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1. Introduction

This paper is about network-based generalizations of the now-standard mean field game (MFG) framework. The
latter was introduced in Huang et al. [32] and Lasry and Lions [39] to describe the large-n equilibrium behavior
of certain n-player stochastic games. Remarkably, the limiting models in MFG theory are typically quite tractable,
and for this reason, MFG theory developed a rich mathematical theory and a broad range of applications. How-
ever, the MFG framework is fundamentally limited to games in which players interact symmetrically. On the one
hand, MFG models can already incorporate heterogeneity in individual characteristics (and are often known to
economists as heterogeneous agent models) in the sense that players may face independent sources of randomness
and perhaps, their own type parameters. On the other hand, MFG theory is not well suited to modeling heteroge-
neity in the interactions between players, where distinct pairs of players have different interaction strengths. Het-
erogeneous interactions are the defining feature of network games, a well-developed framework that is widely
applied in very different contexts from MFG theory; see Jackson [34].

The range of applicability of MFG theory would increase dramatically if it could incorporate nontrivial net-
work structures or heterogeneous interactions while maintaining a tractable limiting (continuum) model. This is
a challenging prospect in general because different n-player networks may lead to very different limits as
n — oo, especially in sparse networks (Feng et al. [29], Lacker and Soret [38]). A natural first step is to understand
the range of network models for which the usual MFG remains the correct limit. There is reason to expect that
this is the case for sufficiently dense and approximately regular networks. This intuition was confirmed in our
recent linear-quadratic case study (Lacker and Soret [38]) and by Delarue [25] in a model set on dense
Erdds-Rényi graphs; Remark 6 gives a result of this nature as well. Similar ideas appeared in nongame-theoretic
models of interacting particle systems with interactions governed by networks, for which recent work has identi-
fied a certain universality of the mean field limit. See Bhamidi et al. [9], Coppini [21], Coppini et al. [23], Delattre
et al. [26], and Lugon [41] for diffusive dynamics and Basak and Mukherjee [3] for static Ising and Potts models.

There are many network models, however, for which the usual MFG limit is not correct. Several different
groups of researchers have recently proposed new continuum models as alternatives to the usual MFG based on
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the notion of graphons. Graphons are natural continuum limits for large dense graphs, and we refer to Lovasz
[40] for an overview. Essentially, a graphon is a symmetric measurable function W : [0, 11> = [0, 1], with W(u, )
representing the edge density between vertices u and v. For static games based on graphons, we refer to recent
work (Carmona et al. [20], Parise and Ozdaglar [42, 43]), and for dynamic games, see Cui and Koeppl [24] and
Vasal et al. [48] for discrete time and Aurell et al. [2], Bayraktar et al. [5], Gao et al. [30], and Tangpi and Zhou
[47] for continuous time. A related but distinct notion of graphon mean field games was developed in a recent series
of papers by Caines and Huang [13, 14], in which each node in the network contains a subpopulation with its
own mean field of players. There have been similar developments for nongame-theoretic models of interacting
diffusions, with recent work (Bayraktar et al. [4], Bet et al. [8]) developing a graphon-based limit theory.

The goal of this paper is to advance the theory of graphon-based analogues of mean field games or graphon
games. Most importantly, we are able to achieve a level of tractability that is comparable with traditional mean
field games in the following sense. The mean field game framework is based on a fixed point problem describing
the law of the state process X = (Xt);¢[o 1} of one “typical” player, which represents a significant dimension reduc-
tion when compared with a large n-player game. On the contrary, prior graphon-based models work directly
with a continuum of players, which arguably does not provide a significant simplification and leads to the serious
technical challenges discussed. The graphon game model that we propose is a fixed point problem for the joint
law of (U, X), where X is the state process coupled with a Unif[0, 1] random variable U, interpreted as the
“vertex” or “label” of the player in the graphon.

In fact, we show that our notion of graphon game is equivalent to a classical MFG model in which (U, X)o7
is treated as the state process. Whereas the MFG model can be captured by a single forward-backward partial
differential equation (PDE) system on [0, T] x RY, prior graphon-based models involve a continuum of coupled
PDEs, and our model can be captured by a single forward-backward PDE on [0, T] x R**!. Despite this equiva-
lence, it is only in special situations that one can directly apply prior theorems from the MFG literature; the coef-
ficients are discontinuous unless the graphon is a continuous function, and the diffusion coefficient of
(U, Xt)1efo,7) is always degenerate. Hence, although we adapt known MFG methods for our proofs (mainly Lacker
[35]), we must tailor them to the graphon setting. Moreover, the finite games we study, which are governed by
general interaction matrices that converge in cut norm, are quite different from the finite game naturally associ-
ated with the equivalent MFG, and our finite games thus require a significantly more involved construction for
approximate equilibria. See Section 3.6 for details.

Working directly with a continuum of players driven by a continuum of independent Brownian motions (B"),.¢[g 1
raises significant technical difficulties stemming from the fact that # — B"(w) is not Lebesgue measurable for a.e. w.
In a linear-quadratic setting, this issue was confronted directly in Aurell et al. [2] via sophisticated measure-theoretic
machinery, namely the notion of Fubini extensions from Sun [45]. In Bayraktar et al. [4], the issue was carefully avoided
by arguing that the laws L£(X") of the state processes (X"),[o,1; depend measurably on u, and this is good enough for
their purposes. Other works, such as Bet et al. [8], do not explicitly address this issue. By focusing on the joint law of
(U, X), we avoid the technical challenges of the continuum. Of course, a joint law of (U, X) with U uniform can be
identified with its disintegration (i.e., the conditional law of X given U), but this conditional law is uniquely deter-
mined only up to a.e. equality. Our notion of graphon game thus encodes less information than a model with a true
continuum of players, as we may make statements about almost every player but not about every player. However, this
minor loss of information brings significant mathematical advantages. First, it avoids the aforementioned measure-
theoretic difficulties. Second, it permits a simple topological setting, allowing us to use the weak topology on
P([0, 1] x RY), in which compacts are far more abundant when compared with the uniform or L¥ topologies on spaces
of functions [0, 1] — P(R?) employed in some prior works (e.g., Caines and Huang [13]).

Using our new graphon game formulation, we prove several fundamental results under fairly general assump-
tions on the model inputs. First, we prove the existence of an equilibrium that is Markovian in the sense that the
control is a function of (¢, U, X;). We also show uniqueness under a graphon version of the Lasry-Lions monoto-
nicity assumption. See Section 3.4 for these results. Our new framework allows us to handle, with relative ease,
far more general setups than were considered in prior work. For instance, in prior work, the interactions are pair-
wise in the sense that the effect of the other players j#i on a player i is given by a quantity of the form

‘1Z] 1 &ih(X, XT), where & is an n X n interaction matrix. More generally, we are able to treat higher-order inter-
actions depending on the empirical measure n~ Z] 1&ij0xi, which admits a simple continuum analogue (defined
in Section 2.2) in terms of the joint law of (U, X).

Our most important results justify our new formulation by showing that any graphon game equilibrium can
be used to construct approximate equilibria for the n-player game when the latter involves an interaction matrix
that converges to the given graphon in the cut norm (or more generally, in the strong operator topology,
although this generalization does not complicate our proofs). This is the most challenging part of our work. The
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precise notion of approximate equilibrium can take various forms; the €} error may be different for each player i,
and €}’ may vanish in an averaged or uniform sense, depending on the structural assumptions (such as continu-
ity) imposed on the graphon. See Section 3.5 for precise statements. Prior work on graphon games, with a few
exceptions, has assumed the n-player game to be set on a specific exchangeable random graph “sampled” from
the graphon in the usual manner, which enjoys particularly strong convergence properties as n — co. It is more
general and also, arguably more natural to start from an interaction matrix (or graph) for n players and see where
it converges rather than constructing a specific n-player network with a desired limit in mind. This in a sense
makes the n-player game the starting point of the model rather than the graphon game. This perspective is
shared by Bayraktar et al. [5], Cui and Koeppl [24], and Gao et al. [30], although these papers impose various
restrictions on the graphs and graphon that our main result (Theorem 2) does not need.

Lastly, to illustrate the relative simplicity of our framework, we study in Section 8 a linear-quadratic model of
flocking type similar to Carmona et al. [19] and Lacker and Soret [38]. We explicitly solve the model in terms of a
centrality index of a given graphon.

Section 2 introduces the basic notions of kernels and graphons that will be used in the paper. Then, Section 3
presents the main results in full detail.

1.1. Common Notation

We write [n] := {1,...,n} for n € N. For a random variable X taking values in a measurable space, we write £(X)
for its law. For a complete separable metric space (E, d), we write M (E) for the space of nonnegative Borel meas-
ures of finite variation and P(E) for the sets of probability measures. We write (u, @) = [@du for u € M (E) and
suitably integrable functions ¢. We equip M. (E) with the usual topology of weak convergence, defined in dual-
ity with the space of bounded continuous functions. This topology is also induced by the bounded Lipschitz
norm (see Bogachev [10, theorem 8.3.2])

[lullp, == sup /(pd‘u:(p:E—ﬂR, lpl <1, supwsl . 1)
E sy Aloy)

We write C([0, T]; E) for the space of continuous functions [0, T] — E, always equipped with the supremum dis-
tance (x,x’) — supte[O,T]d(xt,x;).

We write Unif[0, 1] to denote the uniform (Lebesgue) measure on [0, 1]. Similarly, Unif(I) denotes the uniform
probability measure on any interval I. For a Polish space E, let us also write Puypi([0, 1] X E) for the set of Borel
probability measures on [0, 1] x E with uniform first marginal. Any p € Pypie([0, 1] X E) admits the disintegration
p(du,dx) = duy, (dx), with [0, 1]5u + u,, € P(E) being Borel measurable and uniquely defined up to a.e. equality.
The space E will typically be either R? or the path space C* := C([0, T]; R?).

2. Kernels and Graphons

In this section, we give a brief summary of the notion of graphon relevant to our work, most importantly intro-
ducing (in Section 2.2) its associated operator, which will play a central role. We borrow most terminology from
Lovasz [40]. A graphon is typically defined as a symmetric measurable function [0,1]* — [0, 1]. More generally, a
kernel is any element of L![0,1]* (i.e., an integrable Borel-measurable real-valued function of [0,1]?).

We work with kernels belonging to L [0, 1]%, the set of nonnegative elements of L' [0, 1]%. We think of [0, 1] as index-
ing a continuum of possible locations or vertices, with W(u, v) representing the (weighted) edge density between them.
We notably do not require our kernels to be graphons (bounded or symmetric), which brings certain advantages in the
examples. Also, we work with labeled rather than unlabeled kernels (Lovasz [40], sections 8.2.1 and 8.2.2).

For n €N, the space of n X n matrices embeds into the space of kernels as follows. For an n X n matrix &, we
introduce the associated step kernel

We(u,v):=&;, for (u,0) €I} x I,

where [[' := [(i — 1)/n,i/n), fori=1,...,n—1, and I} :=[(n—1)/n,1]. )

2.1. The Cut Norm
Following Lovasz [40, chapter 8.2], we define the cut norm on L'[0,1]* by

7

[IW]|, := sup
51,5

/ W(u,v)dudo
S] Sz
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where the supremum is over pairs of Borel sets 51,5, C [0, 1]. (Technically, this is merely a seminorm unless we
identify functions that agree a.e.) The cut norm is clearly weaker than the L' norm:

1 1
WL < Wl 1 = / / W (w, 0)| dudo. 3)
0 JO

The cut norm is convenient in part because many natural random graph models converge in cut norm but not in
L'[0,1]*. We provide two examples where the convergence is well known.

Example 1. Let £" be the adjacency matrix of an Erdés—Rényi random graph G(n,p,). If p, = p is fixed as n — oo,
then W; converges in cut norm to the constant graphon W = p. Allowing unbounded kernels allows one to treat
sparser regimes. Instead of assuming p,, to be constant, assume merely that np, — oo as n — co. Then, Wy, con-
verges in cut norm to the constant graphon W = 1. See Borgs et al. [11, theorem 2.14(b)] for a more general result.

Example 2. Given a graphon W (i.e., a symmetric and measurable function from [0,1]* to [0, 1]), one can define
two natural graphs on the vertex set [n]. First, let Uy, ..., U, ~ Unif[0, 1] be independent, and order them
Uy <--- < Uy. Then, for i # j, either

1. connect vertices (i, j) with probability W(U;, U;) or

2. assign weight W(U;, U;) to the edge between (i, j).

Note that the latter defines a weighted graph and that the former defines a simple graph. The step kernel asso-
ciated with the adjacency matrix converges in probability in cut norm to W in either case and in L' norm in the
latter case. See Borgs et al. [11, theorem 2.14] for the proof along with related sparse graph constructions for ker-
nels W, which are not necessarily bounded.

2.2. Operators Associated with Kernels
To a kernel W € L[0,1]%, we associate the operator W : L*[0, 1] — L'[0, 1], defined by

1
Wo(u) := / W(u,v)p(v) do. 4)
0
The resulting operator norm is equivalent to the cut norm (Lovasz [40, lemma 8.11]):
Wl < [Wllewo1 < 4IWII, ©)
where ||W/|o_; := sup {IWell.1o,17 : ¢ € LT[0, 1], || < 1}. (6)

We work most often with the strong operator topology for operators on L[0, 1] — L![0, 1]. We say that a sequence
W, € L'[0,1]* converges in the strong operator topology to W e L'[0,1]* if ||W,p — WollLijo,1 — 0 for every
@ € L*[0, 1]. Convergence in cut norm implies convergence in strong operator topology by (5). Although the cut
norm is the most common in the graphon literature, working more generally with the strong operator topology
leads to no increase in difficulty in any of our proofs.

A key object in our paper is a more general operator associated with a kernel W € L}r[O,l]z. Given a Polish
space E and a probability measure m on [0, 1] X E, we define a measure-valued function Wm : [0, 1] — M.(E) by

W (u) := / W(u, )8, m(dv,dx). (7)
[0, 1]XE

To be clear, this measure acts on a bounded measurable function ¢ : E — R by
(Wm(u), @) = / W(u,v)p(x) m(dv, dx).
[0, 1]XE

Note that if W = 1, then Wm(u) is exactly the second marginal of m.

To foreshadow how we will use this operator, think of the measure Wmi(u) as representing a continuous ver-
sion of the neighborhood empirical measure around a vertex u. Indeed, suppose x1, ..., x, € E represent state var-
iables of players 1,...,n, and let £ = (éij) denote an n X n matrix representing interactions. The influence of the
other players on player i is given by the neighborhood empirical measure

1 n
M; 7; &0, € M. (E).
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Suppose u1, ..., 1, € [0, 1] represent labels of the n players, with u; € I for each i. The label-state empirical meas-
ure of the entire population is given by

1 n
M= ;;(S(lu,xi) € P([0,1] X E).

Using the step kernel from (2), the function WzM then encodes all of the neighborhood empirical measures in
terms of the label-state empirical measure in the sense that

1< 1<
WgM(ui) = E E Wg(ui, u]-)éx/. = ; E Ei]‘(sx/. = Mi.
=1 j=1

Remark 1. The two operators both denoted W, defined in (4) to act on real-valued functions and in (7) to act on
measures, are not as different as they might at first appear. First, note that the former definition extends readily
to functions ¢ with values in suitable vector spaces. Suppose m has uniform first marginal so that by disintegra-
tion, we may write m(du, dx) = dum,(dx). We may then write Wm(u) = fg W(u,v)m,dv, which has the form of (4)
but with the measure-valued function . in place of the scalar function ¢.

Example 3 (Laplacian Matrices). A natural setting, studied for instance in Delarue [25] and Lacker and Soret [38],
arises from the so-called random walk Laplacian of a connected graph on n vertices. Let us write i ~ j if two vertices
i and j are neighbors in this graph, and let d; denote the degree (number of neighbors) of vertex i. Then, & is
defined by setting &; =n Jdiifi~jand & ij = 0 otherwise. In this case, M; = d%ZJNi 0y, is the uniform measure over
the states of the neighbors of i.

3. Main Results
In this section, we define precisely the n-player and graphon game models. The following assumptions are in
force throughout the paper.

3.1. Standing Assumptions
We are given dimensions d,dy € N; a time horizon T > 0; a compact metric space A representing the set of actions;
and bounded continuous functions

b:[0,T] xR x A — R? 0:[0,T] x RY — R,
F:00,T] xR x M, (R)x A —R g:RIx M (R = R.

Assume that ¢ is Lipschitz and that 6" is uniformly nondegenerate (i.e., bounded from below in semidefinite
order by a positive constant times the identity matrix). Assume further that for each (t,x,m) € [0, T] X R x M,
(R%), the following set is convex:

{(b(t,x,a),2):a € A, z<f(t,x,m,a)} CR? x R. (8)

Finally, we are given an initial distribution A € Pyn([0, 1] X R).

These assumptions can certainly be generalized, particularly the boundedness. We prefer to minimize techni-
calities in order to focus on the new features of the graphon setting. The final convexity assumption is common
in the control literature; it holds when A is a convex subset of a vector space, b is affine in 4, and f is concave in g,
which includes in particular the setting of relaxed controls to which one can always lift the problem if the convex-
ity assumption is not initially satisfied (Lacker [35]).

The most notable restriction is that we do not include any interaction term within the functions b or o. This sig-
nificantly simplifies the existence theorem and the approximate equilibrium construction. The former would
easily generalize, but the latter would require a satisfactory limit theory for graphon-based interacting stochastic
differential equations (SDEs). Such a limit theory is a significant undertaking in its own right and has seen only
very recent development, so far only for scalar interactions. By excluding interactions from (b, ), we avoid this
separate issue and focus more on the game-theoretic aspects of graphon models.

We work with Markovian controls throughout the paper, but the framework adapts easily to different kinds of
controls, such as open loop.
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3.2. Finite Games

Let n € N denote the number of players. Each player may choose a control from .4,, the set of measurable func-
tions from [0, T X (Rd)" — A. For any vector of controls & = (1, . ..,a,) € A}, there exists a unique solution X" =
(X"1,...,X"") of the SDE system

dX = b(t, X[, ai(t, X"))dt + o(t, X")dBl,  Xp'=x,

where B!,...,B" are independent dy-dimensional Brownian motions and x}" are given initial conditions.

The boundedness of b and Lipschitz continuity of ¢ ensure that this SDE system admits a unique strong solu-
tion (Veretennikov [49, theorem 1]).

Let &" = (E;’-) denote an n X n matrix with nonnegative entries, called the interaction matrix. Throughout this
paper, we will assume that & = 0 for all 7; if £" is the adjacency matrix of a (weighted) graph, this is equivalent to
assuming that there are no self-loops. This assumption is natural and simplifies the exposition, but it is not hard
to generalize. A key role is played by the neighborhood empirical measures defined for each player i € [1n] by

1 E
MY = HZ E50is ©9)
j=1

which is a random element of M, (R?). For @ = (ay,...,a,) € A", the objective function of each player i € [n] is
defined by

Ji(e) :=E[ /0 f, X, MY, aq(t, X)) dt + g(X7, M) | (10)

For e = (e1,...,€,) €[0,00)", an e-Nash equilibrium is defined as any a = (ay, ..., a,) € A}, satisfying for all i € [n]

Jila) > sup Ji(as, ..., i1, B, i1, ..., ) — €.
BeA,
We will not state any theorems about n-player games until Section 3.5, but it will inform our definition of the
appropriate graphon model in the following section.

3.3. Graphon Games

For a kernel W e L1[0,1]%, we define the graphon game associated with W as follows. Let Ay denote the set of
measurable functions [0,T] x [0, 1] x RY — A. Let (Q, F,F,P) be a filtered probability space supporting a d-
dimensional F-Brownian motion B and Fy-measurable random variables U and X taking values in [0, 1] and R?,
respectively. The given joint law of (U, Xy) is denoted A, and its first marginal is assumed to be uniform; that is,
U ~ Unif[0, 1]. For a € Ay, the state process X is the unique solution of the SDE

axy =b(t, X7, at, U, X9))dt + o(t, X{)dBy,  X{j = Xo. (11)

Strong well posedness of this SDE follows easily from Veretennikov [49, theorem 1] under our standing assump-
tions. Recall in the following the meaning of Wy, defined in (7), as well as the notation Pyn([0, 1] X E) for meas-
ures on [0, 1] X E with uniform first marginal.

Now, to define our notion of equilibrium, suppose we are given a measure flow p = (t,)icjor) € C([0,T];
Punit([0, 1] X R?)) representing the label-state joint distribution at each time. In response to this given u., the
objective of a typical player is to choose « € Ay to maximize

T
Jw(p,a):=E [/0 f& X, W, (U), alt, U, X7))dt + (X7, Wur(U)) |

The measure Wy, (U) here is the natural graphon analogue of the neighborhood empirical measure, as discussed
in Section 2.2, when a player is given the uniformly random label U.

Definition 1. We say that u. € C([0, T]; Pun([0, 1] X RY)) is a (Markovian) W equilibrium (or a graphon equilibrium
when W is clear from context) if there exists a* € Ay satisfying

Jw(u, ') = sup Jw(u,a) and p,= LU X)), Vie[0,T].

acAy

Any such a” is called an equilibrium control for p .
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We might describe this fixed point problem loosely but compactly as follows:

T
a" € arg max E {/ (&, XT, W, (U), ap)dt + (X7, Wu(U))
a 0

s.t. dX® = b(t, X2, ay)dt + o(t, X*)dB,,
Uy = E(u/ X?)/ (ur XO) ~ A

(12)

For comparison, we also state the classical definition of a mean field game equilibrium in the case where there is
no graphon present (or W = 1). Note that the space A; of measurable functions [0, T] x R? — A may be identified
with the subspace of Ay consisting of controls that do not depend on the uniform variable U (i.e., functions of
the form a(t,u,x) = a(t,x)). We say that v. € C([0, T]; P(R)) is a (Markovian) mean field equilibrium if there exists
a* € A; satisfying

Ji(v.,a*)=sup i(v,a) and v;=L(X¥) Vte[0,T],

aE.A1

where we define
T
]1(1/.,&) =E |:/ f(t/ X?,Vt, a(t, X?))dt +g(XT/VT) .
0

When W =1, recall that Wm reduces to the second marginal of m(dv,dx); it follows that if 1 is a W equilibrium,
then the second marginals form a mean field equilibrium. The converse is true but somewhat more subtle
because controls for mean field equilibria are allowed to depend on the auxiliary random variable U. See Propo-
sition 1 for a more general relationship between these two equilibrium concepts.

3.4. Existence and Uniqueness of Equilibria
Recall in the following that we are always working under the standing assumptions stated at the beginning of
Section 3. The following is proven in Section 4, following the strategy of Lacker [35].

Theorem 1. Let W € L}r [0, 1]2. Then, there exists a W equilibrium.

For certain W, a mean field equilibrium can be identified with a graphon equilibrium. This is clear when
W =1, as noted, but in fact holds more generally.

Proposition 1. Let W € L1[0,1]. Assume that
1
/ W(u,v)dv=1, ae uel0,1]. (13)
0
Suppose v. € C([0, T]; P(R)) is a mean field equilibrium, and let «* € Ay be an equilibrium control for v.. Define
p, = Unif[0, 1] X v;. Then, . = (4,)ef0,1) i @ W equilibrium, and (t,u,x) + & (t, x) is an equilibrium control for y..

The condition (13) can be interpreted as saying that the graphon W has constant out degree or simply, constant
degree if W is assumed symmetric. A similar principle appeared in the uncontrolled setting in Coppini [22, corol-
lary 2.4].

Example 4. Let us revisit Example 3, where G,, is a simple connected graph on vertex set [1] and & = (n/d:)1;-).
The neighborhood empirical measures become

1 1
M:”l = E E é;éxﬁ,/ = d_ E 6X:r,j.
=1 P

This models a scenario in which players interact symmetrically with their neighbors in the underlying graph G,,,
as in Delarue [25] and Lacker and Soret [38]. It is not clear if there is a simple (e.g., degree-based) characterization
of the situations where Wy converges in the strong operator topology (or in cut norm). However, if a limit
W — W does exist, then W must satisfy the constant-degree condition of Proposition 1. Indeed, for each i € [n]
and each u € I}, we have

1 n n 1 ) n 1
/0 Wen(u,v)do = ZAWEn(u, v)dv = Z; ‘Si]‘ = Zzl{i~j} =1,
j=1 7% j=1 =1 %

and the left-hand side, as a function of u, converges in L![0, 1] to fé W(u,v)do.
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We can further show uniqueness of the equilibrium under an additional assumption adapted from the classical
Lasry—Lions monotonicity condition.

Proposition 2. In addition to the standing assumptions of Section 3, assume the following.
1. Separable f. There exist two functions fy, f> such that

f(t,x,m,a) = fi(t, x,a) + fo(t, x, m).

2. Unique optimal controls. For each u € C([0, T]; Puns([O, 1] x RY), the supremum in sup,, AU]W(y,oc) is attained
uniquely (up to Lebesque a.e. equality).
3. Monotonicity. For each my,my € Pun([0, 1] X RY) and t € [0, T], we have

/[0 I Rd(g(x, Wi (1)) — g(x, Wi (1)) (m1 — mp)(du,dx) <0

L Gt Wom 10) — ot 5, W) omy — )l ) <0 (19

Then, there exists a unique W equilibrium.

The proof is given in Section 4.6 along with a couple of noteworthy examples of functions g satisfying (14) (see
Remark 11). The proof follows by reducing the graphon game to a classical mean field game, explained in more
detail in Section 3.6.

3.5. Approximate Equilibria

Throughout this section, we are given W € L1 [0, 1]%, and we let t. € C([0, T]; Puni([0, 1] x R?)) denote a W equili-
brium and a* an equilibrium control for y.. Also, as in Section 3.2, we are given an arbitrary n X n matrix " with
positive entries and zeros on the diagonal, &}; = 0. We define the step kernel W, as in (2).

In this section, we explain how the graphon game defined in Section 3.3 gives rise to approximate equilibria
for the finite game defined in Section 3.2, when the underlying kernels Wg: from (2) converge in a suitable sense
to the kernel W. To provide context for the following results, let us briefly recall the analogous construction in
mean field game theory. If @ € A; denotes a mean field equilibrium control, then players i € [1] in the n-player
game are assigned the controls a}(t,x1,...,x,) = a(t,x;). The vector (af,...,a”) is then shown to constitute an €”
equilibrium, where €" — 0. This strategy dates back to the earliest work on mean field games (Huang et al. [32]);
see Carmona and Delarue [18, section 6.1] or Lacker [37, section 2.4] for the closed-loop case.

This strategy requires several adaptations in the present context. First, because players are not exchangeable,
we may have a different error € for each player. Moreover, different modes of convergence to zero can make
sense in different contexts, such as 13", €7 — 0 or maxe[,je!’ — 0. This is also highlighted in our case study
(Lacker and Soret [38]).

A second and more delicate point in our setting is in how to deal with labels. A W-equilibrium control a* € Ay
depends on an additional Unif[0, 1] variable, which we have interpreted as the label (or vertex) of the player. In
order to apply this control a* in the n-player game, we must specify which labels to assign to each player. In the
definition of the step kernel W, the player i in the n-player game is associated with the interval I} defined in (2),
and it thus makes sense to choose for player i some label u € I''. We then assign to player i the control

o () 1= (). (15)

The error €/ (u") then depends additionally on the choice of labels u" = (uf, ..., u};), and the question again arises
as to the sense in which we can expect these errors to vanish as n — oo. In general, we only expect these errors to
vanish in probability, with respect to a random choice of u", but we will see that stronger continuity assumptions
allow us to strengthen the convergence to be (essentially) uniform in the choice of u".

Let us define precisely the function €} : [0,1]" — [0,00). Fix u" = (u},...,u}') €[0,1]" in this paragraph. Using
the construction (15), define o**" = (a;l’u'll, .. ,aZ’”Z) € A7 Recall that A(du,dx) = duld,(dx) denotes the given joint
law of (U, Xp) in the graphon game. Consider the n-player game as described in Section 3.2, with initial condi-
tions (Xj")i; chosen independently with X{" ~ Ayr. With this choice of initialization, we finally define the non-

negative number

nul nul nul! ' n
el(u") :=sup J; (ocl LB e ””) — Ji(a™).
BeA,
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By definition, &' is a €"(u") equilibrium, where €"(u") = (¢/(u"),...,€!(u")). This definition makes sense only if

we prespecify a version of the disintegration u+— A,, and otherwise, we should understand €"(u") to be
uniquely defined only up to u"-a.e. equality.

We first show in full generality that € — 0 in an averaged sense. Recall from Section 2.2 the definition of the
strong operator topology for operators from L*[0, 1] to L'[0, 1], and recall that convergence in this topology is
implied by convergence in cut norm.

Theorem 2 (General Kernel). Assume the disintegration u+— A, admits a version such that {A, :u € [0, 11} is tight.
Assume Wen converges in the strong operator topology to W, and also,

lim — Z(g) =0. (16)

H—)oo
i,j=1

Then, if for each n €N, (U}, ..., UL) are independent with U!' ~ Unif(I}!),
lim - ZE [eruy,...,un) =o.

The proof of Theorem 2 is given in Section 7 along with the proofs of the two other theorems of this section. The
bulk of the analysis is presented first in Section 6 in a more general setting that clarifies the key points.

Remark 2. The assumption (16) is very mild. It holds trivially if |c§§7].| are uniformly bounded. If £" is 1/p, times
the adjacency matrix of the Erdés-Rényi graph G(n,p,), then (16) is easily shown to hold in probability when

np, — 0.

Remark 3. We have assumed f and g to be bounded, which means € are uniformly bounded. Hence, the conclu-
sion of Theorem 2 is equivalent to saying that €] (U, ..., U};) — 0 in probability, where I, ~ Unif([n]). In other
words, for randomly assigned labels from I} X---x I'' and for a randomly chosen player from [#n], the error is
small. Note that this does not rule out the possibility that certain players and label assignments have large errors
€!', but the fraction of such players and label assignments is negligible.

Our next result strengthens the mode of convergence at the price of requiring stronger continuity assumptions
both on the graphon and on the optimal state process. Recall in the following that C* = C([0, T];R?), and (U, X*")
is defined as in Section 3.3.

Theorem 3 (Continuous Kernel). Assume the following.
1. The map [0, 1]2u +— W(u,v)dv € M_([0, 1]) is continuous.
2. The disintegration [0, 1]2u +— L(X* | U =u) € P(C?) admits a continuous version.
Assume that (16) holds and that We» converges in the strong operator topology to W. Then,

lim esssup Ze”(u“) 0.

—00
N0 e <y T

Moreover, if assumption (1) holds, then assumption (2) holds under the following additional conditions.
2a. The disintegration [0, 1]Dur— A, € P(RY) admits a continuous version.
2b. A is a compact convex subset of R¥ for some k € N.
2¢. o(t,x) = o is constant.
2d. For each (t, x), a +— b(t, x, a) is affine, and a +— f(t, x, m, a) is strictly concave.

To be clear, the two continuity assumptions in Theorem 3 mean that fo W(u,v)h(v)dv and IE[(p(X“ )| U =u]
depend continuously on u for all bounded continuous real- Valued functions & and ¢ on [0, 1] and C?, respec-
tively. In particular, Theorem 3(1) is true if the function W:[0,1]* — R is itself continuous. These continuity
assumptions allow a finer pointwise control over quantities derived from the graphon, ensuring, for instance,
that the quantities fo W(u!,v)h(v)dv and E fo W(U!,v)h(v)dv are close, uniformly in the choice of u € I, with
again U} ~ Unif(I[}'). Stronger continuity assumptions on W were used in Bayraktar et al. [4, 5] and Tangpi and
Zhou [47].

Remark 4. Assumption (2) in Theorem 3 can be difficult to check, which is why we provide the more tractable
sufficient conditions (2a)-(2d). However, assumption (2) is actually automatic in the context of Proposition 1, as
L(X¥|U =u) = L(XY) is constant in u. For an alternative sufficient condition, it is not hard to show that if (1) and
(2a) hold and if the control a*(t, u, x) depends continuously on (u, x) for each t, then assumption (2) holds.
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Remark 5. Analogously to Remark 3, the conclusion of Theorem 3 is equivalent to the following. For every
€,0 € (0, 1), it holds for sufficiently large n that

{ie[n]:e'W")>e}|<nd, forae u"el]x--XI.

In other words, for large enough n and for a.e. choice of labels, we have an (€, 6) equilibrium in the sense of Car-
mona [16] (also used in Cui and Koeppl [24]); no more than a fraction of 6 of the players is further than e from
optimality.

Remark 6. Our approximate equilibrium results can be combined with Proposition 1 to yield interesting results
on the “universality” of the mean field game approximation. If W € L1 [0,1]° satisfies (13) and if W — W in the
strong operator topology, then a mean field equilibrium (as opposed to a graphon equilibrium) can be used in
Theorem 2 to construct approximate equilibria for the n-player games. This justifies the intuition mentioned in
Section 1 that the usual MFG approximation remains valid for sufficiently dense and approximately reqular net-
works. Note as in Remark 4 that condition (2) of Theorem 3 holds automatically in this case; hence, if also u
W(u,v)dv € M,([0, 1]) is continuous (e.g., if W = 1), then we can also apply Theorem 3 as well.

Our final result on approximate equilibria deals with the case where the interaction matrix £" is the weighted
adjacency matrix obtained by sampling from the graphon W in a standard manner, as in Example 2(2).

Theorem 4 (Sampling Kernel). Let W € L1 [0, 1]* be bounded. Assume the disintegration u +— A, admits a version such
that {A, : u € [0, 1]} is tight. Then, the following holds for almost every choice of (14;);e € [0,1]%, where [0,1]% is equipped
with the infinite product measure (Unif[0,1])™. Set 5’7- = W(uj, uj)1iyj for i,j € [n] in the n-player game. Then,

lim maxe}(uy,...,u,) = 0.
n—oo IE[ ]

Remark 7. Our connection between the initial conditions (X;")/_, and the initial distribution A covers many natu-
ral cases. If (X ") are taken to be i.i.d. ~ A € P(RY) as is common in the MFG literature, then we can simply choose
AMdu, dx) = dul(dx). '

In general, the initial conditions X{" ~ A,» may be different for each player, although we do still require them
to be independent. For another example, a player with label u could have a nonrandom initial position h(u) for
some measurable function / : [0, 1] = RY, in which case the natural choice is A(du,dx) = dudy,) (dx).

It is natural to expect more general results to be possible, in which we assume merely that the initial empirical

measure 2371, Oi/n, xu) converges weakly to A.

Remark 8. Another approach to justifying our graphon game formulation would be by studying the convergence
problem (i.e., the problem of analyzing the n — co behavior of the true n-player equilibria rather than constructing
specific approximate equilibria). We do not address this problem in this paper, which was already a difficult prob-
lem in mean field game theory (Cardaliaguet et al. [15], Lacker [37]), although we mention the very recent papers
(Bayraktar et al. [5], Tangpi and Zhou [47]), which obtain the first results in this direction.

3.6. Graphon Games as Mean Field Games and Their PDE Formulation

This section contains no theorems but illustrates how to recast the graphon equilibrium problem of Section 3.3 as
a classical mean field game. The point is simply to view the “label” variable as a state variable with trivial
dynamics. For a € Ay, the (d + 1)-dimensional process X" = (U, X%) is the unique solution of the SDE

dX; =b(t, X}, a(t, X)) dt +5(t, X, )dB;, (17)
where b : [0, T] x R¥*1 x A — R™! and 7 : [0, T] x R*! — R@*1*% are defined by

b(t,x,a) = (b(t,?c,a))’ olt,x) = <o(t(,)£°,a))'

where we write X = (u,x) for a generic element of R%! =R x R?. That is, the vector b and matrix & simply append
an additional zero row. Similarly, define f : [0, T] x R"! x P(R*"!) x A — R and 3 : R¥*! x P(R?*!) — R by

f(t, x,m,a) =f(t,x, Wm(u),a), g(x,m)=g(x, Wm(u)).

(Define f and g arbitrarily when u ¢ [0, 1].) The graphon equilibrium problem is then nothing but the standard
mean field game problem associated with the new coefficients (b,7,f,%). Indeed, a graphon equilibrium is a
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measure flow (i,),¢[o 77 such that there exists a* € Ay satisfying p, = C(Ya*) forall t € [0, T] as well as

/f(t X,y alt, X)) dt +3(Xr, )] —zujﬂEV FXT 1, B X)) dt + 3K, ) |

It must be stressed that recasting the graphon equilibrium problem as a classical mean field game in this manner
does not significantly simplify its analysis (except in the proof of uniqueness, Proposition 2). There are several
reasons that existing theory cannot be applied directly in this framework.

e The kernel W :[0,1]* — R is not a continuous function in general. It is in some cases, but in many interesting
cases, it is not (e.g., the stochastic block model). If W is discontinuous, then Wy, (1) is discontinuous in #, and thus,
the objective functions f and g are discontinuous functions of the state variable x.

e In the analysis of approximate equilibria, the natural n-player game of Section 3.2 is not equivalent to the one
obtained by plugging empirical measures into the objective functions (f,g). The graphon is different in the n-player
game, being W« instead of W, and this makes our convergence analysis more difficult.

e The diffusion matrix 5o ' of the (d + 1)-dimensional process X is always degenerate, even if that of the original
d-dimensional state process X is not.

Although it does not help with our analysis, recasting the graphon model as a mean field game does reveal
what the appropriate PDE formulation should be in the spirit of Lasry and Lions [39]. (Similarly, a forward-back-
ward SDE formulation in the spirit of Carmona and Delarue [17, 18] is possible as well, but we omit it here.)
Indeed, taking o to be the identity matrix for simplicity, the value function v(t,u,x) and density flow p(t,u,x)
should (formally) obey the PDE system

0= dyo(t,u,x) +sup [b(t,x,a) - Volt,u,x) +f(t,x, Wu,(u),a)] + = A <o(t, u,x)
acA

at!’l(tl u, x) = leX(b(t/ X, Zx\(t/ u, x))‘u(t/ u, x)) + E Ax#(t/ u, x)
where a(t,u,x) = arg me{aﬁ\x[b(t, x,a) - Vyo(t,u,x) +f(t,x, Wu,(u),a)],

and o(T,u,x) = g(x, Wy (u)), u,=A.

Notably, there are no derivatives with respect to u. We will not claim to perform any rigorous analysis of this
PDE system. However, it is worth noting that a verification theorem for classical solutions only requires v to be
once differentiable in t and twice in x, and no differentiability with respect to u is needed. This observation will
be used implicitly in our linear-quadratic example in Section 8. Lastly, we mention that the system of PDEs could
be formally interpreted as a continuum of conditional measure flows ((t,x) F— u(t, u,x)),.¢[0,1, which is similar in
spirit to the PDE systems discussed in Caines and Huang [13].

3.7. Organization of the Paper

The remaining sections give the proofs of the main theorems with the exception of Section 8, which works out a
linear-quadratic example. Section 4 proves the existence and uniqueness as stated in Section 3.4 and may be read
independently of Sections 5-7, which deal with approximate equilibria. Similarly, the linear-quadratic example of
Section 8 is independent of Sections 4-7. Sections 5 and 6 provide preliminary results for the proofs of Section 7,
namely the dependence of the optimal control on the labeling and the convergence of neighborhood empirical
measures under various assumptions, respectively. Section 7 is devoted to the proofs of the theorems of Section 3.5.

4. Existence of Graphon Equilibria

This section proves Theorem 1 by adapting the strategy of Lacker [35]. In particular, we will make use of the
notion of relaxed controls developed in Section 4.2. In this section, we fix a graphon W e L1[0,1]*. Note that W is
not necessarily bounded.

4.1. Continuity of the W Operator
First, we compile some essential continuity properties of the operator W defined in (7). These results will be use-
ful in more general forms, so we work here with a Polish space E, which will later be either E = R? or the path
space E = ¢ = C([0, T|; RY). Recall that Pyni([0, 1] X E) is the set of probability measures on [0, 1] x E with uni-
form first marginal, endowed with the topology of weak convergence.

We first recall a well-known fact that continuity assumptions for test functions can be relaxed when dealing
with weak convergence of joint distributions with a common marginal.
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Lemma 1 (Beiglbock and Lacker [6, lemma 2.1]). Suppose h: [0, 1] X E — R is bounded and measurable, with h(u,-)
continuous on E for a.e. u € [0, 1]. Then, Pyni([0, 1] X E)Du +— (u, h) is continuous.

The next lemma is the main result of this section. Part (2) will not be needed but is illustrative and not much
longer to prove.

Lemma 2. The following continuity properties hold.
1. For a.e. u € [0, 1], the following map is continuous:

Punie([0, 1] X )3 = Wy(u) € M. (E).

2. Suppose that the map [0, 1]12u +— W(u,-) € (L'[0, 1], weak) is continuous. Then, for each i € Puyni([0, 1] X E) and
each bounded measurable function ¢ : E — R, the map u +— (Wu(u), ) is continuous.

3. Suppose that the map [0, 1]2u +— W(u,v)dv € M ([0, 1]) is continuous. Suppose 1 € Punit([0, 1] X E) is such that
there exists a version of the disintegration u v ., which is continuous. Then, the following map is continuous:

[0, 1]2u — Wu(u) € M (E).
Proof. We first prove Lemma 2(1). Because W € L! [0,1]%, it holds by Fubini’s theorem that W(u,-) € L'[0, 1] for
a.e. u € [0, 1]. Fix such a u as well as a bounded continuous ¢ : RY — R. Write

Wit = [ Wi oo, = [ ek,

where F, is the image of u under the map (v, x) = W(u, v)p(x). We first claim that
Pume([0, 1] X RY)Sp = F, € P(R)

is continuous. To see this, note for bounded continuous / : R — R that
(Fuliy= [ WO, 0)p(x) i ).
[0, 1]xR?

The bounded function h(W(u,v)¢(x)) depends continuously on x and measurably on v, and it follows from
Lemma 1 that u + (F,;, h1) is continuous on Pyn([0, 1] X RY). To finally deduce that [x F,(dx) depends continu-
ously on i € Pypnie([0, 1] x R?), simply note that we have the uniform integrability bound

/ X[ 1y Fru(dx) = / IW (1, 0)p (|1 gwia0)p()ir) p(d0, dx)
R [0, 1]xR?

1
<9l /O WG, o)1 gwor oy 40

for any r > 0, which tends to zero as r — oo because W(u, ) € L![0, 1].

To prove Lemma 2(2), fix p € Puni([0, 1] X E). Let u, — 1 in [0, 1], and let ¢ : E — R be bounded and continu-
ous. Let Y(v) =E[p(X) | U =v], for (U, X) ~ p. Then, 1p € L*[0, 1], and so, the weak convergence of W(u,,) —
W(u,-) in L'[0, 1] implies

1
(Wis(ut,), ) = /[ 1 Wl 2 e ) = / Wi(tty, 0))(0) do

1
— /0 W(u,0)¢(0)dv = (Wy(u), ).

The proof of Lemma 2(3) is similar to that of Lemma 2(2), except that we must simply note that ¢ is continuous
in order to justify the convergence. O

4.2. The Relaxed Formulation

A relaxed control is a measure on [0,T] X A with the first marginal equal to the Lebesgue measure. We will
denote V the set of relaxed controls, equipped with the topology of weak convergence, which makes V' a compact
(because A is compact) metric space. For each g€V, we can identify the measurable map ¢+ g, € P(A) that
arises from the disintegration q(dt, da) = dtq;(da), and that is unique up to (Lebesgue) almost everywhere equality.
Strict controls are relaxed controls g € V of the form q; = 0, for a.e. t for some measurable a : [0, T] — A.
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We will work in this section on the space Q:=V x [0, 1] x C". This Polish space is endowed with its Borel o
field. In the following, a generic element of Q) is denoted (g, u, x), and the coordinate maps on V, [0, 1], and C? are
denoted A, U, and X, respectively. The canonical filtration F = (F t)te[o,T] is defined by letting F; denote the ¢ field
generated by Aljg gxa, U and (Xs)seo -

Let C*(R”) denote the set of infinitely differentiable functions ¢ : R? — R with compact support, and let V¢
and V2@ denote the gradient and the Hessian of ¢, respectively. Define the generator L on ¢ € C®(R?) by

Lo(t,x,a) == b(t,x,a) - Vo(x) + %Tr (o0 (t,x)V2p(x)),
for (t,x,a) € [0, T] x R? x A. For XS CC‘”(R”’), we define a process Nf : Q — R by
NP u= @)~ [ Lpragsd),  te(oT)
J[0,t]xA

The set of adm1s51ble laws R is defined as the set of P € P(Q) satisfying

1.Po (U Xo) ' =Aand

2. for each ¢ € C*(RY), the process (N {)iefo,) is a P martingale.

This gives a martingale problem formulation in the spirit of Stroock and Varadhan [44] for the controlled state
processes in (11).

For p € Punie([0, 1] X c ) representing the fixed population distribution, we write i, for the marginal obtained
as the image by (1, x) — (1, x;), and we define a random variable I'* : 3 — R by

(g, u,x) == g(xr, Wur(1)) +A)T]XAf(t,xt,Wyt(u),a)q(dt,da). (18)

Remark 9. Recalling the notation of Section 3.3, if a € Ay, then dtéa(t,ulxﬁ(da) is a random element of V), and the
joint law P* of (dt0,(u,xe)(da), U, X¥) defines an element of R. Indeed, the condition (U, Xj) ~ A was imposed in
Section 3.3, and the defining martingale property (2) of R follows immediately from It6’s formula. Unpacking
the notation, it holds also that

]W(‘U,Pﬂt) = <Pa,1—‘/.t>. (19)
Given p € Puni([0, 1] X €), a single player’s objective is to find
R (p):= argmax (P, T#):={PeR:(P,T") >(Q,T") VQeR}.
€R
Our first goal will be to prove the existence of what one might naturally call a relaxed W equilibrium defined as a
fixed point of the set-valued map @ : Pyni([0, 1] X ¢4y — 2Punll0; 1xc) given by
D) :={Po(U,X)":PeR ()}

That is, a relaxed W equilibrium is any u € Punr([0, 1] x ) satisfying i € ®(u). We will first prove the existence of
such a fixed point in Proposition 3, and then, we will show how to turn it into a true W equilibrium in the sense
of Section 3.3.

4.3. Existence of Relaxed Equilibrium
The goal of this section is to prove the following.

Proposition 3. There exists u € Pupn([0, 1] X %) such that u € ®(u).
To do so, we will use the following lemma on continuity.

Lemma 3. The following map is jointly continuous:
Punit([0, 1] X C%) x R3(u, P) > (P,T*) € R.

Proof. Lemma 2(1) and the boundedness and continuity of g and f imply that I'*(g, 4, x) is a continuous function
of (g,x, ) for a.e. u € [0, 1]; see Lacker [35, corollary A.5]. In addition, I'* is measurable on Q. The claim follows
by applying Lemma 1 with E =V X C?, noting that R can be viewed as a subset of Pyp([0, 1] X E). O

Proof of Proposition 3. We will apply the Kakutani-Fan-Glicksberg fixed point theorem (Fan [28, theorem 1]),
which requires that we identify a nonempty compact convex set K ¢ P([0, 1] x ) such that
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1. O(u) c Kforeach p €K,

2. O(u) is nonempty and convex for each p € K, and

3. the graph {(u, 1) : p € K, u’ € ()} is closed.

A good choice turns out to be K := {Po (U, X) "' : P € R}. Property (1) is then clearly satisfied because R" (1) C
R for all .

Let us prove that K is compact and convex, as it is easily seen to be nonempty. First, note that R is the set of
P e P(Q) satisfying Po (U, Xo) ' =1 and

(P,h(N{ = N{)) =0, (20)

forall T>t>s>0, o€ C®(R?), and bounded continuous F,-measurable functions / (which generate the o field
Fs). This shows clearly that R is convex, and thus, so is K. To see that R is closed, note that the continuity of
(b, 0) ensures that Le is jointly continuous, and thus, so is Nf :QQ — R by Lacker [35, corollary A.5]. It follows
that (20) is closed under weak limits, and so, R is a closed set. To see that R is precompact, we note easily that it
is tight because [0, 1] X V is compact and because {P o X! : P € R} is easily seen to be tight as a consequence of
the boundedness of (b, 0) (e.g., by Stroock and Varadhan [44, theorem 1.4.6]). The compactness of K follows from
compactness of R because the map P s Po (U, X) " is continuous.

Next, for each u € K, note that R*(1) is nonempty as a consequence of the continuity of P+ (P,T*) from
Lemma 3 and the compactness of R shown; it follows that ®(u) is also nonempty. Convexity of R*(u) follows
from the linearity of P +— (P,IT*) and the Convex1ty of R. In turn, convexity of ®(u) follows from convexity of
R*(u) and linearity of the map P+ Po (U, X))

It remains to prove the closedness of the graph of @ as in (3). By continuity of P+ Po (U, X) " and compact-
ness of K, it suffices to prove the closedness of

{(u,P):uek, PeR (u)}

Suppose p, — u and P, — P, with y, u, € K, P, € R*(u,,), and P € R. To show that P € R*(u), we must show that
(P, T*) > (Q,I'*) for every Q € R. This follows easily from the joint continuity of Lemma 3, which yields

(P,TH) =lim (P, IT'*n) > 1lim (Q,T}) = (Q,T*),
n n
with the inequality coming from the assumption P, € R"(u,,). This completes the proof. O

4.4. Construction of Markovian Equilibrium

We now construct a Markovian equilibrium as defined in Section 3.3, thereby proving Theorem 1. We follow the
strategy of the proof of Lacker [35, theorem 3.7] based on Markovian projection (Brunick and Shreve [12]). This
section makes heavier use of the notation (A, U, X) for the coordinate maps on Q.

Let u be any fixed point, u € ®(u), the existence of which is guaranteed by Proposition 3. Note that y € ®(u) is
equivalent to the existence of P € R*(u) such that = Po (U, X) '. Because P € R, the definition of R and a stand-
ard martingale problem argument (e.g., El Karoui et al. [27, theorem 2.5]) show that there exists a P-Brownian
motion B such that

dXt = /b(t, Xt,a)At(da)dt+ G(t, Xt)dBt
A

To handle the additional variable U, we simply note that the (d + 1)-dimensional process (U, X});¢[o 1] is an It6

process in its own right:
O T
uy 0]
d(xt> - (/Ab(t/Xt/a)At(dll)> dt + (a(t,g(t)>dB"

Consider jointly measurable functions (E,]?) 1[0, T x [0, 1] x RY — R? x R satisfying
b(t,U,X;)=E [ / b(t, X:,a)Ai(da) | U, xt},
A
F(t,U,X)=E [ / F(t, X0, W, (U),a)Ay(da) | U, Xt}, P—as., ae tel0,T].
A

Such functions exist by Brunick and Shreve [12, proposition 5.1]. Applying the mimicking theorem (Brunick and
Shreve [12, corollary 3.7]), we may find a process u,, Xt)te[o 71, perhaps on another probability space Q,F,P)
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with another Brownian motion E, solving the SDE

u 0 0, >A
Al Lt =(~ = 5 )dt+ % )dB 21
<x> <b<t,u,xf>> <a<t,xf> * -

and satisfying ( u,X ) =%(U, X;) for each t € [0, T]. Part of the definition of an SDE solution, of course, is that Bis
a Brownian motion relative to the filtration IF = (F),¢[o 1] generated by (U, X, B). From the dynamics (21), we

deduce that flt = ao for all ¢, which implies that U:= EIO is Unif[0, 1] because U is. Hence, Uisas. F 0 measura-
ble and in particular, independent of B.

Now, for (t,x,m) € [0,T] XAR”’ X M, (R, let S(t,x,m) C RY x R denote the set defined in (8). From its assumed
convexity, we deduce that (b(t, U, X;),f (t, U, X;)) belongs a.s. to S(t, X;, Wy, (U)). Thus, using a measurable selec-
tion result from Haussmann and Lepeltier [31, theorem A.9], there exist measurable functions a : [0, T] x [0, 1] x
RY - Aandz:[0,T] x [0, 1] x R? — R, such that, P-a.s., for a.e. t € [0,T],

b(t, U, X;) = b(t, X, &(t, U, X,)), (22)
F(6U,Xp) = £(£ X, Wy, (W), &(t U, X)) — 2(, U, Xy). (23)
Applying (22), the dynamics (21) can then be written as
dX; = b(t, X, a(t, U, X,)dt + o(t, X,)dB,.

Note that a belongs to Ay, as defined in Section 3.3. By the uniqueness of the SDE, in the notation of Section 3.3,
we have

(U, X)2(U, X%, (24)

As in Remark 9, the joint law P% of (dt%(t,a,i)(d”)' U, X) is thus an element of R. Let i € Punie([0, 1] X %) denote
the joint law of (U, X). Then, as in (19), we have

(P,T) = Jw(@, ). (25)

We will complete the proof by showing that, in fact, (P, T#) > Jw(i, a) for all @ € Ay. Again, using (19), it suffices
to show that P* € R*(fi) (i.e., (P%,T") > (Q,T#) for all Q € R).

To this end, note that (fl, }A{t) 4 (U, X}), and thus, pi, = u, for each t € [0, T]. Because I'*, defined in (18), depends
on  only through its marginals (i,)e0 17,

T*(q,u,x) =T"(q,u,x), forall (q,u,x)eQ. (26)

Hence,
T ~ ~ A~ A~ ~ ~
<P0(,1"}1> = <Pl¥/1"}1> =E |:/ f(t/ Xt/ Wyt(u)/a(t/ U/ Xt))dt +g(XT/ WHT(U)):| s
JO

where E denotes expectation on (ﬁ,]? ,@). Using Fubini’s theorem and the equality in law (lAI,)A(t)i (U, X;) for
each t €[0,T], we find

(PY,THY=E U)Tf(t, X, W, (U), a(t, U, Xy))dt + g(Xr, WyT(U))] .
The identity (23) and the definition off imply
f(t, X, W, (U),a(t, U, X)) 2 E {/Af(t,Xt,Wyt(U),a)At(da) | U,Xt] .
Using this, the tower property, and the definition of P, we deduce
(P, TfY > E [ /0 ! /A f(t, Xe, Wy, (U), @) A(da)dt + g(Xr, WyT(U))} =(P,T*).

We know by assumption that P € R*(u). Hence, for any Q € R, we have (P,I*) >(Q,I'¥). Using again (26), we
deduce finally that (P%,T*) > (Q,T*) = (Q,T*) for all Q € R, which completes the proof of Theorem 1 as explained.
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Remark 10. The argument in this section shows that, for each p,
sup Jw(y, B) = sup (P, T*). (27)

ﬁEAu PeR

That is, Markovian controls achieve the same value as the more general controls allowed in R, which may
depend on additional randomness. See El Karoui et al. [27] and Haussmann and Lepeltier [31] for more general
studies of this well-known principle.

4.5. The Case of Constant Degree

Proof of Proposition 1. With v € C([0,T];, P(R?) and p, = Unif[0, 1] X v; as in the statement of the proposition,
the key point is the simple identity v; = Wy, (1). Indeed, for bounded measurable ¢ : RY - R, we have

Wi, 9= [ W0 dodo)

- / 1 / W1, 0) p(x) vi(dx) do
0 Jr

= [ ptowii),
R

with the last identity following from Fubini’s theorem and the assumption (13). Then, J1(v,a) = Jw(u, @) for any

a € A;. Because v is a mean field equilibrium with control a*, we have

Jw(p,a") =J1(v,a") = sup J1(v,a) = sup Jw(u, a).

aed; aeA;

The only remaining subtlety is to argue that sup, . 4 Jw(y, @) =sup . 4 Jw(i, @). That is, the optimal value is the
same regardless of whether one allows the controls to depend on an independent uniform U. This can be argued
by way of a Markovian projection argument as in Section 4.4 or by directly applying Lacker [35, theorem 3.7]. [

4.6. Uniqueness

This section proves Proposition 2, relying on the recasting of the graphon game as a mean field game as in Sec-
tion 3.6. The key point is that the monotonicity condition (14) in Proposition 2 translates precisely to the usual
Lasry-Lions monotonicity condition for the associated mean field game. Using the same notation as in Section
3.6, Inequality (14) implies

/[01] o (3(x,m) — 3(x, mp)(m1 — my)(du, dx)
- A)ll Rd(g(x, Wiy (u)) — g(x, Wiy (u))(my — my)(du,dx) <0

for my,my € Puni([0, 1] X Rd). Similarly,f takes the form
f(t,x,m,a) =fi(t,x,a) +f,(t,X,m), where f,(t,x,m) = fo(t,x, Nm(u)),

and for all my, m,, we have
| (% m) = Rt 7 e — ), ) <0,
[0, 1]xR?

This shows that the mean field game of Section 3.6 satisfies the Lasry—Lions monotonicity condition. The classical
uniqueness proof from mean field game theory then applies; see Lacker [36, theorem 8.10] for a short proof,
which applies directly in our context.

Remark 11. We mention here two classes of examples of g satisfying (14).
1. Suppose ¢ : R? — R is bounded and continuous, and let

2
Q(x,m) = ((p(x) - /Rd(p(y) m(dy)> , xeRY me M. (RY).
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A straightforward calculation shows that the left-hand side of (14) equals

_ / 1 / W, ) p0p(0) duds,  where p(u) = / o(x) (m—m2)(dx),
0 Jo R?

for my(du,dx) = dum’ (dx) € Puni([0, 1] X R%Y), i = 1, 2. Hence, if W is positive semidefinite, we obtain the monoto-
nicity condition (14).

2. Suppose g(x,m) = / @(x,y)m(dy), where ¢ : (RY)? - R is bounded and continuous. Then, the left-hand side of
(14) equals R!

/ / Wiat, 0)p(x, y)my — ma)(ddo, dy)my — my)(du, ).
0,1]xR4J[0,1]xR?

This is nonpositive if, for instance, W is positive semidefinite and ¢ is negative semidefinite when viewed as inte-
gral operators, so that the tensor product of these two operators is negative definite.

5. On the Dependence of Optimal Controls on U
This short section develops two lemmas that will be used solely in the proof of Theorem 3 in Section 7.2. We give
these results here because the proofs use the same relaxed formulation of Section 3.4, particularly the Markovian
projection of Section 4.4.

For this section, we fix W € L1 [0, 1]* and t. € C([0, T]; Puni([0, 1] X R?)), and we introduce the following nota-
tion. For u € [0, 1], m € P(RY), and a e Aj, let X denote the unique in law solution of the SDE

dX = b(t, X7, a(t, XIP))dt + o(t, XP)dB,, XU ~m,

and define

T
() = E [ /0 X, Wi, (), e, X[t + (X5, Wit () .

The first lemma states essentially that, if a* € A; is optimal for the given y, then the control (¢,x) — a*(t, 1, x) is
still optimal if we freeze the “label” variable U = u for almost every u. Recall in the following that A€
Punit([0, 1] x R?) denotes the initial law and A(du, dx) = duA,(dx) denotes its disintegration.

Lemma 4. Suppose o € Ay satisfies Jw(u., a) > Jw(u., ) for all p € Ay. Then,
T (u, ) = sup Jule(u,B), for ae. uel0,1],
peA

where we define o, € Ay by v, (f,x) == a(t, u, x).

Proof. Recall the identity (27) from Remark 10. For u € [0, 1] and m € P(RY), let us define R, as the set of P €
P(Q) such that Po (U,X,) ' =6, x m and such that (N? )iefo,7] is @ P martingale for each ¢ € C”(Rd) The same
argument as in Section 4.4 that led to (27) (see also [El Karoui et al. [27, corollary 6.8] or Lacker [35, theorem 3.7])
shows that

sup [y (1, B) = sup (P, T*). (28)
e PER,

It is straightforward to check that {(#,P):u€[0,1], P€R,,} is a Borel set in [0, 1] X P(Q)). Because the map
P(Q)>3P +— (P, T*) is Borel, a standard measurable selection theorem (Bertsekas and Shreve [7, proposition 7.50]
then shows that u +— supp_, (P, T*) is universally measurable, and

1 1
/ sup (P,T*)du =sup {/ (P,,T*)du : P. Borel, P, € R, ,, a.e. u},
0 0

PGRU,/\U

where “P. Borel” means that the map [0, 1]3u +— P, € P(Q) is Borel measurable. From the definitions and noting
that fé Ou X Aydu = A, it is straightforward to check that fol P, du belongs to R whenever P, € R, ,, for a.e. u. Con-
versely, if P € R, then the regular conditional measure P, := P(- | U = u) belongs to R, 5, for a.e. u. It follows that

1
sup {/ (P, T"Ydu : P. Borel, P, € R, ,, a.e. u} =sup (P,T*),
0

PeR
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and also, that for P* € R,
P* e arg max(P,T*")<=a.e. u, P'(-|U =u) earg max (P, I'*"). (29)
PeR PeR,

u,Ay
Now, let a € argmaxge 4, Jw((i., ) be the given optimizer. In light of (27), the measure P* given as in Remark 9 then
satisfies P* € arg maxper (P, I'*" ). Hence, by (29), the conditional measure P*(- | U = u) belongs to arg maxper, ,, (P, T*)
for a.e. u. However, by well posedness of the SDEs, we have P*(- | U = u) = P™ for a.e. u (cf. Lacker [37, appendix A]).

Using (28), we deduce that a;, € arg maxge 4, if\',A“ (u,p) for a.e. 1, as claimed. O

The next lemma and its corollary justify the claim in Theorem 3 that assumptions (1) and (2a)—(2d) imply (2).
The lemma is a variation on known arguments, such as Lacker [37, section 5.6]. Essentially, by working with the
relaxed formulation, the set-valued map of optimal control laws can be shown to have a closed graph, and the
idea is to argue that in certain cases, this set-valued map is singleton valued and thus, necessarily continuous.

Lemma 5. Suppose conditions (1) and (2a)—(2d) of Theorem 3 hold. Then, for each u € [0, 1], there exists a unique opti-

mizer aj, for sup . 4. Jue(u., ). Moreover, the law L(X ) depends continuously on .

Proof. We have b(t, x,a) = by(t,x)a + b1 (t, x) by assumption. Fix u € [0, 1] and m € P(R?). Recall Equation (28) from
the proof of Lemma 4. We first claim that any optimizer P on the right-hand side of (28) is necessarily of the form
P= E(dtéa(t/xgn,a)(da), u, X"™) for some « € Aj. To see this, note that we can write P = L(A, u, X), where X solves

dXt = (bo(t,Xt)/aAt(da) + bl(t, Xt))dt + UdBt, XO ~ m. (30)
A
Letting a(t, X;) = E[ [,aA¢(da) | X;] and applying the Markovian projection (Brunick and Shreve [12, corollary
3.7]), we find that X; 4 X ¢ for all t € [0, T], where X solves the SDE
dX; = (bo(t, XA (t, X;) + bi(t, Xp))dt + 0dB,  Xo ~m.

By Jensen’s inequality and strict concavity of f(t,x,m,a) in a, we have

rT

P, =E| [ 5t X W () )Moyt + g0, qu(u))}
LJo JA

T
<E /o ft, Xy, Wy, (u), a(t, Xy))dt + g(Xr, W[uT(u))}

C T - -
=E /0 ft, X, W, (), a(t, Xy))dt + (X, WyT(u))]
=Jw (u,a),

and this equality is strict unless [,aA¢(da) = a(t, X;) a.s. a.e. This proves the first claim.

We next claim that, in fact, there is a unique optimizer P on the right-hand side of (28). Because we know the
optimizers are Markovian, it suffices to show that the optimal control a € A; on the left-hand side of (28) is
unique up to Lebesgue-a.e. equality. To see this, let ap, a1 € A; be optimizers. Then, X' = X"% solves

dXi = (bo(t, XDai(t, Xb) + by (t, X!))dt + odBi,  X{ ~m.

We may assume that X° and X" are defined on the same probability space, with (X°, B) independent of (X', B').
Let S be a Bernoulli (1/2) random variable, independent of everything else. Then, X solves the SDE

dxX3 = (bo(t, X7)as(t, X7) + by (t, X7))dt + 0dB;, X5 ~m,

where we note that B is a Brownian motion. Define a(t, X?) = E[as(t, X?) | X?]. Arguing as via Jensen, we must
have a(t, Xf ) = as(t, XtS ) a.s. a.e., as otherwise, this control would produce a strictly higher reward than a; or «;.
This implies a(t, X?) = ap(t, X?) and a(t, X}) = a;(t, X}) a.s. a.e. The laws of X? and X! have full support for each ¢
> 0 by Girsanov’s theorem, and we deduce that ap = a; a.e.

Finally, knowing that the optimizer P; , € R, on the right-hand side of (28) is unique, we will prove that
(u,m) +— P;,  is continuous, which implies our claim by composition with the continuous map u + (1, A,). By
El Karoui et al. [27, proposition 5.10(b)], the set-valued map R, s, is continuous in (1, x) € [0, 1] x R?. By Berge’s
theorem (Aliprantis and Border [1, theorem 17.31]) and continuity of P+ (P,I*), the set-valued map R, , :=
argmaxper, , (P,I*") has a closed graph. We have just shown it to in fact be singleton valued or R}, , = {P; 5 } for
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each (u, x). That is, the function (1, x) = P} s has a closed graph and is thus continuous. To conclude, simply
note that P, = [pP; ; m(dx) (e.g., by El Karou1 etal. [27, theorem 5.11(c)]). O

Corollary 1. Suppose the assumptions of Lemma 5 hold. Assume u_is a W equilibrium, with equilibrium control a*. Then,
the disintegration [0, 1] 2 u +— L(X¥|U=u) € P(C?) admits a weakly continuous version.

Proof. Let a denote the equilibrium control corresponding to i.. We note again that 1 — E(XAI‘ %) is a version of
M u

the conditional law £(X* | U = u). By Lemma 4, the control a,(t,x) := a(t,u,x) optimizes i (i) over A;, for

a.e. u €[0, 1]. By Lemma 5, there is a unique (up to Lebesgue a.e. equality) optimizer &, € A; of Jir**(u,, ). Hence,
a, = a, for a.e. u, and we deduce that L(X ) = £(X %) for a.e. u. The claim now follows from the last state-

ment of Lemma 5. O

6. Convergence of Empirical Measures

In preparation for Section 7, which proves our results about approximate equilibria, we study in this section the
general principles underlying these results. These results deal with the convergence of neighborhood empirical
measures under various assumptions on the underlying distributions and kernel. We work throughout this sec-
tion with a general Polish space E. Recall the notation I} from (2).

6.1. General Kernels
Let (U, X) be a random variable taking values in [0, 1] X E, with law u € Pynys([0, 1] X E). Let n € N, and let I'' =
[( —1)/n,i/n) as before for i € [n]. For each n € N, let U ~ Unif(I}"), and with

LU =u)=LX|U=u), uell.
In other words, the law of (U}, X}) is the conditional law of (U, X) given {U € I''}. This entails in particular that,
for bounded measurable 1 : [0, 1] X E — R,

() = E[H(U, X)) = / Elh(u, X) | U = u]du
- ;/I?]E[h(u,xi)l U = u]du

1 - n n
= E;E[h(ui , X1 (31)

Assume (U, X) and (U?, X")", are defined on the same probability space and are independent. Let W € L1[0,1]?,
and recall the definition of Wy (u) from (7); with (U, X) ~ y, note that we may write (Wu(u), @) = E[W(u, U)p(X)]
for bounded measurable ¢. Let (¢};) again be an 1 X n matrix with values in [0, 1] and with zeros on its diagonal.

Recall that W+ denotes the assoc1ated step kernel, as in (2); we will use repeatedly the fact that W« (U], U}') = EZ
Define lastly the (random) empirical measures

n 1 -
Ze Oxr = ilngwuy, Uj)ox; - (32)
]:

Recall the definition of the strong operator topology from Section 2.2. The main result of this section is the follow-
ing theorem, which we will apply only in cases where h(u,x,m) does not depend on x, but the proof of the gen-
eral case given here is not any more difficult.

Theorem 5. Assume Wgn converges to W in the strong operator topology, and assume (16) holds. Let h: [0, 1] X E x
ML (E) = R be a bounded measurable function such that h(u,x,-) is continuous on M. (E) for each fixed (u,x) € [0, 1]
X E. Then,

1 n
EZ E[n(Ur, X7, M!)] — E[L(U, X, Wu(UD)]. (33)
Proof. We will use several times the following fact. There exists A > 0 such that

2 Zé ”W‘Sn”Ll[O,l]z SZ, Vn eN. (34)
i,j=1
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To see this, note that the convergence in strong operator topology W » — W implies
IIWerligo,17 — IWlpi0,1] < I(Wer — W)[ 10,4y — O,

where 1 is the constant function equal to one. Because W and Wy are nonnegative, we have |[W1||.ijo 1} =
”W”LI[O,l]Z and [|[Wgr 1|1 [0,1 = ”Wci”HLl[o,l]z = %er’szl ‘SZ
The proof proceeds by a series of simplifications.

Step 1. We first argue that it suffices to prove (33) for & bounded and one Lipschitz. Indeed, suppose this is the
case. Define the following probability measures on [0, 1] X E X M (E):

ZE(U JXE,MY), Q= LU, X, M(U)).

We have assumed that (Q,, ) — (Q,h) holds for bounded Lipschitz . By the Portmanteau theorem, it also holds
for bounded continuous /, and in particular, we have Q, — Q weakly. The [0, 1] X E marginals of Q, are all the
same (i.e., %Z?:l £, X! = L(U,X) = p for each n as argued in (31)). Hence, the weak convergence Q, — Q also
implies the convergence (Q,,h) — (Q,h) for test functions / of the form in the statement of the theorem, with no
continuity required in the first two arguments (Beiglbock and Lacker [6, lemma 2.1]).

Step 2. We next claim that it suffices to show that W (U) — Wy (U) in probability, where the random proba-
bility measure p,, on [0, 1] X E is defined by

1 n
=D O -
i=1
Expanding the notation and applying the definition (7) of the operator W,

1 n
Wenp, (1) = " E Wen(u, Uf)(Sx;l =M}, foruell,i=1,...,n.
—

Recalling that We(u, U}') = Wer (U, UY') for u € I}, we have

h(u,”,x,", ngn(u'?,upéxy)

j=1

1< 1
_§ noxXt M? =_§
"l E[h(U}, X}, M})] n2- E

n 1 n
=) / E|h (u,X;’, EZWg»,(u, un)éx;)
=g =

with the second step using independence of (U7, X!');.; and the fact that W (u, Up) = We (U7, U}) = & = 0 for
u eIl Because L(X} | U =u) = L(X | U = u) for u € I, this simplifies to

/ [ (u X, ngn(u ur )6Xu>
i

_ / E[(u, X, Werpt (1)U = ] dus
0
= E[h(U, X, W1, (D).

du,

u'=u

U=u|du

Here, we also used the assumed independence of (U, X) and (U}, X!)i_,. Hence, once we know that W, (U) —
Wu(U) in probability, it follows from the bounded convergence theorem that (33) holds for bounded continuous
h, which is sufficient by Step 1.

Step 3. We finally prove that Wgr 1, (U) — Wu(U) in probability, which will complete the proof as explained in
Step 2. Fix a bounded continuous function ¢ : E — [— 1,1]. Expanding the definition,

(Werpe, (), @) = ngr’(u uhp(XJ).

] 1

We must show that (Wen, (U), @) — (Wu(U), ) in probability.
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Step 3(a). We first claim that (Wi, (U), @) — E[{(Werpr, (U), @) | U] — 0 in probability and in fact, in L[ To see this,
note for u € [ that

1 1
Var((Wer s, (U), @) | U = u) = Var (nz é;;(p(x;“)> SERB A
j=1 j=1

by independence of (X}‘)};l. Hence,

E[((We, (), 9) ~ E[Wer g, (), @) | U])°] = EVar(Weni, (L), ) | U)

=Y /1 Var((Wenp, (U), ) | U = u)du
i=1 /I

1 n
< e Z(é;)z,

i,j=1
which vanishes by (16).
Step 3(b). We must finally show that E[{Wgp, (U), ) | U] — (Wu(U), ) in probability. To see this, we first use

again the independence of (U, X});_, to rewrite

E[(We, (U), @) |U = u] =E = E[Wer (1, U)p(X)]

LS W, U p(x)
n i=1

- / We i, 0)0(0)do,
0

where §(v) := E[p(X)|U = v] and where we again used the fact that 13", £(U}, X!") = L(U, X) as shown by (31).
Similarly, we may write

1
(Wu(u), @) = E[W(u, U)p((X)] = E[W(u, U)PpU)] = /0 W(u,v)¢(v)do.
These identities are to be understood for a.e. 1 € [0, 1], and combined, they yield
1,1
/ (Wi (11,0) — W(tt,0)) (o) do| du
o IJo

= ||(VV£” - W)IPHL] [0,1] (35)

E[ELW, (L), @) | U] — (Wpa(ue), @[] = /

where we have used the operator notation of (4).

Recalling that ¢ and thus, ¢ are bounded, the right-hand side of (35) converges to zero by the assumption that
Wen — W in the strong operator topology. We deduce that E[{Wu, (U), @) | U] — (Wu(U), @) in L' and thus, in
probability. This completes the proof of Step 3(b) and thus, the theorem. O

6.2. Continuous Kernels

We now prove an alternative to Theorem 5, which requires stronger assumptions but is, in a sense, uniform in
the choice of labels rather than averaged. Fix again p € Puni([0, 1] X E), and assume that there exists a version of
the disintegration u(du,dx) = dup, (dx) such that [0, 1] D u + u, € P(E) is weakly continuous. For u € [0, 1], let X,,
denote a random variable with law p,,. Let us write u = (i, ..., 1,) for a generic element of I} X ---x I!, which we
think of as denoting the set of admissible assignments of labels to each player i € [n]. For u € I x---x I, define
the (random) empirical measures

1 n 1 n
M?’u = Ez; é:}l‘éX,,/ = Ezl: W(Sn (Ll,', I/l]‘)(SXuj, (36)
J= J=

where (X,,)!; are assumed independent. Let us stress that (36) and every other expression will involve at most
finitely many of the random variables (Xy) [0 1] at a time; at no point must we face any of the complications that
accompany a continuum of independent random variables.

Recall the bounded Lipschitz norm || - ||5; defined in (1).
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Theorem 6. Assume Wgn converges to W in the strong operator topology, and assume that (16) holds. Assume also that
[0, 1]2u +— W(u,v)dv € M ([0, 1]) is continuous and that there exists a version of the disintegration p(du,dx) =
duu, (dx) such that the map [0, 1]2u + u, € P(E) is weakly continuous.

Then,

lim sup fZ]EHM”” W(u;)llp, = 0. (37)
=00 u=(u1, ..., up)€l}X - XI} n —

Let h: [0, 1] Xx M4(E) — R be bounded and measurable, and assume h(u, -) continuous on M. (E) uniformly in u € [0, 1],
in the sense that

lim sup |h(u,m") —h(u,m)|=0, Vme M,(E).

m'—m uel0, 1]

Then, we have

lim sup —ZElh(uuM" ") — h(u;, Wu(u;))| = (38)

—00
n u=(u1, ..., up)€lX - xIj

Proof. The claim (38) follows immediately from (37) and the assumed uniform continuity of /. As in the proof of
Theorem 5, the convergence in cut norm Wz — W yields A > 0 such that (34) holds.

Step 1. We first prove that

lim sup - Z EKM!™ — Wu(u;), o) =0, (39)
><I"

e u=(u1, ..., up)€lX
for each Lipschitz function ¢ : E — [—1,1]. Note first for each i € [n] and u € I} X--- X I! that
E(M™ — Wu(w), )| < EKM™ — EM™, )] + KEM™ — Wy(w), @),

For the first term, note that
n,u n,u n,u 1 g
(EKM]" — EM™ @)|)* < Var((M}™, @) = Var (EZ éi]q)(Xu,)) — Z (&
=1

Using the assumption (16), we deduce
1/2
sup Z EKM” " EM?M’ (10>| S ( 3 Z (51]) ) - Or
u€lx - XIj n ij=1

and thus, (39) will follow if we show that

. ]- . nu
lim sup —% KEM — Wu(w), )| = 0. (40)
n i=1

—00
n UELX -+

Fix i€ [n] and u € If X---x I} for now. Using £(Xy,) = Hy, and the fact that 5:} = Wen(ui, uj) = nf,, Wen (1, v)dv, we
have on the one hand !

E(M™, @) =~ Z%E P(Xy)] = / Wen(ui, o), , ) do-
j=1
On the other hand,
1
(Wu(w), ) = /[0 | EW(ui,v)(p(X)u(dv,dX)= /0 W (i, v){t,, @) do.

Hence, to prove (40), we must show equivalently that

lim sup -
9 e xan 1 ~_1

/ Wi (45, 0)(t, , ) o — / Wi, o), @) do| = 0. (41)




Downloaded from informs.org by [160.39.158.142] on 17 November 2022, at 07:03 . For personal use only, all rights reserved.

Lacker and Soret: Stochastic Graphon Games and Approximate Equilibria
Mathematics of Operations Research, Articles in Advance, pp. 1-32, © 2022 INFORMS 23

To prove this, we split the difference into three terms:

171
D

i=1

n 1
> [ Wt 00 )t — [ W) )

=
1
SE;
1
+H;
1
+E;

By definition of the step graphon W, the first term is equal to

o [, o )io
i

i=1 |j=1

S [ (Werta, 00 ) = Wes 0,00 ) o

j=1 74

1 1
| Westus, 000 [ [ W0, o
0 1 Jo

1 1
n /1 ’ /0 W(u, v),, )dvdu — /O W(u;, v)p,, p)do). @)

1 n
<o [ ) = G )] o )

i,j=1

We deduce from the assumption of weak continuity of u + u,, that [0, 1]2u + (u,, ¢) € R is uniformly continu-
ous. For a given € > 0, we can, therefore, choose 7 large enough so that [(u, — i, )| <€ whenever |u —v| <1/n.
Hence, for large-enough 7 not depending on the choice of u, we find that the right-hand side of (43) is bounded
by Ae.
Having dealt with the first term in (42), let us turn to the second. Using the fact that W (i, v) = n [, Wen (1, v)du,
we can rewrite it as '
1
g
0

n
i=1

Because ¢ is bounded, the right-hand side (which we note does not depend on u") converges to zero by the
assumption that Wg» — W in the strong operator topology.
Finally, the third term in (42) is equal to

1
[ Wert0) = Wl 00, o

%1 /Ol(W&l (Z/I, U) — W(u, U))<‘uv/ (P>dUdu

> , (44)
i=1

where we define (1) = fé W(u,v){u,, ¢)dv. Recall by assumption that u + W(u,v)dv € M ([0, 1]) is continuous.
Because v+ (u,, @) is continuous by assumption, we deduce that 1 is continuous. Therefore, given € >0, we
may choose n large enough so that (1) — ¢(v)| < € whenever |u —v| <1/n, and it follows that (44) is no more
than ¢, regardless of the choice of u € I X --- X I1}. This concludes the proof of (39).

/In () — P(u))du

Step 2. We next show that the set of mean measures {137 EM/"™" :n>1, u € I} x---x I} ¢ M.(E) is tight. The

mean measures are given by
1 - nu ]' - n 1 - n
R EMM =050 LX) = 5D
i=1 i,j=1 i,j=1
Because the map u > y, is continuous by assumption, the image {u, : u € [0, 1]} ¢ P(E) is compact and thus,
tight by Prokhorov’s theorem. Hence, for € > 0, we may find K C E compact such that u,(K°) <€ for all u € [0, 1].
By (34), 5 i EM]™(K°) < Ae.

Step 3. We now prove the claim (37). Let S denote the set of one-Lipschitz functions ¢ : E — [—1,1], and let e > 0.

By Lemma 2(3), the continuity assumptions on W and the disintegration p,, imply that the map [0, 1]25u —
Wu(u) € M. (E) is continuous, and thus, the set of measures {Wu(u) : 1 € [0, 1]} € M,(E) is tight. This and Step 2
imply that there exists a compact set K C E such that

sup Wu(u)(K°)+sup sup %Z EM!"(K°) <e. (45)
1

uel0, 1] neEN uelfx X[ =
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The set of one-Lipschitz functions K — [—1,1] is compact in the uniform topology by Arzela-Ascoli. We may
thus find a finite set S C S such that minyes,||(¢ — ¢)1kll, <€ for every ¢ € S. Now, for any ¢, €S and
u €[0, 1], we have

KM = W(u), @)l < KM — W), )l + KM = W(u), (¢ — ¢)1k)
+ (M = W(u), (¢ = )1l

To estimate the second and third terms, we argue that the total masses of the measures %Z?:l M and Wy(u) are
bounded a.s. by some constant C>0. Indeed, 13" | M{"*(E) <A as. by (34), and the mass Wu(u)(E) = (Wu(u), 1)
depends continuously on u thanks to Lemma 2(3) and the assumed continuity of W. Hence, for u € I} X --- X I,

—ZHM”" W)l = nZsup M — W), )

i=1 QS
n

]. hu . nu ¢ 4 c
= ;; {g‘%x KM — W), )] + 2M(KY) + 2W(10;) (K) | +2Ce.
Take expectations, recalling (45), and bound maxyes, by ) yes, to get

—ZEHM"” WaGu)llp < 3 ZEKM"” Wat(uy), )| +2(2 + e,

YEeS,
forallie[n]and allu €I} x---x I'. Send n — oo followed by € — 0 to deduce (37). O

Remark 12. Theorem 6 remains valid under a somewhat weaker convergence assumption than strong operator
topology, namely that [[(We — W)yl|1110,1; = O for ¢ € C[0, 1], not necessarily for all i € L*[0, 1]. This is, of
course, what one would call the strong operator topology for the space of operators from C[0, 1] — L'[0, 1]. In
fact, we do not really need the limit operator W to be an integral operator it could be something of the form
Wo(u) = [ 01] ¢(v)K,(dv) for some measurable map u +— K, € M, (E) with fo K, (E)du < oco. This is somewhat sim-
ilar to the ([more subtle) notion of extended graphons used in the recent study by Jabin et al. [33] of (nongame-theo-
retic) interacting diffusions, but we will not pursue this generality here.

6.3. Sampling Kernels

The mode of convergence can be further upgraded under the more specific choice of graphon adopted in Theo-
rem 4. Rather than working with a generic matrix &" such that Wz — W, let us now follow a canonical construc-
tion in graphon theory. In this section, let us define the empirical measure

1 n
N == E W(u;,uj)ox,, foru=(ui,...,u,)€[0,1]", n€N,
n . i
=1, #
where X, ~ u, for each u are independent as in Section 6.2. In the following, equip [0,1]” with the infinite prod-
uct measure (Unif[0,1])™.

Theorem 7. Assume W :[0,1]> — [0,0) is bounded and measurable. Assume {u, :uel0,1]} CP(E) is tight. Let h:
[0, 1] X M (E) — R be bounded and measurable, and assume h(u,-) is continuous on M. (E) uniformly in u € [0, 1], in
the sense that

lim sup |h(u,m’) —h(u,m)|=0, Vme M,(E).

m -, €0, 1]
Then, for almost every choice of (1;);ey € [0,1]%, the following holds:
NP0y — g, Wia(ug))| = 0

(46)

n—oo 15[ ]

Proof. By rescaling, we may assume that 0 <W <1 and 0 <h <1. Let (1;);y be arbitrary for now. Let ¢ : E —
[0, 1] be measurable, and set (1) = E[¢(X,,)]. By the union bound and Hoeffding’s inequality,

AN 1§ —2nd*
P (Ilrel[?j( Ejzlzj#iW(ui/ uj)(P(Xuj) - Ej:;# W(Z/l,‘, u])ll)(lzl]) > 6) <ne " ,
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for each n € N and 0 > 0. By Borel-Cantelli, we deduce

n n

max E Z W (i, up)p(Xy) — % Z W s, ) ()

' — 0, a.s. (47)
| i

Next, let U; ~ Unif[0, 1] for i € N be i.i.d. Again using Hoeffding’s inequality, we find

j=1, j#i j=1, j#i

P(% > WU U > B, Up(UIUl| > 6 ui) <o

for each i, a.s. Note that %Z}‘zl#i]E[W(u, U)y(Uy)] =2 E[W(u, U)yp(U)] ==2(Wu(u), ). Hence, for n large
enough that 1/n <0, we get

1 n

o

= WU Up(Uy) = (WU, )| > 20

j=1, j#i

U~> <€72n62
il < .

n

Using a union bound and the tower property,
=N WU, UL — (Wu(ly), @)

1
P max
i€[n] nj=l,j:/:i

2
> 26) < ne 2",

again for n > 1/6. Deduce from Borel-Cantelli that

n

=Y WU Uy () - <WH(U1'),(P>‘ -0, as. (48)
=1, j#i

Combine (47) and (48) to get, for instance,

n

- Z W(uil ”]')(P(Xu,) - (Wy(u,-), (P>‘ -0,
j=1, j#i

for a.e. choice of (u;);y. Because we assumed {1, : u € [0, 1]} to be tight, it follows easily from boundedness of W
that {Wu(u) : u € [0, 1]} € M,(E) is also tight, and so is {EN!":neN,i € [n],u € [0,1]"}. The latter implies that
{LIN"):neN,ie[n],uec[0,1]"} c P(M,(E)) is tight by a well-known argument (Sznitman [46, fact 2.5]), which
works not only for probability measures but also, for nonnegative measures of uniformly bounded total mass.
We may then argue as in Step 3 of the proof of Theorem 6 that

Emax [N} — W)l 0,
i€[n]
for a.e. choice of (14;),cy. We now easily deduce (46) using the uniform continuity assumption on h. O

7. Approximate Equilibria
In this section, we will prove the results of Section 3.5. Recall that &* denotes the given W-equilibrium control,
X the corresponding state process, and U ~ Unif[0, 1].

In this section, we will denote P*" = £(U, X%') € Puni([0, 1] x ) the equilibrium joint law, where we recall that
¢ = C([0, T];RY), which is a path space law and which will enable us to use the results proved in Section 6. Let
. € C([0, T]; Punie([0, 1] X R?)) represent the measure flow associated with (U, X%) (i.., = L(U, X)) for all
t € [0, T]). Note that y is the time f marginal of P*, and thus, (WP? (1)), = Wy, (1), for each t € [0, T].

We first elaborate on the notation of Section 3.2 to keep track of the labels (and thus, the controls) assigned to
each player. For n € Nand u" := (uf, ..., u") € [0,1]", let X" := (X"*!'), 1, be the process satisfying the dynamics,

X, = bt X" o (1, X))+ ot X DABL Xy < A, (49)

where B’ are independent Brownian motions, and the initial positions (X, ’i)ie[n] are independent. For each i and
each f € A, let X"P¥" be the process arising when player i switches from the control a*(-, u?,-) to the control f.
More precisely, the process X"#* is characterized by the dynamics

n,Bul i i i n,Bull i

ax; P = b, X B X e+ o, XN, KT < Ay, (50)
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where we write X" #41 to denote the vector X" but with the i th component equal to X;" 1P instead of X" i

To simplify the notat1on we will sometimes abbrev1ate ﬁt B(t, X” P Let us write also
n g 1
nu-,l ., __ n
M = E ;:1 éijéxu,u}',;, (51)

similarly to (36), for the empirical measure appearing in the objective functions of player i. Note that because
& =0, this empirical measure does not depend on the choice of control of player 7, and in particular, if player i
deviates to 5, then the empirical measure (51) does not need to be modified.

Let us introduce some notations that will guide us through the proofs. Recalling the definition of €/, we can
bound it by three terms,

el (u") < sup A'f’i(ﬁ, u") +sup Ag'i(ﬁ, u') + Ag'i(u”),
BeA, BeA,
where we defined

)= ] [ 007 M g0 )

] [0 W, o+ 0 W),
)= 0,7 W ), 06 Wy )
_g| /0 Tf(t, XP W (ul), @ (1, X e+ g (K W[uT(u?)},

i T nu' i . n,ull i nu’,i
Ay (u") = E[/ f&X, Wy, (uf), o (fuf, X7t + g(Xy ”,W‘uT(u}“))}
0

- T n i 0o no: 0 L
—E / f(t/ X?'ui ,l,M?,u ”,a*(t, M?,X?’ui ,l))dt +g(X;,ui ,z,M,%/u /1):| .

The first term, A]", is the approximation error incurred when player i substitutes the limiting measure Wy .(u7)
for the true empirical measure M} while using the control . This is similar for the third term, A}, except now
while using the original control « (t u?,x;). The second term, A}, compares the control B with the control a*(t, u}, x;),
with the hrmtmg measure in place of the true empirical measure. We will argue that AL <0 thanks to the optimality
property of a*, and we will argue that A" and A% are small thanks to the convergence of empirical measures.

Lemma 6. We have supﬁeAnAg' (B,u") <0 forae. u” €[0,1]" and all i € [n].
n o Aun, o .
Proof. Note that X" has the same law as X' " as in Lemma 4, where o, (t,x) := a*(t,u, x). Thus, Ay (B,u") equals

lu

g i npul'i n
E[/ £ X W ), Bt + OGP Wi ()| — Ty (e,

Recall that g, = ﬁ(t,Xf’ﬁ ") can depend on all n players’ state processes, and for this reason, the claim is not an
immediate consequence of Lemma 4. However, this issue is resolved by (28), after noting that the joint law of
(dtog,(da), uf, XBuih belongs to the set Rur A defined in the proof of Lemma 4. Indeed, we then deduce that

. u:.’,Au:; u;l,)\u(z "
sup Ay'(B,u") <sup iy (1 B) —Jw (@)
BeA, PeA

By Lemma 4, this is <0 for a.e. u” € [0,1]" and alli € [n]. O
From Lemma 4, we deduce that

el(u") < sup A(B,u") + Ag’i(u”), ae. u".
BeA,

Taking averages, we find

726”(u”)< ZsupA'”(ﬁ ')+~ ZA’” u). (52)

llﬁen
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Now that we made use of the optimality of a, it remains to use the convergence results of Section 6 to show that
the right-hand side of (52) is small.

First, note that {1, : u € [0, 1]} is tight. This is an assumption in Theorems 2 and 4, and in Theorem 3, it is a con-
sequence of the assumed continuity of u +— A,. By boundedness of b, 0, it is then standard (e.g., using Stroock
and Varadhan [44, theorem 1.4.6]) that the set of laws {L£(X"P*"):n €N, B € A,,u" €[0,1]",i € [n]} is a tight sub-
set of P(C?), where we recall that ¢ := C([0, T];R?). Letting € > 0, we may then find a compact set K c ¢ such
that sup,, ; ,, P(X"#*i ¢ K) < e. Define the function /1 : [0, 1] X M(C") — R by

h(u, m) = sup sup

acA zeK

+|g(zr, Wyr () — g(zr, mr)

/T(f(ti Zt, Wll,lt(ll),ﬂ) _f(tlztr my, ﬂ))dt
0

, (53)

where m; € M, (RY) denotes the image of a measure me M (CY) by the coordinate map x+— x;. Because
f(t,x,m,a) and g(x, m) are bounded, measurable, and continuous in (x, m, a), we deduce that function # is
bounded and measurable (Aliprantis and Border [1, theorem 18.19]). Moreover, it follows from compactness of A

and K that h(u,-) is continuous on M., (C?) for each u € [0, 1]. Note that h(u, Wu(u)) =0 for every u. In order to
bound (52) in terms of , let us choose C > 0 such that max(|f],|g|) < C, and then, note that

1 2¢ "
az:el'-’(u”) < EZElh(ul’.’,M””‘ )| + 8eC. (54)
i=1 i=1
The rest of the argument is different for Theorem 2 versus Theorem 3.

7.1. General Kernels

We first prove Theorem 2. Recall that U} ~ Unif(I}) are independent, and let U" = (U},...,U}). Abbreviate
I":=} x---x I?, and note that U" is uniform on I". Let us also define processes Y such that (U}, Y""),,| are
independent, with L(Y™ |U? =u) = L(X* |U =u) forueI". Let Y" = (Y"!,...,Y""), and define the neighborhood
empirical measures (random measures on ¢

ni _ 1 -
M = EZ Epdyn.
=1
Recall that the process X" defined in the beginning of the section is such that £(X"*"") = u ,. Recalling that
(U, X*") denotes the equilibrium pair, we have L
LXT | U=uf)= L™ U} = uf) = LX) (55)
Hence, for a.e. #" and any bounded measurable function ¢ : I" X ()" — R, we can write
E[p(", X"")] = ElpU",Y") | U" =u"], ae u"cl".

In particular, because the empirical measure M™*"# defined in (51) is a functional of X"*', we deduce similarly
that

E[p(", M"' 1] = ElpU", M) | U" =u"], ae. u"€l",
for bounded measurable ¢ : I" x M, (C?) — R. Applying this in (54), along with the tower property, we deduce

%ZE[(—:?(U")] < %ZE | (U, M"™)] + 8eC. (56)
i=1 i=1

The identities (55) put us in the setting of Theorem 5. As noted, & is bounded and continuous in its second varia-
ble. Hence, Theorem 5 implies that

LS B, M - (U, WP ()] =0,
-1
where P* := £(U, X%"), with the last identity using the fact that (1, WP* (1)) = 0 for all u, which is a consequence

of the identity of time t marginals (WP (1)), = Wy,. Applying this in (56) and then, sending € — 0 complete the
proof of Theorem 2.
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7.2. Continuous Kernels
We next prove Theorem 3. The fact that (1) and (2a)-(2d) imply (2) is a consequence of Corollary 1. The function
h(u, m) from (53) is continuous in m, uniformly in u because

/T(f(tr Zt, m;/ 61) - f(t, Zy, My, a))dt
0

sup |h(u,m") — h(u, m)| < sup sup
uel0, 1] acA zeK

+ ‘g(ZT/ ma") - g(ZT/ mT)

7

and the right-hand side vanishes as m’ — m by compactness of A and K and by joint continuity of f and g. Also
using the continuity assumptions of Theorem 3, we are, therefore, in the setting of Theorem 6.
Recalling again that (1, WP* (1)) = 0 for all u where again P* := £(U, X%"), Theorem 6 yields

1 1 n 5
lim sup EZE | h(u!, M™"7)| = 0.
=1

=00 yneqn i=
Apply this in (54), and then, send € — 0 to deduce Theorem 3.

7.3. Sampling Kernels

We finally prove Theorem 4. Again, let P := £(U, X*'), and write P* (du,dx) = duP? (dx) for its disintegration. To
prepare for an application of Theorem 4, let us first argue that {P? : u € [0, 1]} is tight. Note that P% is the law of
the solution of the SDE

dXt = b(t, X, O(*(t, u, Xt))dt + G(t, Xt)dBt, X() ~ Ay

Because b and ¢ are bounded and {A, : u € [0, 1]} is tight by assumption, the tightness of {P%" : u € [0, 1]} follows
easily (e.g., using Stroock and Varadhan [44, theorem 1.4.6]).

Now, recall that (u;);y € [0,1]”, where [0,1] is equipped with (Unif[0, 1])”, and cf?j = Wi(u;, uj)1i4j for i,j € [n]
in Theorem 4. As in (54), we have

€' (u, ..., un) < 2B (s, NI ")| 4+ 8eC, (57)

where we define N =%Z]'7:1,j i W(tti, 1)0yn;. Recalling that hi(u, WP* (1)) =0 for all u, we may thus

1

apply Theorem 7 to get

lim maxEIh(u,-,NlTl'(”l"“'”"))| =0, fora.e. (1), €[0,1].

n—oo iE[n]

Combine this with (57) and then, send € — 0 to complete the proof.

Remark 13. Theorem 4 could likely be strengthened to include a rate of convergence if one imposed further con-
tinuity assumptions on f and g. The estimates stemming from Hoeffding’s inequality in the proof of Theorem 4
could, in principle, be traced through to yield exponential bounds on the measure of the set of (i1, ...,u,) € [0,1]"
such that maxe €} (11, . . ., u,) > €. See Aurell et al. [2, proposition 3] for a related result based on a clever appli-
cation of the law of the iterated logarithm.

8. A Linear-Quadratic Example
In this section, we study a linear-quadratic model of flocking behavior, inspired by Carmona et al. [20] and Lacker
and Soret [38], which is simple and yet, rich enough to exhibit an interesting dependence on the structure of the
interaction matrix. This will also illustrate the relative simplicity of our formulation of graphon equilibrium. It
should be noted that the model in this section does not fit into the standing assumptions imposed for the theoret-
ical developments in Section 3. However, the definitions of the equilibrium require little adaptation for the set-
ting considered.

We work in dimension d = 1. We shall now assume W € [2 [0,1]* (i.e., the kernel is square integrable). For
m e P([0, 1] X R), recall the definition of the measure-valued function Wm : [0, 1] = M, (R) from (7). We define
its mean Wm : [0, 1] — R by

Wm(u) = / W(u,v)x m(dv,dx),
[0, 1]xR

whenever this integral is well defined. The linear-quadratic model we study can be summarized concisely, as in
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(12), as follows:

. 1 T Vi 2
(11r€1£ EE [/0 afdt +c| Xt — Wu(U)] ]
s.t. dXt = atdt + GdBt,

Wy = E(U, Xt), (U,XO) ~Ae PUnjf([O, 1] X R)

(58)

Note that, in equilibrium, WuT(u) =E[W(u, U)Xr] for a.e. u. In the notation of Section 3, we are choosing A =R
and

2
b(t,x,a)=a, o(t,x)=0, f(t,x,ma)= —%az, g(x,m) :—c(x - /xm(dx)) .
R

Proposition 4. Assume W € L2[0, 177 satisfies ||W||L2[0,1]2 <1+ (cT) . Assume A has a finite second moment:

/ x? A(du, dx) < .
[0, 1]xR
Then, there exists a W equilibrium with associated control given by
c

a(t,u,x) = W(M(W —x),

where M € L2[0, 1] is defined by
1 T .\
M'_cT+1W('d_cT+1W> ¥ 49

with P € L2[0, 1] defined by (u) := E[Xo|U = u). Here, |d is the identity operator, and W is viewed as an operator on
L2[0, 1] as defined in (4).

The assumption that ||W||L2[0’1]2 <1+(cT)"" ensures the existence of the inverse operator appearing in (59).
Equilibria may fail to exist without this assumption. Indeed, if W =1 + cT, then the proof shows that there is no
solution, unless E[ X | U] = 0 a.s., in which case the solution is as before with M = 0.

There is a notable appearance here of a common notion of centrality used in graph theory.

If Xy and U are independent, then ¢ = E[X], and so,

cT -
(Id o 1W> Id] 1,

where 1 is the constant function equal to one. The quantity {(Id — L W)71 - Id} 1(u) is precisely the Katz central-

ity or a centrality of the vertex u € [0, 1], or rather, the infinite-dimensional (graphon) analogue thereof, with
parameter @ = ¢T/(cT + 1). When X, and U are not independent, we have instead a generalization of this central-
ity concept in which a vertex u receives a weight proportional to the mean initial position ¢(1). Note if Xo = h(U)
is U measurable, then ¢ = h.

1 T B!

8.1. Derivation of the Solution
We follow roughly the PDE approach discussed in Section 3.6. We fix for now a mean field term and compute
the best response. That is, we fix for now a measurable function M : [0, 1] — R to play the role of the mean func-

tion WyT. The stochastic control problem in (58) is associated with the Hamilton-Jacobi-Bellman (HJB) equation

1 2
dolt,u,x) = 1.t u,x) + %8”0(1}, u,x)=0, o(T,u,x)=c(x — M(u)).
The corresponding optimal control is a(t,u,x) =—dv(t,u,x). We solve this PDE explicitly using the ansatz

o(t,u,x) = () + () (x — M(u))?, where @ and ¢ are functions on [0, T] to be determined. Plugging this ansatz
into the HJB, we obtain that ¢ and 1 should satisfy

2
2= MOIP (' () — (07) + S o0+ (5 =0,

for all (t,u,x) € (0,T) x [0, 1] X R, along with the terminal conditions ¢(T) = ¢ and ¢(T) = 0. Matching coefficients,
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we find
2 o’
’ — ’ —
o O=g*0, Y ==Tpl).

This system is easily solved using the aforementioned boundary conditions:

2
p(t) = 9(t) = S log (T — 1) + ).

_c
oT-t)+1’

The optimal control is thus given by a*(t,u,x) =— dv(t, u,x) = m(M(u) — x), and the optimal state process
thus satisfies the following dynamics:
c

X = T+

(M(U) — X,)dt +0dB;, (U, Xo) ~ A.

Define u, = L(U,X;) for each t€[0,T]. Then, u is a graphon equilibrium if and only if M(u) :WyT(u) (i-e.,
M(u) =E[W(u,U)Xr]) for ae. ue[0,1]. In other words, we will have an equilibrium if we can solve the
(McKean—Vlasov) SDE

dXt i1 (WHT(U) — Xt)dt + GdBt, (U, XO) ~ /\,

C
T -1
w, = LU, X)), tel0,T]. (60)

To solve this equation, it is convenient to introduce an independent copy (E, l~1, )N() of (B, U, X). As a first step, we
find an expression for Vu..(U) for every kernel V € L2][0, 1]?, where we note by definition that

Vi, (U) = / V(U,0)x py(do,dx) = E[V(U, D)X (U], 61)
[0, 1]xR
To find an expression for this, note that the SDE (60) implies
t
~ ~ C JE— ~ ~ ~
Xt —_ XO + /O m(W“T(U) - XS) dS + aBt.
Multiply by V(U, U), and take conditional expectations given U, using independence of Band U, to get
Vi, (U) = B[V(U, U)X|U]
t
— c ~ ~ —
=V, (U) + /0 m(E[V(LL UWu (U)U] - Vu,(U))ds. (62)
The second to last term simplifies by Fubini’s theorem:

~ ~ 1 JE—
E[V(U, 0)W, (U] = /O V(U 7)Wy, (i) di

1
- / v, ) W3, 0) x i (do, dx) dii
0 [0, 1]xR

= / Vo W(U,v)x up(dv,dx).
[0, 1]xR
Here, we define Vo W € L2[0,1]* by V o W(u,0) := fé V(u,u)W(u,v)du, which is exactly the kernel of the composi-
tion operator V o W, which we abbreviate as VW. We may thus write
E[V(U, U)W (U)|U] = VW (U).
Use this identity and differentiate (62) to find that (Vyt(u))te[oﬂ obeys the differential equation

c

W(W#T(W - Vyt(u)).

d—
EVM(“) =
It follows that V(1) must be of the form

Vyt(u) = Wﬂr(”) +x(u)(c(T —t)+1), te€]0,T],
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for a u-dependent parameter x(u) to be determined by the initial conditions. Setting t = 0 implies x(u) =
(Vo(u) — VW, (1)), and thus,

ct
cT+1

(T-t)+1-

Vi, (u) = VW, (1) 4+ & Tl Vo (u). (63)

In particular, setting t = T and noting that V(1) depends linearly on the operator V, we find

cT 1 —
V (Id ~ T W) pp(u) = mV‘uo(u). (64)
Choosing V = W(Id — &L W) " yields
— 1 cT -

Note also that u, = £(U, Xo), and so, for any kernel V, we have
Vo (u) = E[V(u, U)Xo] = E[V (1, W)yp(U)] = Vip(u),
where ¢(u) := E[Xo|U = u]. Combining this with (65) shows that M(u) = Wp() is given by (59).
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