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Abstract—There are many scenarios in which a mobile agent
may not want its path to be predictable. Examples include
preserving privacy or confusing an adversary. However, this
desire for deception can conflict with the need for a low path
cost. Optimal plans such as those produced by RRT* may have
low path cost, but their optimality makes them predictable.
Similarly, a deceptive path that features numerous zig-zags may
take too long to reach the goal. We address this trade-off
by drawing inspiration from adversarial machine learning. We
propose a new planning algorithm, which we title Adversarial
RRT*. Adversarial RRT# attempts to deceive machine learning
classifiers by incorporating a predicted measure of deception into
the planner cost function. Adversarial RRT* considers both path
cost and a measure of predicted deceptiveness in order to produce
a trajectory with low path cost that still has deceptive properties.
We demonstrate the performance of Adversarial RRT*, with two
measures of deception, using a simulated Dubins vehicle. We show
how Adversarial RRT* can decrease cumulative RNN accuracy
across paths to 10%, compared to 46% cumulative accuracy on
near-optimal RRT* paths, while keeping path length within 16 %
of optimal. We also present an example demonstration where
the Adversarial RRT* planner attempts to safely deliver a high
value package while an adversary observes the path and tries to
intercept the package.

Index Terms—Motion and Path Planning, Deep Learning
Methods, Integrated Planning and Learning.

I. INTRODUCTION

ECEPTIVE path planning (DPP) aims to minimize the
probability that an observer will correctly identify the
planner’s intended destination before it has been reached.
DPP is relevant for adversarial environments and for privacy
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Fig. 1: Illustration of the “Pirate Deception Scenario”. Red
circles are obstacles. The 5 colored circles are possible goals.
Below each is the observer confidence in each goal over time.

protection. In this work, we present an example use case
in which a DPP algorithm could be a security measure
against piracy in the delivery of high-value cargo. While
past works have examined deception, they have primarily
focused on deceiving humans [1], [2] or deceiving domain-
specific algorithms [3], [4]. However, deep learning methods
have shown promise for predicting trajectories and navigation
goals from time-series data [5]. Such methods can provide
potential improvements over human experts such as speed and
autonomous performance. In addition, recent results showed
that deep learning could provide improved accuracy over
domain-specific algorithms for navigational goal recognition
[5]. Therefore, there is a need to examine how deceptive
planners can deceive neural-network based observers.

One way to achieve deception is simply through randomness
[6]. While Rapidly-Exploring Random Trees (RRT) rapidly
generates highly random paths [7] that can be unpredictable,
the path cost is often sub-optimal [8]. Moreover, RRT does
not consider deception performance, and could occasionally
produce plans that are not deceptive.

Optimized sampling-based algorithms such as RRT* [8]
attempt to minimize a given cost function. However, path
optimality is closely associated with indicating the intent
of the actor [9]. Therefore, we seek to create an improved
DPP algorithm by incorporating principles from adversarial
machine learning [10]-[12]. Specifically, we assume the adver-
sary observer is using a neural-network based classifier and we



attempt to consider a deception metric while still minimizing
path cost. We do so by incorporating a deception cost term into
the RRT* algorithm using a Recurrent Neural Network (RNN).
This produces low-cost paths that have deceptive properties.
We term this approach “Adversarial RRT*.”

An example environment is shown in Fig. 1. This features a
starting position and a set of 5 potential goals. The planner in
this work creates a plan that reaches one of the five goals and
balances path cost (length) and deception. A neural-network
based observer attempts to guess the goal of the planner using
the observed time history of the vehicle trajectory. We assume
the observer is a naive adversary with access to its own planner
(RRT#*) but unaware that any deceptive actions are being taken
against it. We compare performance between standard RRT*
and Adversarial RRT* on a Dubins vehicle model. We also
study an adversary agent, termed a pirate. The pirate utilizes
the observer predictions and RRT*, attempting to reach the
intended goal before the planner. The left panel of Fig. 1 shows
the planner and observer behavior with RRT*, while the right
panel of Fig. 1 shows the planner and observer behavior with
Adversarial RRT*. Note how the path qualitatively changes
and the observer confidence fluctuates when Adversarial RRT*
is used. Also note the effects of this observer confidence on
the pirate behavior. We quantify performance by examining
the RNN average cumulative prediction accuracy, as well as
the success rate of each deceptive agent against the pirate.

The main contributions of this work are 1) the creation
of two deception methods that leverage adversarial machine
learning to deceive neural-network based observers, 2) incor-
poration of deception into an optimized kinodynamic planner
(Adversarial RRT*), 3) the validation of the proposed method
on a Dubins vehicle, and 4) the quantitative analysis of
deception across planner and observer configurations.

This paper begins with an overview of relevant background
principles and a discussion of our design choices. Next,
we detail our representation of the Deceptive Path Planning
problem, and our approach to the goal recognition problem.
This is followed by a discussion of our Adversarial RRT*
algorithm design. Finally, the paper concludes with an analysis
of the Adversarial RRT* planning performance and results.

II. BACKGROUND

This paper considers the scenario of traversal to one of a
set of goals in an adversarial setting [3], [13]. One agent,
the planner, is tasked with reaching the predetermined goal
in a fixed environment, while avoiding obstacles. Meanwhile
the opposing agent, the observer, is tasked with determining
which goal the planner intends to reach as soon as possible.

A. Goal Recognition

Goal recognition consists of predicting the unobserved goal
of an agent when given a sequence of its observed states [14],
[15]. In the context of this work, goal recognition aims to
predict the desired goal of a mobile agent (navigational goal
recognition). Our proposed planner seeks to disrupt an ob-
server performing navigational goal recognition. Existing work
has made efforts to formally define and characterize deception

and legibility of intent in robotic manipulator motions from the
perspective of human observers [2], [9], [16]. A mathematical
description of legibility and predictability of motion is given
in Eq. (9) of [9]; legible behavior is defined as a sequence
of actions which convey an agent’s true intention. Moreover,
legibility is considered closely correlated with optimality [9],
[16], in that a path which is efficient from origin to goal more
clearly conveys the agent’s target.

Deep Learning, specifically neural networks, have been
applied in goal recognition to automatically encode planning
domain knowledge from raw data [17], [18]. Deep learning
architectures have also shown efficacy in predicting object
trajectories and navigation goals given sequential position
measurements [5], [19]. Recurrent Neural Networks (RNN),
are particularly suited to handle sequential inputs [20], [21].
Therefore, deep learning techniques hold promise for future
navigational goal recognition applications.

B. Sampling-Based Planning

Sampling-based path planners are widely used due to their
computational simplicity and speed. Examples include RRT
and the optimized RRT* [7], [8]. These algorithms have
been applied to a range of systems and have probabilistic
completeness guarantees under general conditions [7]. While
the basic RRT algorithm is implemented with line-segment
edges, it has been adapted to non-holonomic dynamics using
Dubins’ paths [22]. Therefore, sampling based planners are a
good starting point for an adversarial planner.

C. Adversarial Machine Learning

Machine learning offers great potential for classifying mo-
bile vehicle trajectories. However, machine learning algorithms
are vulnerable to adversarial attacks [10]. Such attacks create
inputs that reduce the target agent’s accuracy or confidence
in prediction [12]. Analysis has shown that non-random per-
turbations of inputs can change the prediction of a neural
network [10]. It has also been shown that image classification
algorithms can be fooled with small changes to select input
pixels [10]. Changes can be as simple as adding noise to an
existing image [11] or altering a single input channel [23].
In the case of generating adversarial examples of robotic
paths, the strategy of perturbing points on a viable path is
complicated by the requirements to obey the robot’s dynamic
constraints, efficiently produce a plan, and avoid obstacles.

While Adversarial methods often utilize knowledge of the
target network, they can also generalize well, meaning they can
fool unknown networks as well [10]. This paper incorporates
adversarial machine learning into an optimized sampling-based
planner to deceive navigational goal recognition algorithms.

III. MATHEMATICAL FORMULATION
A. Planner

We assume a dynamically constrained mobile ground robot,
whose state is given by s; = (x4, y:,0;), must travel to a
goal in one of a selection of goal sets, g € G; € G =
{G1,Ga,...,G,}, in a 3-dimensional environment, X C R3,.
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Fig. 3: Additional environments simulated in this work.

This environment has obstacles, O C X, and goal sets G where
G and O are disjoint.

A path is a continuous integral curve of the robot’s dynamic
constraints which connects the planner’s initial state, sg =
(%0, Yo, 00), to its final state, s, = (xf,ys,0f) € g. A path
can be discretized into a sequence of states S = (sg,...,sy)
where ||(si+1) — (s;)||2 < €. A feasible path is any path, P,
which does not collide with any obstacles in the environment:
Feasible(P) < VY(x;,yi,0;) € P, (i, v:,6;) & O. For
our purposes, we take s, = (z7,yr,0r),0; € R such that the
goal location does not depend on orientation. An example of
such an environment are shown in Fig. 3. Some viable paths
through that environment are shown in Fig. 2a.

The planner produces one viable path, Py, to the selected
goal. The observer makes a prediction at each time step
for each goal candidate in the environment, represented as
a multinoulli distribution [20], parameterized by the vector
c € [0,1]™ over the set of n goal sets, G; € G, where

(D

The focus of this paper is on the design of a planner
which minimizes a cost, J. This cost should balance path
performance and deception, and is described in Section V.B. In
this work, we choose path performance to be the path length.
We examine two deception metrics that are functions of path
length and RNN predictions about the intended goal. The cost
function in this work is a weighted sum of these two quantities.

ci(st) = P(Gilst).

B. Observer

The observer in this work performs navigational goal
recognition [5]. The observer uses the current time history
of the vehicle trajectory to predict its goal. In contrast, the
planner attempts to “hide the real”, by preventing its actions

from showing its intended goal, as described in [2]. The
planner is rewarded for producing a less legible path (a
legible path conveys the planner’s intended goal, described
by Eq. (9) of [9]), but penalized for less efficient paths. The
planner’s optimization function treats deception as an inversion
of probabilistic goal recognition as in [24]. Thus, our planner
must devise a plan which is both efficient in terms of distance
traveled, and deceptive in terms of causing the observer to
have low confidence in the correct target goal.

C. Planner Model for Goal Recognition

In our planning/observation scenario it is necessary to
approximate the goal recognition behavior of the observer.
This enables the planner to reason about how to make a plan
deceptive. We assume the planner has access to some function
f* which approximates the true distribution P(G;|S), model-
ing the observer’s expectation of which goals are most likely.
Our planner incorporates a neural network which has learned
f* from observing near-optimal paths, using this distribution
to plan a path which is both efficient and deceives the observer.
For this work, we utilize an RNN as our approximation for
the observer. This is called the “planner model.”

IV. ADVERSARIAL RRT* ALGORITHM OVERVIEW

This work modifies an RRT* framework to achieve decep-
tive path planning. This is done by incorporating a metric
of deception into the RRT* cost function. We chose this
combination because RRT* provides rapid, optimized motion
plans. We then add deceptive considerations by approximat-
ing the observer behavior using the planner model RNN.
This RNN takes path observations as an input and outputs
confidences that the input path is going toward each output
goal. This output is used to compute the deception score
over the path. The following subsections describe the RRT*
algorithm developed for this task, modifications to include the
adversarial cost function, and platform-specific modifications
for the Dubins’ vehicle model.

A. RRT* Utilities and Data Structures

This subsection defines utility functions and data structures
used in RRT* and our implementation of Adversarial RRT*.

The RRT* node is defined as z = (s, 0, zp, X¢, ¢), where s
is the state, o, is trajectory of states along the path to the node
from its parent, x,, is the parent node, z. € X, references any
children nodes, and c is the cost to reach the node.

We add fields to the base RRT* node structure for use with
our adversarial planner. The planner model’s hidden RNN state
associated with the node is stored as hgrn . This allows the
RNN state to be set to that of a particular node for future
predictions. We have also chosen to store references to any
children nodes, z. € X, to facilitate cost re-propagation. The
node is defined as x = (s, 0, hgNN, Tp, Xe, €).

The following are RRT* and Adv. RRT* helper functions.

CALCCOST(x) : calculates the cost of a node according to
the cost function. For our platform, RRT* node cost is the
Dubins’ path length to the node. Adv. RRT* cost is described



in Section V.B. For Adversarial RRT*, the planner model
(RNN) is called and the node’s internal RNN state is set here.

CoST(x) : Returns the already-computed cost of a node.

EDGE(x) : Returns the edge tuple associated with a node
(between the node and its parent).

OBSTACLEFREE(z) : Returns a boolean indicating if the
path o to a node from its parent is free of obstacles.

NEAREST(G,x) : Returns the nearest node (in Dubins path
length) to = contained in the vertices, V' (a component of the
graph, G).

NEAR(G,x) : Returns a subset of the graph, G, containing
nodes within a pre-configured radius (in Dubins path length)
of the input node =x.

STEER(...) : handles the creation of a path between two
nodes. It also populates the data structure for the output node.

REPROPCOSTS(...) function is necessary for the cost func-
tion formulation, since it will depend on the planner model
(RNN) output. When paths are rewired, it not only affects
the cost of that rewired segment, but also of the down-branch
segments as well. Future predictions from the planner model
(RNN) rely on the hidden state, which is changed by rewiring.
Thus, the cost must be recursively repropagated, starting with
the rewired node and iterating through its children.

Algorithm 1 Adversarial RRT* Recursive Cost Repropagation

1: function REPROPCOSTS(Z ewire)

2 Trewire-COSt < CALCCOST(Zrewire);
3 for z.pi1q4 € Trewire-.children do
4: REPROPCOSTS(Zchird)

5 end for

6: end function

BESTPATH(...) function returns the best path by finding the
goal node from V, with the lowest cost. Starting with this
node, the function steps back through the branch, collecting
parent nodes in P until the start node is reached.

Algorithm 2 RRT* Best Path

1: function BESTPATH(G)
2: P10

3 (V.E\Vy) < G;

4: 2 < ARGMIN(V});

5: P+ PUx;

6 while z.parent is not None do
7 X < r.parent;

8 P+~ PUx;

9 end while

10: return P

11: end function

B. RRT* Algorithm

Main Function:

The RRT* algorithm [8], shown in Algorithm 3, consists of
a few steps: initialization, extending the graph, and building
the final best path from the completed graph. The initialization
process involves creating a node from the start position to

populate the vertex set, V. Sets of edges, F, and goal nodes,
V,, are initialized as empty. These three sets, as a tuple, form
the graph, G. Obstacle locations and the goal location are
given at initialization. Extending the graph begins by randomly
sampling a node. This node, the existing graph, and the set of
acceptable goal states are passed to the EXTEND(...) function.
This function handles the extension of the graph, and returns
the updated sets of nodes, V', edges, E’, and goal nodes Vg’ .
This graph extension is repeated for a predetermined number
of iterations (denoted by V), after which, the BESTPATH(...)
function is called to return the lowest cost path in the graph.

Algorithm 3 RRT* Algorithm

1: function RRT*(xn¢, Xgoa1)

2 V «A{@init}; E <+ 0; Vy « 0;
3 for i=1to N do

4 G (V,EV,);

5: Trand < SAMPLE(%);
6
7

8

(V',E"V,)) + EXTEND(G,ZrandXy);
G+ (V’,E’,Vg’)
end for
9: return BESTPATH(G)
10: end function

Extend Procedure:

EXTEND(...), in Algorithm 4, takes a newly sampled node,
x, attempts to add it to the graph G, and checks if the goal
set, Xgoq1 can be reached from the newly added node.

The function finds the nearest existing node using NEAR-
EST(...). The STEER(..) function returns a node ,., at
the newly sampled node location, reached from the nearest
neighbor. This path to the new node is checked for obstacles
using the OBSTACLEFREE(...) function. This condition must
be satisfied before finding a best parent: if the path from near-
est neighbor has an obstacle, searching over near neighbors
may not yield a viable parent node, leading to inefficiencies.

If the path to x,., is obstacle-free, the algorithm checks
the nearest neighbors within a specified radius, X,,¢q,, Of the
new node to see if x,., can be reached with a lower cost
via another node. This process of the best-parent search is
outlined in line 9-15 of Algorithm 4. This search involves
using STEER(...) to steer from each near node in X,.q,
(excluding xpeqrest) to the sampled location. If obstacle-free,
the cost of the resultant node (called Zpew near) 1S compared
to Zmin, Which is the node reached by the current best parent.
If the cost is reduced, Zip is updated with Zy,cu near-

At the conclusion of the best-parent search, an attempt is
made to connect the new node, x,,;,, to the goal (lines 18-
21 of Algorithm 4). This aims to determine if the goal is
reachable from the new node, which has two implications.
First, this enables tracking of all complete paths to the goal for
constructing the final solution. This is important when running
the algorithm for a limited number of iterations since the
probabilistic completeness of RRT* only holds as the number
of iterations gets very large. Second, this allows for using
this RRT* implementation when constraints such as limited
fuel or range are added to the vehicle model. If the vehicle
cannot reach the goal from the newly added node due to such



constraints, this step allows for discarding the node. After this
check, the graph is updated with the new information.

Algorithm 4 RRT* Extend

1: function EXTEND(G,2,X goal)

2 (V. EVy «+ G

3 V’<—V;E’<—E;Vg’eVg;
4 Tnearest < NEAREST(G,T)

5 Tnew ¢ STEER(Tnearest>T);
6
7

8
9

if OBSTACLEFREE(Z,,¢q,) then
Tmin < Tnews
Xnear < NEAR(G,T);
for all 2,04 € Xnea'r/mnea’rest do

10: Tnew,near < STEER(Tpear,T);

11: if OBSTACLEFREE(Zpcw,near) and...

12: .COST(Zew,near) < COST(Z4ir) then
13: Tmin < Tnew,nears

14 end if

15: end for

16: Tmin-parent.children.APPEND(Zin)
17: V'« V'UZpmin; E' + E' UEDGE(Zmin)
18: Zgoal <~ STEER(Zmin,Xg)

19: if OBSTACLEFREE(Z g0q1) and T 4041 € X, then
20: Vy ViU Zgoals

21: end if

22: for all x,cqr € Xpear do

23: Trewire $ REWIRE(ZminTnear)

24: if OBSTACLEFREE(Z¢wire) and...

25: . COST(Zrewire) < COST(Zpeqr) then
26: Tpear-Parent < Tpeyire.parent;
27: Tnear-0 < Trewire-0;

28: E' + E'/EDGE(Zyear);

29: E’ < E'"UEDGE(Zrewire);

30: G’ < REPROPCOSTS(G' . Zpear);

31: end if

32: end for

33: end if

34: return (V', E', V;)
35: end function

Rewire Procedure:

The rewire procedure takes place in lines 22-33. This
process iterates through the nearest neighbors in X,,.,, and
determines if the cost to reach each node can be reduced via
the newest added node. To accomplish this, a path is created
from 2,y O ZTpeqr USing REWIRE(...).

Then, the cost of the resultant node, T,ewire 1S compared
to that of the original x,q,. If the cost of X eyire 1S lower,
then rewiring occurs and the graph is updated.

REWIRE(...) and STEER(...) are identical for a classic RRT*
implementation. There are, however, some platform-specific
modifications to this, discussed later. After any potential
rewiring occurs, EXTEND(...) returns the updated graph.

For Adversarial RRT*, the cost depends on the planner RNN
(as discussed in detail later). Thus, rewiring not only affects the
cost of the rewired node, but also future outputs of the planner
RNN due to its recurrent nature. When rewiring, the costs
down-branch must be recursively updated using the updated

Adversarial RRT* Planner

Dubins’ Path Edge

RRT*
Extend/

Fig. 4: The Adversarial RRT* planner architecture.

Final Path

Edge Deception Metric

RNN hidden states. This is handled in the REPROPCOSTS(...)
function in Algorithm 1. This is not necessary in RRT*.

C. Platform Specific Modifications

In this work we use a Dubins vehicle model to test our
planning methods. We assume the robot is only capable of
traveling at constant forward velocity and with a non-zero
minimum turning radius, pmn, > 0 [25]. The Adversarial
RRT#* algorithm was tailored to the Dubins vehicle behavior
by modifying the following cases.

In our Dubins’ vehicle implementation, NEAREST(G,x) and
NEAR(G,x) use Dubins’ length for distance calculations.

In STEER(...), we define start state as s from = (i, ¥s, 0;),
and end state as sy, = (x¢,yy). Final heading 6 is unspecified
since only the sampled point in R? is specified.

Finally, we draw a distinction between REWIRE(...) and
STEER(...) for our Dubins’ vehicle RRT* implementation.
REWIRE(...) preserves the full state (x,y, and #) of the to”
node, whereas STEER(...) ignores 6 of the ”to” node.

V. USING GOAL RECOGNITION IN AN ADVERSARIAL
FRAMEWORK

We utilize two distinct neural networks in this work. The
first is a neural network trained to classify the goal, which
is used to calculate the deception-based cost function during
planning. This network is referred to as the planner model,
and is an RNN. The second is a network trained separately
from a clean initialization which the planner attempts to fool.
This model is only used for validation and is referred to as
the observer model. These models were trained using mutually
exclusive datasets of near-optimal paths. Figure 4 shows the
architecture of the planner and the role of the two models.

A. Planner Model

The planner model is trained to perform a similar task to
that of the observer model. The planner model is used during
RRT* to predict deception in classification. A key contribution
of this paper is a novel method of integrating this planner
model into a sampling-based path planner. To accomplish this,
we create a planner model (RNN) that predicts the vehicle’s
intended goal based on its trajectory. This is intended as an
approximation of the observer, and is incorporated into the
RRT#* path planning process. This planner model computes
the probability that each goal site is the intended target of
the planner. These predictions follow the Softmax convention,
where z contains the scores for each neural network target



class, z;. These predictions are incorporated into the RRT*
cost function.

exp(zi)

> exp(z;))

softmazx(z); =

2

B. Adversarial Cost Function for RRT*

1) Cost Formulation: We seek to create a motion planner
that can balance between path cost and deception. We use
Jpatn to refer to the cost associated with the path. This is
often the total length of the path, as used in this work.

Tpath = / ds 3)
path

The total cost, J, is a combination of the path cost and the
deception score, D, where « € [0, 1] scales the weight of the
deception score. Our planner attempts to minimize path cost
while still accounting for deceptive properties.

J = Jpn,th —aD (4)

Existing literature provides several strategies for formulat-
ing optimization of deceptiveness [2]-[4]. Strategies include
maximizing entropy and moving towards wrong goals.

In this work, we examine two deception scores: Shannon’s
Entropy [26], which represents ambiguity between goals; and
a Goal Simulation [3] metric, which rewards high confidence
in an incorrect goal. The Shannon’s Entropy metric is:

Dentropy(X) - 7zp(zz)1ogn P(Il) (5)
=1

Where X is the planner’s goal prediction confidences, and
P(x;) is confidence in the i-th goal location. Similar to [3],
we formulate the Goal Simulation metric as:
Dsimulation(X) = _{nax [P(xz)] - P(l‘goal) (6)
1 \?goal
The deception score can be computed for a path observation,
s, using either metric, as:

Ds) = / (DX )

It should be noted that all integrals have been discretized
into their equivalent summation in our implementation. We
describe them as integrals for theoretical generality.

2) Cost Implementation: We implement our deception cost,
D, by leveraging adversarial machine learning. Specifically,
we create a planner model that approximates the behavior of
the observer. For this work, we use an RNN for the planner
model. This allows the planner to query a prediction for a
candidate path as it is planned, providing information about
the value of the selected deception metric from a comparable
observer. Our cost function implementation is shown in Eq.
8. The first term of the integral represents the path length.
The second term, aD(X]|s), represents the deceptiveness of
the path input measured from the planner RNN output.

C’ost(s):/” (1—aD(X|s))ds, ac[0,1] (8
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Fig. 5: Avg. cost over 100 paths with increasing iterations.

The « parameter is the deception weighting term. When
o = 1, the upper bound for both deception metrics of 1 will
correspond to a path cost of 0. Conversely, a = 0 will produce
an identical result to RRT* with a path length cost.

It should be noted that our modifications to the cost function
deviate from the original RRT* formulation [8] since the cost
at the tail of the given path now depends on information from
the prior path. Therefore, there is no guarantee Adversarial
RRT#* will converge on a path that is optimal with respect
to our combined cost function, if such a feasible path exists.
However, the aim of this work is not to optimize deception,
but to provide dynamically feasible modifications to the near-
optimal path in attempts to increase overall deceptiveness of
the path. As such, RRT* provides a good planning framework.

VI. SIMULATED RESULTS
A. Dataset Generation

In this work, the observer model uses a neural network
(RNN) to predict the intended goal of the planner. The
planner model aims to approximate an observer in order to
deceive it. The planner also uses an RNN (but is trained on
different data). We assume the application for the observer
can be modeled by a simulation environment. The observer
is assumed to be a naive adversary with access to its own
planner (RRT*) to construct a training dataset. The observer
is unaware that any deceptive actions are being taken against it.
For training these neural networks, RRT* was used to produce
two mutually exclusive training sets, each with 40,000 paths
to 5 goals in a fixed map. In this work, we utilize 4 different
fixed maps, shown in Figures 3 and 2a. The average path cost
over 100 paths as iterations increase is shown in Figure 5.

We sample a distribution of points around the initial position
to create a more diverse set of paths for training purposes. The
initial position in each path was randomized using a normal
distribution with 1-meter standard deviation from the nominal
start location. Initial heading is randomized similarly, but
with £45-degree perturbation from nominal initial heading.
A similar procedure was used to generate validation data
using RRT* and Adversarial RRT*. The Dubins vehicle was
configured with 1-m/s velocity and 1-m minimum turning
radius. Simulations were performed on an Intel Core i7-8700U
3.2GHz processor with 32GB RAM.

B. Observer and Planner Model Details

The observer model we consider in this work is an RNN
based on the LSTM layer. This is also the architecture of
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Fig. 6: Accuracy on 500 paths planned with each algorithm.

the planner model. The observer model RNN architecture
involves an LSTM layer with 1024 units and 4 fully-connected
layers of decreasing dimension. These layers output into a
Softmax layer. The benefit of the RNN is that it accepts
variable input size, meaning it is well suited for sequential tra-
jectory data. This architecture is similar to the goal prediction
RNN in [21] that predicts goals from time-series observations.
We include additional dense layers to provide more capacity
and increased performance. The planner model is an RNN
with architecture identical to that of the observer model.

C. Adversarial RRT* Performance Against RNN Observer

The Adversarial RRT* planner’s performance is evaluated
by comparing the paths it generates to the RRT* planner.
Note that the observer was trained only using RRT* data. We
assume that the observer is not aware of the adversarial attack.

Paths were generated for each planner using 250 iterations
and a range of values of « for Adversarial RRT*. The initial
conditions and sampling were seeded with the same set of
random number generation seeds between the algorithms. A
comparison of paths to each goal generated by RRT* (a) and
Adversarial RRT* (b) is shown in Figure 2. The RRT* paths
are near-optimal, whereas the Adversarial RRT* paths have
increased length. The Adversarial RRT* paths maintain high
ambiguity between the goals as long as possible.

We used the observer RNN to make predictions on RRT,
RRT#*, and Adversarial RRT* paths. Figure 1 shows a com-
parison of typical paths generated by each algorithm and
what the RNN predicts over time. Note, as referenced in the
accompanying video, that the Adversarial RRT* path differs
from the RRT* path in that it travels in such a way as to
increase the selected deception metric.

We use observer accuracy as a performance metric. A
correct prediction is achieved when the highest confidence
observer output corresponds to the correct goal location.
Prediction accuracy over time is of interest to examine how
quickly the observer typically converges on the correct goal.
We also examine the average cumulative RNN accuracy, which
is the average RNN accuracy across the entire path.

Fig. 6 shows the accuracy of the observer RNN on sets
of paths from each algorithm over time. Note, the horizontal-
axis is time in seconds from the goal, meaning as time from
goal increases, the vehicle moves away from the goal, toward
the start position. This is done to adjust for varying path
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Fig. 7: Performance of each algorithm with varying « values.

lengths. The RRT* curve ends earliest since, moving backward
from the goal, the start position is reached sooner due to a
lower-cost path. This shows that both RRT and Adv. RRT*
with Entropy (o« = 1) maintain low accuracy longer than
RRT#, after which the RNN converges to higher accuracy.
RRT slightly outperforms Adv. RRT* w/ Entropy. Adversarial
RRT* w/ Goal Simulation (o« = 0.6) further decreases RNN
accuracy and prevents convergence to high accuracy.

D. Comparison of Algorithm Performance

The adversarial cost functions allow the planner to select
longer paths if they increase the chosen deception metric
(entropy or goal simulation). This deviation from the optimal
path allows for deceptiveness. Figure 7 shows performance
curves for each Adversarial RRT* algorithm with a range of
values of a. @ = 0 represents the RRT* algorithm. Observer
RNN accuracy from RRT with the same Dubins’ model is also
shown. Each data point represents an average of results from
500 paths each from the three maps (1500 paths total). The
vertical axis is average cumulative accuracy of the observer
RNN on paths generated with that algorithm configuration.
The horizontal axis is path length. As such, a high-performing
DPP algorithm will be in the lower-left region of the graph.

Observer RNN performance on the RRT paths is degraded
due to the highly random nature of paths generated. However,
path length of RRT paths is 40% higher than optimal.

In contrast, Adv. RRT* with Entropy, while less deceptive
in this regard, is still able to approach RNN cumulative
accuracy of about 17% as « approaches 1, but at a much
lower path length than RRT. Adv. RRT* with Goal Simulation
outperforms in both deceptiveness and optimality. It is able to
provide better deception (10% RNN accuracy) than the RRT
paths, while keeping path length within 16% of optimal.

E. Pirate Deception Scenario Performance

We simulate a use case of Adversarial RRT* in which an
agent must deliver an asser to a predetermined goal location
(chosen from a set of candidates) before a pirate adversary
can identify and reach the location to hijack or prevent the
delivery. In this scenario, both the asset and the pirate are
identical Dubins’ vehicle models (1 m/s speed and 1-m turn
radius). The pirate starts roughly in the centroid of the goals.



The pirate uses 1-Hz surveillance from the RNN to identify
the most likely goal based on the asset’s trajectory. The pirate
plans a path using RRT* (150 iterations) to reach this goal
from its current pose and executes this path until the predicted
goal changes or the asset completes its path. The asser will
use DPP to plan a deceptive path to delay the pirate’s arrival.

Examples of this scenario are shown in Fig. 1. The left
shows the pirate (black) reaction to an asset path planned
with RRT* (blue). Here, the pirate reaches the goal before
the asset. The portion of the asset path that occurs before
the pirate reaches the goal is shown as solid. Afterwards, the
path is dashed, indicating the asset failed to complete the path
in time. The right shows the pirate reaction to an asset path
planned with Adv. RRT* with Simulation (o« = 0.4). Here, the
asset reaches the goal before the pirate, as indicated by the
truncated pirate path. The asser employing Adv. RRT* delays
the pirate by making it think it is targeting other goals. An
animation of the pirate example is in the accompanying video.

We simulated 500 paths each of RRT*, and Adv. RRT* with
each metric using the map in Fig. 2a. We found that 52.8%
of RRT* paths reach the goal before the pirate, compared to
75.4% of paths from Adv. RRT* with Simulation (o« = 0.4)
and 74% with Entropy (o« = 1). This example application
shows how deceptiveness can improve performance.

F. Larger Drone Delivery Scenario

To illustrate the broader applicability of this work, we ex-
amined a similar navigational goal prediction scenario but with
a more relevant vehicle and map. Specifically, we examined a
drone delivery example which features a speed of 90m/s and
a turning radius of 300m. The map, shown in Figure 3c, was
10-km by 10-km. RNN training and experimental protocols
were similar to the other experiments. We achieved similar
deception results. Average cumulative observer accuracy on
RRT* paths in this experiment was 47%. Accuracy on Adv.
RRT* paths was lower, at 19% with Simulation (o = 0.4) and
27% with Entropy (o« = 1). Adv. RRT* path lengths increased
from optimal by 29% for Simulation and 22% for Entropy.

VII. CONCLUSION

We have proposed a novel application of adversarial ma-
chine learning attacks by integrating two different deception
cost functions into a sampling-based planner. We demonstrate
this adversarial cost function in an RRT* planner for a Dubins’
vehicle. We evaluated Adversarial RRT* against an observer
model RNN. The results illustrate how Adversarial RRT* can
reduce classification accuracy and delay the onset of high
observer confidence. We also provide a simulated piracy case-
study. In this example, Adversarial RRT* can improve the
security of a high-value delivery. We envision that this planner
could be utilized by a range of deceptive mobile systems.
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