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We propose a new approach to deriving quantitative mean field approximations for any probability
measure P on Rn with density proportional to ef (x), for f strongly concave. We bound the mean
field approximation for the log partition function log

∫
ef (x)dx in terms of

∑
i �=j EQ∗ |∂ijf |2, for a semi-

explicit probability measure Q∗ characterized as the unique mean field optimizer, or equivalently as
the minimizer of the relative entropy H(· | P) over product measures. This notably does not involve
metric-entropy or gradient-complexity concepts which are common in prior work on nonlinear large
deviations. Three implications are discussed, in the contexts of continuous Gibbs measures on large
graphs, high-dimensional Bayesian linear regression, and the construction of decentralized near-
optimizers in high-dimensional stochastic control problems. Our arguments are based primarily on
functional inequalities and the notion of displacement convexity from optimal transport.

1 Introduction

At the center of the recent theory of nonlinear large deviations is the problem of justifying the mean field

approximation for the partition function of a Gibbs measure. Given a (reference) probability measure ρ

on Rn, suppose a probability measure P on Rn takes the form

P(dx) = Z−1ef (x)ρ(dx),

for a function f : Rn → R and normalizing constant Z. A recurring problem in diverse applications is
the approximation of the often intractable partition function Z. It obeys the well-known Gibbs variational
principle (see Theorem 3.3 below)

logZ = log

∫

Rn

ef dμ⊗n = sup
Q∈P(Rn)

(∫

Rn

f dQ −H(Q | ρ)

)
, (1.1)

where P(Rn) is the set of probability measures on Rn, and H denotes the relative entropy

H(Q |Q′) :=
∫

Rn

dQ

dQ′ log
dQ

dQ′ dQ
′ if Q � Q′, H(Q |Q′) := ∞ if Q �� Q′.
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Mean Field Approximations via Log-Concavity | 6009

Note that Q = P is the unique optimizer in (1.1). Letting Ppr(R
n) denote the set of product measures

Q = Q1 × · · · × Qn in P(Rn), the mean field approximation is

log

∫

Rn

ef dμ⊗n ≈ sup
Q∈Ppr(Rn)

(∫

Rn

f dQ − H(Q | ρ)

)
. (1.2)

In the cases studied in this paper (see Section 2.1 for details) the left-hand side is expected to be of
order n; a precise formulation of (1.2) is then to find conditions under which the difference is o(n), so
that the mean field approximation becomes asymptotically correct at the leading order. Note that the
right-hand side of (1.2) is trivially a lower bound for the left, because of (1.1), and it is only the upper
bound that incurs an error, which must be estimated.

The groundbreaking work of [24], motivated by applications to subgraph counts in sparse random
graphs, showed how to justify the mean field approximation in the case that ρ is the uniform measure
on the hypercube {−1, 1}n. Their key assumption is that the gradient of f has low complexity, as measured
by the metric entropy of the range ∇f ({−1, 1}n). A number of subsequent papers have since refined this
approach and results on subgraph counts [25, 26, 49], in addition to other noteworthy applications such
as Ising models [3, 4, 8, 28, 35, 44]. Most applications thus far involve discrete μ, but the theory has been
extended to compactly supported measures [3, 5, 59]. Alternative and often more convenient estimates
have appeared, still based on “gradient complexity” but quantifying it in a different way, eschewing
covering number estimates in favor of the simpler and weaker Gaussian-width [35–37] or Rademacher-
width [4].

In this paper, we propose an alternative approach to the mean field approximation, designed most
notably for the case where f is concave and the reference measure μ is strongly log-concave (see
Theorem 1.1 and Corollary 1.4). In particular, we deal with continuous μ of unbounded support, which
covers a rather different host of applications, discussed in Section 2, compared to the somewhat more
discrete-oriented prior literature. Our approach is based on a semi-explicit representation for the mean
field optimizer Q∗ in (1.2), which we show to be unique as soon as P is strictly log-concave, and which
is in fact also the unique minimizer of H(· | P) over product measures. We control the error in the
approximation (1.2) by a constant times EQ∗

∑
i �=j |∂ijf |2, which is typically much simpler to work with

compared to the aforementioned notions of gradient complexity. Eldan [35, 36] and Austin [5] also
analyze the mean field approximation by approximating P by product measures in entropy, but our
methods and bounds are very different from theirs; notably, they approximate P not by a single product
measure but by amixture,which is natural when themean field optimizer is not unique, as is explained
well in [35]. The uniqueness of the mean field optimizer in our setting means that we expect P to
concentrate around a single pure state, rather than a mixture of states.

In the rest of this section, we describe our general results on mean field approximations for
log-concave measures, along with some related ideas and generalizations, with proofs deferred to
Section 3. Section 2 develops three applications: Gibbsmeasures with heterogeneous interactions, high-
dimensional Bayesian linear regression, and high-dimensional stochastic control problems.

1.1 Main results
Recall for κ > 0 that a function f : Rn → R ∪ {−∞} is said to be κ-concave if x 
→ f (x) + κ

2 |x|2 is concave.
If f is finite-valued and C2, that is, twice continuously differentiable, then f is κ-concave if and only
if ∇2f (x) ≤ −κI in semidefinite order, for each x ∈ Rn. We say that a probability measure P on Rn is
κ-log-concave if it takes the form P(dx) = ef (x)dx for some κ-concave function f . We will work with the
(negative of the) differential entropy

H(Q) :=
∫

Rn

Q(x) logQ(x) dx,

for an absolutely continuous probability measure Q(dx) = Q(x)dx on a Euclidean space, well-defined in
(−∞,∞] whenever the negative part of Q logQ is integrable; we adopt the convention that H(Q) = ∞ if
Q is not absolutely continuous, or if (Q logQ)− is not integrable. Let Ppr(R

n) denote the set of product
measures on Rn. Let X = (X1, . . . ,Xn) : Rn → Rn denote the identity map, so that wemay write EQ [g(X)] =∫
Rn g dQ for the expectation under Q.
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6010 | D. Lacker et al.

Theorem 1.1. Consider a C2 and κ-log-concave probability measure P(dx) = Z−1ef (x)dx, for some
κ > 0. Assume there exist c1 ≥ 0 and 0 ≤ c2 < κ/2 such that |f (x)| ≤ c1ec2 |x|

2
for all x ∈ Rn. Then

the following conclusions hold:

(1) There exists a unique product measure Q∗ = Q∗
1 × · · · × Q∗

n ∈ Ppr(R
n) with strictly positive density

a.e. satisfying f ∈ L1(Q∗) and the fixed point equation

Q∗
i (dxi) = Z−1i exp

(
EQ∗ [f (X) |Xi = xi]

)
dxi, Zi > 0, i = 1, . . . ,n. (1.3)

(2) Q∗ is κ-log-concave.
(3) Q∗ is the unique optimizer in

sup
Q∈Ppr(Rn)

(∫

Rn

f dQ − H(Q)

)
. (1.4)

(4) If we define

Rf := log

∫

Rn

ef (x) dx− sup
Q∈Ppr(Rn)

(∫

Rn

f dQ − H(Q)

)
,

then

0 ≤ Rf ≤
1
2κ

EQ∗

n∑

i=1
VarQ∗ (∂if (X) |Xi) ≤

1
κ2

∑

1≤i<j≤n
EQ∗ [|∂ijf (X)|2]. (1.5)

The supremum in (1.4) is finite, as we will see in Lemma 3.4. Also, as will be seen in the proof of
Proposition 3.9, our assumptions ensure that ∂if (xi, ·) ∈ L1

(∏
j �=i Q

∗
j

)
, so the conditional variance in (1.5) is

well-defined in [0,∞]. The final quantity in (1.5) controlling ourmean field approximation error involves
only the cross-derivatives i �= j, which are insensitive to additively separable perturbations f (x) → f (x)+∑n

i=1 f̃i(xi). On the other hand, the measure Q∗ is sensitive to these perturbations, but in the tractable
sense that Q∗

i (dxi) must be multiplied by exp f̃i(xi) (and a new normalizing constant). In particular, both
upper bounds in (1.5) vanish if f is already additively separable, that is, if P is a product measure.

In Theorem 1.1, the measure Q∗ is defined implicitly, which can make bounding Rf difficult. In the
simplest case where ∇2f is bounded, we need no knowledge of Q∗ to obtain

Rf ≤
1
κ2

sup
x∈Rn

∑

1≤i<j≤n
|∂ijf (x)|2,

which is sharp enough for many applications. But even when ∇2f is unbounded, we can take advantage
of the fact that Q∗ is κ-log-concave by Theorem 1.1(2), which implies in particular that it has finite
moments of all orders controlled in terms of κ.

A guiding example is the class of Gibbs measures with pairwise interactions of the form

f (x) =
n∑

i=1
V(xi)+

∑

1≤i<j≤n
JijK(xi − xj), (1.6)

where V is κ-concave,K is even and concave, and J is a symmetric matrix with nonnegative entries. Then
∂ijf (x) = −JijK′′(xi − xj) for i �= j, and for K′′ bounded we immediately deduce Rf ≤ Tr(J2)‖K′′‖2∞/2κ2 from
Theorem 1.1. Corollary 2.3 below proves a similar O(Tr(J2)) bound merely assuming that K′′ has at most
exponential growth, plus a symmetry assumption. Since log

∫
Rn efdx is order n in this case, we obtain a

successful mean field approximation whenever J satisfies Tr(J2) = o(n), which is, in a sense, optimal. For
instance, in the noteworthy case that J is 1/d times the adjacency matrix of a d-regular graph, we have
Tr(J2) = o(n) precisely when d → ∞, and the mean field approximation fails in general in the sparsest
case where d = O(1). See Section 2.1 for further discussion.
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Mean Field Approximations via Log-Concavity | 6011

As a first corollary of Theorem 1.1, we deduce the following non-asymptotic law of large numbers
for the empirical measure. We stress that this result is made possible by the uniqueness of Q∗ in
Theorem 1.1, and without uniqueness it can happen that the empirical measure remains random in
the limit, as in the famous Curie-Weiss model; see [38] for the continuous-spin version, which violates
our concavity assumption, and violates uniqueness at low temperature.

Corollary 1.2. Under the assumptions of Theorem 1.1, for any 1-Lipschitz function ϕ : R→ R, we
have

EP

[(
1
n

n∑

i=1
ϕ(Xi)−

1
n

n∑

i=1
EQ∗ [ϕ(Xi)]

)2]
≤

(1+
√
2Rf )

2

κn
. (1.7)

Remark 1.3. Corollary 1.2 can be interpreted as a form of concentration of the empirical measure
1
n

∑n
i=1 δXi

around the measure 1
n

∑n
i=1 Q

∗
i . Alternatively, the Poincaré inequality for P implies

VarP( 1
n

∑n
i=1 ϕ(Xi)) ≤ 1/κn for 1-Lipschitz ϕ, which in turn implies a form of concentration of

1
n

∑n
i=1 δXi

around its mean 1
n

∑n
i=1 Pi, where Pi is the ith marginal of P. However, the latter is

normally not as useful, because the marginals of P are typically not as tractable as the various
characterizations of Q∗ provided by Theorem 1.1. A concrete example is given by (1.6) with a
doubly stochastic interaction matrix J, developed in detail in Theorem 2.5; the measures Q∗

i

turn out to be universal, in the sense that they do not depend on i, n, or the choice of doubly
stochastic matrix J, whereas the marginals of P may depend on all of these quantities.

It is often convenient to work with a probabilitymeasure as a referencemeasure, in place of Lebesgue
measure, as is common in the literature on mean field approximations (see, e.g., [3, 5, 24, 35, 59]).
Theorem 1.1 implies a similar result in terms of reference probability measures.

Corollary 1.4. Let Vi : R → R be C2 and κ-concave for some κ > 0, such that ρi(dx) = eVi(x)dx is a
probability measure, for i = 1, . . . ,n. Let ρ = ρ1 × · · · × ρn. Let g : Rn → R be C2 and concave.
Assume there exist c1 ≥ 0 and 0 ≤ c2 < κ/2 such that |g(x)| ≤ c1ec2 |x|

2
for all x ∈ Rn. Then the

following conclusions hold:

(1) There exists a unique product measure Q∗ = Q∗
1 × · · · × Q∗

n ∈ Ppr(R
n) with strictly positive density

a.e. satisfying g ∈ L1(Q∗) and

Q∗
i (dxi) = Z−1i exp

(
EQ∗ [g(X) |Xi = xi]

)
ρi(dxi), Zi > 0, i = 1, . . . ,n. (1.8)

(2) Q∗ is κ-log-concave.
(3) Q∗ is the unique optimizer in

sup
Q∈Ppr(Rn)

(∫

Rn

g dQ − H(Q | ρ)

)
. (1.9)

(4) If we define

Rρ
g := log

∫

Rn

eg dρ − sup
Q∈Ppr(Rn)

(∫

Rn

g dQ − H(Q | ρ)

)
,

then

0 ≤ Rρ
g ≤

1
2κ

EQ∗

n∑

i=1
VarQ∗ (∂ig(X) |Xi) ≤

1
κ2

∑

1≤i<j≤n
EQ∗ [|∂ijg(X)|2]. (1.10)

For certain symmetric choices of g, the bound (1.10) is related to the theorems of Cramér and Sanov
on large deviations,which are settings inwhich the Gibbs variational principle is well known to be nearly
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6012 | D. Lacker et al.

saturated by product measures. For instance, if g(x) = nG
( 1
n

∑n
k=1 xk

)
for some continuous concave G,

we obtain Rρ
g ≤ ‖G′′‖2∞/2κ2, which is certainly o(n) when G′′ is bounded.

1.2 Overview and proof ideas
We explain here some key ideas behind Theorem 1.1 and its corollaries. The simple identity

log

∫

Rn

ef (x) dx−
∫

Rn

f dQ + H(Q) = H(Q | P) (1.11)

is valid for probability measures Q with finite entropy and implies (see Lemma 3.4 for details)

log

∫

Rn

ef (x) dx− sup
Q∈Ppr(Rn)

(∫

Rn

f dQ − H(Q)

)
= inf

Q∈Ppr(Rn)
H(Q | P), (1.12)

and also that optimizing (1.4) is equivalent to optimizing

inf
Q∈Ppr(Rn)

H(Q | P). (1.13)

That is, Q∗ from Theorem 1.1 is the optimizer in (1.13). This can be seen as an entropic projection, in the
sense of Csiszar [27], onto the set of product measures. A minimizer in (1.13) always exists, because the
set of product measures is weakly closed and H(· | P) has weakly compact sub-level sets. But uniqueness
is not obvious and in fact fails in general, because the set of product measures is not convex. We
establish the uniqueness of the optimizer in Lemma 3.6 in the case where P is strictly log-concave, by
exploiting the notion of displacement convexity from the theory of optimal transport, with similarities
to the work of McCann [50].

Once we know that the optimizer Q∗ for (1.4) takes the form (1.3), the proof of the mean field
approximation (1.5) is fairly quick, if we ignore certain technical points: The right-hand side of the
identity (1.12) is precisely H(Q∗ | P). We first use the log-Sobolev inequality for P, which is ensured by
κ-log-concavity and the famous result of Bakry-Émery [6], to get

H(Q∗ | P) ≤ 1
2κ

∫

Rn

∣∣∣∣∇ log
dQ∗

dP

∣∣∣∣
2

dQ∗.

Since Q∗ = Q∗
1 × · · · × Q∗

n is a product measure, the formula (1.3) implies

∂i logQ
∗(x) = ∂i logQ

∗
i (xi) = ∂iEQ∗ [f (X) |Xi = xi] = EQ∗ [∂if (X) |Xi = xi]. (1.14)

Thus,

H(Q∗ | P) ≤ 1
2κ

EQ∗

n∑

i=1

(
EQ∗ [∂if (X) |Xi]− ∂if (X)

)2 = 1
2κ

EQ∗

n∑

i=1
VarQ∗ (∂if (X) |Xi).

Differentiating (1.14) again shows easily that Q∗ is κ-log-concave since f is concave. Hence, Q∗ and its
marginals obey a Poincaré inequality, and we deduce

VarQ∗ (∂if (X) |Xi) ≤
1
κ

∑

j �=i
EQ∗

[
|∂ijf (X)|2 |Xi

]
.

Combining the last two inequalities yields (1.5). See Section 1.3.3 below for a discussion of a generaliza-
tion of this argument beyond the strongly log-concave case.

The proof of Corollary 1.2 begins with the observation that the κ-log-concavity of P in Theorem 1.1
implies the quadratic transport inequality [53, Theorems 1 and 2]

W
2
2 (Q∗, P) ≤ 2

κ
H(Q∗ | P), (1.15)
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Mean Field Approximations via Log-Concavity | 6013

where W2 denotes the quadratic Wasserstein distance defined by

W
2
2 (Q∗, P) = inf

π

∫

Rn×Rn

|x− y|2 π(dx, dy),

where the infimum is over π ∈ P(Rn×Rn) withmarginals Q∗ and P. Combining (1.15) with the inequality
H(Q∗ | P) = Rf discussed above, we arrive at W2

2 (Q∗, P) ≤ 2Rf /κ. The quadratic Wasserstein distance
enjoys a useful and fairly well known subadditivity inequality, which we prove in Section 3.4 for the sake
of completeness: If PS denotes the marginal law of (Xi)i∈S under P for a set S ⊂ [n] := {1, . . . ,n}, and
similarly for Q∗

S , then we have

(
n

k

)−1 ∑

S⊂[n], |S|=k
W

2
2 (Q∗

S , PS) ≤
1

�n/k�W
2
2 (Q∗, P) ≤ 2

κ�n/k�Rf ≤
4k
nκ

Rf (1.16)

for any 1 ≤ k ≤ n.With (1.16) in hand, the proof of Corollary 1.2 is straightforward by Kantorovich duality
and Poincaré inequality (see Section 3.4 for a detailed proof). Moreover, in our cases of interest where
Rf = o(n), the bound (1.16) quantifies a form of approximate independence: Most k-particle marginals of P
are W2-close to product measures, if k = o(n/Rf ).

Remark 1.5. We work throughout the paper with state space R, for simplicity. That is, we study
approximations of measures on Rn by n-fold products of measures on R, as opposed to, say,
approximations of measures on (Rd)n by n-fold products of measures on Rd. Most of our
arguments, based primarily on convexity and functional inequalities, extend to the case of
Rd or even Riemannian manifolds with lower curvature bounds in the spirit of Bakry-Émery [6,
7]. The only difficulty is in the uniqueness claimed in Theorem 1.1 (proven in Proposition 3.9),
which would require a finer analysis involving regularity of certain optimal transport maps.

1.3 Additional discussion and results
The remaining results presented in this section will not be used in the rest of the paper but serve to
elaborate on the structure of the main theorem. The reader mainly interested in applications or proofs
of the above results may skip to Sections 2 or 3, respectively, with no loss of continuity.

1.3.1 More on entropic projections

Reversing the order of arguments in the relative entropy in (1.13) leads to a very different optimization
problem, but it is instructive to compare the two. The infimum

inf
Q∈Ppr(Rn)

H(P |Q) (1.17)

is uniquely attained by taking Q = P∗ := P1 × · · · × Pn to be the product of the marginals of P. Indeed,
from the simple identity H(P |Q) = H(P | P∗) + H(P∗ |Q), it follows that H(P |Q) ≥ H(P | P∗) for all Q, with
equality if any only if Q = P∗.

The Gaussian case highlights the difference between (1.17) and (1.13). Suppose P is a centered
Gaussian with nonsingular covariancematrix �. In this case it is easy to see that the (unique)minimizer
of H(Q | P) among product measures Q is the centered Gaussian with covariance matrix �̃, where �̃−1 is
the diagonal matrix obtained by deleting the off-diagonal entries of �−1. On the other hand, the unique
minimizer of H(P |Q) among product measures Q is the centered Gaussian with covariance matrix �̂

obtained by deleting the off-diagonal entries of �.

1.3.2 Tilts

A similar bound to Corollary 1.4 is available if one seeks a stronger mean field approximation, in which
Ppr(R

n) is replaced by the sub-class of product measures given by tilts of a given reference measure.We
focus on the case of Gaussian reference measure, as it is not obvious how to extend the argument to a
general reference measure. For y ∈ Rn, let γy,t denote the Gaussian with mean y and covariance matrix
tI, with γt := γ0,t, noting that γy,t ∈ Ppr(R

n).
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6014 | D. Lacker et al.

Proposition 1.6. Let t > 0, and let f : Rn → R be C2 and concave. Assume there exist c1 ≥ 0 and
0 ≤ c2 < 1/2t such that |f (x)| ≤ c1ec2 |x|

2
. Then there is a unique y∗ ∈ Rn satisfying

y∗ = t

∫

Rn

∇f dγy∗ ,t, (1.18)

and it holds that

log

∫

Rn

ef dγt ≤ sup
y∈Rn

(∫

Rn

f dγy,t −H(γy,t | γt)
)
+ t2

2

n∑

i,j=1

∫

Rn

|∂ijf |2 dγy∗ ,t. (1.19)

Noting that H(γy,t | γt) = |y|2/2t, a simple calculation shows that y∗ uniquely attains the supremum
in (1.19). The difference between (1.19) and (1.10) is that the former includes the diagonal terms i = j

in the sum. This is natural; an additively separable function f (x) =
∑n

i=1 fi(xi) yields a product measure
P(dx) = Z−1ef (x)γt(dx), but it takes an affine function f for P to be aGaussian. Small off-diagonal derivatives
∂ijf can be naturally interpreted as meaning f is close to being additively separable, but the full Hessian
matrix ∇2f must to be small in order for f to be close to affine.

The above proposition is worth comparing with prior results based on gradient complexity. It was
shown in [4, Proposition 3.4, arXiv version] that if f : Rn → R is C1 then

log

∫

Rn

ef dγt ≤ sup
y∈Rn

(∫

Rn

f dγy,t −H(γy,t | γt)
)
+
√
2
∫

Rn

sup
y∈Rn

(
x · ∇f (y)

)
γt(dx). (1.20)

The last integral is (
√
t times) the Gaussian mean-width of the set ∇f (Rn). This estimate (1.20) has

the advantage of applying to non-concave functions f , but it is only meaningful if ∇f is bounded.
Proposition 1.6, on the other hand, can accommodate non-Lipschitz but concave functions f .

1.3.3 Generalization of the main theorem

We briefly discuss how Theorem 1.1 can generalize beyond the strongly log-concave setting. Essentially,
strong log-concavity is needed only for the uniqueness claims and to justify the log-Sobolev and
Poincaré inequalities as explained in Section 1.2. Uniqueness of Q∗ is actually not essential if one is
interested only in a bound like (1.5). The existence of an optimizer Q∗ is automatic, and it is not hard to
show that it must satisfy the fixed point equation (1.3), modulo technical conditions. If it can be shown
thatQ∗ admits a strictly positiveC2 density, and that P andQ∗ obey a log-Sobolev and Poincaré inequality,
respectively, with constants C1 and C2, then the following bound can be proven as in Section 1.2:

0 ≤ Rf ≤ C1EQ∗

n∑

i=1
VarQ∗ (∂if (X) |Xi) ≤ 2C1C2

∑

1≤i<j≤n
EQ∗ [|∂ijf (X)|2].

It is unclear if our assumed bound on |f (x)| is needed or merely an artifact of our proof technique. We
use the assumed bound on |f (x)| in the proof of Theorem 1.1 only to show that Q∗ is strictly positive a.e.,
but this can be shown directly in many particular cases, such as when f is symmetric.

1.4 Outline of the paper
In Section 2, we will present in detail the three main applications of Theorem 1.1, which pertain to
Gibbsmeasures, high-dimensional Bayesian linear regression, and high-dimensional stochastic optimal
control. The proof of Theorem 1.1 is given in Section 3.1, followed by the proof of Corollary 1.4 in
Section 3.2. Section 3.3 contains the proof of Proposition 1.6, while Section 3.4 contains the proofs of
the subadditivity inequality (1.16) and Corollary 1.2. Finally, the proofs of the applications are given in
Sections 4 and 5.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
4
/7

/6
0
0
8
/7

4
9
0
8
8
1
 b

y
 R

o
b
e
rt W

h
ite

la
w

 u
s
e
r o

n
 2

0
 J

u
n
e
 2

0
2
4



Mean Field Approximations via Log-Concavity | 6015

2 Applications
2.1 Gibbs measures with pairwise interactions
First,we studyGibbsmeasureswith pairwise interaction potentials of the form (1.6),where the following
assumption holds:

Assumption 2.1. V : R → R is C2 and κ-concave for some κ > 0, K : R → R is even, C2, and
concave, and J is a symmetric matrix with nonnegative entries and Jii = 0 for all i = 1, . . . ,n.
Assume there exists a, b, c ≥ 0 and 0 ≤ d < κ/2 such that |V(x)| ≤ cedx

2
and |K′′(x)|2 ≤ aeb|x| hold

for all x ∈ R.

Note since K is even that there is no loss of generality in assuming that J is zero on the diagonal. Themost
traditionalmean field setting is when Jij = 1/n for all (i, j), so that all particles interact equally, and there is
a vast literature on the large-n behavior; see [23, 34] for some recent results and references. In general,
the matrix J represents disorder or heterogeneous interactions, and a common situation is when J is the
rescaled adjacencymatrix of a graph. A notable strength of the non-asymptotic perspective of our work,
and the theory of nonlinear large deviations more broadly, is that it can seamlessly handle this kind of
heterogeneity. Gibbs measures with pairwise interactions on large graphs have been studied in many
contexts, primarily on finite state space (see [8, 10, 31, 32] and references therein). In the continuous
context we study here, these Gibbs measures appear as invariant measures of locally interacting
diffusion processes whose large-scale behavior has recently been the subject of active research [29,
52]. We note that concavity is not an uncommon assumption in this literature, and covers for instance
models of granular media [22].

To work toward applying Theorem 1.1 with f as in (1.6), we first record the simple observation that
f is strongly concave under Assumption 2.1. The proof of this and other results in Section 2.1 are given
in Section 4.

Lemma 2.2. Define f by (1.6), and suppose Assumption 2.1 holds. Then f is κ-concave.

The following corollary will allow us to cover the case of unbounded K′′, but only if we can control
the barycenter of Q∗ in the sense that EQ∗ [Xi −Xj] = 0. This symmetry condition is justified in different
ways in the following applications and is explained further in Section 2.1.3.

Corollary 2.3. Define f by (1.6), and suppose Assumption 2.1 holds. With Q∗ denoting the unique
optimizer of (1.4), assume further that EQ∗ [Xi − Xj] = 0. Then

Rf ≤ Tr(J2)aκ−2eb
2/κ .

Remark 2.4. Corollary 2.3 shows that Rf = o(n) as long as Tr(J2) = o(n). The assumption Tr(J2) =
o(n) has been used in the literature as a mean field condition for quadratic interaction models,
first in [8, Theorem 1.1] and then in [59, Theorem 4]. Both cases are limited to measures
with compact support. Moreover, in their setting, neither uniqueness of the optimizer nor
convergence of the empirical measure hold in general. In contrast, the powerful assumption of
concavity in our setting allows us to handle unbounded support and to show both uniqueness
of the optimizer and convergence of the empirical measure Theorems 2.5 and 2.8 below.

Using Corollary 2.3, one can study the weak law of large numbers of the empirical measure under P,
by studying the corresponding weak law under the product measure Q∗. Under additional assumptions
on the matrix J, the mean field optimization problem can be shown to converge as n→∞, allowing us
to characterize the weak law under P in terms of the limiting optimization problem. Below we illustrate
this in two special cases.

2.1.1 Doubly stochastic matrices

In the following n→∞ results, note that the dependence of f , P(dx) = Z−1ef (x)dx and J on n is suppressed.
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6016 | D. Lacker et al.

Theorem 2.5. Define f by (1.6), and suppose Assumption 2.1 holds. Assume there exist a, b ≥
0 such that |K′′(x)|2 ≤ aeb|x| for all x. Assume further that the symmetric matrix J is doubly
stochastic (i.e.,

∑n
j=1 Jij = 1 for all i), and obeys the mean field condition Tr(J2) = o(n). Then we

have the following conclusions:

(1)

lim
n→∞

1
n
log

∫

Rn

ef (x)dx = sup
Q∈P(R)

(∫

R

VdQ + 1
2

∫

R

∫

R

K(x− y)Q(dx)Q(dy)−H(Q)

)
. (2.1)

(2) The supremum in (2.1) is attained by a unique Q ∈ P(R), and if (X1, . . . ,Xn) ∼ P then

1
n

n∑

i=1
δXi

→ Q, weakly in law. (2.2)

(3) The measure Q∗ of Theorem 1.1 is precisely Q∗ = Q⊗n, and in particular it does not depend on n or
the choice of doubly stochastic interaction matrix J.

The above theorem applies when J = A/d and A is the adjacency matrix of a d-regular graph. In this
case we get Tr(J2) = n/d, which is o(n) as long as d → ∞. The above theorem is similar in spirit to [8,
Theorem 2.1], which dealt with Ising and Potts models, and a comment similar to Remark 2.4 applies.
Note that one cannot expect amean field approximation to be valid in the sparsest (diluted) case,where
d stays bounded as n→∞. The framework of local weak convergence has proven to be successful in this
context [30], and we refer also to [45, Sections 2 and B] for continuous models encompassing the form
studied here, and for a detailed derivation of the (folklore) limit of the empirical measure for locally
convergent graph sequences, which requires uniqueness of the infinite-volume Gibbs measure on the
limiting graph.

2.1.2 Graphons

Another case in which we can derive asymptotics of the log partition function is when the matrix J

converges to a graphon W in cut metric. Below we introduce the relevant notions, deferring to [15–17,
48] for additional background:

Definition 2.6. Let W denote the space of all symmetric measurable functions from [0, 1]2 to
[0,∞) which are integrable. For W1,W2 ∈W , define the strong cut (pseudo-)metric by

d�(W1,W2) := sup
S,T⊂[0,1]

∣∣∣∣
∫

S×T

(
W1(u,v)−W2(u,v)

)
dudv

∣∣∣∣,

and their weak cut (pseudo-)metric by

δ�(W1,W2) := inf
ϕ

d�(W1,W
ϕ

2),

where the infimum is over all invertible measure-preserving maps ϕ : [0, 1] → [0, 1], and
Wϕ

2(u,v) := W2(ϕ(u),ϕ(v)). Given a symmetric matrix A ∈ Rn×n with nonnegative entries, we
define a functionWA ∈W by settingWA(u,v) := A�nu�,�nv�.We say that a sequence of symmetric
matrices {An} converges in weak cut metric to a function W ∈W if δ�(WAn ,W) → 0.

Remark 2.7. Suppose Gn is the adjacency matrix of an Erdős-Rényi random graph on n vertices
with parameter pn, such that npn →∞. If Jn = 1

npn
Gn, then nJn converges in strong cut metric to

the constant function 1 (see [15, Example 3.3.1]). Similar convergences hold if Gn arises from a
stochastic block model, where the edge probability matrix has a block structure, in which case
the limitingW retains the same block structure. For more examples of convergent sequence of
graphs in cut metric, we refer again to [15–17, 48] and references therein.
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Let PUnif([0, 1] × R) denote the space of all probability measures on [0, 1] × R with uniform first
marginal. Note that any μ ∈ PUnif([0, 1]× R) admits the disintegration μ(du, dx) = duμu(dx).

Theorem 2.8. Define f by (1.6), and suppose Assumption 2.1 holds. Assume there exist a, b ≥ 0
such that |K′′(x)|2 ≤ aeb|x| for all x. Assume further that V is even, K is nonpositive,

∫
R
eV(x)dx = 1,

and J = {Jn} is a sequence of matrices such that {nJn} converges in weak cut metric to a function
W ∈W . Assume also that Tr(J2n) = o(n).

(1) Defining the probability measure ρ(dx) = eV(x)dx, we have

lim
n→∞

1
n
log

∫

Rn

ef (x) dx

= sup
μ∈PUnif([0,1]×R)

(
1
2

∫

([0,1]×R)2
W(u,v)K(x− y)μ(du, dx)μ(dv, dy)−

∫ 1

0
H(μu | ρ) du

)
.

(2.3)

(2) The supremum in (2.3) is attained by a unique μ∗ ∈ PUnif([0, 1]× R), and if (X1, . . . ,Xn) ∼ P, then

1
n

n∑

i=1
δXi

→
∫ 1

0
μ∗
u du, weakly in law. (2.4)

Remark 2.9. It follows from [16, Propositions C.5 and C.15] that the condition Tr(J2n) = o(n) holds
automatically if Jn is the adjacency matrix of a simple graph Gn = ([n],En) multiplied by
n/(2|En|), and nJn converges in cut metric. However, if Jn is a general matrix, we need the added
assumption Tr(J2n) = o(n) in Theorem 2.8.

2.1.3 On the symmetry of Q∗

This short section elaborates on conditions under which one can check that EQ∗ [Xi − Xj] = 0, which
was needed in Corollary 2.3. The main two conditions we found are evenness and a weak form of
permutation invariance.

Definition 2.10. Let S be a set of permutations of [n]. We say that S is transitive if for every i, j ∈ [n]
there exists π ∈ S such that π(i) = j. We say also that a function f on Rn is invariant under S if
f (x1, . . . , xn) = f (xπ(1), . . . , xπ(n)) for every x ∈ Rn and π ∈ S.

Lemma 2.11. In the setting of Theorem 1.1, the following implications hold:

(1) If f is even, meaning f (−x) = f (x) for all x, then Q∗
i is even for each i = 1, . . . ,n.

(2) Suppose f is invariant under a transitive set of permutations. Then Q∗
1 = Q∗

2 = · · · = Q∗
n .

In both cases, we have EQ∗ [Xi − Xj] = 0 for all i, j ∈ [n].

When f is of the form (1.6), it is clear that f is even if K and V are, and indeed V is assumed even
in Theorem 2.5 to enable an application of Lemma 2.11(1). We will not apply Lemma 2.11(2), but we
find it interesting in its own right. For instance, (2) holds if f is symmetric, that is, invariant under all
permutations. Another natural case covered by (2) is where f is of the form (1.6) and J is a scalar multiple
of the adjacency matrix of a vertex transitive graph.

2.2 High dimensional Bayesian linear regression
Our next application is concerned with high dimensional Bayesian linear regression. Suppose we
observe a set of data

{
(yi,Xi)

}n
i=1, where yi ∈ R and Xi ∈ Rp. Let y = (y1, . . . , yn)� ∈ Rn and X� =

(X1, . . . ,Xn) ∈ Rp×n. Consider the linear regression model

y = Xβ + ε, ε ∼ γσ 2 ,

where γσ 2 denotes the Gaussian with mean 0 and covariance matrix σ 2I. Here β ∈ Rp is the unknown
parameter.
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6018 | D. Lacker et al.

Following a Bayesian approach, assume that β = (β1, . . . ,βp)
� i.i.d.∼ π , where π is a prior distribution on

R with density proportional to eV ∈ L1(R) for some V : R→ R. The posterior density πy,X of β given y and
X is then proportional to efy,X , where

fy,X(β) :=
p∑

i=1
V(βi)−

1
2σ 2

∣∣y− Xβ
∣∣2 .

The posterior distribution is the central object of inference in Bayesian statistics. Note that even
though β has independent coordinates under the prior, the coordinates of β are no longer independent
under the posterior. Frequently,mean-field techniques are used to approximate such complex posterior
distributions, including and beyond the set up of Bayesian linear regression (see [2, 11, 54, 58, 60] and
references therein). In particular, it is useful to understand what conditions guarantee the validity of a
mean field approximation, showing that the posterior is close to a product measure. Using Theorem 1.1,
the following corollary provides sufficient conditions under which the posterior is indeed mean-field.
Leveraging this, it also derives a law of large numbers for the empiricalmeasure under the true posterior
distribution.

Corollary 2.12. Assume V is κ1-concave for some κ1 ∈ R, and that there exists c1 ≥ 0 and 0 ≤ c2 <

κ/2 such that |V(x)| ≤ c1ec2x
2
for all x ∈ R. Set J = X�X ∈ Rp×p, and assume that J ≥ κ2I for some

κ2 ∈ R such that κ1 + κ2σ
−2 > 0. Then

sup
y∈Rn

∣∣∣∣ log
∫

Rp

efy,X(β)dβ − sup
Q∈Ppr(R

p)

(∫

Rp

fy,X dQ − H(Q)

) ∣∣∣∣ ≤
1

(κ1σ 2 + κ2)2

∑

1≤i<j≤p
J2ij. (2.5)

Moreover, for every y ∈ Rn, the inner supremum in (2.5) is attained by a unique Q∗
y ∈ Ppr(R

p),
and for any 1-Lipschitz function ϕ : R→ R, we have

sup
y∈Rn

Eπy,X

[(
1
p

p∑

i=1
ϕ(βi)−

1
p

p∑

i=1
EQ∗

y
[ϕ(βi)]

)2]
≤

σ 2
(
κ1σ

2 + κ2 +
√
2
∑

1≤i<j≤p J
2
ij

)2

p(κ1σ 2 + κ2)3
. (2.6)

The proof of this corollary is by a direct application of Theorem 1.1 and Corollary 1.2, and is hence
omitted. Indeed, the concavity assumption on V and the lower bound on J ensure that ∇2fy,X(β) ≤ −(κ1+
κ2σ

−2)I for all β.

Remark 2.13. The uniformity in y in (2.5) implies that the mean field approximation continues to
hold with high probability, under any distributional assumption on y. Note that when n, p→∞
in any arbitrary manner, the right-hand side of (2.5) and (2.6) are o(p) and o(1) respectively,
as long as

∑
1≤i<j≤p J

2
ij = o(p) when n, p → ∞. We also point out that the same conclusion

as in (2.5) above was derived in [51, Theorem 1] using very different techniques, under the
assumption that the prior distribution π is compactly supported. In our setup, we allow the
support to be non-compact and instead assume that the prior distribution is strongly log-
concave. This powerful assumption brings many advantages, such as yielding the uniqueness
of the optimizer and the law of large numbers under no extra assumptions.

2.3 Stochastic control
This section describes an application of Corollary 1.4 to a class of high-dimensional stochastic optimal
control problems. Let T > 0, and let g : Rn → R be C2 and concave. Consider the stochastic control
problem

Vorig := sup E

[
g(XT)−

1
2n

n∑

i=1

∫ T

0
|αi(t,Xt)|2dt

]
, (2.7)
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where the supremum is over pairs (α,X), where α = (α1, . . . ,αn) : [0,T] × Rn → Rn is a measurable
function and X = (X1, . . . ,Xn) a weak solution of the stochastic differential equation (SDE)

dXi
t = αi(t,Xt)dt+ dBit, Xi

0 = 0, i = 1, . . . ,n, (2.8)

defined on an arbitrary filtered probability space (�,F ,F,P), satisfying also
∫ T
0 |α(t,Xt)|2 dt < ∞ a.s. Here

B = (B1, . . . ,Bn) is an n-dimensional F-Brownian motion, and X is required to be F-adapted.We call such
a pair (α,X) admissible. There is a well known semi-explicit solution to (2.7) which has come to be known
as the Föllmer drift, which we will discuss in Remark 2.15 below. Let us stress that concavity of g is, again,
both a powerful assumption and yet quite commonplace in both theory and applications of stochastic
optimal control [39].

We interpret i = 1, . . . ,n as the indices of different “players,” each facing an independent source of
randomness Bi, and each choosing a control αi which can depend on the full information of all n players.
Players “cooperate” in the sense that (α1, . . . ,αn) are chosen together to optimize (2.7). When g is of the
form

g(x) = G

(
1
n

n∑

i=1
δxi

)
, for some G : P(R) → R, (2.9)

we recover a well-studied class of problems which goes under the name mean field control in the
cooperative setting [20], ormean field games in the competitive (Nash equilibrium) setting [42, 46]; see [21]
for an overview. In this setting, it is typically argued that Vorig converges to the value of a limiting “mean
field” control problem, and the optimal control α̂ from this limiting problem can be used to construct
distributed controls αi(t, x1, . . . , xn) = α̂(t, xi) which are provably approximately optimal for the n-player
problem for n large. This is a very desirable outcome, because distributed controls are much simpler
(lower-dimensional).

Our results give a new non-asymptotic perspective on control problems of this form, by showing how
to construct approximately optimal distributed controls for much more general g than in (2.9). The link
between (2.7) and the setting of Section 1 is the formula

Vorig = sup
Q∈P(Rn)

(∫

Rn

g dQ − 1
n
H(Q | γT)

)
= 1

n
log

∫

Rn

eng dγT, (2.10)

where we recall that γT denotes the centered Gaussian with covariance matrix TI. This formula is
essentially a well known consequence of Girsanov’s theorem. (Experts might recognize a similarity
with a famous formula often named after Boué-Dupuis [18] or Borell [14], though the form we present
here is simpler because of our restriction to Markovian controls, whereas [14, 18] work with open-loop

controls, that is, controls specified as arbitrary progressively measurable processes.) The mean field
approximation also admits a natural control-theoretic interpretation. Define

Vdstr := sup E

[
g(XT)−

1
2n

n∑

i=1

∫ T

0
|αi(t,Xt)|2dt

]
, (2.11)

where the supremum is now over admissible pairs (α,X) for which α = (α1, . . . ,αn) is of the form

αi(t, x1, . . . , xn) = α̂i(t, xi),

for some measurable α̂i : [0,T]×R→ R, and also for which X1
t , . . . ,X

n
t are independent for each t ∈ [0,T]

(this second statement being redundant if the SDE (2.8) driven by this α is known to be unique in law).
Let us call any such pair (α,X) a distributed admissible pair. We will derive the following result from
Corollary 1.4, after first showing that Vdstr is nothing but the mean field approximation of (2.10), in the
sense that

Vdstr = sup
Q∈Ppr(Rn)

(∫

Rn

g dQ − 1
n
H(Q | γT)

)
. (2.12)
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6020 | D. Lacker et al.

Corollary 2.14. Let g : Rn → R be C2 and concave, and let T > 0. Assume there exists c1 ≥ 0 and
0 ≤ c2 < 1/2T such that |g(x)| ≤ c1ec2 |x|

2
for all x ∈ Rn. Define Vorig and Vdstr by (2.7) and (2.11),

respectively. Then the formulas (2.10) and (2.12) hold, and

0 ≤ Vorig − Vdstr ≤ nT2
∑

1≤i<j≤n
EQ∗ [|∂ijg(X)|2], (2.13)

where Q∗ = Q∗
1 ×· · ·×Q∗

n ∈ Ppr(R
n) is the unique product measure with strictly positive density

a.e. satisfying g ∈ L1(Q∗) and the fixed point equation

Q∗
i (dxi) = Z−1i exp

(
nEQ∗ [g(X) |Xi = xi]

)
γT(dxi), Zi > 0, i = 1, . . . ,n.

The proof is given in Section 5. Corollary 2.14 shows that distributed controls are approximately
optimal for large n if n‖

∑
i �=j ∂ijg‖2∞ = o(1). As an example, if g is of the form (2.9) and G is twice

continuously Wasserstein- or L-differentiable in the sense of [21, Chapter 5.2], then

∂ig(x) =
1
n
DmG

(
1
n

n∑

k=1
δxk , xi

)
, ∂ijg(x) =

1
n2

D2
mG

(
1
n

n∑

k=1
δxk , xi, xj

)
, i �= j.

Hence, if D2
mG is bounded, then the right-hand side of (2.13) is bounded by T2‖D2

mG‖2∞/2n.

Remark 2.15. In fact, the proof of Corollary 2.14 also yields an explicit characterization of the
optimal distributed control in (2.11), which we summarize as follows. For a measure Q � γT,
consider a process X = (Xt)t∈[0,T] such that XT ∼ Q and the conditional law of the trajectory
(Xt)t∈[0,T] given XT = x coincides with the law of the Brownian bridge from 0 to x on the time
interval [0,T]. This process might be called the Brownian (or Schrödinger) bridge with terminal

law Q. The associated control α is given by α(t, x) = ∇x logE[
dQ
dγT

(x + BT − Bt)], as shown in full
generality by Föllmer [40, 41]. Note that the associated SDE (2.8) may not be pathwise unique
in general, but it always admits a weak solution X with the law just described. The optimizer
for the original control problem (2.7) is nothing but the Brownian bridge with terminal law
P(dx) = Z−1eng(x)γT(dx). Similarly, the optimizer for the distributed control problem (2.11) is the
Brownian bridge with terminal law Q∗.

Remark 2.16. Proposition 1.6 admits a similar control-theoretic formulation in terms of determin-

istic controls. Let Vdet denote the value of the stochastic control problem (2.7) but with the
supremum limited to those admissible pairs (α,X) in which the control is non-random, that is,
αi(t, x) = α̃i(t) for some α̃i ∈ L2[0,T]. For these controls, Xt is Gaussian with covariance matrix tI

for each t ∈ [0,T]. It can then be shown that

Vdet = sup
y∈Rn

(∫

Rn

g dγy,T −
1
n
H(γy,T | γT)

)
= sup

y∈Rn

(∫

Rn

g dγy,T −
|y|2
2nT

)
,

and Proposition 1.6 yields the following analogue of (2.13):

0 ≤ Vorig − Vdet ≤
nT2

2

n∑

i,j=1

∫

Rn

|∂ijg|2 dγy∗ ,T,

where y∗ ∈ Rn is the unique solution of y∗ = T
∫
Rn ∇g dγy∗ ,T.

Remark 2.17. Subsequent to the first version of this paper, a followupwork [43] by the first author
and Jackson partially extended Corollary 2.14 to cover more general objective functions, of the
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form

E

[
g1(XT)−

∫ T

0

(
g2(Xt)+

1
n

n∑

i=1
Li
(
Xi
t,α

i(t,Xt)
))

dt

]
.

The “static” representations of the value functions Vorig and Vdstr given in (2.10) and (2.12)
are no longer available for non-quadratic running costs. For this reason, completely different
techniques were developed in [43], relying on partial differential equations on the space of
probability measures and a form of the stochastic maximum principle. The results of [43] only
partially extend our Corollary 2.14, because when specialized to the quadratic cost the former
require stronger regularity and growth assumptions.

3 Proof of the Main Theorem

The proofs will make use of the well known log-Sobolev and Poincaré inequalities for strongly log-
concave measures, recalled here for convenience as we will use them in several parts of the paper. The
former is due to Bakry-Émery (see [6] or [7, Corollary 5.7.2]), and the latter is a consequence of the
Brascamp-Lieb inequality [19, Theorem 4.1].

Theorem 3.1 (Log-Sobolev inequality). If h : Rn → R is C2 and κ-concave, and R(dx) = eh(x)dx is a
probability measure, then R satisfies the log-Sobolev inequality,

H(Q |R) ≤ 1
2κ

∫

Rn

∣∣∣∣∇ log
dQ

dR

∣∣∣∣
2

dQ,

for every Q ∈ P(Rn) such that Q � R and the weak gradient of log dQ/dR exists in L2(Q).

Theorem 3.2 (Poincaré inequality). If h : Rn → R is κ-concave, and R(dx) = eh(x)dx is a probability
measure, then R satisfies the Poincaré inequality,

VarR(ϕ) :=
∫

Rn

ϕ2 dR−
(∫

Rn

ϕ dR

)2

≤ 1
κ

∫

Rn

|∇ϕ|2 dR,

for every continuously differentiable function ϕ : Rn → R in L1(R).

The above Poincaré inequality is normally stated with the additional assumptions that h is C2, which
is easily removed by mollification by a Gaussian, and that ϕ ∈ L2(R), which can be weakened to L1(R) by
monotone approximation, though both sides may be infinite.

Wewill alsomake use of the Gibbs variational principle,which is well known, but we give the proof as
we need a non-standard form which is careful about edge cases. Recall our convention that H(Q) := ∞
if Q is not absolutely continuous or if Q logQ /∈ L1(Rn).

Theorem 3.3 (Gibbs variational principle). Let f : Rn → R ∪ {−∞} be measurable, bounded from
above and such that Z :=

∫
Rn ef dx ∈ (0,∞). Define P ∈ P(Rn) by P(dx) = Z−1ef (x) dx. Then

sup
Q∈P(Rn)

(∫

Rn

f dQ −H(Q)

)
= logZ ∈ (−∞,∞), (3.1)

and the following are equivalent:

(1) H(P) < ∞.
(2) The supremum in (3.1) is attained uniquely by P.
(3) There exists a maximizer in (3.1).
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6022 | D. Lacker et al.

Proof. We first prove (3.1). Since f is bounded from above,
∫
Rn f dQ ∈ [−∞,∞) is well-defined for all

Q ∈ Ppr(R
n). We may thus restrict the supremum in (3.1) to those Q with H(Q) < ∞. For H(Q) < ∞, we

have the simple identity

∫

Rn

f dQ − H(Q) = −H(Q | P)+ logZ. (3.2)

Therefore,

sup
Q∈P(Rn)

(∫

Rn

f dQ − H(Q)

)
= − inf

{
H(Q | P) : Q ∈ P(Rn), H(Q) < ∞

}
+ logZ,

and it suffices to show that the infimum on the right-hand side is zero. We proceed by approximation.
For each k ∈ N, let Bk ⊂ Rn denote the centered ball of radius k, and define the probability density
Qk = P1Bk/P(Bk). Since f is bounded from above, the densityQk is bounded and supported on the bounded
set Bk. Thus Qk logQk ∈ L1(Rn), or H(Qk) < ∞, and we conclude that H(Q | P) ≤ lim infk H(Qk | P). Finally,
since P(Bk) → 1,

H(Qk | P) = − log P(Bk) → 0.

This proves the claim (3.1).
Turning to the equivalence of (1–3), the implication (1) ⇒ (2) follows by taking Q = P in (3.2). The

implication (2) ⇒ (3) is trivial. Lastly, for the implication (3) ⇒ (1), suppose Q ∈ P(Rn) attains the
supremum in (3.1). We know from (3.1) that the supremum is not −∞, so H(Q) < ∞. Then, for any
R ∈ P(Rn) with H(R) < ∞, the identity (3.2) implies

−H(R | P)+ logZ =
∫

Rn

f dR− H(R) ≤
∫

Rn

f dQ − H(Q) = −H(Q | P)+ logZ.

Rearrange and minimize over R to get

H(Q | P) ≤ inf
{
H(R | P) : R ∈ P(Rn), H(R) < ∞

}
= 0,

where the last equality was shown just above while proving (3.1). It follows that H(Q | P) = 0, so Q = P,
and H(P) = H(Q) < ∞. This completes the proof. �

3.1 Proof of Theorem 1.1
This section proves Theorem 1.1 in several parts, and we assume throughout that f satisfies the
assumptions therein. Since f is C2 and κ-concave,

f (x) ≤ a− b|x|2, for all x ∈ Rn, where a := f (0)+ κ−1|∇f (0)|2, b := κ/4. (3.3)

This implies that Z :=
∫
Rn ef (x)dx < ∞, so P(dx) = Z−1ef (x)dx is well defined. Moreover, f is bounded

from above, so
∫
Rn f dQ is well defined in [−∞,∞) for every Q ∈ P(Rn). Note lastly that fef ∈ L1(Rn), or

equivalently H(P) < ∞, which follows from the growth assumption on |f | and the fact that the κ-log-
concave measure P satisfies

∫
Rn ec|x|

2
P(dx) < ∞ for each c < κ/2. (In fact, every absolutely continuous

log-concave measure has finite entropy [12, Theorem I.1].) We first establish some properties of the
optimization and fixed point problems appearing in Theorem 1.1.

Lemma 3.4. It holds that

−∞ < sup
Q∈Ppr(Rn)

(∫

Rn

f dQ − H(Q)

)
< ∞, (3.4)

and any Q∗ ∈ Ppr(R
n) attaining the supremum satisfies f ∈ L1(Q∗). Also, equation (1.12) is valid.
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Proof. The Gibbs variational formula (Theorem 3.3) implies that the supremum in (3.4) is no greater
than logZ < ∞. To see that it is not −∞, note that f is locally bounded because it is concave and
real-valued. Hence, if Q is any product measure with bounded support and finite entropy (such as the
uniform measure on [0, 1]n), we can bound the supremum from below by

∫
Rn f dQ − H(Q) > −∞. Now,

if Q∗ is an optimizer, then H(Q∗) < ∞ and
∫
Rn fdQ∗ > −∞, the latter implying that f ∈ L1(Q∗) since f is

bounded from above.
To prove (1.12), note that the simple calculation (1.11) is valid for any Q ∈ P(Rn) with H(Q) < ∞,

though both sides are +∞ if and only if
∫
Rn f dQ = −∞. Since

∫
Rn f dQ always exists in [−∞,∞), the

supremum in (3.4) remains the same when restricted to those Q with H(Q) < ∞. By infimizing (1.11)
over Q ∈ Ppr(R

n) with finite entropy, we deduce that the left-hand side of (1.12) is finite and equals
inf{H(Q | P) : Q ∈ Ppr(R

n), H(Q) < ∞}. To complete the proof, we claim that if Q ∈ Ppr(R
n) satisfies

H(Q | P) < ∞ andH(Q) = ∞, then there existsQk ∈ Ppr(R
n) such thatH(Qk) < ∞ for each k andH(Qk | P) →

H(Q | P). Indeed, define the probability density Qk = Q1Ck
/Q(Ck), where Ck = [−k, k]n, for k large enough

that Q(Ck) > 0. Then

H(Qk | P) =
1

Q(Ck)

∫

Ck

log
dQ

dP
dQ − logQ(Ck)

is finite and converges to H(Q | P) as k→∞. In particular, log(dQk/dP) ∈ L1(Qk). We also have log P = f −
logZ ∈ L1(Qk) because f is locally bounded and Qk has compact support.We deduce that logQk ∈ L1(Qk),
or H(Qk) < ∞, which completes the proof. �

The following proposition shows essentially that the fixed point problem (1.3) is the first order
condition for optimality in (1.4). This extends naturally to much more general settings, with (Rn, dx)
replaced by a general σ -finite product measure space, but we will not need this.

Proposition 3.5 (Optimality to fixed point). Suppose Q∗ = Q∗
1 × · · · × Q∗

n ∈ Ppr(R
n) attains the

supremum in (3.4). Then f ∈ L1(Q∗) and Q∗ satisfies the fixed point equation

Q∗
i (dxi) = Z−1i ef̂i(xi) dxi, where f̂i : R→ R ∪ {−∞} is defined by

f̂i(xi) :=
∫

Rn−1
f (x1, . . . , xn)

∏

j �=i
Q∗
j (dxj), i ∈ [n].

(3.5)

Proof. Note that f ∈ L1(Q∗) by Lemma 3.4. By assumption, (Q∗
1 , . . . ,Q

∗
n) attains the supremum

sup
Q1 ,...,Qn∈P(R)

(∫

Rn

f d(Q1 × · · · × Qn)− H(Q1 × · · · × Qn)

)
.

Clearly, f̂i(xi) = EQ∗ [f (X) |Xi = xi] for Q∗
i -a.e. xi ∈ R. Also, it is well known that entropy tensorizes for

product measures: H(Q1 × · · · × Qn) =
∑n

i=1 H(Qi). From these and the tower property it follows for each
i ∈ [n] that Q∗

i attains the supremum

Si := sup
Qi∈P(R)

(∫

R

f̂i dQi − H(Qi)

)
. (3.6)

We wish to invoke the Gibbs variational principle (Theorem 3.3) to deduce that this supremum is
uniquely attained by the probability measure with density proportional to ef̂i , and thus Q∗

i (dxi) =
Z−1i ef̂i(xi) dxi, which yields (3.5). It remains to carefully check the conditions of Theorem 3.3. We know
that Q∗

i attains the supremum (3.6), so we must just check that Zi ∈ (0,∞). Note that (3.3) implies

f (x) ≤ a − bx2i for all x ∈ Rn, and thus f̂i(xi) ≤ a − bx2i for all xi ∈ R, which implies Zi =
∫
R
ef̂i(xi) dxi < ∞.

Next, recall from Lemma 3.4 that f ∈ L1(Q∗), so by Fubini’s theorem, Q∗
i (|f̂i| < ∞) = 1. Note that

Q∗
i is absolutely continuous since H(Q∗

i ) < ∞. Hence, {|f̂i| < ∞} has nonzero Lebesgue measure, and
so Zi > 0. �
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The following constructions will be useful in the proofs of Lemmas 3.6 and 3.9. Define G1,G2,G :
P(Rn) → R by

G1(Q) :=
∫

Rn

f dQ, G2(Q) := H(Q), G := G1 − G2. (3.7)

For R = R1×· · ·×Rn ∈ Ppr(R
n) and S = S1×· · ·×Sn ∈ Ppr(R

n) with strictly positive density a.e., we denote
by MR→S(t) =

(
MR→S

1 (t), . . . ,MR→S
n (t)

)
the displacement interpolations between the marginals, that is,

MR→S
i (t) =

(
(1− t)Id+ tTR→S

i

)
#Ri, (3.8)

where TR→S
i : R→ R is the Ri-a.s. unique nondecreasing function satisfying Si = (TR→S

i )#Ri.

Lemma 3.6. There exists a unique maximizer in (3.4).

Proof. We first prove existence. Recalling the identity (1.12), the optimizers of (3.4) are in one-to-one
correspondence with the optimizers of infQ∈Ppr(Rn) H(Q | P). The latter exist because Ppr(R

n) is a weakly
closed subset of P(Rn) and because H(· | P) has weakly compact sub-level sets (see, e.g., [33, Lemma
1.4.3(c)]).
We next prove uniqueness. Let Q∗ = Q∗

1 ×· · ·×Q∗
n ∈ Ppr(R

n) denote any optimizer of (3.4). Recalling (3.7),
we see that Q∗ is a maximizer of G, and we will show it must be the only one. Let Q ∈ Ppr(R

n) be distinct
from Q∗. Since Q∗

i and Qi are distinct, there exists i such that TQ∗→Q
i is different from the identity map

on a set with strictly positive Q∗
i -measure. Writing out the expression of G1,

G1
(
MQ∗→Q(t)

)
=
∫

Rn

f
(
(1− t)x1 + tTQ∗→Q

1 (x1), . . . , (1− t)xn + tTQ∗→Q
n (xn)

) n∏

i=1
Q∗
i (dxi),

we see that t 
→ G1
(
MQ∗→Q(t)

)
is strictly concave because f is strictly concave and Q �= Q∗. Tensorization

of entropy yields G2
(
MQ∗→Q(t)

)
=

∑n
i=1 H(Mi(t)), and it is well known that differential entropy is

displacement convex [57, Theorem 5.15(i)]. That is, t 
→ H
(
MQ∗→Q

i (t)
)
is convex for each i. We deduce

that t 
→ G
(
MQ∗→Q(t)

)
is strictly concave. This proves uniqueness: if Q were also an optimizer, then

G
(
MQ∗→Q(1)

)
= G(Q) = G(Q∗) = G

(
MQ∗→Q(0)

)
would imply G

(
MQ∗→Q(t)

)
> G(Q∗) for some t ∈ (0, 1). �

Remark 3.7. We do not expect uniqueness in Lemma 3.6 to hold under mere concavity of f . The
challenge is that the differential entropy functional is displacement convex, but not strictly so.

In some of the following proofs, some shorthand notation will be useful. For Q ∈ P(Rn), let us write
Q−i for the marginal of (Xj)j �=i under Q. For x ∈ Rn let us write x−i = (xj)j �=i and, with some abuse of
notation, f (x) = f (xi, x−i).

Lemma 3.8. If Q ∈ Ppr(R
n) satisfies the fixed point equation (3.5), then Q is κ-log-concave.

Proof. By (3.5), the density of Q is proportional to eF̂, where F̂(x) =
∑n

i=1 f̂i(xi) and f̂i is given by

f̂i(xi) =
∫

Rn−1
f (x1, . . . , xn)Q−i(x−i)dx−i.

By the κ-concavity of f , for any y, z ∈ R and t ∈ [0, 1], we have

f̂i(tz+ (1− t)y)+ κ

2
(tz+ (1− t)y)2

=
∫

Rn−1

[
f (tz+ (1− t)y, x−i)+

κ

2
(tz+ (1− t)y)2

]
Q−i(x−i)dx−i

≥
∫

Rn−1

[
tf (z, x−i)+ t

κ

2
z2 + (1− t)f (y, x−i)+ (1− t)

κ

2
y2
]
Q−i(x−i)dx−i

= tf̂i(z)+ t
κ

2
z2 + (1− t)f̂i(y)+ (1− t)

κ

2
y2.

This shows that f̂i is κ-concave, and thus so is F̂. �
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The next proposition, in conjunction with Proposition 3.5, shows that the optimizers of (3.4) and the
solutions of the fixed point problem (1.3) are exactly the same.

Proposition 3.9 (Fixed point to optimality). Let Q ∈ Ppr(R
n) satisfy f ∈ L1(Q) and the fixed point

problem (3.5). Then Q has strictly positive density a.e. and is a maximizer of (3.4).

Proof. We first show that Q has strictly positive density a.e. Since Q = Q1 × · · · × Qn satisfies the fixed
point equation (3.5), each Qi has a density with exponent

f̂i(xi) =
∫

Rn−1
f (x1, . . . , xn)

∏

j �=i
Qj(dxj) ≥ −c1ec2x

2
i

∏

j �=i

∫

R

ec2x
2
j Qj(xj) dxj

for every xi ∈ R. From Lemma 3.8 we know that Q is κ-log-concave. Since c2 < κ/2, we deduce that∫
R
ec2x

2
j Qj(xj) < ∞. Thus f̂i(xi) > −∞ for all xi ∈ R.

Let Q∗ be an optimizer of sup{G(R) : R ∈ Ppr(R
n)}, which exists uniquely by Lemma 3.6. By Proposition

3.5,we have f ∈ L1(Q∗), andQ∗ satisfies the fixed point equation (3.5). The argument given in the previous
paragraph implies that Q∗ has a strictly positive density a.e. To complete the proof, we must show that
G(Q) ≥ G(Q∗).

Recalling (3.7)–(3.8), we see that G
(
MQ→Q∗

(t)
)
= g1(t)− g2(t), where

g1(t) :=
∫

Rn

f
(
(1− t)x1 + tTQ→Q∗

1 (x1), . . . , (1− t)xn + tTQ→Q∗
n (xn)

) n∏

i=1
Qi(dxi),

g2(t) := H
(
MQ→Q∗

1 (t)× · · · ×MQ→Q∗
n (t)

)
=

n∑

i=1
H
(
MQ→Q∗

i (t)
)
.

Let us write g′+ for the right-derivative of a real-valued function g, when it exists. Note that TQ→Q∗

i is
a.e. differentiable, as it is monotone. Using [57, Theorem 5.30], we may compute the right-derivatives at
zero as

g′+1 (0) =
n∑

i=1

∫

Rn

∂if (x)
(
TQ→Q∗

i (xi)− xi
)
Q(x)dx,

g′+2 (0) = −
n∑

i=1

∫

R

((
TQ→Q∗

i

)′
(xi)− 1

)
Qi(xi)dxi.

We wish to rewrite both terms in more useful forms.
We first claim that

∫

Rn

∂if (x)
(
TQ→Q∗

i (xi)− xi
)
Q(x)dx =

∫

R

f̂ ′i (xi)
(
TQ→Q∗

i (xi)− xi
)
Qi(xi)dxi, (3.9)

where f̂i is defined as in (3.5). To see this, note that f̂i(xi) = EQ [f (xi,X−i)] for all xi ∈ R, so

f̂ ′+i (xi) = lim
h↓0

h−1EQ [f (xi + h,X−i)− f (xi,X−i)].

By the concavity of f , the difference quotient [f (xi + h,X−i) − f (xi,X−i)]/h increases as h ↓ 0, and it is
bounded from below for 0 < h ≤ h0 by [f (xi + h0,X−i)− f (xi,X−i)]/h0, which has finite Q-expectation for
a.e. choice of h0 > 0 by Fubini’s theorem since f ∈ L1(Q). Hence, by monotone convergence,

f̂ ′+i (xi) = EQ [∂if (xi,X−i)]. (3.10)

Moreover, this quantity is finite and nonincreasing in xi because f̂i is a concave real-valued function.
In addition, f̂ ′i = f̂ ′+i a.e. since concave functions are a.e. differentiable. Using (3.10), we see that the
right-hand side of (3.9) equals EQ [EQ [∂if (X) |Xi](Ti(Xi)− Xi)], which yields (3.9).
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We next integrate by parts to get

−
∫

R

((
TQ→Q∗

i

)′
(xi)− 1

)
Qi(xi)dxi =

∫

R

(
TQ→Q∗

i (xi)− xi
)
Q′
i(xi) dxi. (3.11)

To justify this carefully, we use the following version of Lebesgue-Stieltjes integration by parts (see, e.g,
[55, Proposition 4.5]): Let −∞ < a < b < ∞. For two functions U and V of finite variation, which are
right-continuous with left-limits,

U(b)V(b)− U(a)V(a) =
∫ b

a
U(s−) dV(s)+

∫ b

a
V(s−) dU(s)+

∑

u∈(a,b]

�Uu�Vu, (3.12)

where �Ut = U(t) − U(t−). We will apply this to U(xi) = Ti(xi) − xi and V(xi) = Qi(xi). Note that the
probability density function of Qi is absolutely continuous on [a, b] because it is proportional to ef̂i , and
f̂i is Lipschitz on [a, b] as a concave function. Let FQi

and FQ∗
i
denote the CDFs of Qi and Q∗

i respectively.

Recalling that TQ→Q∗

i = F−1Q∗
i
◦ FQi

is the monotone map pushing Qi forward to Q∗
i , and that both Qi and Q∗

i

admit strictly positive densities, we see that the function Ti is absolutely continuous. Hence, there is no
jump term in the integration by parts (3.12), and we have

(TQ→Q∗

i (b)− b)Qi(b)−(TQ→Q∗

i (a)− b)Qi(a)

=
∫ b

a

(
TQ→Q∗

i (xi)− xi
)
Q′
i(xi) dxi +

∫ b

a

((
TQ→Q∗

i (xi)− 1
)
Qi(xi)dxi.

Letting a→−∞ and b→∞, we arrive at (3.11) as long as the boundary terms vanish. For this it suffices
to show that there exist sequences x±k →±∞ such that

lim
k→∞

(
TQ→Q∗

i (x±k )− x±k
)
Qi(x

±
k ) = 0.

If this were not the case, it would imply that |TQ→Q∗
i (x) − x|Qi(x) ≤ (|TQ→Q∗

i (x)| + |x|)Qi(x) is bounded
away from zero for |x| sufficiently large. This would in turn imply that

∫
R
(|TQ→Q∗

i (xi)|+ |xi|)Qi(xi)dxi = ∞,
contradicting the fact that

∫

R

(|TQ→Q∗

i (xi)| + |xi|)Qi(xi)dxi =
∫

R

|xi|Q∗
i (xi)dxi +

∫

R

|xi|Qi(xi)dxi < ∞.

Both integrals are finite because Qi and Q∗
i are κ-log-concave by Lemma 3.8 and thus admit finite

moments of every order. With (3.11) and (3.9) now justified, we see that the right-derivative of
G
(
MQ→Q∗

(t)
)
at t = 0 is

g′+1 (0)− g′+2 (0) =
n∑

i=1

∫

R

(
f̂ ′i (xi)Qi(xi)− Q′

i(xi)
)(
TQ→Q∗

i (xi)− xi
)
dxi.

This is in fact zero, becauseQi is proportional to ef̂i .We saw in the proof of Lemma 3.6 that G
(
MQ→Q∗

(t)
)
is

concave. Since we now know that it has vanishing right-derivative at t = 0, it follows that G
(
MQ→Q∗

(1)
)
≤

G
(
MQ→Q∗

(0)
)
. That is, G(Q∗) ≤ G(Q), which completes the proof. �

Proof of Theorem 1.1. Let Sopt denote the set of maximizers in (3.4), and let Sfix denote the set of Q∗ ∈
Ppr(R

n) satisfying f ∈ L1(Q∗) and the fixed point equation (3.5). Proposition 3.5 shows that Sopt ⊂ Sfix.
Proposition 3.9 shows conversely that Sopt ⊃ Sfix, so in fact Sopt = Sfix. Lemma 3.6 shows that this set is
a singleton. Its unique element Q∗ is κ-log-concave by Lemma 3.8 and has strictly positive density a.e.
by Proposition 3.9. This proves claims (1–3) of Theorem 1.1.
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To prove (4), recall the identity (1.12), which shows that

Rf = log

∫

Rn

ef (x) dx− sup
Q∈Ppr(Rn)

(∫

Rn

f dQ −H(Q)

)
= H(Q∗ | P).

The κ-log-concavity of P and the log-Sobolev inequality (Theorem 3.1) imply

H(Q∗ | P) ≤ 1
2κ

∫

Rn

∣∣∣∣∇ log
dQ∗

dP

∣∣∣∣
2

dQ∗.

Since Q∗ = Q∗
1 × · · · × Q∗

n is a product measure, we have ∂i logQ
∗(x) = ∂i logQ

∗
i (xi) for x ∈ Rn and note

that the derivative exists almost everywhere because logQ∗
i is concave. We saw in (3.10) in the proof of

Proposition 3.9 that the following identity is valid for almost every xi ∈ R, with the expectation on the
right-hand side being finite:

∂i logQ
∗
i (xi) = ∂iEQ∗ [f (X) |Xi = xi] = EQ∗ [∂if (X) |Xi = xi].

Thus,

H(Q∗ | P) ≤ 1
2κ

∫

Rn

n∑

i=1

∣∣∣∂i logQ∗
i (xi)− ∂if (x)

∣∣∣
2
Q∗(dx)

= 1
2κ

EQ∗

n∑

i=1

(
EQ∗ [∂if (X) |Xi]− ∂if (X)

)2

= 1
2κ

EQ∗

n∑

i=1
VarQ∗ (∂if (X) |Xi).

This yields the first bound in (1.5). Recall thatQ∗
−i denotes the law of (Xj)j �=i, which equals the conditional

law of (Xj)j �=i given Xi under Q∗ by independence. The measure Q∗
−i is κ-log-concave because Q∗

j is for
each j. Hence, it obeys a Poincaré inequality (Theorem 3.2), VarQ∗

−i
(ϕ) ≤ κ−1

∫
Rn−1 |∇ϕ|2 dQ∗

−i, for any C1

function ϕ ∈ L1(Q∗
−i). Applying this to ∂if with coordinate i fixed,

VarQ∗ (∂if (X) |Xi) ≤
1
κ

∑

j �=i
EQ∗ [|∂ijf (X)|2 |Xi].

Complete the proof of the second inequality of (1.5) by using the tower property to get

1
2κ

EQ∗

n∑

i=1
VarQ∗ (∂if (X) |Xi) ≤

1
2κ2

n∑

i=1

∑

j �=i
EQ∗ [|∂ijf (X)|2].

3.2 Proof of Corollary 1.4
Let f (x) := g(x) +

∑n
i=1 Vi(xi). Then

∫
Rn eg dρ =

∫
Rn ef (x) dx, and the concavity of g and κ-concavity of Vi

imply that f is κ-concave. Note also that for any Q ∈ Ppr(R
n),

∫

Rn

g dQ − H(Q | ρ) =
∫

Rn

f dQ −H(Q).

This shows that the optimization problems (1.4) and (1.9) are the same. Moreover, the fixed point
problems (1.8) and (1.3) admit exactly the same solutions: Q∗

i solves (1.3) if and only if it solves (1.8).
With these identifications, applying Theorem 1.1 to f immediately proves claims (1–3) of Corollary 1.4.
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6028 | D. Lacker et al.

Finally, with Q∗
i solving (3.5) (or equivalently (1.8)), we have

Rρ
g = Rf ≤

1
κ2

∑

1≤i<j≤n
EQ∗ [|∂ijf (X)|2] = 1

κ2

∑

1≤i<j≤n
EQ∗ [|∂ijg(X)|2],

because ∂ijf = ∂ijg for all i �= j. This proves claim (4) of Corollary 1.4.

3.3 Proof of Proposition 1.6
Note that

∫
Rn f (x+ y) γt(dx) < ∞ for each y ∈ Rn by the growth assumption on f . The function

y 
→
∫

Rn

f dγy,t − H(γy,t | γt) =
∫

Rn

f (x+ y) γt(dx)−
1
2t
|y|2

is (1/t)-concave and thus bounded from above. It admits a unique maximizer obtained by setting the
gradient equal to zero; the first order condition is precisely (1.18). Let P(dx) = Z−1ef (x)γt(dx). The simple
identity

log

∫

Rn

ef dγt −
(∫

Rn

f dγy,t −H(γy,t | γt)
)
= H(γy,t | P),

valid for all y ∈ Rn, implies that

log

∫

Rn

ef dγt − sup
y∈Rn

(∫

Rn

f dγy,t − H(γy,t | γt)
)
= inf

y∈Rn
H(γy,t | P).

The right-hand side is equal to H(γy∗ ,t | P). The measure P is (1/t)-log-concave, so we may use the log-
Sobolev inequality (Theorem 3.1) to get

H(γy∗ ,t | P) ≤
t

2

∫

Rn

∣∣∣∣∇ log
dγy∗ ,t
dP

∣∣∣∣
2

dγy∗ ,t =
t

2

∫

Rn

∣∣∣∣∇ log
dγy∗ ,t
dγt

−∇ log
dP

dγt

∣∣∣∣
2

dγy∗ ,t

= t

2

∫

Rn

∣∣∣∣
1
t
y∗ −∇f (x)

∣∣∣∣
2

γy∗ ,t(dx)

= t

2

n∑

i=1
Varγy∗ ,t (∂if ),

where the last step follows from (1.18). Using the Gaussian Poincaré inequality (or Theorem 3.2), this is
bounded by the second term on the right-hand side of (1.19).

3.4 Asymptotic independence
Proof of first inequality in (1.16). Let P,Q ∈ P(Rn). Let k1, . . . , km be positive integers summing to n. Suppose
P1, . . . , Pm are the marginals of P on Rk1 , . . . ,Rkm , and define the marginals Q1, . . . ,Qm similarly. Then

m∑

i=1
W

2
2 (Pi,Qi) ≤W

2
2 (P,Q).

Indeed, to prove this, let (X,Y) be an optimal coupling of (P,Q). Let Xi be the Rki coordinate,
for i = 1, . . . ,m, and similarly define Yi. Then (Xi,Yi) is a coupling of (Pi,Qi), and so

W
2
2 (P,Q) = E

[
|X− Y|2

]
= E

[
m∑

i=1
|Xi − Yi|2

]
≥

m∑

i=1
W

2
2 (Pi,Qi).

Now, let 1 ≤ k ≤ n, and let m = �n/k�. Let � be the set of vectors (S1, . . . , Sm) of disjoint k-element
subsets of [n]. Let QSi and PSi denote the corresponding marginals, on those coordinates in Si ⊂ [n]. Note
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that W2
2 (PSi ,QSi ) does not depend on the order of the elements of Si. Then

m∑

i=1
W

2
2 (PSi ,QSi ) ≤W

2
2 (PS1∪···∪Sm ,QS1∪···∪Sm ) ≤W

2
2 (P,Q).

If (S1, . . . , Sm) is chosen uniformly at random from � and i is chosen uniformly at random from [m], then
the marginal law of Si is the same as the law of a uniformly random choice of k-element subset of [n].
In particular,

1(n
k

)
∑

S⊂[n], |S|=k
W

2
2 (PS,QS) =

1
|�|

∑

(S1 ,...,Sm)∈�

1
m

m∑

i=1
W

2
2 (PSi ,QSi ).

Combining the two previous inequalities yields

1(n
k

)
∑

S⊂[n], |S|=k
W

2
2 (PS,QS) ≤

1
m
W

2
2 (P,Q) = 1

�n/k�W
2
2 (P,Q).

Proof of Corollary 1.2. By the triangle inequality, the square root of the left-hand side of (1.7) is no more
than A1 +A2, where we define

A1 := EP

⎡
⎣
(
1
n

n∑

i=1
ϕ(Xi)−

1
n

n∑

i=1
EP[ϕ(Xi)]

)2
⎤
⎦

1/2

,

A2 :=
∣∣∣∣∣
1
n

n∑

i=1
(EP[ϕ(Xi)]− EQ∗ [ϕ(Xi)])

∣∣∣∣∣ .

Recall that |ϕ′| ≤ 1. Using Kantorovich duality and (1.16) with k = 1,

A2
2 ≤

1
n

n∑

i=1
W

2
1 (Pi,Q

∗
i ) ≤

1
n

n∑

i=1
W

2
2 (Pi,Q

∗
i ) ≤

2Rf

κn
.

Apply the Poincaré inequality (Theorem 3.2) to the function x 
→ (1/n)
∑n

i=1 ϕ(xi) to get

A2
1 = VarP

(
1
n

n∑

i=1
ϕ(Xi)

)
≤ 1

κn2

n∑

i=1
EP[|ϕ′(Xi)|2] ≤

1
κn

.

Combine these two bounds to complete the proof.

4 Gibbs Measure Proofs

This section proves the results of Section 2.1. Throughout, the function f : Rn → R is defined as in (1.6)
and satisfies Assumption 2.1.

Proof of Lemma 2.2. Compute two derivatives to find, for all i �= j,

∂iif (x) = V′′(xi)+
∑

j �=i
JijK

′′(xi − xj), ∂ijf (x) = −JijK′′(xi − xj).

Hence, for any x, z ∈ Rn,

z�∇2f (x)z =
n∑

i,j=1
zizj∂ijf (x) =

n∑

i=1
z2i V

′′(xi)+
n∑

i,j=1

(
z2i − zizj

)
JijK

′′(xi − xj).
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6030 | D. Lacker et al.

Using the evenness of K′′ and the symmetry of J,

n∑

i,j=1

(
z2i − zizj

)
JijK

′′(xi − xj) =
1
2

n∑

i,j=1
(zi − zj)

2JijK
′′(xi − xj).

Since K′′ ≤ 0 and Jij ≥ 0, we find that this quantity is nonpositive. By κ-concavity of V,

z�∇2f (x)z ≤
n∑

i=1
z2i V

′′(xi) ≤ −κ|z|2,

which shows that f is κ-concave.

Proof of Corollary 2.3. Note that f is C2 and κ-concave. Also, the assumptions on |V| and |K′′| in
Assumption 2.1 clearly imply that |f | satisfies the growth assumption in Theorem 1.1. Therefore,
Theorem 1.1 applies. Let Q∗ be given as therein. Computing derivatives as above, we have

Rf ≤
1
κ2

∑

1≤i<j≤n
EQ∗ [|∂ijf (X)|2] = 1

κ2

∑

1≤i<j≤n
J2ijEQ∗ [|K′′(Xi − Xj)|2]. (4.1)

Using the assumption on K′′, we find

EQ∗ [|K′′(Xi − Xj)|2] ≤ aEQ∗ [eb|Xi−Xj |]. (4.2)

By assumption, Xi − Xj has mean zero under Q∗. It follows from the κ-log-concavity of Q∗ that the law
of Xi − Xj is (κ/2)-log-concave (see, e.g., [56, Theorem 3.7(a) and Theorem 3.8]). This implies that it is
subgaussian in the sense that

EQ∗ [es(Xi−Xj)] ≤ es
2/κ , ∀s ∈ R.

Indeed, this can be deduced from the log-Sobolev inequality (Theorem 3.1) via Herbst’s argument or
[13, Theorem 1.3]. Thus, using (4.2),

EQ∗ [|K′′(Xi − Xj)|2] ≤ aEQ∗ [eb(Xi−Xj) + eb(Xj−Xi)] ≤ 2aeb
2/κ .

Combine this with (4.1) to complete the proof.

4.1 Doubly stochastic matrices
We now turn to the proof of Theorem 2.5. We first need a straightforward lemma about displacement
convexity, which is a special case of [1, Propositions 7.5 and 7.7]. We include a direct proof here for the
sake of completeness.

Lemma 4.1. Let Q1, . . . ,Qn ∈ P(R) and t1, . . . , tn ∈ [0, 1] be such that
∑n

i=1 ti = 1. Then there exists
a random vector X = (X1, . . . ,Xn) such that Xi ∼ Qi for each i and

H

(
Law

( n∑

i=1
tiXi

))
≤

n∑

i=1
tiH(Qi).

Proof. The proof is by induction on n, with the case n = 1 holding trivially. Assume that the statement
of the lemma is true for some n. Let Q1, . . . ,Qn+1 ∈ P(R) and t1, . . . , tn+1 ∈ [0, 1] be such that

∑n+1
i=1 ti = 1.

Without loss of generality, assume that tn+1 < 1 and that Q1, . . . ,Qn+1 have finite entropy, as otherwise
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there is nothing to prove. For i = 1, . . . ,n, define t̃i := ti/(1− tn+1), so that
∑n

i=1 t̃i = 1. By assumption, we
may find a random vector (X1, . . . ,Xn) such that Xi ∼ Qi for each i = 1, . . . ,n and

H(Q̃) ≤
n∑

i=1
t̃iH(Qi), (4.3)

where Q̃ denotes the law of X̃ :=
∑n

i=1 t̃iXi. By absolute continuity, there is a unique nondecreasing
function T : R → R such that T#Q̃ = Qn+1. The entropy functional is displacement convex [57, Theorem
5.15(i)], which means that the function

[0, 1]  t 
→ H
(
(tT+ (1− t)Id)#Q̃

)

is convex. In particular, letting Xn+1 = T(X̃), we find

H
(
Law(tn+1Xn+1 + (1− tn+1)X̃)

)
= H

(
(tn+1T+ (1− tn+1)Id)#Q̃

)

≤ tn+1H(Qn+1)+ (1− tn+1)H(Q̃).

By (4.3) and the definition of t̃i, we have (1− tn+1)H(Q̃) ≤
∑n

i=1 tiH(Qi), completing the proof. �

Proof of Theorem 2.5(1). Let us abbreviate

Mn := sup
Q∈Ppr(Rn)

Mn(Q), (4.4)

where we define

Mn(Q) :=
∫

Rn

f dQ − H(Q)

=
n∑

i=1

∫

R

V(x)Qi(dx)+
1
2

n∑

i,j=1
Jij

∫

R

∫

R

K(x− y)Qi(dx)Qj(dy)−
n∑

i=1
H(Qi),

where the last equality used the symmetry of J and K, the fact that the diagonal entries of J are zero,
and the tensorization of entropy. Recall that log

∫
Rn ef dx = Mn +Rf , by definition of Rf . We will complete

the proof by showing that

Mn = n sup
Q∈P(R)

(∫

R

VdQ + 1
2

∫

R

∫

R

K(x− y)Q(dx)Q(dy)−H(Q)

)
, (4.5)

and that the optimizer Q∗ = Q∗
1 × · · · × Q∗

n in (1.4) must be i.i.d. copies of the optimizer Q of (4.5), that
is, Q∗

1 = · · · = Q∗
n = Q. The latter claim proves part (3) of the theorem. We deduce part (1) from (4.5) by

noting first that the i.i.d. form of Q∗ implies EQ∗ [Xi − Xj] = 0 for all i, j. Using this and the assumption
Tr(J2) = o(n), we then apply Corollary 2.3 to deduce that Rf /n→ 0, and Theorem 2.5(1) follows.

The proof of the inequality (≥) in (4.5) is immediate upon restricting the supremum in (4.4) to i.i.d.
measures and using

∑n
i,j=1 Jij = n:

Mn ≥ sup
Q∈P(R)

(
n

∫

R

V(x)Q(dx)+ 1
2

n∑

i,j=1
Jij

∫

R

∫

R

K(x− y)Q(dx)Q(dy)− nH(Q)

)

= n sup
Q∈P(R)

(∫

R

VdQ + 1
2

∫

R

∫

R

K(x− y)Q(dx)Q(dy)−H(Q)

)
.
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6032 | D. Lacker et al.

To prove the inequality (≤) in (4.5), fix Q = Q1 × · · · × Qn ∈ Ppr(R
n) arbitrarily. By Lemma 4.1, there

exists a random vector X = (X1, . . . ,Xn) such that Xi ∼ Qi for all i and

H(Q) ≤ 1
n

n∑

i=1
H(Qi). (4.6)

where Q denotes the law of 1
n

∑n
i=1 Xi. Using the concavity of V, we find

1
n

n∑

i=1

∫

R

V(x)Qi(dx) = E

[
1
n

n∑

i=1
V(Xi)

]
≤
∫

R

VdQ. (4.7)

Let Y = (Y1, . . . ,Yn) be an independent copy of X. Using the concavity of K and the fact that
∑

i Jij =∑
j Jij = 1, we have

1
n

n∑

i,j=1
Jij

∫

R

∫

R

K(x− y)Qi(dx)Qj(dy)

= E

[
1
n

n∑

i,j=1
JijK(Xi − Yj)

]
≤ E

[
K

(
1
n

n∑

i,j=1
Jij(Xi − Yj)

)]

= E

[
K

(
1
n

n∑

i=1
Xi −

1
n

n∑

j=1
Yj

)]
=
∫

R

∫

R

K(x− y)Q(dx)Q(dy). (4.8)

Combining (4.6), (4.7), and (4.8), we see that

Mn(Q)/n ≤
∫

R

VdQ + 1
2

∫

R

∫

R

K(x− y)Q(dx)Q(dy)−H(Q) = Mn(Q
⊗n

)/n.

In other words, for an arbitrary choice of product measure Q, we may increase Mn(Q) by replacing Q

with the i.i.d. measure Q
⊗n

. This completes the proof.

Proof of Theorem 2.5(2). We first justify the uniqueness claim. From part (1.1) of Theorem 1.1, we know
that the optimizerQ∗ ∈ Ppr(R

n) in (4.4) is unique. It follows from the previous paragraph that this unique
optimizer is in fact i.i.d., that is, Q∗ = Q⊗n, where Q ∈ P(R) is the (necessarily unique) optimizer of (4.5),
which does not depend on n. This proves the desired uniqueness.

Turning to the proof of (2.2), recall that Rf /n→ 0, and use Corollary 1.2 and the aforementioned i.i.d.
form of the optimizer Q∗ = Q⊗n to deduce that, for any 1-Lipschitz function ϕ,

EP

[(
1
n

n∑

i=1
ϕ(Xi)−

∫

R

ϕ dQ

)2]
≤

(1+
√
2Rf )

2

κn
→ 0, asn→∞.

This is enough to deduce that 1
n

∑n
i=1 δXi

converges to Q weakly in law.

4.2 Graphons proofs
This section is devoted to the proof of Theorem 2.8. ForW ∈W and anymeasurable function ψ : R2 → R

bounded from above, define TW,ψ : PUnif([0, 1]× R) → R by

TW,ψ (μ) := Eμ⊗2 [ψ(X1,X2)W(U1,U2)] .

where (U1,X1) and (U2,X2) are independent with law μ. Note that W ≥ 0 is integrable, so TW,ψ (μ) is
well-defined in [−∞,∞). Let μ := Unif[0, 1]× ρ, and define I : PUnif([0, 1]× R) → [0,∞] by

I(μ) := H(μ |μ) =
∫ 1

0
H(μu | ρ) du,
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Mean Field Approximations via Log-Concavity | 6033

with the second identity coming from the chain rule for relative entropy [33, Theorem B.2.1], and
we recall that ρ(dx) = eV(x)dx is a probability measure. We begin with two lemmas pertaining to the
continuity of TW,ψ .

Lemma 4.2. Let K ⊂ R be a compact interval. Let ψ : R2 → R be supported on K2 and continuous
when restricted to K2.

(1) If {W�} converges to W in strong cut metric and W�,W ≥ 0, then

sup
μ∈PUnif([0,1]×R)

∣∣∣TW� ,ψ (μ)− TW,ψ (μ)

∣∣∣→ 0.

(2) Themap μ → TW,ψ (μ) is continuous on {μ ∈ PUnif([0, 1]×R) : I(μ) < ∞}, with respect to the topology
of weak convergence.

Proof. We begin with (1). Let V denote the space of functions φ : K2 
→ R of the form

φ(x, y) =
L∑

i=1
ciai(x)bi(y), (4.9)

for some L ∈ N, ci ∈ R, and continuous functions ai, bi : K → [0, 1]. It is easy to check that V is closed
under multiplication, contains the constant functions, separates points in K2, and is a vector subspace
of the space C(K2) of continuous real-valued functions on K2. By the Stone-Weierstrass Theorem, we
deduce that V is dense in C(K2) with the supremum norm. Let ε > 0, and find φ ∈ V such that |ψ−φ| < ε

uniformly on K2. Extend the domain of φ to R2 by setting φ = 0 on the complement of K2. Then for all
μ ∈ PUnif([0, 1]× R),

∣∣TW� ,ψ (μ)− TW� ,φ(μ)
∣∣ ≤ ε‖W�‖L1[0,1]2 ,

∣∣TW,ψ (μ)− TW,φ(μ)
∣∣ ≤ ε‖W‖L1[0,1]2 .

Consequently, using the triangle inequality, we have

∣∣TW� ,ψ (μ)− TW,ψ (μ)
∣∣ ≤ ε‖W�‖L1[0,1]2 + ε‖W‖L1[0,1]2 +

∣∣TW� ,φ(μ)− TW,φ(μ)
∣∣. (4.10)

Since φ is of the form (4.9), we have

TW� ,φ(μ) =
L∑

i=1
ci

∫

[0,1]2
āi(u)b̄i(v)W�(u,v)dudv,

where we define āi(u) := Eμ[ai(X) |U = u], and b̄i similarly. This yields

∣∣TW� ,φ(μ)− TW,φ(μ)
∣∣ ≤

L∑

i=1
|ci|d�(W�,W). (4.11)

Noting that d�(W�,W) → 0 implies ‖W�‖L1[0,1]2 → ‖W‖L1[0,1]2 , we may now combine (4.10) and (4.11),
sending � →∞ and then ε → 0, to prove the claim (1).

To prove (2), let μk be a sequence of measures in PUnif([0, 1]× R) converging weakly to μ∞, such that
I(μ∞) < ∞. Let W� be a sequence of continuous functions in W converging in L1[0, 1]2 to W. By the
triangle inequality,

∣∣TW,ψ (μk)− TW,ψ (μ∞)
∣∣ ≤ 2 sup

ν∈PUnif([0,1]×R)

∣∣TW,ψ (ν)− TW� ,ψ (ν)
∣∣+

∣∣TW� ,ψ (μk)− TW� ,ψ (μ∞)
∣∣.

The first term converges to 0 as � → ∞, by part (1) and the fact that convergence in L1[0, 1]2 implies
convergence in strong cut metric. The second term converges to 0 for fixed � as k → ∞, using the
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6034 | D. Lacker et al.

fact that μk converges weakly to μ∞, and the set of discontinuity points of W�(·, ·)ψ(·, ·) is contained in
[0, 1]2×∂(K2), which has measure 0 under μ⊗2

∞ (as μ∞ is absolutely continuous with respect to Lebesgue
measure on [0, 1]× R). �

Lemma 4.3. Suppose μm is a sequence of measures in PUnif([0, 1] × R) converging weakly to
μ∞. Let ψ : R2 
→ R be a continuous function, and let W ∈ L1[0, 1]2. For 1 ≤ m ≤ ∞, let

(Um
1 ,X

m
1 ), (Um

2 ,X
m
2 )

i.i.d.∼ μm. Then

W(Um
1 ,U

m
2 )ψ(Xm

1 ,X
m
2 )

d→W(U∞
1 ,U∞

2 )ψ(X∞
1 ,X∞

2 ).

Proof. IfW is continuous, then the claim is immediate. For a generalW, we proceed as follows: Fix ε > 0,
and let K be a compact set such that P(Xm

1 ∈ K,Xm
2 ∈ K) ≥ 1− ε, which is again possible by tightness of

{
(
Xm

1 ,X
m
2

)
}m∈N. Let g be a continuous function with

‖W− g‖L1[0,1]2 <
ε

1 ∨ supx,y∈K |ψ(x, y)| .

Then on the event
{
Xm

1 ∈ K,Xm
2 ∈ K

}
, we have

∣∣∣W(Um
1 ,U

m
2 )ψ(Xm

1 ,X
m
2 )− g(Um

1 ,U
m
2 )ψ(Xm

1 ,X
m
2 )

∣∣∣ ≤ ε.

Thus, for any continuous function φ : R→ [0, 1] which is 1-Lipschitz, we have

∣∣∣Eφ
(
W(Um

1 ,U
m
2 )ψ(Xm

1 ,X
m
2 )
)
− Eφ

(
g(Um

1 ,U
m
2 )ψ(Xm

1 ,X
m
2 )
)∣∣∣ ≤ 2ε.

Finally,

Eφ
(
g(Um

1 ,U
m
2 )ψ(Xm

1 ,X
m
2 )
)
→ Eφ(g(U∞

1 ,U∞
2 )ψ(X∞

1 ,X∞
2 )),

by the result for continuous functions. Thus

limsup
m→∞

∣∣∣Eφ(W(Um
1 ,U

m
2 )ψ(Xm

1 ,X
m
2 ))− Eφ(W(U∞

1 ,U∞
2 )ψ(X∞

1 ,X∞
2 ))

∣∣∣ ≤ 4ε.

Since ε > 0 is arbitrary, the proof of the lemma is complete. �

Proof of Theorem 2.8(1).
We begin with some notation. For a measurable function ψ : R2 → R which is bounded from above,

define Mψ
n := supQ∈Ppr(Rn) M

ψ
n (Q), where

Mψ
n (Q) :=

n∑

i=1

∫

R

V(x)Qi(dx)+
n∑

i,j=1
Jij

∫

R

∫

R

ψ(x, y)Qi(dx)Qj(dy)−
n∑

i=1
H(Qi)

=
n∑

i,j=1
Jij

∫

R

∫

R

ψ(x, y)Qi(dx)Qj(dy)−
n∑

i=1
H(Qi | ρ).

(4.12)

Letting K̃ : R2 → R by K̃(x, y) = K(x − y)/2, we are most interested in the choice ψ = K̃, but treating a
general ψ will be helpful for a truncation argument. Let Q∗ be as in Theorem 1.1.With this notation, we
have log

∫
Rn ef (x)dx = MK̃

n + Rf . Corollary 2.3 and the assumption that Tr(J2) = o(n) imply that Rf /n → 0,
and to prove Theorem 2.8 it will thus suffice to show that

lim
n→∞

Mψ
n /n = sup

μ∈PUnif([0,1]×R)

(
TW,ψ (μ)− I(μ)

)
(4.13)

for any continuous function ψ ≤ 0.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
4
/7

/6
0
0
8
/7

4
9
0
8
8
1
 b

y
 R

o
b
e
rt W

h
ite

la
w

 u
s
e
r o

n
 2

0
 J

u
n
e
 2

0
2
4



Mean Field Approximations via Log-Concavity | 6035

To this effect, use the assumption that {nJ}n≥1 converges in weak cut metric to W to conclude the
existence of a sequence of permutations {πn}n≥1 with πn ∈ Sn, such that {nJ(πn)}n≥1 converges in strong
cut metric toW, where J(πn)

ij := Jπn(i)πn(j) for 1 ≤ i, j ≤ n. Since πn is a permutation, for any Q = Q1×· · ·×Qn ∈
Ppr(R

n) we can write

Mψ
n (Q) =

n∑

i=1

∫

R

V(x)Q̃i(dx)+
n∑

i,j=1
Jπn(i)πn(j)

∫

R

∫

R

ψ(x, y)Q̃i(dx)Q̃j(dy)−
n∑

i=1
H(Q̃i),

where Q̃i := Qπn(i) ∈ P(R). Thus

sup
Q∈Ppr(Rn)

Mψ
n (Q) = sup

Q̃∈Ppr(Rn)

M̃ψ
n (Q̃),

where M̃ψ
n (·) defined similarly to Mψ

n (·) in (4.12), but with J replaced by J(πn). Since nJ(πn) converges to W

in strong cut metric, by replacing J with J(πn) without loss of generality we assume throughout the rest
of the proof that nJ converges in strong cut metric to W.

To prove (4.13),we need the following constructionwhich essentially embedsPpr(R
n) intoPUnif([0, 1]×

R) for all n. For any Q = Q1 × · · · ×Qn ∈ Ppr(R
n), define a probability measure μn(Q) ∈ PUnif([0, 1]×R) as

follows: If (U,X) ∼ μn(Q), then U ∼ Unif[0, 1], and the conditional law of X given {(i− 1)/n < U ≤ i/n]} is
given by Qi. Then we have

TWnJ ,ψ (μn(Q)) = 1
n

n∑

i,j=1
Jij

∫

R

∫

R

ψ(x, y)Qi(dx)Qj(dy),

I(μn(Q)) = 1
n

n∑

i=1
H(Qi|ρ),

and so

Mψ
n (Q)/n = TWnJ ,ψ (μn(Q))− I(μn(Q)). (4.14)

As a final preparation for the proof of (4.13), we argue that infn M
ψ
n /n > −∞. To see this, take B ⊂ R to

be any compact set of positive ρ-measure, and define ρ̂ � ρ by dρ̂/dρ = 1B/ρ(B). LetQi = ρ̂ for i = 1, . . . ,n,
and Q = Q1 × · · · × Qn. Then

1
n

n∑

i=1
H(Qi | ρ) = H(ρ̂ | ρ) = − log ρ(B) < ∞,

and also

TWnJ ,ψ (μn(Q)) ≥ −‖WnJ‖L1[0,1]2 sup
x,y∈B

|ψ(x, y)|.

Since ψ is continuous, it is bounded on the compact set B. SinceWnJ converges in strong cut metric toW,
we have ‖WnJ‖L1[0,1]2 → ‖W‖L1[0,1]2 , and thus the right-hand side is bounded. This proves that infn M

ψ
n /n >

−∞. We now prove the upper and lower bounds in (4.13) separately.

Proof of the upper bound in (4.13): Let Qn = Qn
1 × · · · × Qn

n ∈ Ppr(R
n) be any near-optimizer of Mψ

n (·),
meaning

Mψ
n (Qn) ≥ Mψ

n − o(n). (4.15)

Note that Mψ
n (Qn)/n is bounded from below by some constant C, as shown just above. Since J has

nonnegative entries and ψ ≤ 0, we have TWnJ ,ψ ≤ 0 which implies

C ≤ Mψ
n (Qn)/n = TWnJ ,ψ (μn(Q

n))− I(μn(Q
n)) ≤ −I(μn(Q

n)).
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6036 | D. Lacker et al.

This implies supn I(μn(Qn)) < ∞. Since the sub-level sets of I are weakly compact, the sequence (μn(Qn))

has a limit point. Let μ∞ be any limit point. Lower semicontinuity of I(·) gives I(μ∞) < ∞. For each
m ∈ N, define ψm(x, y) := ψ(x, y)1{|x|,|y|≤m}. Note that ψ ≤ ψm ≤ 0, and thus TWnJ ,ψ ≤ TWnJ ,ψm . By part (1) of
Lemma 4.2,

sup
μ∈PUnif([0,1]×R)

∣∣∣TWnJ ,ψm (μ)− TW,ψm (μ)

∣∣∣→ 0,

for all m ∈ N. Therefore, for all m,

limsup
n→∞

TWnJ ,ψ (μn(Q
n)) ≤ limsup

n→∞
TWnJ ,ψm (μn(Q

n)) ≤ limsup
n→∞

TW,ψm (μn(Q
n)) = TW,ψm (μ∞),

where the last step uses part (2) of Lemma 4.2. The left-hand side above does not depend on m, and
thus

limsup
n→∞

TWnJ ,ψ (μn(Q
n)) ≤ inf

m∈N
TW,ψm (μ∞) = TW,ψ (μ∞),

where the last equality follows from the monotone convergence theorem and the fact that ψm ↓ ψ

pointwise. Using the lower semicontinuity of I, we deduce

TW,ψ (μ∞)− I(μ∞) ≥ limsup
n→∞

(
TWnJ ,ψ (μn(Q

n))− I(μn(Q
n))
)
= limsup

n→∞
Mψ

n (Qn)/n.

Bound the left-hand side by a supremum to prove the upper bound in (4.13). Moreover, once we prove
(4.13), then this argument shows the following: for any near-optimizing sequence Qn = Ppr(R

n) in the
sense of (4.15), the sequence {μn(Qn)} is tight, and for any limit point μ∞ of {μn(Qn)} it holds that μ∞ is
an optimizer for the right-hand side of (4.13).

Proof of the lower bound in (4.13): To prove the lower bound in (4.13), we first claim that

sup
μ∈PUnif([0,1]×R)

(
TW,ψ (μ)− I(μ)

)
= sup

μ∈PUnif([0,1]×R), compact support

(
TW,ψ (μ)− I(μ)

)
. (4.16)

The inequality (≥) is obvious. To prove the reverse, let μ ∈ PUnif([0, 1]×R) such that I(μ) < ∞, and define
μm ∈ PUnif([0, 1]× R) with compact support by setting dμm/dμ = 1[0,1]×[−m,m]/μ([0, 1]× [−m,m]), which is
well defined for large enough m. Then

I(μm) = H(μm |μ) =
∫

[0,1]×R

log
dμm

dμ
dμm

=
∫

[0,1]×R

log
dμm

dμ
dμm +

∫

[0,1]×R

log
dμ

dμ
dμm.

The second term converges to I(μ) by dominated convergence. The first term equals − logμ([0, 1] ×
[−m,m]) and vanishes as m → ∞. Finally, since W ≥ 0 and ψ ≤ 0, it is straightforward to check by
monotone convergence that TW,ψ (μm) → TW,ψ (μ), and thus TW,ψ (μm)− I(μm) → TW,ψ (μ)− I(μ) asm→∞.
This proves (4.16).

Now, to prove the lower bound in (4.13), we let μ ∈ PUnif([0, 1] × R) with compact support and with
I(μ) < ∞, and note that necessarily μ � μ. By defining h(·, ·) := dμ

dμ , we have
∫
R
h(u, ·)dρ = 1 for a.e.

u ∈ [0, 1] since both μ and μ have uniform first marginal. For each i ∈ [n], define hni : R→ [0,∞) by

hni (x) := n

∫ i/n

(i−1)/n
h(u, x)du.

By Fubini’s theorem,
∫
R
hni dρ = 1 for all i. We may thus define Qn = Qn

1 × · · · × Qn
n ∈ Ppr(R

n) by setting
dQn

i

dρ = hni , and define μn(Qn) as before; note for later use the key identity dμn(Qn)

dμ (u, x) = hn�nu�(x). If K

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
4
/7

/6
0
0
8
/7

4
9
0
8
8
1
 b

y
 R

o
b
e
rt W

h
ite

la
w

 u
s
e
r o

n
 2

0
 J

u
n
e
 2

0
2
4



Mean Field Approximations via Log-Concavity | 6037

denotes a compact interval such that [0, 1]×K contains the support of μ, then [0, 1]×K also contains
the support of μn(Qn), and we may replace ψ by ψ1K2 in the following argument. Recalling the formula
(4.14) for Mψ

n (Q), we may use part (1) of Lemma 4.2 to get

TW,ψ (μn(Q
n))− 1

n
Mψ

n (Qn)− I(μn(Q
n)) → 0. (4.17)

To complete the proof of the lower bound, we will show that

lim
n→∞

TW,ψ (μn(Q
n)) = TW,ψ (μ), and I(μn(Q

n)) ≤ I(μ), ∀n. (4.18)

Once (4.18) is established, it will follow from the lower semicontinuity of I that I(μn(Qn)) → I(μ), and we
use (4.17) to deduce

lim inf
n→∞

Mψ
n /n ≥ lim

n→∞
Mψ

n (Qn)/n = TW,ψ (μ)− I(μ).

This holds for every μ ∈ PUnif([0, 1] × R) of compact support satisfying I(μ) < ∞. Hence, taking the
supremum and recalling (4.16) yields the desired lower bound in (4.13).

It remains to prove (4.18). Note that

∫

[0,1]×R

∣∣∣dμ
dμ

− dμn(Qn)

dμ

∣∣∣ dμ =
∫ 1

0

∫

R

|h(u, x)− hn�nu�(x)| ρ(dx)du

= Eμ

∣∣h(U,X)− Eμ[h(U,X)|Fn]
∣∣,

where Fn is the σ -field generated by (�nU�,X). The right-hand side converges to 0 by Levy’s upwards
convergence theorem, since Eμ|h(U,X)| = 1 < ∞. Thus the probability measure μn(Qn) converges in
total variation to μ, and the first claim in (4.18) follows from part (2) of Lemma 4.2. To prove the second
claim in (4.18), use convexity of ϕ(x) := x log x for x ≥ 0, along with Jensen’s inequality, to get

I(μn(Q
n)) = Eμϕ(Eμ[h(U,X)|Fn]) ≤ Eμϕ(h(U,X)) = I(μ).

This proves (4.18), completing the proof of the lower bound, and thus Theorem 2.8(1).

Proof of Theorem 2.8(2).
We first discuss the optimization problem. The functional to be optimized can be written as

�(μ) := 1
2

∫

[0,1]×R

∫

[0,1]×R

W(u,v)K(x− y)μ(du, dx)μ(dv, dy)−
∫ 1

0
H(μu | ρ) du

We will show the existence of an optimizer via the weak upper semicontinuity: Since W ≥ 0 and K ≤ 0,
monotone convergence yields

2TW,̃K(μ) = Eμ⊗2 [W(U1,U2)K(X1 − X2)] = inf
m>0

Eμ⊗2

[(
W(U1,U2)K(X1 − X2)

)
∨ (−m)

]
.

For each m, the expectation appearing on the right-hand side is continuous as a function of μ ∈
PUnif([0, 1]×R), by Lemma 4.3. Hence, the left-hand side is upper semicontinuous. Since relative entropy
is lower semicontinuous with compact sub-level sets, the existence of an optimizer follows.

We prove uniqueness of the optimizer via displacement convexity. Letting K̃(x, y) = (1/2)K(x− y), we
may rewrite �(μ) = �1(μ)+ TW,̃K(μ)−�2(μ), where we define

�1(μ) :=
∫ 1

0

∫

R

V(x) μu(dx)du, �2(μ) :=
∫ 1

0
H(μu) du,
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where we used the simple identityH(ν | ρ) = H(ν)−
∫
Rn Vdν. Let μ0,μ1 ∈ PUnif([0, 1]×R) be two optimizers,

written in disintegrated form as duμi
u(dx) for i = 0, 1. Let Fiu(x) = μu

i (−∞, x] denote the CDF, with

generalized inverse F
i
u(y) := inf{x ∈ R : y ≤ Fiu(x)}. Then, for each u ∈ [0, 1], Tu(x) := F

1
u(F

0
u(x)) denotes the

unique nondecreasing function with (Tu)#μ0
u = μ1

u. Since Fiu(x) is right-continuous in x and measurable

in u, it is jointly measurable in (u, x), and the same is easily seen to be true for F
i
u(x) and thus Tu(x).

Consider the map T : [0, 1] × R → [0, 1] × R given by T(u, x) = (u,Tu(x)). Define the interpolation
μt := ((1− t)Id+ tT)#μ

0 for each t ∈ [0, 1]. Then we have

TW,̃K(μ
t) = 1

2

∫

[0,1]×R

∫

[0,1]×R

W(u,v)K(x− y)μt(du, dx)μt(dv, dy)

= 1
2

∫

[0,1]×R

∫

[0,1]×R

W(u,v)K
(
(1− t)(x− y)+ t(Tu(x)− Tu(y))

)
μ0(du, dx)μ0(dv, dy).

Since K is concave and W ≥ 0, t 
→ TW,̃K(μ
t) is concave. Note also that

�2(μ
t) =

∫ 1

0
H
(
((1− t)Id+ tTu)#μ

0
u

)
du

is a convex function of t, by the displacement convexity of entropy [57, Theorem 5.15(i)]. By the κ-
concavity of V, the function t 
→ �1(μ

t) is strictly concave, and we find that t 
→ �(μt) is strictly concave.
Since μ0 and μ1 are both optimizers, we have �(μ0) = �(μ1). Hence, wemust have μ0 = μ1, as otherwise
the strict concavity would be contradicted.

With existence and uniqueness of the optimizer settled, we lastly prove the claim (2.4) in part (2.8)
of Theorem 2.8. Note that Theorem 1.1 implies uniqueness of the optimizer Qn in supQ∈Ppr(Rn) Mn(Q) for
each n. Since Qn is optimal and thus a fortiori near-optimal, we may use the following fact proven in the
course of proving the upper bound in Theorem 2.8(1): The sequence {μn(Qn)} is tight (since Qn is), and
any limit point is an optimizer for the right-hand side of (4.13).We have just shown the latter optimizer
to be unique, and let us denote it μ∗ ∈ PUnif([0, 1] × R). Thus, μn(Qn) → μ∗ weakly. From part (1) and
Corollary 1.2, for any bounded 1-Lipschitz function ϕ : R→ R we have

lim
n→∞

EP

⎡
⎣
(
1
n

n∑

i=1
ϕ(Xi)−

1
n

n∑

i=1
EQn [ϕ(Xi)]

)2
⎤
⎦ = 0.

Note that

1
n

n∑

i=1
EQn [ϕ(Xi)] =

1
n

n∑

i=1

∫

R

ϕ(x)Qn
i (dx) =

∫

[0,1]×R

ϕ(x) μn(Q
n)(du, dx).

Using the weak convergence μn(Qn) → μ∗, the right-hand side converges to

∫

[0,1]×R

ϕ(x)μ∗(du, dx) =
∫

R

ϕ dR∗, where R∗ :=
∫ 1

0
μ∗
u du.

We deduce that 1
n

∑n
i=1 ϕ(Xi) →

∫
R

ϕ dR∗ in probability for each bounded Lipschitz ϕ. This is enough to
deduce the convergence in distribution 1

n

∑n
i=1 δXi

→ R∗.

4.3 Proof of Lemma 2.11
We first prove (1). When f is even, we claim that (the density of) Q∗ is also even, which completes the
proof because it implies EQ∗ [Xi] = 0 for all i. To show that Q∗ is even, let Ri(x) := Q∗

i (−x) for each x ∈ R

and i = 1, . . . ,n. Let R = R1 × · · · × Rn. Then
∫
Rn f dR =

∫
Rn f dQ by evenness of f , and clearly H(Q) = H(R).

Hence, R is also an optimizer of (1.4), and we deduce R = Q∗ by uniqueness of the optimizer.
We prove (2) by showing in this case that Q∗

i = Q∗
j for all i, j. Suppose f is invariant with respect to

a transitive set S of permutations of [n]. Fix i, j ∈ {1, . . . ,n}. Choose π ∈ S such that π(i) = j, which is
possible by the assumed transitivity of S. Let Rk = Q∗

π(k) for each k = 1, . . . ,n, and let R = R1 × · · · × Rn.
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The invariance of f under S ensures that
∫
Rn f dR =

∫
Rn f dQ∗. Clearly, H(R) = H(Q∗). Hence, R is also an

optimizer of (1.4), and we deduce that R = Q∗ by uniqueness. Since π(i) = j, this implies Q∗
i = Ri = Q∗

j .

5 Stochastic Control Proofs

As explained in Remark 2.15, the optimal admissible pair (α,X) for (2.7) is given by

αg(t, x) = ∇x logE[eng(x+BT−Bt)], (5.1)

with X = (Xt)t∈[0,T] being the Brownian bridge with terminal law P(dx) = Z−1eng(x)γT(dx). Letting P denote
the Wiener measure on C([0,T];Rn), the law QP of this process X can be characterized as the unique
minimizer ofQ 
→ H(Q |P) amongQwith time-Tmarginal equal to P; see [9, Proposition 6] or [47, Lemma
10]. This minimizer satisfies

H(QP |P) = H(P | γT) =
1
2
E

[∫ T

0
|αg(t,Xt)|2 dt

]
. (5.2)

Note that H(P | γT) < ∞, and so the pair (αg,X) is admissible in the sense of Section 2.3.

Proof of Corollary 2.14. Once the formulas (2.10) and (2.12) are established, the final claim follows
immediately from Corollary 1.4, applied with Vi(x) = −x2/(2T) for i = 1, . . . ,n and κ = 1/T.

To prove (2.10) and (2.12), we begin with the inequality (≤). Let (α,X) denote any admissible pair, and
let Q denote the law of X = (Xt)t∈[0,T]. A well known argument using Girsanov’s theorem [47, Proposition
1] yields

H(Q |P) ≤ 1
2
E

∫ T

0
|α(t,Xt)|2 dt =

1
2

n∑

i=1
E

∫ T

0
|αi(t,Xt)|2dt.

With QT denoting the law of XT, note that marginalizing (at time T) does not increase entropy: H(Q |P) ≥
H(QT | γT). Thus,

E

[
g(XT)−

1
2n

n∑

i=1

∫ T

0
|αi(t,Xt)|2dt

]
≤
∫

Rn

g dQT −
1
n
H(QT | γT)

≤ sup
Q∈P(Rn)

(∫

Rn

g dQ − 1
n
H(Q | γT)

)
.

Taking a supremum over all admissible pairs (α,X) proves the inequality (≤) in (2.10). Now, if (α,X) is an
distributed admissible pair, then the same chain of inequalities holds, but also QT is a product measure.
We can thus deduce (2.12) in the same manner.

The inequality (≥) in (2.10) and (2.12) follows quickly from the entropy identity (5.2). Starting with
(2.10), let X = (Xt)t∈[0,T] be the Brownian bridge with terminal law P(dx) = Z−1eng(x)γT(dx). Let αg be given
as in (5.1). By the Gibbs variational principle [33, Proposition 1.4.2], the supremum in (2.10) is attained
by Q = P. Using XT ∼ P and (5.2), we obtain

sup
Q∈P(Rn)

(∫

Rn

g dQ − 1
n
H(Q | γT)

)
=
∫

Rn

g dP− 1
n
H(P | γT)

= E

[
g(XT)−

1
2n

∫ T

0
|αg(t,Xt)|2 dt

]
≤ Vorig.

This proves (≥) in (2.10), and also proves that (αg,X) is optimal. Similarly, to prove the inequality (≥) in
(2.12), let Q∗ ∈ Ppr(R

n) be the unique optimizer in (2.12), which we know by Corollary 1.4 to take the
form stated in Corollary 2.14. Let X = (Xt)t∈[0,T] be the Brownian bridge with terminal law Q∗. Define αĝ
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as in (5.1), with ĝ(x) =
∑n

i=1 EQ∗ [g(X)|Xi = xi] in place of g. Using XT ∼ Q∗ and (5.2), we obtain

sup
Q∈Ppr(Rn)

(∫

Rn

g dQ − 1
n
H(Q | γT)

)
=
∫

Rn

g dQ∗ − 1
n
H(Q∗ | γT)

= E

[
g(XT)−

1
2n

∫ T

0
|αĝ(t,Xt)|2 dt

]
≤ Vdistr.

Indeed, note that (αĝ,X) is an admissible distributed pair because Q∗ is a product measure. This proves
(≥) in (2.12), and also proves that (αĝ,X) is optimal. �
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