nition of approximate equilibrium, allowing heterogeneity among the players’ approxima
tion errors, and we show how various regularity properties of the model inputs and 
underlying graphon lead naturally to different strengths of approximation.

Funding: D. Lacker was partially supported by the Air Force Office of Scientific Research [Grant 
FA9550-19-1-0291] and the National Science Foundation [Award DMS-2045328]. 

Keywords: graphon games • mean field games • approximate Nash equilibrium

1. Introduction
This paper is about network-based generalizations of the now-standard mean field game (MFG) framework. The 
latter was introduced in Huang et al. [32] and Lasry and Lions [39] to describe the large-n equilibrium behavior 
of certain n-player stochastic games. Remarkably, the limiting models in MFG theory are typically quite tractable, 
and for this reason, MFG theory developed a rich mathematical theory and a broad range of applications. How
ever, the MFG framework is fundamentally limited to games in which players interact symmetrically. On the one 
hand, MFG models can already incorporate heterogeneity in individual characteristics (and are often known to 
economists as heterogeneous agent models) in the sense that players may face independent sources of randomness 
and perhaps, their own type parameters. On the other hand, MFG theory is not well suited to modeling heteroge
neity in the interactions between players, where distinct pairs of players have different interaction strengths. Het
erogeneous interactions are the defining feature of network games, a well-developed framework that is widely 
applied in very different contexts from MFG theory; see Jackson [34].

The range of applicability of MFG theory would increase dramatically if it could incorporate nontrivial net
work structures or heterogeneous interactions while maintaining a tractable limiting (continuum) model. This is 
a challenging prospect in general because different n-player networks may lead to very different limits as 
n → ∞, especially in sparse networks (Feng et al. [29], Lacker and Soret [38]). A natural first step is to understand 
the range of network models for which the usual MFG remains the correct limit. There is reason to expect that 
this is the case for sufficiently dense and approximately regular networks. This intuition was confirmed in our 
recent linear-quadratic case study (Lacker and Soret [38]) and by Delarue [25] in a model set on dense 
Erdős–Rényi graphs; Remark 6 gives a result of this nature as well. Similar ideas appeared in nongame-theoretic 
models of interacting particle systems with interactions governed by networks, for which recent work has identi
fied a certain universality of the mean field limit. See Bhamidi et al. [9], Coppini [21], Coppini et al. [23], Delattre 
et al. [26], and Luçon [41] for diffusive dynamics and Basak and Mukherjee [3] for static Ising and Potts models.

There are many network models, however, for which the usual MFG limit is not correct. Several different 
groups of researchers have recently proposed new continuum models as alternatives to the usual MFG based on 
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the notion of graphons. Graphons are natural continuum limits for large dense graphs, and we refer to Lovász 
[40] for an overview. Essentially, a graphon is a symmetric measurable function W : [0, 1]

2
→ [0, 1], with W(u, v) 

representing the edge density between vertices u and v. For static games based on graphons, we refer to recent 
work (Carmona et al. [20], Parise and Ozdaglar [42, 43]), and for dynamic games, see Cui and Koeppl [24] and 
Vasal et al. [48] for discrete time and Aurell et al. [2], Bayraktar et al. [5], Gao et al. [30], and Tangpi and Zhou 
[47] for continuous time. A related but distinct notion of graphon mean field games was developed in a recent series 
of papers by Caines and Huang [13, 14], in which each node in the network contains a subpopulation with its 
own mean field of players. There have been similar developments for nongame-theoretic models of interacting 
diffusions, with recent work (Bayraktar et al. [4], Bet et al. [8]) developing a graphon-based limit theory.

The goal of this paper is to advance the theory of graphon-based analogues of mean field games or graphon 
games. Most importantly, we are able to achieve a level of tractability that is comparable with traditional mean 
field games in the following sense. The mean field game framework is based on a fixed point problem describing 
the law of the state process X � (Xt)t∈[0,T] of one “typical” player, which represents a significant dimension reduc
tion when compared with a large n-player game. On the contrary, prior graphon-based models work directly 
with a continuum of players, which arguably does not provide a significant simplification and leads to the serious 
technical challenges discussed. The graphon game model that we propose is a fixed point problem for the joint 
law of (U, X), where X is the state process coupled with a Unif[0, 1] random variable U, interpreted as the 
“vertex” or “label” of the player in the graphon.

In fact, we show that our notion of graphon game is equivalent to a classical MFG model in which (U, Xt)t∈[0,T]

is treated as the state process. Whereas the MFG model can be captured by a single forward-backward partial 
differential equation (PDE) system on [0, T] × Rd, prior graphon-based models involve a continuum of coupled 
PDEs, and our model can be captured by a single forward-backward PDE on [0, T] × Rd+1. Despite this equiva
lence, it is only in special situations that one can directly apply prior theorems from the MFG literature; the coef
ficients are discontinuous unless the graphon is a continuous function, and the diffusion coefficient of 
(U, Xt)t∈[0,T] is always degenerate. Hence, although we adapt known MFG methods for our proofs (mainly Lacker 
[35]), we must tailor them to the graphon setting. Moreover, the finite games we study, which are governed by 
general interaction matrices that converge in cut norm, are quite different from the finite game naturally associ
ated with the equivalent MFG, and our finite games thus require a significantly more involved construction for 
approximate equilibria. See Section 3.6 for details.

Working directly with a continuum of players driven by a continuum of independent Brownian motions (Bu)u∈[0, 1]

raises significant technical difficulties stemming from the fact that u ⊢→ Bu(ω) is not Lebesgue measurable for a.e. ω. 
In a linear-quadratic setting, this issue was confronted directly in Aurell et al. [2] via sophisticated measure-theoretic 
machinery, namely the notion of Fubini extensions from Sun [45]. In Bayraktar et al. [4], the issue was carefully avoided 
by arguing that the laws L(Xu) of the state processes (Xu)u∈[0, 1] depend measurably on u, and this is good enough for 
their purposes. Other works, such as Bet et al. [8], do not explicitly address this issue. By focusing on the joint law of 
(U, X), we avoid the technical challenges of the continuum. Of course, a joint law of (U, X) with U uniform can be 
identified with its disintegration (i.e., the conditional law of X given U), but this conditional law is uniquely deter
mined only up to a.e. equality. Our notion of graphon game thus encodes less information than a model with a true 
continuum of players, as we may make statements about almost every player but not about every player. However, this 
minor loss of information brings significant mathematical advantages. First, it avoids the aforementioned measure- 
theoretic difficulties. Second, it permits a simple topological setting, allowing us to use the weak topology on 
P([0, 1] × Rd), in which compacts are far more abundant when compared with the uniform or Lp topologies on spaces 
of functions [0, 1] → P(Rd) employed in some prior works (e.g., Caines and Huang [13]).

Using our new graphon game formulation, we prove several fundamental results under fairly general assump
tions on the model inputs. First, we prove the existence of an equilibrium that is Markovian in the sense that the 
control is a function of (t, U, Xt). We also show uniqueness under a graphon version of the Lasry–Lions monoto
nicity assumption. See Section 3.4 for these results. Our new framework allows us to handle, with relative ease, 
far more general setups than were considered in prior work. For instance, in prior work, the interactions are pair
wise in the sense that the effect of the other players j ≠ i on a player i is given by a quantity of the form 
n�1Pn

j�1 ξijh(Xi, Xj), where ξ is an n × n interaction matrix. More generally, we are able to treat higher-order inter
actions depending on the empirical measure n�1Pn

j�1 ξijδXj , which admits a simple continuum analogue (defined 
in Section 2.2) in terms of the joint law of (U, X).

Our most important results justify our new formulation by showing that any graphon game equilibrium can 
be used to construct approximate equilibria for the n-player game when the latter involves an interaction matrix 
that converges to the given graphon in the cut norm (or more generally, in the strong operator topology, 
although this generalization does not complicate our proofs). This is the most challenging part of our work. The 
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precise notion of approximate equilibrium can take various forms; the ɛn
i error may be different for each player i, 

and ɛn
i may vanish in an averaged or uniform sense, depending on the structural assumptions (such as continu

ity) imposed on the graphon. See Section 3.5 for precise statements. Prior work on graphon games, with a few 
exceptions, has assumed the n-player game to be set on a specific exchangeable random graph “sampled” from 
the graphon in the usual manner, which enjoys particularly strong convergence properties as n → ∞. It is more 
general and also, arguably more natural to start from an interaction matrix (or graph) for n players and see where 
it converges rather than constructing a specific n-player network with a desired limit in mind. This in a sense 
makes the n-player game the starting point of the model rather than the graphon game. This perspective is 
shared by Bayraktar et al. [5], Cui and Koeppl [24], and Gao et al. [30], although these papers impose various 
restrictions on the graphs and graphon that our main result (Theorem 2) does not need.

Lastly, to illustrate the relative simplicity of our framework, we study in Section 8 a linear-quadratic model of 
flocking type similar to Carmona et al. [19] and Lacker and Soret [38]. We explicitly solve the model in terms of a 
centrality index of a given graphon.

Section 2 introduces the basic notions of kernels and graphons that will be used in the paper. Then, Section 3
presents the main results in full detail.

1.1. Common Notation
We write [n] :� {1, : : : , n} for n ∈ N. For a random variable X taking values in a measurable space, we write L(X)

for its law. For a complete separable metric space (E, d), we write M+(E) for the space of nonnegative Borel meas
ures of finite variation and P(E) for the sets of probability measures. We write 〈µ, φ〉 �

R

Eφ dµ for µ ∈ M+(E) and 
suitably integrable functions φ. We equip M+(E) with the usual topology of weak convergence, defined in dual
ity with the space of bounded continuous functions. This topology is also induced by the bounded Lipschitz 
norm (see Bogachev [10, theorem 8.3.2])

||µ||BL :� sup
Z

E
φ dµ : φ : E → R, |φ| ≤ 1, sup

x≠y

|φ(x) � φ(y)|

d(x, y)
≤ 1

( )

: (1) 

We write C([0, T]; E) for the space of continuous functions [0, T] → E, always equipped with the supremum dis
tance (x, x′) ⊢→ supt∈[0,T]d(xt, x′

t).
We write Unif[0, 1] to denote the uniform (Lebesgue) measure on [0, 1]. Similarly, Unif(I) denotes the uniform 

probability measure on any interval I. For a Polish space E, let us also write PUnif([0, 1] × E) for the set of Borel 
probability measures on [0, 1] × E with uniform first marginal. Any µ ∈ PUnif([0, 1] × E) admits the disintegration 
µ(du, dx) � duµu(dx), with [0, 1]�u ⊢→ µu ∈ P(E) being Borel measurable and uniquely defined up to a.e. equality. 
The space E will typically be either Rd or the path space Cd :� C([0, T];Rd).

2. Kernels and Graphons
In this section, we give a brief summary of the notion of graphon relevant to our work, most importantly intro
ducing (in Section 2.2) its associated operator, which will play a central role. We borrow most terminology from 
Lovász [40]. A graphon is typically defined as a symmetric measurable function [0, 1]

2
→ [0, 1]. More generally, a 

kernel is any element of L1[0, 1]
2 (i.e., an integrable Borel-measurable real-valued function of [0, 1]

2).
We work with kernels belonging to L1

+[0, 1]
2, the set of nonnegative elements of L1[0, 1]

2. We think of [0, 1] as index
ing a continuum of possible locations or vertices, with W(u, v) representing the (weighted) edge density between them. 
We notably do not require our kernels to be graphons (bounded or symmetric), which brings certain advantages in the 
examples. Also, we work with labeled rather than unlabeled kernels (Lovász [40], sections 8.2.1 and 8.2.2).

For n ∈ N, the space of n × n matrices embeds into the space of kernels as follows. For an n × n matrix ξ, we 
introduce the associated step kernel

Wξ(u, v) :� ξij, for (u, v) ∈ In
i × In

j ,
where In

i :� [(i � 1)=n, i=n), for i � 1, : : : , n � 1, and In
n :� [(n � 1)=n, 1]: (2) 

2.1. The Cut Norm
Following Lovász [40, chapter 8.2], we define the cut norm on L1[0, 1]

2 by

||W||
w

:� sup
S1,S2

�
�
�
�
�

Z

S1

Z

S2

W(u, v) dudv

�
�
�
�
�
, 
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where the supremum is over pairs of Borel sets S1, S2 ⊆ [0, 1]. (Technically, this is merely a seminorm unless we 
identify functions that agree a.e.) The cut norm is clearly weaker than the L1 norm:

||W||
w

≤ ||W||L1[0, 1]
2 :�

Z 1

0

Z 1

0
|W(u, v)| dudv: (3) 

The cut norm is convenient in part because many natural random graph models converge in cut norm but not in 
L1[0, 1]

2. We provide two examples where the convergence is well known.

Example 1. Let ξn be the adjacency matrix of an Erdős–Rényi random graph G(n, pn). If pn � p is fixed as n → ∞, 
then Wξn converges in cut norm to the constant graphon W ≡ p. Allowing unbounded kernels allows one to treat 
sparser regimes. Instead of assuming pn to be constant, assume merely that npn → ∞ as n → ∞. Then, Wξn=pn con
verges in cut norm to the constant graphon W ≡ 1. See Borgs et al. [11, theorem 2.14(b)] for a more general result.

Example 2. Given a graphon W (i.e., a symmetric and measurable function from [0, 1]
2 to [0, 1]), one can define 

two natural graphs on the vertex set [n]. First, let U1, : : : , Un ~ Unif[0, 1] be independent, and order them 
U(1) < ⋯ < U(n). Then, for i ≠ j, either 

1. connect vertices (i, j) with probability W(Ui, Uj) or
2. assign weight W(Ui, Uj) to the edge between (i, j).
Note that the latter defines a weighted graph and that the former defines a simple graph. The step kernel asso

ciated with the adjacency matrix converges in probability in cut norm to W in either case and in L1 norm in the 
latter case. See Borgs et al. [11, theorem 2.14] for the proof along with related sparse graph constructions for ker
nels W, which are not necessarily bounded.

2.2. Operators Associated with Kernels
To a kernel W ∈ L1[0, 1]

2, we associate the operator W : L∞[0, 1] → L1[0, 1], defined by

Wφ(u) :�

Z 1

0
W(u, v)φ(v) dv: (4) 

The resulting operator norm is equivalent to the cut norm (Lovász [40, lemma 8.11]):
||W||

w
≤ ||W||∞→1 ≤ 4||W||

w
, (5) 

where ||W||∞→1 :� sup {||Wφ||L1[0, 1] : φ ∈ L∞[0, 1], |φ| ≤ 1}: (6) 

We work most often with the strong operator topology for operators on L∞[0, 1] → L1[0, 1]. We say that a sequence 
Wn ∈ L1[0, 1]

2 converges in the strong operator topology to W ∈ L1[0, 1]
2 if ||Wnφ � Wφ||L1[0, 1] → 0 for every 

φ ∈ L∞[0, 1]. Convergence in cut norm implies convergence in strong operator topology by (5). Although the cut 
norm is the most common in the graphon literature, working more generally with the strong operator topology 
leads to no increase in difficulty in any of our proofs.

A key object in our paper is a more general operator associated with a kernel W ∈ L1
+[0, 1]

2. Given a Polish 
space E and a probability measure m on [0, 1] × E, we define a measure-valued function Wm : [0, 1] → M+(E) by

Wm(u) :�

Z

[0, 1]×E
W(u, v)δx m(dv, dx): (7) 

To be clear, this measure acts on a bounded measurable function φ : E → R by

〈Wm(u), φ〉 �

Z

[0, 1]×E
W(u, v)φ(x) m(dv, dx):

Note that if W ≡ 1, then Wm(u) is exactly the second marginal of m.
To foreshadow how we will use this operator, think of the measure Wm(u) as representing a continuous ver

sion of the neighborhood empirical measure around a vertex u. Indeed, suppose x1, : : : , xn ∈ E represent state var
iables of players 1, : : : , n, and let ξ � (ξij) denote an n × n matrix representing interactions. The influence of the 
other players on player i is given by the neighborhood empirical measure

Mi �
1
n
Xn

j�1
ξijδxj ∈ M+(E):
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Suppose u1, : : : , un ∈ [0, 1] represent labels of the n players, with ui ∈ In
i for each i. The label-state empirical meas

ure of the entire population is given by

M �
1
n
Xn

i�1
δ(ui,xi) ∈ P([0, 1] × E):

Using the step kernel from (2), the function WξM then encodes all of the neighborhood empirical measures in 
terms of the label-state empirical measure in the sense that

WξM(ui) �
1
n
Xn

j�1
Wξ(ui, uj)δxj �

1
n
Xn

j�1
ξijδxj � Mi:

Remark 1. The two operators both denoted W, defined in (4) to act on real-valued functions and in (7) to act on 
measures, are not as different as they might at first appear. First, note that the former definition extends readily 
to functions φ with values in suitable vector spaces. Suppose m has uniform first marginal so that by disintegra
tion, we may write m(du, dx) � dumu(dx). We may then write Wm(u) �

R 1
0 W(u, v)mv dv, which has the form of (4) 

but with the measure-valued function m· in place of the scalar function φ.

Example 3 (Laplacian Matrices). A natural setting, studied for instance in Delarue [25] and Lacker and Soret [38], 
arises from the so-called random walk Laplacian of a connected graph on n vertices. Let us write i ~ j if two vertices 
i and j are neighbors in this graph, and let di denote the degree (number of neighbors) of vertex i. Then, ξ is 
defined by setting ξij � n=di if i ~ j and ξij � 0 otherwise. In this case, Mi � 1

di

P
j~i δxj is the uniform measure over 

the states of the neighbors of i.

3. Main Results
In this section, we define precisely the n-player and graphon game models. The following assumptions are in 
force throughout the paper.

3.1. Standing Assumptions
We are given dimensions d, d0 ∈ N; a time horizon T > 0; a compact metric space A representing the set of actions; 
and bounded continuous functions

b : [0, T] × Rd × A → Rd σ : [0, T] × Rd → Rd×d0 ,
f : [0, T] × Rd × M+(Rd) × A → R g : Rd × M+(Rd) → R:

Assume that σ is Lipschitz and that σσ⊤ is uniformly nondegenerate (i.e., bounded from below in semidefinite 
order by a positive constant times the identity matrix). Assume further that for each (t, x, m) ∈ [0, T] × Rd × M+

(Rd), the following set is convex:

{(b(t, x, a), z) : a ∈ A, z ≤ f (t, x, m, a)} ⊂ Rd × R: (8) 

Finally, we are given an initial distribution λ ∈ PUnif([0, 1] × Rd).
These assumptions can certainly be generalized, particularly the boundedness. We prefer to minimize techni

calities in order to focus on the new features of the graphon setting. The final convexity assumption is common 
in the control literature; it holds when A is a convex subset of a vector space, b is affine in a, and f is concave in a, 
which includes in particular the setting of relaxed controls to which one can always lift the problem if the convex
ity assumption is not initially satisfied (Lacker [35]).

The most notable restriction is that we do not include any interaction term within the functions b or σ. This sig
nificantly simplifies the existence theorem and the approximate equilibrium construction. The former would 
easily generalize, but the latter would require a satisfactory limit theory for graphon-based interacting stochastic 
differential equations (SDEs). Such a limit theory is a significant undertaking in its own right and has seen only 
very recent development, so far only for scalar interactions. By excluding interactions from (b,σ), we avoid this 
separate issue and focus more on the game-theoretic aspects of graphon models.

We work with Markovian controls throughout the paper, but the framework adapts easily to different kinds of 
controls, such as open loop.
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3.2. Finite Games
Let n ∈ N denote the number of players. Each player may choose a control from An, the set of measurable func
tions from [0, T] × (Rd)

n
→ A. For any vector of controls a � (α1, : : : ,αn) ∈ An

n, there exists a unique solution Xn �

(Xn,1, : : : , Xn,n) of the SDE system

dXn,i
t � b(t, Xn,i

t ,αi(t,Xn
t ))dt + σ(t, Xn,i

t )dBi
t, Xn,i

0 � xn,i
0 , 

where B1, : : : , Bn are independent d0-dimensional Brownian motions and xn,i
0 are given initial conditions.

The boundedness of b and Lipschitz continuity of σ ensure that this SDE system admits a unique strong solu
tion (Veretennikov [49, theorem 1]).

Let ξn � (ξn
ij) denote an n × n matrix with nonnegative entries, called the interaction matrix. Throughout this 

paper, we will assume that ξn
ii � 0 for all i; if ξn is the adjacency matrix of a (weighted) graph, this is equivalent to 

assuming that there are no self-loops. This assumption is natural and simplifies the exposition, but it is not hard 
to generalize. A key role is played by the neighborhood empirical measures defined for each player i ∈ [n] by

Mn,i
t �

1
n
Xn

j�1
ξn

ijδXn,j
t

, (9) 

which is a random element of M+(Rd). For a � (α1, : : : ,αn) ∈ An
n, the objective function of each player i ∈ [n] is 

defined by

Ji(a) :� E
Z T

0
f (t, Xn,i

t , Mn,i
t ,αi(t,Xn

t )) dt + g(Xn,i
T , Mn,i

T )

� �

: (10) 

For � � (ɛ1, : : : , ɛn) ∈ [0, ∞)
n, an �-Nash equilibrium is defined as any a � (α1, : : : ,αn) ∈ An

n satisfying for all i ∈ [n]

Ji(a) ≥ sup
β∈An

Ji(α1, : : : ,αi�1,β,αi+1, : : : ,αn) � ɛi:

We will not state any theorems about n-player games until Section 3.5, but it will inform our definition of the 
appropriate graphon model in the following section.

3.3. Graphon Games
For a kernel W ∈ L1

+[0, 1]
2, we define the graphon game associated with W as follows. Let AU denote the set of 

measurable functions [0, T] × [0, 1] × Rd → A. Let (Ω,F ,F, P) be a filtered probability space supporting a d0- 
dimensional F-Brownian motion B and F 0-measurable random variables U and X0 taking values in [0, 1] and Rd, 
respectively. The given joint law of (U, X0) is denoted λ, and its first marginal is assumed to be uniform; that is, 
U ~ Unif[0, 1]. For α ∈ AU, the state process X is the unique solution of the SDE

dXαt � b(t, Xαt ,α(t, U, Xαt ))dt + σ(t, Xαt )dBt, Xα0 � X0: (11) 

Strong well posedness of this SDE follows easily from Veretennikov [49, theorem 1] under our standing assump
tions. Recall in the following the meaning of Wµt, defined in (7), as well as the notation PUnif([0, 1] × E) for meas
ures on [0, 1] × E with uniform first marginal.

Now, to define our notion of equilibrium, suppose we are given a measure flow µ
·
� (µt)t∈[0,T] ∈ C([0, T];

PUnif([0, 1] × Rd)) representing the label-state joint distribution at each time. In response to this given µ
·
, the 

objective of a typical player is to choose α ∈ AU to maximize

JW(µ·,α) :� E
Z T

0
f (t, Xαt , Wµt(U),α(t, U, Xαt ))dt + g(XαT, WµT(U))

� �

:

The measure Wµt(U) here is the natural graphon analogue of the neighborhood empirical measure, as discussed 
in Section 2.2, when a player is given the uniformly random label U.

Definition 1. We say that µ
·
∈ C([0, T];PUnif([0, 1] × Rd)) is a (Markovian) W equilibrium (or a graphon equilibrium 

when W is clear from context) if there exists α∗ ∈ AU satisfying

JW(µ
·
,α∗) � sup

α∈AU

JW(µ
·
,α) and µt � L(U, Xα∗

t ), ∀t ∈ [0, T]:

Any such α∗ is called an equilibrium control for µ
·
.
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We might describe this fixed point problem loosely but compactly as follows:

α∗ ∈ arg max
α

E
Z T

0
f (t, Xαt , Wµt(U),αt)dt + g(XαT, WµT(U))

� �

s:t: dXαt � b(t, Xαt ,αt)dt + σ(t, Xαt )dBt,
µt � L(U, Xαt ), (U, X0) ~ λ:

8
>>><

>>>:

(12) 

For comparison, we also state the classical definition of a mean field game equilibrium in the case where there is 
no graphon present (or W ≡ 1). Note that the space A1 of measurable functions [0, T] × Rd → A may be identified 
with the subspace of AU consisting of controls that do not depend on the uniform variable U (i.e., functions of 
the form α(t, u, x) � eα(t, x)). We say that ν· ∈ C([0, T];P(Rd)) is a (Markovian) mean field equilibrium if there exists 
α∗ ∈ A1 satisfying

J1(ν·,α∗) � sup
α∈A1

J1(ν·,α) and νt � L(Xα∗

t ) ∀t ∈ [0, T], 

where we define

J1(ν·,α) :� E
Z T

0
f (t, Xαt ,νt,α(t, Xαt ))dt + g(XT,νT)

� �

:

When W ≡ 1, recall that Wm reduces to the second marginal of m(dv, dx); it follows that if µ
·

is a W equilibrium, 
then the second marginals form a mean field equilibrium. The converse is true but somewhat more subtle 
because controls for mean field equilibria are allowed to depend on the auxiliary random variable U. See Propo
sition 1 for a more general relationship between these two equilibrium concepts.

3.4. Existence and Uniqueness of Equilibria
Recall in the following that we are always working under the standing assumptions stated at the beginning of 
Section 3. The following is proven in Section 4, following the strategy of Lacker [35].

Theorem 1. Let W ∈ L1
+[0, 1]

2. Then, there exists a W equilibrium.

For certain W, a mean field equilibrium can be identified with a graphon equilibrium. This is clear when 
W ≡ 1, as noted, but in fact holds more generally.

Proposition 1. Let W ∈ L1
+[0, 1]

2. Assume that
Z 1

0
W(u, v) dv � 1, a:e: u ∈ [0, 1]: (13) 

Suppose ν· ∈ C([0, T];P(Rd)) is a mean field equilibrium, and let α∗ ∈ A1 be an equilibrium control for ν·. Define 
µt � Unif[0, 1] × νt. Then, µ

·
� (µt)t∈[0,T] is a W equilibrium, and (t, u, x) ⊢→ α∗(t, x) is an equilibrium control for µ

·
.

The condition (13) can be interpreted as saying that the graphon W has constant out degree or simply, constant 
degree if W is assumed symmetric. A similar principle appeared in the uncontrolled setting in Coppini [22, corol
lary 2.4].

Example 4. Let us revisit Example 3, where Gn is a simple connected graph on vertex set [n] and ξn
ij � (n=di)1{i~j}. 

The neighborhood empirical measures become

Mn,i
t �

1
n
Xn

j�1
ξn

ijδXn,j
t

�
1
di

X

j~i
δXn,j

t
:

This models a scenario in which players interact symmetrically with their neighbors in the underlying graph Gn, 
as in Delarue [25] and Lacker and Soret [38]. It is not clear if there is a simple (e.g., degree-based) characterization 
of the situations where Wξn converges in the strong operator topology (or in cut norm). However, if a limit 
Wξn → W does exist, then W must satisfy the constant-degree condition of Proposition 1. Indeed, for each i ∈ [n]

and each u ∈ In
i , we have

Z 1

0
Wξn (u, v)dv �

Xn

j�1

Z

In
j

Wξn (u, v)dv �
Xn

j�1

1
n
ξn

ij �
Xn

j�1

1
di

1{i~j} � 1, 

and the left-hand side, as a function of u, converges in L1[0, 1] to 
R 1

0 W(u, v)dv.
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We can further show uniqueness of the equilibrium under an additional assumption adapted from the classical 
Lasry–Lions monotonicity condition.

Proposition 2. In addition to the standing assumptions of Section 3, assume the following. 
1. Separable f. There exist two functions f1, f2 such that

f (t, x, m, a) � f1(t, x, a) + f2(t, x, m):

2. Unique optimal controls. For each µ ∈ C([0, T];PUnif([0, 1] × Rd), the supremum in supα∈AU
JW(µ,α) is attained 

uniquely (up to Lebesgue a.e. equality).
3. Monotonicity. For each m1, m2 ∈ PUnif([0, 1] × Rd) and t ∈ [0, T], we have

Z

[0, 1]×Rd
( g(x, Wm1(u)) � g(x, Wm2(u)))(m1 � m2)(du, dx) ≤ 0

Z

[0, 1]×Rd
( f2(t, x, Wm1(u)) � f2(t, x, Wm2(u)))(m1 � m2)(du,dx) ≤ 0: (14) 

Then, there exists a unique W equilibrium.

The proof is given in Section 4.6 along with a couple of noteworthy examples of functions g satisfying (14) (see 
Remark 11). The proof follows by reducing the graphon game to a classical mean field game, explained in more 
detail in Section 3.6.

3.5. Approximate Equilibria
Throughout this section, we are given W ∈ L1

+[0, 1]
2, and we let µ

·
∈ C([0, T];PUnif([0, 1] × Rd)) denote a W equili

brium and α∗ an equilibrium control for µ·. Also, as in Section 3.2, we are given an arbitrary n × n matrix ξn with 
positive entries and zeros on the diagonal, ξn

ii � 0. We define the step kernel Wξn as in (2).
In this section, we explain how the graphon game defined in Section 3.3 gives rise to approximate equilibria 

for the finite game defined in Section 3.2, when the underlying kernels Wξn from (2) converge in a suitable sense 
to the kernel W. To provide context for the following results, let us briefly recall the analogous construction in 
mean field game theory. If bα ∈ A1 denotes a mean field equilibrium control, then players i ∈ [n] in the n-player 
game are assigned the controls αn

i (t, x1, : : : , xn) � bα(t, xi). The vector (αn
1 , : : : ,αn

n) is then shown to constitute an ɛn 

equilibrium, where ɛn → 0. This strategy dates back to the earliest work on mean field games (Huang et al. [32]); 
see Carmona and Delarue [18, section 6.1] or Lacker [37, section 2.4] for the closed-loop case.

This strategy requires several adaptations in the present context. First, because players are not exchangeable, 
we may have a different error ɛn

i for each player. Moreover, different modes of convergence to zero can make 
sense in different contexts, such as 1

n
Pn

i�1 ɛn
i → 0 or maxi∈[n]ɛ

n
i → 0. This is also highlighted in our case study 

(Lacker and Soret [38]).
A second and more delicate point in our setting is in how to deal with labels. A W-equilibrium control α∗ ∈ AU 

depends on an additional Unif[0, 1] variable, which we have interpreted as the label (or vertex) of the player. In 
order to apply this control α∗ in the n-player game, we must specify which labels to assign to each player. In the 
definition of the step kernel Wξn , the player i in the n-player game is associated with the interval In

i defined in (2), 
and it thus makes sense to choose for player i some label un

i ∈ In
i . We then assign to player i the control

α
n,un

i
i (t, x1, : : : , xn) :� α∗(t, un

i , xi): (15) 

The error ɛn
i (un) then depends additionally on the choice of labels un � (un

1, : : : , un
n), and the question again arises 

as to the sense in which we can expect these errors to vanish as n → ∞. In general, we only expect these errors to 
vanish in probability, with respect to a random choice of un, but we will see that stronger continuity assumptions 
allow us to strengthen the convergence to be (essentially) uniform in the choice of un.

Let us define precisely the function ɛn
i : [0, 1]

n
→ [0, ∞). Fix un � (un

1, : : : , un
n) ∈ [0, 1]

n in this paragraph. Using 
the construction (15), define an,un

� (α
n,un

1
1 , : : : ,αn,un

n
n ) ∈ An

n. Recall that λ(du, dx) � duλu(dx) denotes the given joint 
law of (U, X0) in the graphon game. Consider the n-player game as described in Section 3.2, with initial condi
tions (Xn,i

0 )
n
i�1 chosen independently with Xn,i

0 ~ λun
i
. With this choice of initialization, we finally define the non

negative number
ɛn

i (un) :� sup
β∈An

Ji α
n,un

1
1 , : : : ,αn,un

i�1
i�1 ,β,αn,un

i+1
i+1 , : : : ,αn,un

n
n

� �
� Ji(a

n,un
):
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By definition, an,un is a �n(un) equilibrium, where �n(un) � (ɛn
1(un), : : : , ɛn

n(un)). This definition makes sense only if 
we prespecify a version of the disintegration u ⊢→ λu, and otherwise, we should understand �n(un) to be 
uniquely defined only up to un-a.e. equality.

We first show in full generality that �n → 0 in an averaged sense. Recall from Section 2.2 the definition of the 
strong operator topology for operators from L∞[0, 1] to L1[0, 1], and recall that convergence in this topology is 
implied by convergence in cut norm.

Theorem 2 (General Kernel). Assume the disintegration u ⊢→ λu admits a version such that {λu : u ∈ [0, 1]} is tight. 
Assume Wξn converges in the strong operator topology to W, and also,

lim
n→∞

1
n3

Xn

i, j�1
(ξn

ij)
2

� 0: (16) 

Then, if for each n ∈ N, (Un
1 , : : : , Un

n) are independent with Un
i ~ Unif(In

i ),

lim
n→∞

1
n
Xn

i�1
E ɛn

i (Un
1 , : : : , Un

n)
� �

� 0:

The proof of Theorem 2 is given in Section 7 along with the proofs of the two other theorems of this section. The 
bulk of the analysis is presented first in Section 6 in a more general setting that clarifies the key points.

Remark 2. The assumption (16) is very mild. It holds trivially if |ξn
ij| are uniformly bounded. If ξn is 1=pn times 

the adjacency matrix of the Erdős–Rényi graph G(n, pn), then (16) is easily shown to hold in probability when 
npn → ∞.

Remark 3. We have assumed f and g to be bounded, which means ɛn
i are uniformly bounded. Hence, the conclu

sion of Theorem 2 is equivalent to saying that ɛn
In

(Un
1 , : : : , Un

n) → 0 in probability, where In ~ Unif([n]). In other 
words, for randomly assigned labels from In

1 × ⋯ × In
n and for a randomly chosen player from [n], the error is 

small. Note that this does not rule out the possibility that certain players and label assignments have large errors 
ɛn

i , but the fraction of such players and label assignments is negligible.
Our next result strengthens the mode of convergence at the price of requiring stronger continuity assumptions 

both on the graphon and on the optimal state process. Recall in the following that Cd � C([0, T];Rd), and (U, Xα∗

)

is defined as in Section 3.3.

Theorem 3 (Continuous Kernel). Assume the following. 
1. The map [0, 1]�u ⊢→ W(u, v)dv ∈ M+([0, 1]) is continuous.
2. The disintegration [0, 1]�u ⊢→ L(Xα∗

| U � u) ∈ P(Cd) admits a continuous version.
Assume that (16) holds and that Wξn converges in the strong operator topology to W. Then,

lim
n→∞

esssup
un∈In

1 × ⋯ ×In
n

1
n
Xn

i�1
ɛn

i (un) � 0:

Moreover, if assumption (1) holds, then assumption (2) holds under the following additional conditions. 
2a. The disintegration [0, 1]�u ⊢→ λu ∈ P(Rd) admits a continuous version.
2b. A is a compact convex subset of Rk for some k ∈ N.
2c. σ(t, x) � σ is constant.
2d. For each (t, x), a ⊢→ b(t, x, a) is affine, and a ⊢→ f (t, x, m, a) is strictly concave.

To be clear, the two continuity assumptions in Theorem 3 mean that 
R 1

0 W(u, v)h(v) dv and E[φ(Xα∗

) | U � u]

depend continuously on u for all bounded continuous real-valued functions h and φ on [0, 1] and Cd, respec
tively. In particular, Theorem 3(1) is true if the function W : [0, 1]

2
→ R is itself continuous. These continuity 

assumptions allow a finer pointwise control over quantities derived from the graphon, ensuring, for instance, 
that the quantities 

R 1
0 W(un

i , v)h(v) dv and E
R 1

0 W(Un
i , v)h(v) dv are close, uniformly in the choice of un

i ∈ In
i , with 

again Un
i ~ Unif(In

i ). Stronger continuity assumptions on W were used in Bayraktar et al. [4, 5] and Tangpi and 
Zhou [47].

Remark 4. Assumption (2) in Theorem 3 can be difficult to check, which is why we provide the more tractable 
sufficient conditions (2a)–(2d). However, assumption (2) is actually automatic in the context of Proposition 1, as 
L(Xα∗

| U � u) � L(Xα∗

) is constant in u. For an alternative sufficient condition, it is not hard to show that if (1) and 
(2a) hold and if the control α∗(t, u, x) depends continuously on (u, x) for each t, then assumption (2) holds.

Lacker and Soret: Stochastic Graphon Games and Approximate Equilibria 
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Remark 5. Analogously to Remark 3, the conclusion of Theorem 3 is equivalent to the following. For every 
ɛ,δ ∈ (0, 1), it holds for sufficiently large n that

|{i ∈ [n] : ɛn
i (un) > ɛ}| ≤ nδ, for a:e: un ∈ In

1 × ⋯ × In
n:

In other words, for large enough n and for a.e. choice of labels, we have an (ɛ,δ) equilibrium in the sense of Car
mona [16] (also used in Cui and Koeppl [24]); no more than a fraction of δ of the players is further than ɛ from 
optimality.

Remark 6. Our approximate equilibrium results can be combined with Proposition 1 to yield interesting results 
on the “universality” of the mean field game approximation. If W ∈ L1

+[0, 1]
2 satisfies (13) and if Wξn → W in the 

strong operator topology, then a mean field equilibrium (as opposed to a graphon equilibrium) can be used in 
Theorem 2 to construct approximate equilibria for the n-player games. This justifies the intuition mentioned in 
Section 1 that the usual MFG approximation remains valid for sufficiently dense and approximately regular net
works. Note as in Remark 4 that condition (2) of Theorem 3 holds automatically in this case; hence, if also u ⊢→

W(u, v)dv ∈ M+([0, 1]) is continuous (e.g., if W ≡ 1), then we can also apply Theorem 3 as well.
Our final result on approximate equilibria deals with the case where the interaction matrix ξn is the weighted 

adjacency matrix obtained by sampling from the graphon W in a standard manner, as in Example 2(2).

Theorem 4 (Sampling Kernel). Let W ∈ L1
+[0, 1]

2 be bounded. Assume the disintegration u ⊢→ λu admits a version such 
that {λu : u ∈ [0, 1]} is tight. Then, the following holds for almost every choice of (ui)i∈N ∈ [0, 1]

∞, where [0, 1]
∞ is equipped 

with the infinite product measure (Unif[0, 1])
∞. Set ξn

ij � W(ui, uj)1i≠j for i, j ∈ [n] in the n-player game. Then,
lim
n→∞

max
i∈[n]

ɛn
i (u1, : : : , un) → 0:

Remark 7. Our connection between the initial conditions (Xn,i
0 )

n
i�1 and the initial distribution λ covers many natu

ral cases. If (Xn,i
0 ) are taken to be i.i.d. ~ λ ∈ P(Rd) as is common in the MFG literature, then we can simply choose 

λ(du, dx) � duλ(dx).
In general, the initial conditions Xn,i

0 ~ λun
i 

may be different for each player, although we do still require them 
to be independent. For another example, a player with label u could have a nonrandom initial position h(u) for 
some measurable function h : [0, 1] → Rd, in which case the natural choice is λ(du, dx) � duδh(u)(dx).

It is natural to expect more general results to be possible, in which we assume merely that the initial empirical 
measure 1n

Pn
i�1 δ(i=n,Xn,i

0 )
converges weakly to λ.

Remark 8. Another approach to justifying our graphon game formulation would be by studying the convergence 
problem (i.e., the problem of analyzing the n → ∞ behavior of the true n-player equilibria rather than constructing 
specific approximate equilibria). We do not address this problem in this paper, which was already a difficult prob
lem in mean field game theory (Cardaliaguet et al. [15], Lacker [37]), although we mention the very recent papers 
(Bayraktar et al. [5], Tangpi and Zhou [47]), which obtain the first results in this direction.

3.6. Graphon Games as Mean Field Games and Their PDE Formulation
This section contains no theorems but illustrates how to recast the graphon equilibrium problem of Section 3.3 as 
a classical mean field game. The point is simply to view the “label” variable as a state variable with trivial 
dynamics. For α ∈ AU, the (d + 1)-dimensional process Xα � (U, Xα) is the unique solution of the SDE

dXαt � b(t, Xαt ,α(t, Xαt )) dt + σ(t, Xαt ) dBt, (17) 

where b : [0, T] × Rd+1 × A → Rd+1 and σ : [0, T] × Rd+1 → R(d+1)×d0 are defined by

b(t, x, a) �
0

b(t, x, a)

� �

, σ(t, x) �
0⊤

d0
σ(t, x, a)

� �

, 

where we write x � (u, x) for a generic element of Rd+1 � R × Rd. That is, the vector b and matrix σ simply append 
an additional zero row. Similarly, define f : [0, T] × Rd+1 × P(Rd+1) × A → R and g : Rd+1 × P(Rd+1) → R by

f (t, x, m, a) � f (t, x, Wm(u), a), g(x, m) � g(x, Wm(u)):

(Define f and g arbitrarily when u ∉ [0, 1].) The graphon equilibrium problem is then nothing but the standard 
mean field game problem associated with the new coefficients (b,σ, f , g). Indeed, a graphon equilibrium is a 
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measure flow (µt)t∈[0,T] such that there exists α∗ ∈ AU satisfying µt � L(Xα
∗

t ) for all t ∈ [0, T] as well as

E
Z T

0
f (t, Xαt , µt,α(t, Xαt )) dt + g(XαT, µT)] � sup

β∈AU

E
Z T

0
f (t, Xβt , µt,β(t, Xβt )) dt + g(XβT, µT)

#

:

""

It must be stressed that recasting the graphon equilibrium problem as a classical mean field game in this manner 
does not significantly simplify its analysis (except in the proof of uniqueness, Proposition 2). There are several 
reasons that existing theory cannot be applied directly in this framework. 

• The kernel W : [0, 1]
2

→ R is not a continuous function in general. It is in some cases, but in many interesting 
cases, it is not (e.g., the stochastic block model). If W is discontinuous, then Wµt(u) is discontinuous in u, and thus, 
the objective functions f and g are discontinuous functions of the state variable x.

• In the analysis of approximate equilibria, the natural n-player game of Section 3.2 is not equivalent to the one 
obtained by plugging empirical measures into the objective functions ( f , g). The graphon is different in the n-player 
game, being Wξn instead of W, and this makes our convergence analysis more difficult.

• The diffusion matrix σσ⊤ of the (d + 1)-dimensional process X is always degenerate, even if that of the original 
d-dimensional state process X is not.

Although it does not help with our analysis, recasting the graphon model as a mean field game does reveal 
what the appropriate PDE formulation should be in the spirit of Lasry and Lions [39]. (Similarly, a forward-back
ward SDE formulation in the spirit of Carmona and Delarue [17, 18] is possible as well, but we omit it here.) 
Indeed, taking σ to be the identity matrix for simplicity, the value function v(t, u, x) and density flow µ(t, u, x)

should (formally) obey the PDE system

0 � ∂tv(t, u, x) + sup
a∈A

[b(t, x, a) · ∇xv(t, u, x) + f (t, x, Wµt(u), a)] +
1
2 ∆xv(t, u, x)

∂tµ(t, u, x) �� divx(b(t, x,bα(t, u, x))µ(t, u, x)) +
1
2 ∆xµ(t, u, x)

where bα(t, u, x) � arg max
a∈A

[b(t, x, a) · ∇xv(t, u, x) + f (t, x, Wµt(u), a)],

and v(T, u, x) � g(x, WµT(u)), µ0 � λ:

8
>>>>>>>><

>>>>>>>>:

Notably, there are no derivatives with respect to u. We will not claim to perform any rigorous analysis of this 
PDE system. However, it is worth noting that a verification theorem for classical solutions only requires v to be 
once differentiable in t and twice in x, and no differentiability with respect to u is needed. This observation will 
be used implicitly in our linear-quadratic example in Section 8. Lastly, we mention that the system of PDEs could 
be formally interpreted as a continuum of conditional measure flows ((t, x) ⊢→ µ(t, u, x))u∈[0, 1], which is similar in 
spirit to the PDE systems discussed in Caines and Huang [13].

3.7. Organization of the Paper
The remaining sections give the proofs of the main theorems with the exception of Section 8, which works out a 
linear-quadratic example. Section 4 proves the existence and uniqueness as stated in Section 3.4 and may be read 
independently of Sections 5–7, which deal with approximate equilibria. Similarly, the linear-quadratic example of 
Section 8 is independent of Sections 4–7. Sections 5 and 6 provide preliminary results for the proofs of Section 7, 
namely the dependence of the optimal control on the labeling and the convergence of neighborhood empirical 
measures under various assumptions, respectively. Section 7 is devoted to the proofs of the theorems of Section 3.5.

4. Existence of Graphon Equilibria
This section proves Theorem 1 by adapting the strategy of Lacker [35]. In particular, we will make use of the 
notion of relaxed controls developed in Section 4.2. In this section, we fix a graphon W ∈ L1

+[0, 1]
2. Note that W is 

not necessarily bounded.

4.1. Continuity of the W Operator
First, we compile some essential continuity properties of the operator W defined in (7). These results will be use
ful in more general forms, so we work here with a Polish space E, which will later be either E � Rd or the path 
space E � Cd � C([0, T];Rd). Recall that PUnif([0, 1] × E) is the set of probability measures on [0, 1] × E with uni
form first marginal, endowed with the topology of weak convergence.

We first recall a well-known fact that continuity assumptions for test functions can be relaxed when dealing 
with weak convergence of joint distributions with a common marginal.
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Lemma 1 (Beiglb€ock and Lacker [6, lemma 2.1]). Suppose h : [0, 1] × E → R is bounded and measurable, with h(u, ·)

continuous on E for a.e. u ∈ [0, 1]. Then, PUnif([0, 1] × E)�µ ⊢→ 〈µ, h〉 is continuous.

The next lemma is the main result of this section. Part (2) will not be needed but is illustrative and not much 
longer to prove.

Lemma 2. The following continuity properties hold. 
1. For a.e. u ∈ [0, 1], the following map is continuous:

PUnif([0, 1] × E)�µ ⊢→ Wµ(u) ∈ M+(E):

2. Suppose that the map [0, 1]�u ⊢→ W(u, ·) ∈ (L1[0, 1], weak) is continuous. Then, for each µ ∈ PUnif([0, 1] × E) and 
each bounded measurable function φ : E → R, the map u ⊢→ 〈Wµ(u), φ〉 is continuous.

3. Suppose that the map [0, 1]�u ⊢→ W(u, v)dv ∈ M+([0, 1]) is continuous. Suppose µ ∈ PUnif([0, 1] × E) is such that 
there exists a version of the disintegration u ⊢→ µu, which is continuous. Then, the following map is continuous:

[0, 1]�u ⊢→ Wµ(u) ∈ M+(E):

Proof. We first prove Lemma 2(1). Because W ∈ L1[0, 1]
2, it holds by Fubini’s theorem that W(u, ·) ∈ L1[0, 1] for 

a.e. u ∈ [0, 1]. Fix such a u as well as a bounded continuous φ : Rd → R. Write

〈Wµ(u), φ〉 �

Z

[0, 1]×Rd
W(u, v)φ(x) µ(dv, dx) �

Z

R
x Fµ(dx), 

where Fµ is the image of µ under the map (v, x) ⊢→ W(u, v)φ(x). We first claim that

PUnif([0, 1] × Rd)�µ ⊢→ Fµ ∈ P(R)

is continuous. To see this, note for bounded continuous h : R→ R that

〈Fµ, h〉 �

Z

[0, 1]×Rd
h(W(u, v)φ(x)) µ(dv, dx):

The bounded function h(W(u, v)φ(x)) depends continuously on x and measurably on v, and it follows from 
Lemma 1 that µ ⊢→ 〈Fµ, h〉 is continuous on PUnif([0, 1] × Rd). To finally deduce that 

R

Rx Fµ(dx) depends continu
ously on µ ∈ PUnif([0, 1] × Rd), simply note that we have the uniform integrability bound

Z

R
|x|1{|x|≥r} Fµ(dx) �

Z

[0, 1]×Rd
|W(u, v)φ(x)|1{|W(u,v)φ(x)|≥r} µ(dv, dx)

≤ ||φ||∞

Z 1

0
|W(u, v)|1{|W(u,v)|≥r=||φ||∞} dv 

for any r > 0, which tends to zero as r → ∞ because W(u, ·) ∈ L1[0, 1].
To prove Lemma 2(2), fix µ ∈ PUnif([0, 1] × E). Let un → u in [0, 1], and let φ : E → R be bounded and continu

ous. Let ψ(v) � E[φ(X) | U � v], for (U, X) ~ µ. Then, ψ ∈ L∞[0, 1], and so, the weak convergence of W(un, ·) →

W(u, ·) in L1[0, 1] implies

〈Wµ(un), φ〉 �

Z

[0, 1]×E
W(un, v)φ(x) µ(dv, dx) �

Z 1

0
W(un, v)ψ(v) dv

→

Z 1

0
W(u, v)ψ(v) dv � 〈Wµ(u), φ〉:

The proof of Lemma 2(3) is similar to that of Lemma 2(2), except that we must simply note that ψ is continuous 
in order to justify the convergence. w

4.2. The Relaxed Formulation
A relaxed control is a measure on [0, T] × A with the first marginal equal to the Lebesgue measure. We will 
denote V the set of relaxed controls, equipped with the topology of weak convergence, which makes V a compact 
(because A is compact) metric space. For each q ∈ V, we can identify the measurable map t ⊢→ qt ∈ P(A) that 
arises from the disintegration q(dt, da) � dtqt(da), and that is unique up to (Lebesgue) almost everywhere equality. 
Strict controls are relaxed controls q ∈ V of the form qt � δα(t) for a.e. t for some measurable α : [0, T] → A.
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We will work in this section on the space Ω :� V × [0, 1] × Cd. This Polish space is endowed with its Borel σ 
field. In the following, a generic element of Ω is denoted (q, u, x), and the coordinate maps on V, [0, 1], and Cd are 
denoted Λ, U, and X, respectively. The canonical filtration F � (F t)t∈[0,T] is defined by letting F t denote the σ field 
generated by Λ|[0,t]×A, U and (Xs)s∈[0,t].

Let C∞
c (Rd) denote the set of infinitely differentiable functions φ : Rd → R with compact support, and let ∇φ

and ∇2φ denote the gradient and the Hessian of φ, respectively. Define the generator L on φ ∈ C∞
c (Rd) by

Lφ(t, x, a) :� b(t, x, a) · ∇φ(x) +
1
2 Tr σσ⊤(t, x)∇2φ(x)

� �
, 

for (t, x, a) ∈ [0, T] × Rd × A. For φ ∈ C∞
c (Rd), we define a process Nφ

t : Ω → R by

Nφ

t (q, u, x) :� φ(xt) �

Z

[0,t]×A
Lφ(s, xs, a) q(ds, da), t ∈ [0, T]:

The set of admissible laws R is defined as the set of P ∈ P(Ω) satisfying 
1. P ◦ (U, X0)

�1
� λ and

2. for each φ ∈ C∞
c (Rd), the process (Nφ

t )t∈[0,T] is a P martingale.
This gives a martingale problem formulation in the spirit of Stroock and Varadhan [44] for the controlled state 

processes in (11).
For µ ∈ PUnif([0, 1] × Cd) representing the fixed population distribution, we write µt for the marginal obtained 

as the image by (u, x) ⊢→ (u, xt), and we define a random variable Γµ : Ω → R by

Γµ(q, u, x) :� g(xT, WµT(u)) +

Z

[0,T]×A
f (t, xt, Wµt(u), a) q(dt, da): (18) 

Remark 9. Recalling the notation of Section 3.3, if α ∈ AU, then dtδα(t,U,Xαt )(da) is a random element of V, and the 
joint law Pα of (dtδα(t,U,Xαt )(da), U, Xα) defines an element of R. Indeed, the condition (U, Xα0 ) ~ λ was imposed in 
Section 3.3, and the defining martingale property (2) of R follows immediately from Itô’s formula. Unpacking 
the notation, it holds also that

JW(µ, Pα) � 〈Pα,Γµ〉: (19) 

Given µ ∈ PUnif([0, 1] × Cd), a single player’s objective is to find
R∗(µ) :� arg max

P∈R
〈P,Γµ〉 :� {P ∈ R : 〈P,Γµ〉 ≥ 〈Q,Γµ〉 ∀Q ∈ R}:

Our first goal will be to prove the existence of what one might naturally call a relaxed W equilibrium defined as a 
fixed point of the set-valued map Φ : PUnif([0, 1] × Cd) → 2PUnif([0, 1]×Cd) given by

Φ(µ) :� {P ◦ (U, X)
�1

: P ∈ R∗(µ)}:

That is, a relaxed W equilibrium is any µ ∈ PUnif([0, 1] × Cd) satisfying µ ∈Φ(µ). We will first prove the existence of 
such a fixed point in Proposition 3, and then, we will show how to turn it into a true W equilibrium in the sense 
of Section 3.3.

4.3. Existence of Relaxed Equilibrium
The goal of this section is to prove the following.

Proposition 3. There exists µ ∈ PUnif([0, 1] × Cd) such that µ ∈Φ(µ).

To do so, we will use the following lemma on continuity.

Lemma 3. The following map is jointly continuous:

PUnif([0, 1] × Cd) × R�(µ, P) ⊢→ 〈P,Γµ〉 ∈ R:

Proof. Lemma 2(1) and the boundedness and continuity of g and f imply that Γµ(q, u, x) is a continuous function 
of (q, x, µ) for a.e. u ∈ [0, 1]; see Lacker [35, corollary A.5]. In addition, Γµ is measurable on Ω. The claim follows 
by applying Lemma 1 with E � V × Cd, noting that R can be viewed as a subset of PUnif([0, 1] × E). w

Proof of Proposition 3. We will apply the Kakutani–Fan–Glicksberg fixed point theorem (Fan [28, theorem 1]), 
which requires that we identify a nonempty compact convex set K ⊂ P([0, 1] × Cd) such that 

Lacker and Soret: Stochastic Graphon Games and Approximate Equilibria 
Mathematics of Operations Research, Articles in Advance, pp. 1–32, © 2022 INFORMS 13 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[1

60
.3

9.
15

8.
14

2]
 o

n 
17

 N
ov

em
be

r 2
02

2,
 a

t 0
7:

03
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



1. Φ(µ) ⊂ K for each µ ∈ K,
2. Φ(µ) is nonempty and convex for each µ ∈ K, and
3. the graph {(µ, µ′) : µ ∈ K, µ′ ∈ Φ(µ)} is closed.
A good choice turns out to be K :� {P ◦ (U, X)

�1
: P ∈ R}. Property (1) is then clearly satisfied because R∗(µ) ⊂

R for all µ.
Let us prove that K is compact and convex, as it is easily seen to be nonempty. First, note that R is the set of 

P ∈ P(Ω) satisfying P ◦ (U, X0)
�1

� λ and

〈P, h(Nφ

t � Nφ
s )〉 � 0, (20) 

for all T ≥ t > s ≥ 0, φ ∈ C∞
c (Rd), and bounded continuous F s-measurable functions h (which generate the σ field 

F s). This shows clearly that R is convex, and thus, so is K. To see that R is closed, note that the continuity of 
(b,σ) ensures that Lφ is jointly continuous, and thus, so is Nφ

t : Ω → R by Lacker [35, corollary A.5]. It follows 
that (20) is closed under weak limits, and so, R is a closed set. To see that R is precompact, we note easily that it 
is tight because [0, 1] × V is compact and because {P ◦ X�1 : P ∈ R} is easily seen to be tight as a consequence of 
the boundedness of (b,σ) (e.g., by Stroock and Varadhan [44, theorem 1.4.6]). The compactness of K follows from 
compactness of R because the map P ⊢→ P ◦ (U, X)

�1 is continuous.
Next, for each µ ∈ K, note that R∗(µ) is nonempty as a consequence of the continuity of P ⊢→ 〈P,Γµ〉 from 

Lemma 3 and the compactness of R shown; it follows that Φ(µ) is also nonempty. Convexity of R∗(µ) follows 
from the linearity of P ⊢→ 〈P,Γµ〉 and the convexity of R. In turn, convexity of Φ(µ) follows from convexity of 
R∗(µ) and linearity of the map P ⊢→ P ◦ (U, X)

�1.
It remains to prove the closedness of the graph of Φ as in (3). By continuity of P ⊢→ P ◦ (U, X)

�1 and compact
ness of K, it suffices to prove the closedness of

{(µ, P) : µ ∈ K, P ∈ R∗(µ)}:

Suppose µn → µ and Pn → P, with µ, µn ∈ K, Pn ∈ R∗(µn), and P ∈ R. To show that P ∈ R∗(µ), we must show that 
〈P,Γµ〉 ≥ 〈Q,Γµ〉 for every Q ∈ R. This follows easily from the joint continuity of Lemma 3, which yields

〈P,Γµ〉 � lim
n

〈Pn,Γµn 〉 ≥ lim
n

〈Q,Γµ
n〉 � 〈Q,Γµ〉, 

with the inequality coming from the assumption Pn ∈ R∗(µn). This completes the proof. w

4.4. Construction of Markovian Equilibrium
We now construct a Markovian equilibrium as defined in Section 3.3, thereby proving Theorem 1. We follow the 
strategy of the proof of Lacker [35, theorem 3.7] based on Markovian projection (Brunick and Shreve [12]). This 
section makes heavier use of the notation (Λ, U, X) for the coordinate maps on Ω.

Let µ be any fixed point, µ ∈Φ(µ), the existence of which is guaranteed by Proposition 3. Note that µ ∈ Φ(µ) is 
equivalent to the existence of P ∈ R∗(µ) such that µ � P ◦ (U, X)

�1. Because P ∈ R, the definition of R and a stand
ard martingale problem argument (e.g., El Karoui et al. [27, theorem 2.5]) show that there exists a P-Brownian 
motion B such that

dXt �

Z

A
b(t, Xt, a)Λt(da)dt + σ(t, Xt)dBt:

To handle the additional variable U, we simply note that the (d + 1)-dimensional process (U, Xt)t∈[0,T] is an Itô 
process in its own right:

d U
Xt

� �

�
0Z

A
b(t, Xt, a)Λt(da)

 !

dt +
0⊤

d0
σ(t, Xt)

� �

dBt:

Consider jointly measurable functions (bb,bf ) : [0, T] × [0, 1] × Rd → Rd × R satisfying

bb(t, U, Xt) � E
Z

A
b(t, Xt, a)Λt(da) | U, Xt

� �

,

bf (t, U, Xt) � E
Z

A
f (t, Xt, Wµt(U), a)Λt(da) | U, Xt

� �

, P � a:s:; a:e: t ∈ [0, T]:

Such functions exist by Brunick and Shreve [12, proposition 5.1]. Applying the mimicking theorem (Brunick and 
Shreve [12, corollary 3.7]), we may find a process (bUt, bXt)t∈[0,T], perhaps on another probability space (bΩ, bF , bP)
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with another Brownian motion bB, solving the SDE

d
bUt
bXt

� �

�
0

bb(t, bU, bXt)

� �

dt +
0⊤

d0

σ(t, bXt)

� �

dbBt (21) 

and satisfying (bUt, bXt) �d(U, Xt) for each t ∈ [0, T]. Part of the definition of an SDE solution, of course, is that bB is 
a Brownian motion relative to the filtration bF � (bF t)t∈[0,T] generated by (bU, bX,bB). From the dynamics (21), we 
deduce that bUt � bU0 for all t, which implies that bU :� bU0 is Unif[0, 1] because U is. Hence, bU is a.s. bF 0 measura
ble and in particular, independent of B.

Now, for (t, x, m) ∈ [0, T] × Rd × M+(Rd), let S(t, x, m) ⊂ Rd × R denote the set defined in (8). From its assumed 
convexity, we deduce that (bb(t, U, Xt),bf (t, U, Xt)) belongs a.s. to S(t, Xt, Wµt(U)). Thus, using a measurable selec
tion result from Haussmann and Lepeltier [31, theorem A.9], there exist measurable functions bα : [0, T] × [0, 1] ×

Rd → A and bz : [0, T] × [0, 1] × Rd → R+ such that, P-a.s., for a.e. t ∈ [0, T],

bb(t, U, Xt) � b(t, Xt,bα(t, U, Xt)), (22) 
bf (t, U, Xt) � f (t, Xt, Wµt(U),bα(t, U, Xt)) � bz(t, U, Xt): (23) 

Applying (22), the dynamics (21) can then be written as

dbXt � b(t, bXt, bα(t, bU, bXt))dt + σ(t, bXt)dbBt:

Note that bα belongs to AU, as defined in Section 3.3. By the uniqueness of the SDE, in the notation of Section 3.3, 
we have

(bU, bX) �
d

(U, Xα̂): (24) 

As in Remark 9, the joint law Pα̂ of (dtδ
bα(t,bU ,bXt)

(da), bU, bX) is thus an element of R. Let bµ ∈ PUnif([0, 1] × Cd) denote 

the joint law of (bU, bX). Then, as in (19), we have

〈Pα̂ ,Γµ̂〉 � JW(bµ,bα): (25) 

We will complete the proof by showing that, in fact, 〈Pα̂ ,Γµ̂〉 ≥ JW(bµ,α) for all α ∈ AU. Again, using (19), it suffices 
to show that Pα̂ ∈ R∗(bµ) (i.e., 〈Pα̂ ,Γµ̂〉 ≥ 〈Q,Γµ̂〉 for all Q ∈ R).

To this end, note that (bU, bXt) �
d

(U, Xt), and thus, bµt � µt for each t ∈ [0, T]. Because Γµ, defined in (18), depends 
on µ only through its marginals (µt)t∈[0,T],

Γµ(q, u, x) � Γµ̂ (q, u, x), for all (q, u, x) ∈ Ω: (26) 

Hence,

〈Pα̂ ,Γµ̂〉 � 〈Pα̂ ,Γµ〉 � bE
Z T

0
f (t, bXt, Wµt(

bU), bα(t, bU, bXt))dt + g(bXT, WµT(bU))

� �

, 

where bE denotes expectation on (bΩ, bF , bP). Using Fubini’s theorem and the equality in law (bU, bXt) �
d

(U, Xt) for 
each t ∈ [0, T], we find

〈Pα̂ ,Γµ̂〉 � E
Z T

0
f (t, Xt, Wµt(U),bα(t, U, Xt))dt + g(XT, WµT(U))

� �

:

The identity (23) and the definition of bf imply

f (t, Xt, Wµt(U),bα(t, U, Xt)) ≥ E
Z

A
f (t, Xt, Wµt(U), a)Λt(da) | U, Xt

� �

:

Using this, the tower property, and the definition of P, we deduce

〈Pα̂ ,Γµ̂〉 ≥ E
Z T

0

Z

A
f (t, Xt, Wµt(U), a)Λt(da)dt + g(XT, WµT(U))

� �

� 〈P, Γµ〉:

We know by assumption that P ∈ R∗(µ). Hence, for any Q ∈ R, we have 〈P,Γµ〉 ≥ 〈Q,Γµ〉. Using again (26), we 
deduce finally that 〈Pα̂ ,Γµ̂〉 ≥ 〈Q,Γµ〉 � 〈Q,Γµ̂〉 for all Q ∈ R, which completes the proof of Theorem 1 as explained.
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Remark 10. The argument in this section shows that, for each µ,
sup
β∈AU

JW(µ, β) � sup
P∈R

〈P,Γµ〉: (27) 

That is, Markovian controls achieve the same value as the more general controls allowed in R, which may 
depend on additional randomness. See El Karoui et al. [27] and Haussmann and Lepeltier [31] for more general 
studies of this well-known principle.

4.5. The Case of Constant Degree

Proof of Proposition 1. With ν ∈ C([0, T]; ,P(Rd) and µt � Unif[0, 1] × νt as in the statement of the proposition, 
the key point is the simple identity νt � Wµt(u). Indeed, for bounded measurable φ : Rd → R, we have

〈Wµt(u), φ〉 �

Z

[0, 1]×Rd
W(u, v) φ(x) µt(dv, dx)

�

Z 1

0

Z

Rd
W(u, v) φ(x)νt(dx) dv

�

Z

Rd
φ(x)νt(dx), 

with the last identity following from Fubini’s theorem and the assumption (13). Then, J1(ν,α) � JW(µ,α) for any 
α ∈ A1. Because ν is a mean field equilibrium with control α∗, we have

JW(µ,α∗) � J1(ν,α∗) � sup
α∈A1

J1(ν,α) � sup
α∈A1

JW(µ,α):

The only remaining subtlety is to argue that supα∈A1
JW(µ,α) � supα∈AU

JW(µ,α). That is, the optimal value is the 
same regardless of whether one allows the controls to depend on an independent uniform U. This can be argued 
by way of a Markovian projection argument as in Section 4.4 or by directly applying Lacker [35, theorem 3.7]. w

4.6. Uniqueness
This section proves Proposition 2, relying on the recasting of the graphon game as a mean field game as in Sec
tion 3.6. The key point is that the monotonicity condition (14) in Proposition 2 translates precisely to the usual 
Lasry–Lions monotonicity condition for the associated mean field game. Using the same notation as in Section 
3.6, Inequality (14) implies

Z

[0, 1]×Rd
( g(x, m1) � g(x, m2)(m1 � m2)(du, dx)

�

Z

[0, 1]×Rd
( g(x, Wm1(u)) � g(x, Wm2(u))(m1 � m2)(du, dx) ≤ 0 

for m1, m2 ∈ PUnif([0, 1] × Rd). Similarly, f takes the form

f (t, x, m, a) � f1(t, x, a) + f2(t, x, m), where f2(t, x, m) � f2(t, x, Wm(u)), 

and for all m1, m2, we have
Z

[0, 1]×Rd
( f2(t, x, m1) � f2(t, x, m2)(m1 � m2)(du, dx) ≤ 0:

This shows that the mean field game of Section 3.6 satisfies the Lasry–Lions monotonicity condition. The classical 
uniqueness proof from mean field game theory then applies; see Lacker [36, theorem 8.10] for a short proof, 
which applies directly in our context.

Remark 11. We mention here two classes of examples of g satisfying (14). 
1. Suppose φ : Rd → R is bounded and continuous, and let

g(x, m) � φ(x) �

Z

Rd
φ(y) m(dy)

� �2
, x ∈ Rd, m ∈ M+(Rd):

Lacker and Soret: Stochastic Graphon Games and Approximate Equilibria 
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A straightforward calculation shows that the left-hand side of (14) equals

�

Z 1

0

Z 1

0
W(u, v)ψ(u)ψ(v) dudv, where ψ(u) :�

Z

Rd
φ(x) (m1

u�m2
u)(dx), 

for mi(du, dx) � dumi
u(dx) ∈ PUnif([0, 1] × Rd), i � 1, 2. Hence, if W is positive semidefinite, we obtain the monoto

nicity condition (14).
2. Suppose g(x, m) �

Z

Rd
φ(x, y)m(dy), where φ : (Rd)

2
→ R is bounded and continuous. Then, the left-hand side of 

(14) equals
Z

[0, 1]×Rd

Z

[0, 1]×Rd
W(u, v)φ(x, y)(m1 � m2)(dv,dy)(m1 � m2)(du, dx):

This is nonpositive if, for instance, W is positive semidefinite and φ is negative semidefinite when viewed as inte
gral operators, so that the tensor product of these two operators is negative definite.

5. On the Dependence of Optimal Controls on U
This short section develops two lemmas that will be used solely in the proof of Theorem 3 in Section 7.2. We give 
these results here because the proofs use the same relaxed formulation of Section 3.4, particularly the Markovian 
projection of Section 4.4.

For this section, we fix W ∈ L1
+[0, 1]

2 and µ
·
∈ C([0, T];PUnif([0, 1] × Rd)), and we introduce the following nota

tion. For u ∈ [0, 1], m ∈ P(Rd), and α ∈ A1, let Xm,α denote the unique in law solution of the SDE
dXm,α

t � b(t, Xm,α
t ,α(t, Xm,α

t ))dt + σ(t, Xm,α
t )dBt, Xm,α

0 ~ m, 

and define

Ju,m
W (µ·,α) :� E

Z T

0
f (t, Xm,α

t , Wµt(u),α(t, Xm,α
t ))dt + g(Xm,α

T , WµT(u))

� �

:

The first lemma states essentially that, if α∗ ∈ AU is optimal for the given µ
·
, then the control (t, x) ⊢→ α∗(t, u, x) is 

still optimal if we freeze the “label” variable U � u for almost every u. Recall in the following that λ ∈

PUnif([0, 1] × Rd) denotes the initial law and λ(du, dx) � duλu(dx) denotes its disintegration.

Lemma 4. Suppose α ∈ AU satisfies JW(µ
·
,α) ≥ JW(µ

·
,β) for all β ∈ AU. Then,

Ju,λu
W (µ·,αu) � sup

β∈A1

Ju,λu
W (µ·,β), for a:e: u ∈ [0, 1], 

where we define αu ∈ A1 by αu(t, x) :� α(t, u, x).

Proof. Recall the identity (27) from Remark 10. For u ∈ [0, 1] and m ∈ P(Rd), let us define Ru,m as the set of P ∈

P(Ω) such that P ◦ (U, X0)
�1

� δu × m and such that (Nφ

t )t∈[0,T] is a P martingale for each φ ∈ C∞
c (Rd). The same 

argument as in Section 4.4 that led to (27) (see also [El Karoui et al. [27, corollary 6.8] or Lacker [35, theorem 3.7]) 
shows that

sup
β∈A1

Ju,m
W (µ

·
,β) � sup

P∈Ru,m
〈P,Γµ· 〉: (28) 

It is straightforward to check that {(u, P) : u ∈ [0, 1], P ∈ Ru,λu } is a Borel set in [0, 1] × P(Ω). Because the map 
P(Ω)�P ⊢→ 〈P,Γµ· 〉 is Borel, a standard measurable selection theorem (Bertsekas and Shreve [7, proposition 7.50] 
then shows that u ⊢→ supP∈Ru,λu

〈P,Γµ· 〉 is universally measurable, and
Z 1

0
sup

P∈Ru,λu

〈P,Γµ· 〉 du � sup
�Z 1

0
〈Pu,Γµ· 〉 du : P· Borel, Pu ∈ Ru,λu a:e: u

�

, 

where “P· Borel” means that the map [0, 1]�u ⊢→ Pu ∈ P(Ω) is Borel measurable. From the definitions and noting 
that 

R 1
0 δu × λu du � λ, it is straightforward to check that 

R 1
0 Pu du belongs to R whenever Pu ∈ Ru,λu for a.e. u. Con

versely, if P ∈ R, then the regular conditional measure Pu :� P(· | U � u) belongs to Ru,λu for a.e. u. It follows that

sup
(Z 1

0
〈Pu,Γµ· 〉 du : P· Borel, Pu ∈ Ru,λu a:e: u

)

� sup
P∈R

〈P,Γµ· 〉, 
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and also, that for P∗ ∈ R,

P∗ ∈ arg max
P∈R

〈P,Γµ· 〉�a:e: u, P∗(· | U � u) ∈ arg max
P∈Ru,λu

〈P,Γµ· 〉: (29) 

Now, let α ∈ arg maxβ∈AU JW(µ·,β) be the given optimizer. In light of (27), the measure Pα given as in Remark 9 then 
satisfies Pα ∈ arg maxP∈R〈P,Γµ· 〉. Hence, by (29), the conditional measure Pα(· | U � u) belongs to arg maxP∈Ru,λu 〈P,Γµ· 〉

for a.e. u. However, by well posedness of the SDEs, we have Pα(· | U � u) � Pαu for a.e. u (cf. Lacker [37, appendix A]). 
Using (28), we deduce that αu ∈ arg maxβ∈A1 Ju,λu

W (µ
·
,β) for a.e. u, as claimed. w

The next lemma and its corollary justify the claim in Theorem 3 that assumptions (1) and (2a)–(2d) imply (2). 
The lemma is a variation on known arguments, such as Lacker [37, section 5.6]. Essentially, by working with the 
relaxed formulation, the set-valued map of optimal control laws can be shown to have a closed graph, and the 
idea is to argue that in certain cases, this set-valued map is singleton valued and thus, necessarily continuous.

Lemma 5. Suppose conditions (1) and (2a)–(2d) of Theorem 3 hold. Then, for each u ∈ [0, 1], there exists a unique opti
mizer α∗

u for supα∈A1
Ju,λu
W (µ

·
,α). Moreover, the law L(Xλu,α∗

u ) depends continuously on u.

Proof. We have b(t, x, a) � b0(t, x)a + b1(t, x) by assumption. Fix u ∈ [0, 1] and m ∈ P(Rd). Recall Equation (28) from 
the proof of Lemma 4. We first claim that any optimizer P on the right-hand side of (28) is necessarily of the form 
P � L(dtδα(t,Xm,α

t )(da), u, Xm,α) for some α ∈ A1. To see this, note that we can write P � L(Λ, u, X), where X solves

dXt � (b0(t, Xt)

Z

A
aΛt(da) + b1(t, Xt))dt + σdBt, X0 ~ m: (30) 

Letting bα(t, Xt) � E[
R

AaΛt(da) | Xt] and applying the Markovian projection (Brunick and Shreve [12, corollary 
3.7]), we find that Xt �

d bXt for all t ∈ [0, T], where bX solves the SDE

dbXt � (b0(t, bXt)bα(t, bXt) + b1(t, bXt))dt + σdBt, bX0 ~ m:

By Jensen’s inequality and strict concavity of f (t, x, m, a) in a, we have

〈P,Γµ· 〉 � E
Z T

0

Z

A
f (t, Xt, Wµt(u), a)Λt(da)dt + g(XT, WµT(u))

� �

≤ E
Z T

0
f (t, Xt, Wµt(u),bα(t, Xt))dt + g(XT, WµT(u))

� �

� E
Z T

0
f (t, bXt, Wµt(u),bα(t, bXt))dt + g(bXT, WµT(u))

� �

� Ju,m
W (µ·,bα), 

and this equality is strict unless 
R

AaΛt(da) � bα(t, Xt) a.s. a.e. This proves the first claim.
We next claim that, in fact, there is a unique optimizer P on the right-hand side of (28). Because we know the 

optimizers are Markovian, it suffices to show that the optimal control α ∈ A1 on the left-hand side of (28) is 
unique up to Lebesgue-a.e. equality. To see this, let α0,α1 ∈ A1 be optimizers. Then, Xi � Xm,αi solves

dXi
t � (b0(t, Xi

t)αi(t, Xi
t) + b1(t, Xi

t))dt + σdBi
t, Xi

0 ~ m:

We may assume that X0 and X1 are defined on the same probability space, with (X0, B0) independent of (X1, B1). 
Let S be a Bernoulli (1/2) random variable, independent of everything else. Then, XS solves the SDE

dXS
t � (b0(t, XS

t )αS(t, XS
t ) + b1(t, XS

t ))dt + σdBS
t , XS

0 ~ m, 

where we note that BS is a Brownian motion. Define bα(t, XS
t ) � E[αS(t, XS

t ) | XS
t ]. Arguing as via Jensen, we must 

have bα(t, XS
t ) � αS(t, XS

t ) a.s. a.e., as otherwise, this control would produce a strictly higher reward than α0 or α1. 
This implies bα(t, X0

t ) � α0(t, X0
t ) and bα(t, X1

t ) � α1(t, X1
t ) a.s. a.e. The laws of X0

t and X1
t have full support for each t 

> 0 by Girsanov’s theorem, and we deduce that α0 � α1 a.e.
Finally, knowing that the optimizer P∗

u,m ∈ Ru,m on the right-hand side of (28) is unique, we will prove that 
(u, m) ⊢→ P∗

u,m is continuous, which implies our claim by composition with the continuous map u ⊢→ (u,λu). By 
El Karoui et al. [27, proposition 5.10(b)], the set-valued map Ru,δx is continuous in (u, x) ∈ [0, 1] × Rd. By Berge’s 
theorem (Aliprantis and Border [1, theorem 17.31]) and continuity of P ⊢→ 〈P,Γµ· 〉, the set-valued map R∗

u,x :�

arg maxP∈Ru,δx 〈P,Γµ· 〉 has a closed graph. We have just shown it to in fact be singleton valued or R∗
u,x � {P∗

u,δx
} for 
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each (u, x). That is, the function (u, x) ⊢→ P∗
u,δx 

has a closed graph and is thus continuous. To conclude, simply 
note that P∗

u,m �
R

Rd P∗
u,δx

m(dx) (e.g., by El Karoui et al. [27, theorem 5.11(c)]). w

Corollary 1. Suppose the assumptions of Lemma 5 hold. Assume µ
·
is a W equilibrium, with equilibrium control α∗. Then, 

the disintegration [0, 1] � u ⊢→ L(Xα∗

|U � u) ∈ P(Cd) admits a weakly continuous version.

Proof. Let α denote the equilibrium control corresponding to µ·. We note again that u ⊢→ L(Xλu,αu ) is a version of 
the conditional law L(Xα∗

| U � u). By Lemma 4, the control αu(t, x) :� α(t, u, x) optimizes Ju,λu
W (µ·, ·) over A1, for 

a.e. u ∈ [0, 1]. By Lemma 5, there is a unique (up to Lebesgue a.e. equality) optimizer α∗
u ∈ A1 of Ju,λu

W (µ
·
, ·). Hence, 

αu � α∗
u for a.e. u, and we deduce that L(Xλu,αu ) � L(Xλu,α∗

u ) for a.e. u. The claim now follows from the last state
ment of Lemma 5. w

6. Convergence of Empirical Measures
In preparation for Section 7, which proves our results about approximate equilibria, we study in this section the 
general principles underlying these results. These results deal with the convergence of neighborhood empirical 
measures under various assumptions on the underlying distributions and kernel. We work throughout this sec
tion with a general Polish space E. Recall the notation In

i from (2).

6.1. General Kernels
Let (U, X) be a random variable taking values in [0, 1] × E, with law µ ∈ PUnif([0, 1] × E). Let n ∈ N, and let In

i �

[(i � 1)=n, i=n) as before for i ∈ [n]. For each n ∈ N, let Un
i ~ Unif(In

i ), and with
L(Xn

i | Un
i � u) � L(X | U � u), u ∈ In

i :

In other words, the law of (Un
i , Xn

i ) is the conditional law of (U, X) given {U ∈ In
i }. This entails in particular that, 

for bounded measurable h : [0, 1] × E → R,

〈µ, h〉 � E[h(U, X)] �
Xn

i�1

Z

In
i

E[h(u, X) | U � u] du

�
Xn

i�1

Z

In
i

E[h(u, Xn
i ) | Un

i � u] du

�
1
n
Xn

i�1
E[h(Un

i , Xn
i )]: (31) 

Assume (U, X) and (Un
i , Xn

i )
n
i�1 are defined on the same probability space and are independent. Let W ∈ L1

+[0, 1]
2, 

and recall the definition of Wµ(u) from (7); with (U, X) ~ µ, note that we may write 〈Wµ(u), φ〉 � E[W(u, U)φ(X)]

for bounded measurable φ. Let (ξn
ij) again be an n × n matrix with values in [0, 1] and with zeros on its diagonal. 

Recall that Wξn denotes the associated step kernel, as in (2); we will use repeatedly the fact that Wξn (Un
i , Un

j ) � ξn
ij. 

Define lastly the (random) empirical measures

Mn
i :�

1
n
Xn

j�1
ξn

ijδXn
j

�
1
n
Xn

j�1
Wξn (Un

i , Un
j )δXn

j
: (32) 

Recall the definition of the strong operator topology from Section 2.2. The main result of this section is the follow
ing theorem, which we will apply only in cases where h(u, x, m) does not depend on x, but the proof of the gen
eral case given here is not any more difficult.

Theorem 5. Assume Wξn converges to W in the strong operator topology, and assume (16) holds. Let h : [0, 1] × E ×

M+(E) → R be a bounded measurable function such that h(u, x, ·) is continuous on M+(E) for each fixed (u, x) ∈ [0, 1]

× E. Then,
1
n
Xn

i�1
E h Un

i , Xn
i , Mn

i
� �� �

→ E[h(U, X, Wµ(U))]: (33) 

Proof. We will use several times the following fact. There exists A > 0 such that

1
n2

Xn

i, j�1
ξn

ij � ||Wξn ||L1[0, 1]
2 ≤ A, ∀n ∈ N: (34) 
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To see this, note that the convergence in strong operator topology Wξn → W implies
|||Wξn 1||L1[0, 1] � ||W1||L1[0, 1]| ≤ ||(Wξn � W)1||L1[0, 1] → 0, 

where 1 is the constant function equal to one. Because W and Wξn are nonnegative, we have ||W1||L1[0, 1] �

||W||L1[0, 1]
2 and ||Wξn 1||L1[0, 1] � ||Wξn ||L1[0, 1]

2 � 1
n2

Pn
i,j�1 ξ

n
ij.

The proof proceeds by a series of simplifications.

Step 1. We first argue that it suffices to prove (33) for h bounded and one Lipschitz. Indeed, suppose this is the 
case. Define the following probability measures on [0, 1] × E × M+(E):

Qn :�
1
n
Xn

i�1
L(Un

i , Xn
i , Mn

i ), Q :� L(U, X, M(U)):

We have assumed that 〈Qn, h〉 → 〈Q, h〉 holds for bounded Lipschitz h. By the Portmanteau theorem, it also holds 
for bounded continuous h, and in particular, we have Qn → Q weakly. The [0, 1] × E marginals of Qn are all the 
same (i.e., 1

n
Pn

i�1 L(Un
i , Xn

i ) � L(U, X) � µ for each n as argued in (31)). Hence, the weak convergence Qn → Q also 
implies the convergence 〈Qn, h〉 → 〈Q, h〉 for test functions h of the form in the statement of the theorem, with no 
continuity required in the first two arguments (Beiglböck and Lacker [6, lemma 2.1]).

Step 2. We next claim that it suffices to show that Wξn µn(U) → Wµ(U) in probability, where the random proba
bility measure µn on [0, 1] × E is defined by

µn �
1
n
Xn

i�1
δ(Un

i ,Xn
i ):

Expanding the notation and applying the definition (7) of the operator Wξn ,

Wξn µn(u) �
1
n
Xn

j�1
Wξn (u, Un

j )δXn
j

� Mn
i , for u ∈ In

i , i � 1, : : : , n:

Recalling that Wξn (u, Un
j ) � Wξn (Un

i , Un
j ) for u ∈ In

i , we have

1
n
Xn

i�1
E[h(Un

i , Xn
i , Mn

i )] �
1
n
Xn

i�1
E h Un

i , Xn
i , 1

n
Xn

j�1
Wξn (Un

i , Un
j )δXn

j

0

@

1

A

2

4

3

5

�
Xn

i�1

Z

In
i

E h u, Xn
i , 1

n
Xn

j�1
Wξn (u, Un

j )δXn
j

0

@

1

A

�
�
�
�
�
Un

i � u

2

4

3

5du, 

with the second step using independence of (Un
i , Xn

i )
n
i�1 and the fact that Wξn (u, Un

j ) � Wξn (Un
i , Un

i ) � ξn
ii � 0 for 

u ∈ In
i . Because L(Xn

i | Un
i � u) � L(X | U � u) for u ∈ In

i , this simplifies to

�
Xn

i�1

Z

In
i

E h u, X, 1
n
Xn

j�1
Wξn (u, Un

j )δXn
j

0

@

1

A

�
�
�
�
�
U � u

2

4

3

5du

�

Z 1

0
E[h(u, X, Wξn µn(u))|U � u] du

� E[h(U, X, Wξn µn(U))]:

Here, we also used the assumed independence of (U, X) and (Un
i , Xn

i )
n
i�1. Hence, once we know that Wξn µn(U) →

Wµ(U) in probability, it follows from the bounded convergence theorem that (33) holds for bounded continuous 
h, which is sufficient by Step 1.

Step 3. We finally prove that Wξn µn(U) → Wµ(U) in probability, which will complete the proof as explained in 
Step 2. Fix a bounded continuous function φ : E → [� 1, 1]. Expanding the definition,

〈Wξn µn(u), φ〉 �
1
n
Xn

j�1
Wξn (u, Un

j )φ(Xn
j ):

We must show that 〈Wξn µn(U), φ〉 → 〈Wµ(U), φ〉 in probability.
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Step 3(a). We first claim that 〈Wξn µn(U), φ〉 � E[〈Wξn µn(U), φ〉 | U] → 0 in probability and in fact, in L2. To see this, 
note for u ∈ In

i that

Var(〈Wξn µn(U), φ〉 | U � u) � Var 1
n
Xn

j�1
ξn

ijφ(Xn
j )

0

@

1

A≤
1
n2

Xn

j�1
(ξn

ij)
2, 

by independence of (Xn
j )

n
j�1. Hence,

E 〈Wξn µn(U), φ〉 � E[〈Wξn µn(U), φ〉 | U]
� �2
h i

� EVar(〈Wξn µn(U), φ〉 | U)

�
Xn

i�1

Z

In
i

Var(〈Wξn µn(U), φ〉 | U � u) du

≤
1
n3

Xn

i, j�1
(ξn

ij)
2, 

which vanishes by (16).

Step 3(b). We must finally show that E[〈Wξn µn(U), φ〉 | U] → 〈Wµ(U), φ〉 in probability. To see this, we first use 
again the independence of (Un

i , Xn
i )

n
i�1 to rewrite

E[〈Wξn µn(U), φ〉 | U � u] � E
1
n
Xn

i�1
Wξn (u, Un

i )φ(Xn
i )

" #

� E[Wξn (u, U)φ(X)]

�

Z 1

0
Wξn (u, v)ψ(v) dv, 

where ψ(v) :� E[φ(X)|U � v] and where we again used the fact that 1
n
Pn

i�1 L(Un
i , Xn

i ) � L(U, X) as shown by (31). 
Similarly, we may write

〈Wµ(u), φ〉 � E[W(u, U)φ(X)] � E[W(u, U)ψ(U)] �

Z 1

0
W(u, v)ψ(v) dv:

These identities are to be understood for a.e. u ∈ [0, 1], and combined, they yield

E[|E[〈Wξn µn(U), φ〉 | U] � 〈Wµ(u), φ〉|] �

Z 1

0

�
�
�
�

Z 1

0
(Wξn (u, v) � W(u, v))ψ(v) dv

�
�
�
�du

� ||(Wξn � W)ψ||L1[0, 1], (35) 

where we have used the operator notation of (4).
Recalling that φ and thus, ψ are bounded, the right-hand side of (35) converges to zero by the assumption that 

Wξn → W in the strong operator topology. We deduce that E[〈Wξn µn(U), φ〉 | U] → 〈Wµ(U), φ〉 in L1 and thus, in 
probability. This completes the proof of Step 3(b) and thus, the theorem. w

6.2. Continuous Kernels
We now prove an alternative to Theorem 5, which requires stronger assumptions but is, in a sense, uniform in 
the choice of labels rather than averaged. Fix again µ ∈ PUnif([0, 1] × E), and assume that there exists a version of 
the disintegration µ(du, dx) � duµu(dx) such that [0, 1] � u ⊢→ µu ∈ P(E) is weakly continuous. For u ∈ [0, 1], let Xu 
denote a random variable with law µu. Let us write u � (u1, : : : , un) for a generic element of In

1 × ⋯ × In
n, which we 

think of as denoting the set of admissible assignments of labels to each player i ∈ [n]. For u ∈ In
1 × ⋯ × In

n, define 
the (random) empirical measures

Mn,u
i :�

1
n
Xn

j�1
ξn

ijδXuj
�

1
n
Xn

j�1
Wξn (ui, uj)δXuj

, (36) 

where (Xui )
n
i�1 are assumed independent. Let us stress that (36) and every other expression will involve at most 

finitely many of the random variables (Xu)u∈[0, 1] at a time; at no point must we face any of the complications that 
accompany a continuum of independent random variables.

Recall the bounded Lipschitz norm || · ||BL defined in (1).
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Theorem 6. Assume Wξn converges to W in the strong operator topology, and assume that (16) holds. Assume also that 
[0, 1]�u ⊢→ W(u, v)dv ∈ M+([0, 1]) is continuous and that there exists a version of the disintegration µ(du, dx) �

duµu(dx) such that the map [0, 1]�u ⊢→ µu ∈ P(E) is weakly continuous.
Then,

lim
n→∞

sup
u�(u1, : : : , un)∈In

1 × ⋯ ×In
n

1
n
Xn

i�1
E||Mn,u

i � Wµ(ui)||BL � 0: (37) 

Let h : [0, 1] × M+(E) → R be bounded and measurable, and assume h(u, ·) continuous on M+(E) uniformly in u ∈ [0, 1], 
in the sense that

lim
m′→m

sup
u∈[0, 1]

|h(u, m′) � h(u, m)| � 0, ∀m ∈ M+(E):

Then, we have

lim
n→∞

sup
u�(u1, : : : , un)∈In

1 × ⋯ ×In
n

1
n
Xn

i�1
E|h(ui, Mn,u

i ) � h(ui, Wµ(ui))| � 0: (38) 

Proof. The claim (38) follows immediately from (37) and the assumed uniform continuity of h. As in the proof of 
Theorem 5, the convergence in cut norm Wξn → W yields A > 0 such that (34) holds.

Step 1. We first prove that

lim
n→∞

sup
u�(u1, : : : , un)∈In

1 × ⋯ ×In
n

1
n
Xn

i�1
E|〈Mn,u

i � Wµ(ui), φ〉| � 0, (39) 

for each Lipschitz function φ : E → [�1, 1]. Note first for each i ∈ [n] and u ∈ In
1 × ⋯ × In

n that
E|〈Mn,u

i � Wµ(ui), φ〉| ≤ E|〈Mn,u
i � EMn,u

i , φ〉| + |〈EMn,u
i � Wµ(ui), φ〉|:

For the first term, note that

(E|〈Mn,u
i � EMn,u

i , φ〉|)
2

≤ Var(〈Mn,u
i , φ〉) � Var 1

n
Xn

j�1
ξn

ijφ(Xuj )

0

@

1

A≤
1
n2

Xn

j�1
(ξn

ij)
2
:

Using the assumption (16), we deduce

sup
u∈In

1 × ⋯ ×In
n

1
n
Xn

i�1
E|〈Mn,u

i � EMn,u
i , φ〉| ≤

1
n3

Xn

i,j�1
(ξn

ij)
2

0

@

1

A

1=2

→ 0, 

and thus, (39) will follow if we show that

lim
n→∞

sup
u∈In

1 × ⋯ ×In
n

1
n
Xn

i�1
|〈EMn,u

i � Wµ(ui), φ〉| � 0: (40) 

Fix i ∈ [n] and u ∈ In
1 × ⋯ × In

n for now. Using L(Xuj ) � µuj 
and the fact that ξn

ij � Wξn (ui, uj) � n
R

In
j
Wξn (ui, v)dv, we 

have on the one hand

E〈Mn,u
i , φ〉 �

1
n
Xn

j�1
ξn

ijE[φ(Xuj )] �
Xn

j�1

Z

In
j

Wξn (ui, v)〈µuj
, φ〉 dv:

On the other hand,

〈Wµ(ui), φ〉 �

Z

[0, 1]×E
W(ui, v)φ(x)µ(dv, dx) �

Z 1

0
W(ui, v)〈µv, φ〉 dv:

Hence, to prove (40), we must show equivalently that

lim
n→∞

sup
u∈In

1 × ⋯ ×In
n

1
n
Xn

i�1

�
�
�
�
�

Xn

j�1

Z

In
j

Wξn (ui, v)〈µuj
, φ〉 dv �

Z 1

0
W(ui, v)〈µv, φ〉 dv

�
�
�
� � 0: (41) 
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To prove this, we split the difference into three terms:

1
n
Xn

i�1

�
�
�
�
�

Xn

j�1

Z

In
j

Wξn (ui, v)〈µuj
, φ〉 dv �

Z 1

0
W(ui, v)〈µv, φ〉 dv

�
�
�
�
�

≤
1
n
Xn

i�1

�
�
�
�
�

Xn

j�1

Z

In
j

(Wξn (ui, v)〈µuj
, φ〉 � Wξn (ui, v)〈µv, φ〉) dv

�
�
�
�
�

+
1
n
Xn

i�1

�
�
�
�
�

Z 1

0
Wξn (ui, v)〈µv, φ〉dv � n

Z

In
i

Z 1

0
W(u, v)〈µv, φ〉dvdu

�
�
�
�
�

+
1
n
Xn

i�1

�
�
�
�
�
n
Z

In
i

Z 1

0
W(u, v)〈µv, φ〉dvdu �

Z 1

0
W(ui, v)〈µv, φ〉dv

�
�
�
�
�
: (42) 

By definition of the step graphon Wξn , the first term is equal to

1
n
Xn

i�1

Xn

j�1
ξn

ij

Z

In
j

〈µuj
� µv, φ〉 dv

�
�
�
�
�
�

�
�
�
�
�
�

≤
1
n
Xn

i, j�1
ξn

ij

Z

In
j

〈µuj
, φ〉 � 〈µv, φ〉

�
�
�

�
�
�dv: (43) 

We deduce from the assumption of weak continuity of u ⊢→ µu that [0, 1]�u ⊢→ 〈µu, φ〉 ∈ R is uniformly continu
ous. For a given ɛ > 0, we can, therefore, choose n large enough so that |〈µu � µv, φ〉| ≤ ɛ whenever |u � v| ≤ 1=n. 
Hence, for large-enough n not depending on the choice of u, we find that the right-hand side of (43) is bounded 
by Aɛ.

Having dealt with the first term in (42), let us turn to the second. Using the fact that Wξn (ui, v) � n
R

In
i
Wξn (u, v)du, 

we can rewrite it as
Xn

i�1

�
�
�
�
�

Z

In
i

Z 1

0
(Wξn (u, v) � W(u, v))〈µv, φ〉dvdu

�
�
�
�
�

≤

Z 1

0

�
�
�
�
�

Z 1

0
(Wξn (u, v) � W(u, v))〈µv, φ〉dv

�
�
�
�
�
du:

Because φ is bounded, the right-hand side (which we note does not depend on un) converges to zero by the 
assumption that Wξn → W in the strong operator topology.

Finally, the third term in (42) is equal to
Xn

i�1

�
�
�
�
�

Z

In
i

(ψ(u) � ψ(ui))du

�
�
�
�
�
, (44) 

where we define ψ(u) �
R 1

0 W(u, v)〈µv, φ〉dv. Recall by assumption that u ⊢→ W(u, v)dv ∈ M+([0, 1]) is continuous. 
Because v ⊢→ 〈µv, φ〉 is continuous by assumption, we deduce that ψ is continuous. Therefore, given ɛ > 0, we 
may choose n large enough so that |ψ(u) � ψ(v)| ≤ ɛ whenever |u � v| ≤ 1=n, and it follows that (44) is no more 
than ɛ, regardless of the choice of u ∈ In

1 × ⋯ × In
n. This concludes the proof of (39).

Step 2. We next show that the set of mean measures 1
n
Pn

i�1EMn,u
i : n ≥ 1, u ∈ In

1 × ⋯ × In
n

� �
⊂ M+(E) is tight. The 

mean measures are given by
1
n
Xn

i�1
EMn,u

i �
1
n2

Xn

i, j�1
ξn

ijL(Xuj ) �
1
n2

Xn

i, j�1
ξn

ijµuj
:

Because the map u ⊢→ µu is continuous by assumption, the image {µu : u ∈ [0, 1]} ⊂ P(E) is compact and thus, 
tight by Prokhorov’s theorem. Hence, for ɛ > 0, we may find K ⊂ E compact such that µu(Kc) ≤ ɛ for all u ∈ [0, 1]. 
By (34), 1n

Pn
i�1EMn,u

i (Kc) ≤ Aɛ.

Step 3. We now prove the claim (37). Let S denote the set of one-Lipschitz functions φ : E → [�1, 1], and let ɛ > 0.
By Lemma 2(3), the continuity assumptions on W and the disintegration µu imply that the map [0, 1]�u ⊢→

Wµ(u) ∈ M+(E) is continuous, and thus, the set of measures {Wµ(u) : u ∈ [0, 1]} ⊂ M+(E) is tight. This and Step 2
imply that there exists a compact set K ⊂ E such that

sup
u∈[0, 1]

Wµ(u)(Kc) + sup
n∈N

sup
u∈In

1 × ⋯ ×In
n

1
n
Xn

i�1
EMn,u

i (Kc) ≤ ɛ: (45) 
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The set of one-Lipschitz functions K → [�1, 1] is compact in the uniform topology by Arzelà-Ascoli. We may 
thus find a finite set Sɛ ⊂ S such that minψ∈Sɛ

||(φ � ψ)1K||∞ ≤ ɛ for every φ ∈ S. Now, for any φ,ψ ∈ S and 
u ∈ [0, 1], we have

|〈Mn,u
i � Wµ(u), φ〉| ≤ |〈Mn,u

i � Wµ(u),ψ〉| + |〈Mn,u
i � Wµ(u), (φ � ψ)1Kc 〉|

+ |〈Mn,u
i � Wµ(u), (φ � ψ)1K〉|:

To estimate the second and third terms, we argue that the total masses of the measures 1n
Pn

i�1 Mn,u
i and Wµ(u) are 

bounded a.s. by some constant C> 0. Indeed, 1
n
Pn

i�1 Mn,u
i (E) ≤ A a.s. by (34), and the mass Wµ(u)(E) � 〈Wµ(u), 1〉

depends continuously on u thanks to Lemma 2(3) and the assumed continuity of W. Hence, for u ∈ In
1 × ⋯ × In

n,

1
n
Xn

i�1
||Mn,u

i � Wµ(ui)||BL �
1
n
Xn

i�1
sup
φ∈S

|〈Mn,u
i � Wµ(ui), φ〉|

≤
1
n
Xn

i�1
max
ψ∈Sɛ

|〈Mn,u
i � Wµ(ui),ψ〉| + 2Mn,u

i (Kc) + 2Wµ(ui)(Kc)

� �

+ 2Cɛ:

Take expectations, recalling (45), and bound maxψ∈Sɛ
by 
P
ψ∈Sɛ

to get

1
n
Xn

i�1
E||Mn,u

i � Wµ(ui)||BL ≤
X

ψ∈Sɛ

1
n
Xn

i�1
E|〈Mn,u

i � Wµ(ui),ψ〉| + 2(2 + C)ɛ, 

for all i ∈ [n] and all u ∈ In
1 × ⋯ × In

n. Send n → ∞ followed by ɛ → 0 to deduce (37). w

Remark 12. Theorem 6 remains valid under a somewhat weaker convergence assumption than strong operator 
topology, namely that ||(Wξn � W)ψ||L1[0, 1] → 0 for ψ ∈ C[0, 1], not necessarily for all ψ ∈ L∞[0, 1]. This is, of 
course, what one would call the strong operator topology for the space of operators from C[0, 1] → L1[0, 1]. In 
fact, we do not really need the limit operator W to be an integral operator; it could be something of the form 
Wφ(u) �

R

[0, 1]
φ(v)Ku(dv) for some measurable map u ⊢→ Ku ∈ M+(E) with 

R 1
0 Ku(E) du < ∞. This is somewhat sim

ilar to the (more subtle) notion of extended graphons used in the recent study by Jabin et al. [33] of (nongame-theo
retic) interacting diffusions, but we will not pursue this generality here.

6.3. Sampling Kernels
The mode of convergence can be further upgraded under the more specific choice of graphon adopted in Theo
rem 4. Rather than working with a generic matrix ξn such that Wξn → W, let us now follow a canonical construc
tion in graphon theory. In this section, let us define the empirical measure

Nn,u
i �

1
n
Xn

j�1, j≠i
W(ui, uj)δXuj

, for u � (u1, : : : , un) ∈ [0, 1]
n, n ∈ N, 

where Xu ~ µu for each u are independent as in Section 6.2. In the following, equip [0, 1]
∞ with the infinite prod

uct measure (Unif[0, 1])
∞.

Theorem 7. Assume W : [0, 1]
2

→ [0, ∞) is bounded and measurable. Assume {µu : u ∈ [0, 1]} ⊂ P(E) is tight. Let h :

[0, 1] × M+(E) → R be bounded and measurable, and assume h(u, ·) is continuous on M+(E) uniformly in u ∈ [0, 1], in 
the sense that

lim
m′→m

sup
u∈[0, 1]

|h(u, m′) � h(u, m)| � 0, ∀m ∈ M+(E):

Then, for almost every choice of (ui)i∈N ∈ [0, 1]
∞, the following holds:

lim
n→∞

max
i∈[n]

E h(ui, Nn,(u1,: : : ,un)
i ) � h(ui, Wµ(ui))

�
�
�

�
�
� � 0: (46) 

Proof. By rescaling, we may assume that 0 ≤ W ≤ 1 and 0 ≤ h ≤ 1. Let (ui)i∈N be arbitrary for now. Let φ : E →

[0, 1] be measurable, and set ψ(u) � E[φ(Xu)]. By the union bound and Hoeffding’s inequality,

P max
i∈[n]

1
n
Xn

j�1, j≠i
W(ui, uj)φ(Xuj ) �

1
n
Xn

j�1, j≠i
W(ui, uj)ψ(uj)

�
�
�
�
�
�

�
�
�
�
�
�

> δ

0

@

1

A ≤ ne�2nδ2
, 
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for each n ∈ N and δ > 0. By Borel–Cantelli, we deduce

max
i∈[n]

1
n
Xn

j�1, j≠i
W(ui, uj)φ(Xuj ) �

1
n
Xn

j�1, j≠i
W(ui, uj)ψ(uj)

�
�
�
�
�
�

�
�
�
�
�
�

→ 0, a:s: (47) 

Next, let Ui ~ Unif[0, 1] for i ∈ N be i.i.d. Again using Hoeffding’s inequality, we find

P
1
n
Xn

j�1, j≠i
W(Ui, Uj)ψ(Uj) �

1
n
Xn

j�1, j≠i
E[W(Ui, Uj)ψ(Uj)|Ui]| > δ

�
�
�
�
�
�

�
�
�
�
�
�
Ui

0

@

1

A ≤ e�2nδ2
, 

for each i, a.s. Note that 1
n
Pn

j�1, j≠iE[W(u, Uj)ψ(Uj)] � n�1
n E[W(u, U)ψ(U)] � n�1

n 〈Wµ(u), φ〉. Hence, for n large 
enough that 1=n ≤ δ, we get

P

 �
�
�
�
�

1
n
Xn

j�1, j≠i
W(Ui, Uj)ψ(Uj) � 〈Wµ(Ui), φ〉

�
�
�
�
�

> 2δ

�
�
�
�
�
Ui

!

≤ e�2nδ2
:

Using a union bound and the tower property,

P max
i∈[n]

�
�
�
�
�

1
n
Xn

j�1, j≠i
W(Ui, Uj)ψ(Uj) � 〈Wµ(Ui), φ〉

�
�
�
�
�

> 2δ

0

@

1

A ≤ ne�2nδ2
, 

again for n ≥ 1=δ. Deduce from Borel–Cantelli that

max
i∈[n]

�
�
�
�
�

1
n
Xn

j�1, j≠i
W(Ui, Uj)ψ(Uj) � 〈Wµ(Ui), φ〉

�
�
�
�
�

→ 0, a:s: (48) 

Combine (47) and (48) to get, for instance,

Emax
i∈[n]

�
�
�
�
�

1
n
Xn

j�1, j≠i
W(ui, uj)φ(Xuj ) � 〈Wµ(ui), φ〉

�
�
�
�
�

→ 0, 

for a.e. choice of (ui)i∈N. Because we assumed {µu : u ∈ [0, 1]} to be tight, it follows easily from boundedness of W 
that {Wµ(u) : u ∈ [0, 1]} ⊂ M+(E) is also tight, and so is {ENn,u

i : n ∈ N, i ∈ [n],u ∈ [0, 1]
n
}. The latter implies that 

{L(Nn,u
i ) : n ∈ N, i ∈ [n], u ∈ [0, 1]

n
} ⊂ P(M+(E)) is tight by a well-known argument (Sznitman [46, fact 2.5]), which 

works not only for probability measures but also, for nonnegative measures of uniformly bounded total mass. 
We may then argue as in Step 3 of the proof of Theorem 6 that

Emax
i∈[n]

||Nn,(u1,: : : ,un)
i � Wµ(ui)||BL → 0, 

for a.e. choice of (ui)i∈N. We now easily deduce (46) using the uniform continuity assumption on h. w

7. Approximate Equilibria
In this section, we will prove the results of Section 3.5. Recall that α∗ denotes the given W-equilibrium control, 
Xα∗ the corresponding state process, and U ~ Unif[0, 1].

In this section, we will denote Pα∗

� L(U, Xα∗

) ∈ PUnif([0, 1] × Cd) the equilibrium joint law, where we recall that 
Cd � C([0, T];Rd), which is a path space law and which will enable us to use the results proved in Section 6. Let 
µ

·
∈ C([0, T];PUnif([0, 1] × Rd)) represent the measure flow associated with (U, Xα∗

) (i.e., µt :� L(U, Xα∗

t ) for all 
t ∈ [0, T]). Note that µt is the time t marginal of Pα∗ , and thus, (WPα∗

(u))t � Wµt(u), for each t ∈ [0, T].
We first elaborate on the notation of Section 3.2 to keep track of the labels (and thus, the controls) assigned to 

each player. For n ∈ N and un :� (un
1, : : : , un

n) ∈ [0, 1]
n, let Xn,un

:� (Xn,un
i ,i)i∈[n] be the process satisfying the dynamics,

dXn,un
i ,i

t � b(t, Xn,un
i ,i

t ,α∗(t, un
i , Xn,un

i ,i
t ))dt + σ(t, Xn,un

i ,i
t )dBi

t, Xn,un
i ,i

0 ~ λun
i
, (49) 

where Bi are independent Brownian motions, and the initial positions (Xn,un
i ,i

0 )i∈[n] are independent. For each i and 
each β ∈ An, let Xn,β,un

i ,i be the process arising when player i switches from the control α∗(·, un
i , ·) to the control β. 

More precisely, the process Xn,β,un
i ,i is characterized by the dynamics

dXn,β,un
i ,i

t � b(t, Xn,β,un
i ,i

t ,β(t,Xn,β,un,i
t ))dt + σ(t, Xn,β,un

i ,i
t )dBi

t, Xn,β,un
i ,i

0 ~ λun
i
, (50) 
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where we write Xn,β,un,i
t to denote the vector Xn,un

t but with the i th component equal to Xn,β,un
i ,i

t instead of Xn,un
i ,i

t . 
To simplify the notation, we will sometimes abbreviate βt � β(t,Xn,β,un,i

t ). Let us write also

Mn,un,i :�
1
n
Xn

j�1
ξn

ijδX
n,un

j ,j , (51) 

similarly to (36), for the empirical measure appearing in the objective functions of player i. Note that because 
ξn

ii � 0, this empirical measure does not depend on the choice of control of player i, and in particular, if player i 
deviates to β, then the empirical measure (51) does not need to be modified.

Let us introduce some notations that will guide us through the proofs. Recalling the definition of ɛn
i , we can 

bound it by three terms,
ɛn

i (un) ≤ sup
β∈An

∆
n,i
1 (β, un) + sup

β∈An

∆
n,i
2 (β, un) + ∆

n,i
3 (un), 

where we defined

∆
n,i
1 (β, un) :� E

Z T

0
f (t, Xn,β,un

i ,i
t , Mn,un,i

t ,βt)dt + g(Xn,β,un
i ,i

T , Mn,un,i
T )

� �

� E
Z T

0
f (t, Xn,β,un

i ,i
t , Wµt(u

n
i ),βt)dt + g(Xn,β,un

i ,i
T , WµT(un

i ))

� �

,

∆
n,i
2 (β, un) :� E

Z T

0
f (t, Xn,β,un

i ,i
t , Wµt(u

n
i ),βt)dt + g(Xn,β,un

i ,i
T , WµT(un

i ))

� �

� E
Z T

0
f (t, Xn,un

i ,i
t , Wµt(u

n
i ),α∗(t, un

i , Xn,un
i ,i

t ))dt + g(Xn,un
i ,i

T , WµT(un
i )

� �

,

∆
n,i
3 (un) :� E

Z T

0
f (t, Xn,un

i ,i
t , Wµt(u

n
i ),α∗(t, un

i , Xn,un
i ,i

t ))dt + g(Xn,un
i ,i

T , WµT(un
i ))

� �

� E
Z T

0
f (t, Xn,un

i ,i
t , Mn,un,i

t ,α∗(t, un
i , Xn,un

i ,i
t ))dt + g(Xn,un

i ,i
T , Mn,un,i

T )

� �

:

The first term, ∆n,i
1 , is the approximation error incurred when player i substitutes the limiting measure WµT(un

i )

for the true empirical measure Mn,un,i
t while using the control β. This is similar for the third term, ∆n,i

3 , except now 
while using the original control α∗(t, un

i , xi). The second term, ∆n,i
2 , compares the control β with the control α∗(t, un

i , xi), 
with the limiting measure in place of the true empirical measure. We will argue that ∆n,i

2 ≤ 0 thanks to the optimality 
property of α∗, and we will argue that ∆n,i

1 and ∆n,i
3 are small thanks to the convergence of empirical measures.

Lemma 6. We have supβ∈An
∆n,i

2 (β, un) ≤ 0 for a.e. un ∈ [0, 1]
n and all i ∈ [n].

Proof. Note that Xn,un
i ,i has the same law as X

λun
i

,α∗

un
i as in Lemma 4, where α∗

u(t, x) :� α∗(t, u, x). Thus, ∆n,i
2 (β, un) equals

E
Z T

0
f (t, Xn,β,un

i ,i
t , Wµt(u

n
i ),βt)dt + g(Xn,β,un

i ,i
T , WµT(un

i ))

� �

� J
un

i ,λun
i

W (µ,α∗
u):

Recall that βt � β(t,Xn,β,un,i
t ) can depend on all n players’ state processes, and for this reason, the claim is not an 

immediate consequence of Lemma 4. However, this issue is resolved by (28), after noting that the joint law of 
(dtδβt

(da), un
i , Xn,β,un

i ,i) belongs to the set Run
i ,λun

i 
defined in the proof of Lemma 4. Indeed, we then deduce that

sup
β∈An

∆
n,i
2 (β, un) ≤ sup

β∈A1

J
un

i ,λun
i

W (µ,β) � J
un

i ,λun
i

W (µ,α∗
u):

By Lemma 4, this is ≤ 0 for a.e. un ∈ [0, 1]
n and all i ∈ [n]. w

From Lemma 4, we deduce that

ɛn
i (un) ≤ sup

β∈An

∆n,i
1 (β, un) + ∆n,i

3 (un), a:e: un:

Taking averages, we find
1
n
Xn

i�1
ɛn

i (un) ≤
1
n
Xn

i�1
sup
β∈An

∆
n,i
1 (β, un) +

1
n
Xn

i�1
∆

n,i
3 (un): (52) 
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Now that we made use of the optimality of α∗, it remains to use the convergence results of Section 6 to show that 
the right-hand side of (52) is small.

First, note that {λu : u ∈ [0, 1]} is tight. This is an assumption in Theorems 2 and 4, and in Theorem 3, it is a con
sequence of the assumed continuity of u ⊢→ λu. By boundedness of b,σ, it is then standard (e.g., using Stroock 
and Varadhan [44, theorem 1.4.6]) that the set of laws {L(Xn,β,un

i ,i) : n ∈ N,β ∈ An,un ∈ [0, 1]
n, i ∈ [n]} is a tight sub

set of P(Cd), where we recall that Cd :� C([0, T];Rd). Letting ɛ > 0, we may then find a compact set K ⊂ Cd such 
that supn,β,un,iP(Xn,β,un

i ,i ∉ K) ≤ ɛ. Define the function h : [0, 1] × M+(Cd) → R by

h(u, m) � sup
a∈A

sup
z∈K

Z T

0
( f (t, zt, Wµt(u), a) � f (t, zt, mt, a))dt

�
�
�
�

�
�
�
�

+ g(zT, WµT(u)) � g(zT, mT)
�
�

�
�, (53) 

where mt ∈ M+(Rd) denotes the image of a measure m ∈ M+(Cd) by the coordinate map x ⊢→ xt. Because 
f (t, x, m, a) and g(x, m) are bounded, measurable, and continuous in (x, m, a), we deduce that function h is 
bounded and measurable (Aliprantis and Border [1, theorem 18.19]). Moreover, it follows from compactness of A 
and K that h(u, ·) is continuous on M+(Cd) for each u ∈ [0, 1]. Note that h(u, Wµ(u)) � 0 for every u. In order to 
bound (52) in terms of h, let us choose C > 0 such that max(| f |, | g|) ≤ C, and then, note that

1
n
Xn

i�1
ɛn

i (un) ≤
2
n
Xn

i�1
E|h(un

i , Mn,un,i)| + 8ɛC: (54) 

The rest of the argument is different for Theorem 2 versus Theorem 3.

7.1. General Kernels
We first prove Theorem 2. Recall that Un

i ~ Unif(In
i ) are independent, and let Un � (Un

1 , : : : , Un
n). Abbreviate 

In :� In
1 × ⋯ × In

n, and note that Un is uniform on In. Let us also define processes Yn,i such that (Un
i , Yn,i)i∈[n] are 

independent, with L(Yn,i | Un
i � u) � L(Xα∗

| U � u) for u ∈ In
i . Let Yn � (Yn,1, : : : , Yn,n), and define the neighborhood 

empirical measures (random measures on Cd)

Mn,i �
1
n
Xn

j�1
ξn

ijδYn,j :

Recall that the process Xn,un
i ,i defined in the beginning of the section is such that L(Xn,un

i ,i) � µun
i
. Recalling that 

(U, Xα∗

) denotes the equilibrium pair, we have

L(Xα∗

| U � un
i ) � L(Yn,i | Un

i � un
i ) � L(Xn,un

i ,i): (55) 

Hence, for a.e. un and any bounded measurable function φ : In × (Cd)
n

→ R, we can write

E[φ(un,Xn,un
)] � E[φ(Un,Yn) | Un � un], a:e: un ∈ In:

In particular, because the empirical measure Mn,un,i defined in (51) is a functional of Xn,un , we deduce similarly 
that

E[φ(un, Mn,un,i)] � E[φ(Un, Mn,i) | Un � un], a:e: un ∈ In, 

for bounded measurable φ : In × M+(Cd) → R. Applying this in (54), along with the tower property, we deduce

1
n
Xn

i�1
E[ɛn

i (Un)] ≤
2
n
Xn

i�1
E | h(Un

i , Mn,i)| + 8ɛC: (56) 

The identities (55) put us in the setting of Theorem 5. As noted, h is bounded and continuous in its second varia
ble. Hence, Theorem 5 implies that

1
n
Xn

i�1
E|h(Un

i , Mn,i)| → E|h(U, WPα∗

(U))| � 0, 

where Pα∗

:� L(U, Xα∗

), with the last identity using the fact that h(u, WPα∗

(u)) � 0 for all u, which is a consequence 
of the identity of time t marginals (WPα∗

(u))t � Wµt. Applying this in (56) and then, sending ɛ → 0 complete the 
proof of Theorem 2.
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7.2. Continuous Kernels
We next prove Theorem 3. The fact that (1) and (2a)–(2d) imply (2) is a consequence of Corollary 1. The function 
h(u, m) from (53) is continuous in m, uniformly in u because

sup
u∈[0, 1]

|h(u, m′) � h(u, m)| ≤ sup
a∈A

sup
z∈K

Z T

0
( f (t, zt, m′

t, a) � f (t, zt, mt, a))dt
�
�
�
�

�
�
�
�

+ g(zT, m′
T) � g(zT, mT)

�
�

�
�, 

and the right-hand side vanishes as m′ → m by compactness of A and K and by joint continuity of f and g. Also 
using the continuity assumptions of Theorem 3, we are, therefore, in the setting of Theorem 6.

Recalling again that h(u, WPα∗

(u)) � 0 for all u where again Pα∗

:� L(U, Xα∗

), Theorem 6 yields

lim
n→∞

sup
un∈In

1
n
Xn

i�1
E | h(un

i , Mn,un,i)| � 0:

Apply this in (54), and then, send ɛ → 0 to deduce Theorem 3.

7.3. Sampling Kernels
We finally prove Theorem 4. Again, let Pα∗

:� L(U, Xα∗

), and write Pα∗

(du, dx) � duPα∗

u (dx) for its disintegration. To 
prepare for an application of Theorem 4, let us first argue that {Pα∗

u : u ∈ [0, 1]} is tight. Note that Pα∗

u is the law of 
the solution of the SDE

dXt � b(t, Xt,α∗(t, u, Xt))dt + σ(t, Xt)dBt, X0 ~ λu:

Because b and σ are bounded and {λu : u ∈ [0, 1]} is tight by assumption, the tightness of {Pα∗

u : u ∈ [0, 1]} follows 
easily (e.g., using Stroock and Varadhan [44, theorem 1.4.6]).

Now, recall that (ui)i∈N ∈ [0, 1]
∞, where [0, 1]

∞ is equipped with (Unif[0, 1])
∞, and ξn

ij � W(ui, uj)1i≠j for i, j ∈ [n]

in Theorem 4. As in (54), we have

ɛn
i (u1, : : : , un) ≤ 2E|h(ui, Nn,(u1,: : : ,un)

i )| + 8ɛC, (57) 

where we define Nn,(u1,: : : ,un)
i � 1

n
Pn

j�1, j≠i W(ui, uj)δXn,uj,j . Recalling that h(u, WPα∗

(u)) � 0 for all u, we may thus 
apply Theorem 7 to get

lim
n→∞

max
i∈[n]

E|h(ui, Nn,(u1,: : : ,un)
i )| � 0, for a:e: (ui)i∈N ∈ [0, 1]

∞
:

Combine this with (57) and then, send ɛ → 0 to complete the proof.

Remark 13. Theorem 4 could likely be strengthened to include a rate of convergence if one imposed further con
tinuity assumptions on f and g. The estimates stemming from Hoeffding’s inequality in the proof of Theorem 4
could, in principle, be traced through to yield exponential bounds on the measure of the set of (u1, : : : , un) ∈ [0, 1]

n 

such that maxi∈[n]ɛ
n
i (u1, : : : , un) > ɛ. See Aurell et al. [2, proposition 3] for a related result based on a clever appli

cation of the law of the iterated logarithm.

8. A Linear-Quadratic Example
In this section, we study a linear-quadratic model of flocking behavior, inspired by Carmona et al. [20] and Lacker 
and Soret [38], which is simple and yet, rich enough to exhibit an interesting dependence on the structure of the 
interaction matrix. This will also illustrate the relative simplicity of our formulation of graphon equilibrium. It 
should be noted that the model in this section does not fit into the standing assumptions imposed for the theoret
ical developments in Section 3. However, the definitions of the equilibrium require little adaptation for the set
ting considered.

We work in dimension d � 1. We shall now assume W ∈ L2
+[0, 1]

2 (i.e., the kernel is square integrable). For 
m ∈ P([0, 1] × R), recall the definition of the measure-valued function Wm : [0, 1] → M+(R) from (7). We define 
its mean Wm : [0, 1] → R by

Wm(u) �

Z

[0, 1]×R
W(u, v) x m(dv, dx), 

whenever this integral is well defined. The linear-quadratic model we study can be summarized concisely, as in 
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(12), as follows:

inf
α∈A

1
2E

Z T

0
α2

t dt + c|XT � WµT(U)|
2

� �

s:t: dXt � αtdt + σdBt,
µt � L(U, Xt), (U, X0) ~ λ ∈ PUnif([0, 1] × R):

8
>>><

>>>:

(58) 

Note that, in equilibrium, WµT(u) � E[W(u, U)XT] for a.e. u. In the notation of Section 3, we are choosing A � R 
and

b(t, x, a) � a, σ(t, x) � σ, f (t, x, m, a) � �
1
2 a2, g(x, m) ��c x �

Z

R
x m(dx)

� �2
:

Proposition 4. Assume W ∈ L2
+[0, 1]

2 satisfies ||W||L2[0, 1]
2 < 1 + (cT)

�1. Assume λ has a finite second moment:
Z

[0, 1]×R
x2λ(du, dx) < ∞:

Then, there exists a W equilibrium with associated control given by

α(t, u, x) �
c

c(T � t) + 1 (M(u) � x), 

where M ∈ L2[0, 1] is defined by

M :�
1

cT + 1 W Id �
cT

cT + 1 W

� ��1
ψ, (59) 

with ψ ∈ L2[0, 1] defined by ψ(u) :� E[X0|U � u]. Here, Id is the identity operator, and W is viewed as an operator on 
L2[0, 1] as defined in (4).

The assumption that ||W||L2[0, 1]
2 < 1 + (cT)

�1 ensures the existence of the inverse operator appearing in (59). 
Equilibria may fail to exist without this assumption. Indeed, if W ≡ 1 + cT, then the proof shows that there is no 
solution, unless E[X0 | U] � 0 a.s., in which case the solution is as before with M ≡ 0.

There is a notable appearance here of a common notion of centrality used in graph theory.
If X0 and U are independent, then ψ ≡ E[X0], and so,

M � E[X0]
1

cT + 1 W Id �
cT

cT + 1 W

� ��1
1 �

1
cT
E[X0] Id �

cT
cT + 1 W

� ��1
� Id

" #

1, 

where 1 is the constant function equal to one. The quantity Id � cT
cT+1 W

� ��1
� Id

h i
1(u) is precisely the Katz central

ity or α centrality of the vertex u ∈ [0, 1], or rather, the infinite-dimensional (graphon) analogue thereof, with 
parameter α � cT=(cT + 1). When X0 and U are not independent, we have instead a generalization of this central
ity concept in which a vertex u receives a weight proportional to the mean initial position ψ(u). Note if X0 � h(U)

is U measurable, then ψ � h.

8.1. Derivation of the Solution
We follow roughly the PDE approach discussed in Section 3.6. We fix for now a mean field term and compute 
the best response. That is, we fix for now a measurable function M : [0, 1] → R to play the role of the mean func
tion WµT. The stochastic control problem in (58) is associated with the Hamilton-Jacobi-Bellman (HJB) equation

∂tv(t, u, x) �
1
2 |∂xv(t, u, x)|

2
+
σ2

2 ∂xxv(t, u, x) � 0, v(T, u, x) � c(x � M(u))
2
:

The corresponding optimal control is α(t, u, x) � �∂xv(t, u, x). We solve this PDE explicitly using the ansatz 
v(t, u, x) � ψ(t) + 1

2 φ(t)(x � M(u))
2, where φ and ψ are functions on [0, T] to be determined. Plugging this ansatz 

into the HJB, we obtain that φ and ψ should satisfy

1
2 (x � M(u))

2
(φ′(t) � φ(t)2

) +
σ2

2 φ(t) +ψ′(t) � 0, 

for all (t, u, x) ∈ (0, T) × [0, 1] × R, along with the terminal conditions φ(T) � c and ψ(T) � 0. Matching coefficients, 
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we find

φ′(t) � φ2(t), ψ′(t) � �
σ2

2 φ(t):

This system is easily solved using the aforementioned boundary conditions:

φ(t) �
c

c(T � t) + 1 , ψ(t) �
σ2

2 log (c(T � t) + 1):

The optimal control is thus given by α∗(t, u, x) � � ∂xv(t, u, x) � c
c(T�t)+1 (M(u) � x), and the optimal state process 

thus satisfies the following dynamics:

dXt �
c

c(T � t) + 1 (M(U) � Xt)dt + σdBt, (U, X0) ~ λ:

Define µt � L(U, Xt) for each t ∈ [0, T]. Then, µ is a graphon equilibrium if and only if M(u) � WµT(u) (i.e., 
M(u) � E[W(u, U)XT]) for a.e. u ∈ [0, 1]. In other words, we will have an equilibrium if we can solve the 
(McKean–Vlasov) SDE

dXt �
c

c(T � t) + 1 (WµT(U) � Xt)dt + σdBt, (U, X0) ~ λ,

µt � L(U, Xt), t ∈ [0, T]: (60) 

To solve this equation, it is convenient to introduce an independent copy (eB, eU, eX) of (B, U, X). As a first step, we 
find an expression for VµT(U) for every kernel V ∈ L2

+[0, 1]
2, where we note by definition that

VµT(U) �

Z

[0, 1]×R
V(U, v) x µT(dv,dx) � E[V(U, eU)eXT |U]: (61) 

To find an expression for this, note that the SDE (60) implies

eXt � eX0 +

Z t

0

c
c(T � s) + 1(WµT(eU) � eXs) ds + σeBt:

Multiply by V(U, eU), and take conditional expectations given U, using independence of eB and eU, to get

Vµt(U) � E[V(U, eU)eXt|U]

� Vµ0(U) +

Z t

0

c
c(T � s) + 1(E[V(U, eU)WµT(eU)|U] � Vµs(U)) ds: (62) 

The second to last term simplifies by Fubini’s theorem:

E[V(U, eU)WµT(eU)|U] �

Z 1

0
V(U,eu)WµT(eu) deu

�

Z 1

0
V(U,eu)

Z

[0, 1]×R
W(eu, v) x µT(dv, dx) deu

�

Z

[0, 1]×R
V ◦ W(U, v) x µT(dv, dx):

Here, we define V ◦ W ∈ L2
+[0, 1]

2 by V ◦ W(u, v) :�
R 1

0 V(u,eu)W(eu, v) deu, which is exactly the kernel of the composi
tion operator V ◦ W, which we abbreviate as VW. We may thus write

E[V(U, eU)WµT(eU)|U] � VWµT(U):

Use this identity and differentiate (62) to find that (Vµt(u))t∈[0,T] obeys the differential equation
d
dt Vµt(u) �

c
c(T � t) + 1 (VWµT(u) � Vµt(u)):

It follows that Vµt(u) must be of the form

Vµt(u) � VWµT(u) + κ(u)(c(T � t) + 1), t ∈ [0, T], 
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for a u-dependent parameter κ(u) to be determined by the initial conditions. Setting t � 0 implies κ(u) � 1
cT+1 

(Vµ0(u) � VWµT(u)), and thus,

Vµt(u) �
ct

cT + 1 VWµt(u) +
c(T � t) + 1

cT + 1 Vµ0(u): (63) 

In particular, setting t � T and noting that VµT(u) depends linearly on the operator V, we find

V Id �
cT

cT + 1 W

� �

µT(u) �
1

cT + 1 Vµ0(u): (64) 

Choosing V � W Id � cT
cT+1 W

� ��1 yields

WµT(u) �
1

cT + 1 W Id �
cT

cT + 1 W

� ��1
µ0(u): (65) 

Note also that µ0 � L(U, X0), and so, for any kernel V, we have

Vµ0(u) � E[V(u, U)X0] � E[V(u, U)ψ(U)] � Vψ(u), 

where ψ(u) :� E[X0|U � u]. Combining this with (65) shows that M(u) � WµT(u) is given by (59).
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