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Multiplier U-processes: Sharp bounds and
applications
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The theory for multiplier empirical processes has been one of the central topics in the development of the classical
theory of empirical processes, due to its wide applicability to various statistical problems. In this paper, we de-
velop theory and tools for studying multiplier U -processes, a natural higher-order generalization of the multiplier
empirical processes. To this end, we develop a multiplier inequality that quantifies the moduli of continuity of
the multiplier U -process in terms of that of the (decoupled) symmetrized U -process. The new inequality finds a
variety of applications including (i) multiplier and bootstrap central limit theorems for U -processes, (ii) general
theory for bootstrap M-estimators based on U -statistics, and (iii) theory for M-estimation under general complex
sampling designs, again based on U -statistics.
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1. Introduction

1.1. Overview

Let X1, . . . ,Xn be i.i.d. random variables with law P on (X ,A), and ξ1, . . . , ξn be random variables
independent of X1, . . . ,Xn. Multiplier empirical processes of the form

f �→
n∑

i=1

ξif (Xi), (1.1)

where f ∈ F for some function class F , have a long history in the development of the classical em-
pirical process theory [26,38]. See also [29,30] for some recent developments. Apart from being of
theoretical interest in its own right, the multiplier empirical process has also found numerous impor-
tant applications in the statistical theory. Here is a partial list:

(P1) (Bootstrap theory). The seminal paper [18] gives sufficient and necessary characterizations for
the bootstrap central limit theorem to hold uniformly over a class of functions F . The key idea
there is to view the bootstrap empirical process as certain (conditional) multiplier empirical
process. This idea is further exploited in [33] to general bootstrap schemes D exchangeable
weights.

(P2) (Estimation theory). The bootstrap (multiplier empirical) theory in (P1) can be combined with
M- or Z-estimation theory to study asymptotic properties of bootstrap finite-dimensional pa-
rameters: the paper [39] studied bootstrap Z-estimators; the paper [11] further studied boot-
strap M-estimators in a semiparametric setting. In an infinite-dimensional setting, the mul-
tiplier empirical process naturally arises in the theory for regression estimators, where the
multipliers play the role of the errors in the regression model, cf. [21].
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(P3) (Complex sampling). [9] pioneered the study of empirical process theory under two-phase strat-
ified sampling by using the exchangeably weighted bootstrap empirical process theory devel-
oped in [33]. Therefore the crux of problem rests in suitable form of the multiplier empirical
process theory.

As a natural analogue of the empirical process in a higher-order setting, U -process (of order m) of
the form

f �→
∑

1≤i1<···<im≤n

f (Xi1, . . . ,Xim) (1.2)

received considerable attention during the late 1980s and early 1990s due to its wide applications to
the statistical theory, see, for example, [1,3–5,31,32]. On the other hand, despite notable progress of
the theory for the multiplier empirical process (1.1) and its applications thereof, corresponding theory
for multiplier U -processes of the form

f �→
∑

1≤i1<···<im≤n

ξi1 · · · ξimf (Xi1, . . . ,Xim), (1.3)

has been lacking. Not surprisingly, the lack of such a theory has hindered further theoretical under-
standing for various statistical problems (in particular the above (P1)–(P3)) that involve U -statistics.
One of the goals of this paper is to fill in this lack of understanding, by developing further theory and
tools for understanding multiplier U -processes (1.3), along with a particular eye on applications to the
aforementioned statistical problems.

It has now been clear from the author’s previous work [20–22] that the key step in getting a precise
understanding of the behavior of the multiplier empirical process (1.1) is a strong form of the so-called
‘multiplier inequality’ that quantifies the moduli of continuity of the multiplier empirical process in
terms of that of the empirical process itself, or its symmetrized equivalent

f �→
n∑

i=1

εif (Xi), (1.4)

in a non-asymptotic setting. Here εi ’s are i.i.d. Rademacher random variables (i.e., P(εi = ±1) =
1/2) independent of X1, . . . ,Xn. Indeed, an improved version of the multiplier inequality is proved
in [21] that gives sharp non-asymptotic bounds for the moduli of the multiplier empirical process.
The benefits of such a sharp multiplier inequality are exploited in a few different problems, including
(i) convergence rates of least squares regression estimators in a heavy-tailed regression setting under
various models [20,21]; (ii) empirical process theory under general complex sampling designs [22],
and more technically, (iii) theory for lower bounds of empirical processes through Gaussianization
[19].

This is the program we will continue in this paper, but now in the setting of multiplier U -process
(1.3). We prove in Theorem 2.2 a sharp multiplier inequality used to study the moduli of continuity of
the multiplier U -process (1.3), in terms of that of the (decoupled) symmetrized U -process

f �→
∑

1≤i1<···<im≤n

ε
(1)
i1

· · · ε(m)
im

f
(
X

(1)
i1

, . . . ,X
(m)
im

)
, (1.5)

an object that has been well-studied throughout a series of ground-breaking works in the 1990s, cf.
[3,4,14].
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With the help of the multiplier inequality for the multiplier U -process (1.3), we further study the
statistical problems in the directions (P1)–(P3) mentioned above, in which various forms of U -statistics
are involved. More specifically:

(Q1) We prove a multiplier central limit theorem and a bootstrap central limit theorem with general
exchangeable weights for U -processes, in analogy to the duality between the multiplier cen-
tral limit theorem for empirical processes developed in [16,17] and the exchangeably weighted
bootstrap theory for empirical processes developed in [33]. These uniform central limit the-
orems are valid under the same conditions for the usual uniform CLTs for U -processes as
developed in [3,14], and similar conditions on the exchangeable weights as in [33].

(Q2) We develop a general theory for bootstrap M-estimators based on U -statistics, continuing
the line of works pioneered by [39] in the context of Z-estimation based on the empirical
measure, and by [11] in the context of M-estimation in a semi-parametric setting. See also
[7,8,10]. The bootstrap theory is valid under essentially the same conditions as the master
asymptotic normality theorem as studied in [1,14], and therefore validates the use of bootstrap
M-estimators based on U -statistics, at least asymptotically.

(Q3) We develop a general M-estimation theory based on U -statistics under general complex sam-
pling designs. Our theory generalizes the work of [1,14] concerning finite-dimensional M-
estimators based on U -statistics, and the work of [13] concerning infinite-dimensional M-
estimators based on U -statistics, by going beyond the standard setting of i.i.d. sampling de-
sign. The theory here can also be viewed as an extension of the author’s previous work [22], in
which a general empirical process theory for various sampling designs is developed with the
help of the improved multiplier inequality for empirical processes proved in [21].

The rest of the paper is organized as follows. We develop the multiplier inequality for U -processes
in Section 2. Sections 3–5 are devoted to applications (Q1)–(Q3). Most detailed proofs are collected in
Sections 6–10.

1.2. Notation

For a real-valued random variable ξ and 1 ≤ p < ∞, let ‖ξ‖p ≡ (E|ξ |p)1/p denote the ordinary p-
norm. The Lp,1 ‘norm’ for a random variable ξ is defined by

‖ξ‖p,1 ≡
∫ ∞

0
P
(|ξ | > t

)1/p dt.

Strictly speaking ‖·‖p,1 is not a norm, but there exists a norm equivalent to ‖·‖p,1 (cf. [35], Theo-
rem 3.21). Let Lp,1 be the space of random variables ξ ’s with ‖ξ‖p,1 < ∞. It is well known that
Lp+ε ⊂ Lp,1 ⊂ Lp holds for any underlying probability measure, and hence a finite Lp,1 condition
requires slightly more than a p-th moment, but no more than any p + ε moment, see [26], Chapter 10.

For a real-valued measurable function f defined on (X ,A,P ), ‖f ‖Lp(P ) ≡ ‖f ‖P,p ≡ (P |f |p)1/p

denotes the usual Lp-norm under P , and ‖f ‖∞ ≡ supx∈X |f (x)|. f is said to be P -centered if Pf = 0,
and F is P -centered if all f ∈ F are P -centered. To avoid unnecessary measurability digressions, we
will assume that F is countable throughout the article. As usual, for any φ : F →R, we write ‖φ(f )‖F
for supf ∈F |φ(f )|.

Let (F,‖·‖) be a subset of the normed space of real functions f :X →R. For ε > 0 let N (ε,F,‖·‖)

be the ε-covering number of F ; see [38], page 83, for more details.
Throughout the article ε1, . . . , εn will be i.i.d. Rademacher random variables independent of all other

random variables. Cx will denote a generic constant that depends only on x, whose numeric value may
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change from line to line unless otherwise specified. a �x b and a �x b mean a ≤ Cxb and a ≥ Cxb

respectively, and a �x b means a �x b and a �x b [a � b means a ≤ Cb for some absolute constant
C]. For two real numbers a, b, a ∨ b ≡ max{a, b} and a ∧ b ≡ min{a, b}. OP and oP denote the usual
big and small O notation in probability.

2. Multiplier inequality for U -processes

Recall that a kernel f : Xm → R is (permutation) symmetric if and only if f (x1, . . . , xm) =
f (xπ(1), . . . , xπ(m)) for any permutation π of {1, . . . ,m}. Further recall the notion of degenerate ker-
nels (cf. [14], Definition 3.5.1) as follows.

Definition 2.1. A symmetric and P m-integrable kernel f : Xm → R is P -degenerate of order r − 1,
notationally f ∈ Lr

2(P
m), if and only if∫

f (x1, . . . , xm)dP m−r+1(xr , . . . , xm) =
∫

f dP m

holds for any x1, . . . , xr−1 ∈X , and

(x1, . . . , xr ) �→
∫

f (x1, . . . , xm)dP m−r (xr+1, . . . , xm)

is not a constant function. If f is furthermore P m-centered, that is, P mf = 0, we write f ∈ L
c,r
2 (P m).

For notational simplicity, we usually write L
c,m
2 (P m) = L

c,m
2 (P ).

Any U -statistic with a symmetric kernel f

U(m)
n (f ) ≡ 1(

n

m

) ∑
1≤i1<···<im≤n

f (Xi1, . . . ,Xim) (2.1)

can be decomposed into the sum of U -statistics with degenerate kernels:

U(m)
n (f ) =

m∑
k=0

(
m

k

)
U(k)

n (πkf ). (2.2)

Here πkf (x1, . . . , xk) ≡ (δx1 − P) × · · · × (δxk
− P) × P m−kf is P -degenerate of order k − 1. The

equation (2.2) is also known as Hoeffding decomposition. The limit behavior of (2.1) then typically
reduces to the study of the leading non-trivial term (k ≥ 1) in (2.2), so below we proceed without loss of
generality by assuming that the kernels f are P -degenerate of order m − 1 unless otherwise specified.

The main result of this section is the following multiplier inequality for U -processes with degenerate
kernels.

Theorem 2.2. Let X1, . . . ,Xn be i.i.d. random variables with law P on (X ,A), and F be a class of
measurable real-valued functions defined on (Xm,Am) such that F is P -centered and P -degenerate
of order m − 1. Let (ξ1, . . . , ξn) be a random vector independent of (X1, . . . ,Xn). Suppose that there
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exists some measurable function ψn : Rm
≥0 → R≥0 such that the expected supremum of the decoupled

1 U -processes satisfies

E

∥∥∥∥ ∑
1≤ik≤�k,1≤k≤m

ε
(1)
i1

· · · ε(m)
im

f
(
X

(1)
i1

, . . . ,X
(m)
im

)∥∥∥∥
F

≤ ψn(�1, . . . , �m)

for all 1 ≤ �1, . . . , �m ≤ n. Then

E

∥∥∥∥ ∑
1≤i1,...,im≤n

ξi1 · · · ξimf (Xi1, . . . ,Xim)

∥∥∥∥
F

≤ Km

∫
R

m≥0

Eψn

(
n∑

i=1

1|ξi |>t1 , . . . ,

n∑
i=1

1|ξi |>tm

)
dt1 · · ·dtm.

Furthermore, if there exists a concave and non-decreasing function ψ̄n : R → R such that ψn(�1, . . . ,

�m) = ψ̄n(
∏m

k=1 �k), then

E

∥∥∥∥ ∑
1≤i1,...,im≤n

ξi1 · · · ξimf (Xi1, . . . ,Xim)

∥∥∥∥
F

≤ Km

∫
R

m≥0

ψ̄n

( ∑
1≤i1,...,im≤n

m∏
k=1

P
(|ξik | > tk

)1/m

)
dt1 · · ·dtm.

Here Km > 0 is a constant depending on m only, and can be taken as Km = 22m
∏m

k=2(k
k − 1) for

m ≥ 2.

As an immediate consequence of Theorem 2.2, we have the following corollary.

Corollary 2.3. Suppose that the conditions on (X1, . . . ,Xn) and (ξ1, . . . , ξn) in Theorem 2.2 hold, and
that ξi ’s have the same marginal distributions. If there exist some γ > 1 and κ0 > 0 such that

E

∥∥∥∥ ∑
1≤ik≤�k,1≤k≤m

ε
(1)
i1

· · · ε(m)
im

f
(
X

(1)
i1

, . . . ,X
(m)
im

)∥∥∥∥
F

≤ κ0

m∏
k=1

�
1/γ

k (2.3)

holds for all 1 ≤ �1, . . . , �m ≤ n, then

E

∥∥∥∥ ∑
1≤i1,...,im≤n

ξi1 · · · ξimf (Xi1, . . . ,Xim)

∥∥∥∥
F

≤ Kmκ0‖ξ1‖m
mγ,1 · nm/γ . (2.4)

1‘Here ‘decoupled’ refers to fact that {X(k)
i

}, k ∈ N are independent copies of {Xi }, and {ε(k)
i

}, k ∈ N are independent copies of
the Rademacher sequence {εi }.
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Proof. Let ψn(�1, . . . , �m) ≡ κ0(
∏m

k=1 �k)
1/γ ≡ ψ̄n(

∏m
k=1 �k) where ψ̄n(t) ≡ κ0 · t1/γ . By Theo-

rem 2.2, the LHS of the above display can be bounded by

Kmκ0

∫
R

m
≥0

( ∑
1≤i1,...,im≤n

m∏
k=1

P
(|ξ1| > tk

)1/m

)1/γ

dt1 · · ·dtm

= Kmκ0 · nm/γ

m∏
k=1

∫ ∞

0
P
(|ξ1| > tk

)1/mγ dtk = Kmκ0‖ξ1‖m
mγ,1 · nm/γ ,

as desired. �

The above corollary shows that the multiplier U -process (2.4) enjoys the same size nm/γ as the
Rademacher randomized U -process (2.3), as long as the multipliers ξi ’s satisfy the moment condition
‖ξ1‖mγ < ∞. Whether this moment condition is necessary remains open for general m ≥ 2. For m = 1,
this moment condition cannot be substantially improved, see [21], Theorem 2.

The next proposition shows certain sharpness of Corollary 2.3 in terms of the size of the multiplier
U -process. In particular, we prove that there exists F verifying the condition (2.3), while the inequality
(2.4) cannot be further improved for i.i.d. centered multipliers ξi ’s with sufficient moments.

Proposition 2.4. Suppose that X ≡ [0,1] and P is the uniform probability measure on X . Fix γ > 2.
Then there exists some F defined on X for which

E

∥∥∥∥ ∑
1≤ik≤�k,1≤k≤m

ε
(1)
i1

· · · ε(m)
im

f
(
X

(1)
i1

, . . . ,X
(m)
im

)∥∥∥∥
F

≤ κ0

m∏
k=1

�
1/γ

k

holds for all 1 ≤ �1, . . . , �m ≤ n, such that for any centered i.i.d. random variables ξ1, . . . , ξn with
0 < ‖ξ1‖1 < ∞,

E

∥∥∥∥ ∑
1≤i1,...,im≤n

ξi1 · · · ξimf (Xi1, . . . ,Xim)

∥∥∥∥
F

≥ κm,γ,ξ · nm/γ .

Here the constant κm,γ,ξ only depends on m, γ and the law of ξ1.

Remark 2.5. In the special case of m = 1, the multiplier inequality for U -processes in Theorem 2.2
reduces to (a special case of) the improved multiplier inequality for empirical processes proved in [21],
Theorem 1. The reader is referred to [21], Section 2.3, for a detailed comparison of the improvement
in this case over the classical multiplier inequality (cf. [38], Lemma 2.9.1).

In the applications in the next section, the following result will be useful in verifying asymptotic
equicontinuity of the multiplier U -processes.

Corollary 2.6. Consider the setup of Theorem 2.2. Let {F(�1,...,�m),n : 1 ≤ �1, . . . , �m ≤ n,n ∈ N} be
function classes such that F(�1,...,�m),n ⊃ F(n,...,n),n for all 1 ≤ �1, . . . , �m ≤ n. Suppose that ξi ’s have
the same marginal distributions with ‖ξ1‖2m,1 < ∞. Suppose that there exists some bounded measur-
able function a : Rm

≥0 → R≥0 with a(�1, . . . , �m) → 0 as �1 ∧ · · · ∧ �m → ∞, such that the expected
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supremum of the decoupled U -processes satisfies

E

∥∥∥∥ ∑
1≤ik≤�k,1≤k≤m

ε
(1)
i1

· · · ε(m)
im

f
(
X

(1)
i1

, . . . ,X
(m)
im

)∥∥∥∥
F(�1,...,�m),n

≤ a(�1, . . . , �m)

(
m∏

k=1

�k

)1/2

for all 1 ≤ �1, . . . , �m ≤ n. Then

n−m/2
E

∥∥∥∥ ∑
1≤i1,...,im≤n

ξi1 · · · ξimf (Xi1, . . . ,Xim)

∥∥∥∥
F(n,...,n),n

→ 0, n → ∞.

3. Multiplier central limit theorem and the bootstrap

In this section, we will apply the multiplier inequality in Theorem 2.2 to establish a multiplier cen-
tral limit theorem and an exchangeably weighted bootstrap central limit theorem for U -processes. As
already mentioned in the introduction, the duality between these two limit theorems is akin to the
development from the empirical process theory side: a multiplier central limit theorem for empirical
processes is established in [16,17], which serves as a cornerstone for the bootstrap central limit theo-
rems in [18,33].

Below we review some basic facts for the central limit theorems for degenerate U -statistics. The ma-
terials below come from [14], Section 4.2; the reader is referred therein for a more detailed description.
Let KP be the Gaussian chaos process defined on R ⊕ L

c,N
2 (P ) ≡ R ⊕ (⊕∞

m=1L
c,m
2 (P )) as follows.2

Let h
ψ
m(x1, . . . , xm) = ∏m

�=1 ψ(x�) for ψ ∈ L
c,1
2 (P ). Then the linear span of {hψ

m : ψ ∈ L
c,1
2 (P )} is

dense in the space of L
c,m
2 (P ) with respect to L2(P

m). Hence, we may define

KP

(
hψ

m

) ≡ (m!)1/2Rm

(
GP (ψ),Eψ2,0, . . . ,0

)
, (3.1)

and extend this map linearly and continuously, with KP (1) ≡ 1, on R ⊕ L
c,N
2 (P ). Here GP is the

isonormal Gaussian process on L
c,1
2 (P ) with covariance structure EGP (f )GP (g) = P(fg)(f, g ∈

L
c,1
2 (P )), and Rm is the polynomial of degree m given by the Newton’s identity (cf. [14], pp. 175):

∑
1≤i1<···<im≤n

ti1 · · · tim = Rm

(
n∑

i=1

ti ,

n∑
i=1

t2
i , . . . ,

n∑
i=1

tmi

)
. (3.2)

With these notations, if f� ∈ L
c,m�

2 (P )(1 ≤ � ≤ k), then the following central limit theorem holds (cf.
[14], Theorem 4.2.4):((

n

m1

)1/2

U(m1)
n (f1), . . .

(
n

mk

)1/2

U(mk)
n (fk)

)
�d

(
KP (f1), . . . ,KP (fk)

)
.

2⊕ is the orthogonal sum in L2(X∞,A∞,P∞).
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It is also well known that if a class of measurable functions F satisfies good entropy conditions, then a
central limit theorem in �∞(F) holds (cf. [14], Theorem 5.3.7): for any 1 ≤ k ≤ m,{(

n

k

)1/2

U(k)
n (πkf ) : f ∈F

}
�d

{
KP (πkf ) : f ∈F

}
in �∞(F),

or equivalently,

sup
ψ∈BL(�∞(F))

∣∣∣∣∣E∗ψ
((

n

k

)1/2

U(k)
n (πk)

)
−Eψ

(
KP (πk)

)∣∣∣∣∣ → 0,

where E∗ is the outer expectation (cf. [38], Section 1.2)). Now we consider the multiplier U -process:
for any f ∈F and ξi ’s, define

U
(m)
n,ξ (f ) ≡ 1(

n

m

) ∑
1≤i1<···<im≤n

ξi1 · · · ξimf (Xi1, . . . ,Xim). (3.3)

Our first result in this section establishes a multiplier central limit theorem for U -processes.

Theorem 3.1. Let {ξi}∞i=1 be i.i.d. centered random variables with variance 1 and ‖ξ1‖2m,1 < ∞. Let
F ⊂ L

c,m
2 (P ) admit a P m-square integrable envelope F such that∫ 1

0

(
sup
Q

logN
(
ε‖F‖L2(Q),F,L2(Q)

))m/2
dε < ∞,

where the supremum is taken over all discrete probability measures. Then

sup
ψ∈BL(�∞(F))

∣∣∣∣∣E∗ψ
((

n

m

)1/2

U
(m)
n,ξ

)
−Eψ(KP )

∣∣∣∣∣ → 0.

Note that the entropy condition required in Theorem 3.1 is exactly the same for the uniform central
limit theorem of U -processes (cf. [3,14]). Furthermore, the moment condition for the multipliers is a
finite L2m,1 moment, which agrees with the multiplier central limit theorem for empirical processes
when m = 1, cf. [25,26,38].

One natural ‘application’ for the multiplier central limit theorem in Theorem 3.1 is to suggest how to
proceed with the formulation of the bootstrap for U -processes with general weights. First, let us state
some assumptions on the weights.

Assumption A. Assume the following conditions on the weight (ξ1, . . . , ξn) ≡ (ξn1, . . . , ξnn) defined
on (W,Aξ ,Pξ ):

(W1) (ξ1, . . . , ξn) are exchangeable,3 non-negative and
∑n

i=1 ξi = n.
(W2) supn‖ξ1‖2m,1 < ∞, n−1 max1≤i≤n(ξi − 1)2 →Pξ 0 and there exists c > 0 such that

1

n

n∑
i=1

(ξi − 1)2 →Pξ c2.

3In other words, (ξ1, . . . , ξn) =d (ξπ(1), . . . , ξπ(n)) for any permutation π of {1, . . . , n}.
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These assumptions are familiar in the context of exchangeably weighted bootstrap limit theory for
empirical processes developed in [33]. For instance, by taking (ξ1, . . . , ξn) ≡ Multinomial(n, (1/n),

. . . , (1/n)) we obtain Efron’s bootstrap; by taking ξi ≡ Yi/Ȳ where Yi ∼i.i.d. exp(1), Ȳ = n−1 ∑n
i=1 Yi

we obtain the Bayesian bootstrap. We refer the reader to [33] for a detailed account for various boot-
strap proposals.

The condition n−1 max1≤i≤n(ξi − 1)2 →Pξ 0 is automatically satisfied by the moment assumption
supn‖ξ1‖2m,1 < ∞ when m ≥ 2. We include this condition here to match the same conditions as studied
for m = 1 in [33].

For any f ∈ L
c,m
2 (P ), let

Ũ
(m)
n,ξ (f ) ≡ 1(

n

m

) ∑
1≤i1<···<im≤n

(ξi1 − 1) · · · (ξim − 1)f (Xi1, . . . ,Xim). (3.4)

[23] considered the special case m = 2 and derived asymptotic distribution for a single function f .
Below we will prove a bootstrap uniform central limit theorem.

Theorem 3.2. Suppose Assumption A holds. Let F ⊂ L
c,m
2 (P ) admit a P m-square integrable envelope

F such that ∫ 1

0

(
sup
Q

logN
(
ε‖F‖L2(Q),F,L2(Q)

))m/2
dε < ∞,

where the supremum is taken over all discrete probability measures. Then

sup
ψ∈BL(�∞(F))

∣∣∣∣∣Eξψ

((
n

m

)1/2

Ũ
(m)
n,ξ

)
−Eψ(c · KP )

∣∣∣∣∣ →P ∗
X

0,

where c is the constant in (W2), and the convergence in probability →P ∗
X

is with respect to the outer
probability of P ∞ defined on (X∞,A∞).

Theorem 3.2 extends the exchangeably weighted bootstrap central limit theorem for the empirical
process studied in [33] to the context of U -processes. To the best knowledge of the author, there
is very limited understanding for bootstrap central limit theorems for degenerate U -processes. The
paper [4] considered Efron’s bootstrap and proved bootstrap CLTs by a straightforward conditioning
argument along with the VC-type assumption that gives a uniform control for the empirical measure.
The paper [40] considered Bayesian bootstrap, but his results are confined to the non-degenerate case.
Our Theorem 3.2 holds under the same condition for the CLT for degenerate U -processes, and under
general bootstrap schemes.

4. Bootstrapping M-estimators

In this section, we will investigate the bootstrap theory under the M-estimation framework based on
U -statistics. Let � ⊂R

d index a class of symmetric kernels F ≡ {fθ : Xm → R, θ ∈ �}. Let θ0 be the
unique maximizer of θ �→ P mfθ , and an estimator of θ0 based on (X1, . . . ,Xn) is given by maximizing
a U -statistic

θ̂n ∈ arg max
θ∈�

U(m)
n (fθ ) = arg max

θ∈�

∑
i1 �=···�=im

fθ (Xi1, . . . ,Xim). (4.1)
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In typical applications, F contains non-degenerate (and non-negative) kernels and hence under regu-
larity conditions

√
n(θ̂n − θ0) is asymptotically normal, the variance of which depends on the unknown

distribution P . For bootstrap weights (ξ1, . . . , ξn) defined on (W,Aξ ,Pξ ), consider the following boot-
strap estimate

θ∗
n ∈ arg max

θ∈�

∑
i1 �=···�=im

ξi1 · · · ξimfθ (Xi1, . . . ,Xim). (4.2)

We will be naturally interested in the asymptotic behavior of
√

n(θ∗
n − θ̂n) conditional on the observed

data {Xi}.
Before formally stating our results, we need the following notions concerning bootstrap in probabil-

ity statements.

Definition 4.1. Let {
n}∞n=1 be a sequence of random variables defined on (�,B,P) = (X∞,A∞,

P ∞) × (W,Aξ ,Pξ ).

(1) We say that 
n ≡ oPξ (1) in PX-probability if and only if for any ε > 0, PW |X(
n > ε) =
oPX

(1).
(2) We say that 
n ≡OPξ (1) in PX-probability if and only if for any Ln → ∞, PW |X(
n > Ln) =

oPX
(1).

The main result of this section is the following theorem.

Theorem 4.2. Suppose that the bootstrap weights (ξ1, . . . , ξn) satisfy Assumption A, and the following
conditions hold.

(M1) The map θ �→ D(fθ ) ≡ P mfθ has a unique maximizer at θ = θ0 and there exists some positive
definite matrix V such that for θ ∈ � close enough to θ0,

D(fθ ) − D(fθ0) = −1

2
(θ − θ0)

�V (θ − θ0) + o
(‖θ − θ0‖2).

(M2) F = {fθ : θ ∈ �} admits a P m-square integrable envelope F such that∫ 1

0

(
sup
Q

logN
(
ε‖F‖L2(Q),F,L2(Q)

))m/2
dε < ∞.

(M3) There exists a measurable map 
 : X → R
d such that P
(X) = 0 and P‖
‖2 < ∞, and

such that {rn(·, θ) : θ ∈ �}, defined by

rn(x, θ) ≡ π1(fθ − fθ0)(x) − (θ − θ0) · 
(x)

‖θ − θ0‖ ∨ n−1/2
,

satisfy the following: for any δn → 0,

sup
θ :‖θ−θ0‖≤δn

∣∣Gnrn(·, θ)
∣∣ = oP(1).

If ‖θ̂n − θ0‖ = oP(1) and ‖θ∗
n − θ0‖ = oPξ (1) in PX-probability, then

√
n(θ̂n − θ0) �d m ·

N (0,V −1 cov(
)(V −1)�) and

sup
t∈Rd

∣∣PW |X
(√

n
(
θ∗
n − θ̂n

) ≤ t
) − P

(
c · √n(θ̂n − θ0) ≤ t

)∣∣ →PX
0.

Here c is the constant in (W2).



Multiplier U-processes 97

Condition (M1) requires that the population loss D(fθ ) is maximized at θ = θ0 and an associated
local Taylor expansion is valid with Hessian matrix V . Condition (M2) is a very typical requirement
on the complexity of the model. Condition (M3) is a stochastic differentiability condition, where 
 is
regarded as the derivative of π1(fθ ) at θ = θ0.

Our conditions (M1)–(M3) are almost the same as the machinery in [14], Theorem 5.5.7, (see also
[1]). Note that although our condition (M2) is stronger than [14], condition (ii) of Theorem 5.5.7, there
are few methods of checking (ii) in that theorem other than our (M2), so the examples studied therein
can be applied quite immediately.

One particularly interesting example is the simplicial median (cf. [27]) defined as follows: For
any (x1, x2, x3) ∈ (R2)3, let S(x1, x2, x3) be the open triangle determined by x1, x2, x3. For any
θ ∈ R

2, let fθ (x1, x2, x3) ≡ 1Cθ (x1, x2, x3) where Cθ ≡ {(x1, x2, x3) ∈ (R2)3 : θ ∈ S(x1, x2, x3)}.
The simplicial median is defined as any maximizer of the map θ �→ U

(3)
n (fθ ) over θ ∈ �, that is,

θ̂n ∈ arg maxθ∈� U
(3)
n (fθ ). A central limit theorem for θ̂n is obtained in [1], where the covariance of the

normal limiting law depends on the law P of the i.i.d. samples X1,X2, . . .; see also [14], Section 5.5.2.
To apply Theorem 4.2, the only ‘additional work’ is to verify the slightly stronger condition (M2). This
immediate follows as {1Cθ : θ ∈ R

2} is known to be a VC-subgraph class, see [14], Example 5.2.4.
Our results here concerning bootstrap M-estimators can also be viewed as extensions of bootstrap

theory for M-(or Z-) estimators under (i) the usual empirical measure studied in [7,10,11,39] and (ii)
criteria functions that are convex with respect to the underlying parameter space, cf. [8].

5. M-estimation under complex sampling

In this section, we will study M-estimation under complex sampling designs. The exposition below
largely follows [22]. Let UN ≡ {1, . . . ,N}, and SN ≡ {{s1, . . . , sn} : n ≤ N,si ∈ UN, si �= sj ,∀i �= j}
be the collection of subsets of UN . We adopt the super-population framework as in [34]: Let {(Xi,Zi) ∈
X × Z}Ni=1 be i.i.d. super-population samples defined on a probability space (Y,A,P(X,Z)), where
X(N) ≡ (X1, . . . ,XN) is the vector of interest, and Z(N) ≡ (Z1, . . . ,ZN) is an auxiliary vector. A sam-
pling design is a function p : SN ×Z⊗N → [0,1] such that

(1) for all s ∈ SN , z(N) �→ p(s, z(N)) is measurable,
(2) for all z(N) ∈Z⊗N , s �→ p(s, z(N)) is a probability measure.

The probability space we work with that includes both the super-population and the design-space is
the same product space (SN × Y, σ (SN) × A,P) as constructed in [6]. We include the construction
here for convenience of the reader: the probability measure P is uniquely defined through its restriction
on all rectangles: for any s × E ∈ SN ×A,

P(s × E) ≡
∫

E

p
(
s, z(N)(ω)

)
dP(X,Z)(ω) ≡

∫
E

Pd(s,ω)dP(X,Z)(ω).

We also use P to denote the marginal law for X for notational convenience.
Given (X(N),Z(N)) and a sampling design p, let {ξi}Ni=1 ⊂ [0,1] be random variables defined on

(SN × Y, σ (SN) × A,P) with πi ≡ πi(Z
(N)) ≡ E[ξi |Z(N)]. We further assume that {ξi}Ni=1 are inde-

pendent of X(N) conditionally on Z(N). Typically we take ξi ≡ 1i∈s , where s ∼ p, to be the indicator
of whether or not the i-th sample Xi is observed (and in this case πi(Z

(N)) = ∑
s∈SN :i∈s p(s,Z

(N))),
but we do not require this structure a priori. πi ’s are often referred to be the first-order inclusion prob-
abilities, and πij ≡ πij (Z

(N)) ≡ E[ξiξj |Z(N)](i �= j) are the second-order inclusion probabilities.
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Assumption B. Consider the following conditions on the sampling design p:

(B1) min1≤i≤N πi ≥ π0 > 0.
(B2-LLN) 1

N

∑N
i=1(

ξi

πi
− 1) = oP(1).

(B1) is a common assumption in the literature. (B2-LLN) says that the weights {ξi/πi} satisfy a law
of large numbers. For various sampling designs satisfying Assumption B, including sampling with-
out replacement, Bernoulli sampling, rejective/high entropy sampling, stratified sampling (with and
without overlaps), etc., we refer the reader to [22].

Under the complex sampling setting, it is natural to use the following (inverse-weighted) M-
estimator based on univariate kernels

θ̂π
N ∈ arg max

θ∈�

N∑
i=1

ξi

πi

fθ (Xi)

that maximizes the Horvitz–Thompson weighted empirical measure over {fθ : θ ∈ �}. For multivariate
kernels, it is natural to consider the following generalization:

θ̂π
N ∈ arg max

θ∈�

∑
i1 �=···�=im

ξi1

πi1

· · · ξim

πim

fθ (Xi1, . . . ,Xim). (5.1)

We let Pπ
N(f ) ≡ 1

N

∑N
i=1

ξi

πi
f (Xi) and G

π
N(f ) ≡ √

N(Pπ
N − P)(f ) denote the Hortivz–Thompson

empirical measure and empirical process, respectively.
Our first main result in this section is the following.

Theorem 5.1. Suppose Assumption B, and conditions (M1)–(M3) in Theorem 4.2 hold. Then

√
N

(
θ̂π
N − θ0

) = mV −1
G

π
N
 + oP(1).

For a general sampling design, the asymptotic distribution of Gπ
N
 is not entirely a trivial problem.

We refer the reader to [22], Proposition 1, for a summary for the asymptotic variance (more generally,
the covariance structure of the limit of Gπ

N ) for various sampling designs illustrated above.
In Theorem 5.1, we considered a finite-dimensional M-estimation problem. It is also possible to con-

sider M-estimation problem in an infinite-dimensional setting based on Horvitz–Thompson weighted
U -statistics:

f̂ π
N ≡ arg min

f ∈F
∑

i1 �=···�=im

ξi1

πi1

· · · ξim

πim

f (Xi1, . . . ,Xim), (5.2)

where F is a class of symmetric non-degenerate (and typically non-negative) kernels. The quality of
the estimator defined in (5.2) is evaluated through the excess risk of f̂ π

N , denoted EP (f̂ π
N ), where

EP (f ) ≡ Pf − inf
g∈F

Pg, ∀f ∈F .

The problem of studying excess risk of empirical risk minimizers under the usual empirical measure has
been extensively studied in the 2000s; we only refer the reader to [15,24] and references therein. The
paper [13] extended the scope of ERM to criteria functions based on U -statistics of order 2 under the
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i.i.d. sampling. Our goal here will be a study of the excess risk for the M-estimator based on Horvitz–
Thompson weighted U -statistics as defined in (5.2) for the general empirical risk minimization problem
under general sampling designs.

To this end, let FE (δ) ≡ {f ∈ F : EP (f ) < δ2}, let ρP : F × F → R≥0 be such that ρ2
P (f, g) ≥

P(f − g)2 − (P (f − g))2, and D(δ) ≡ supf,g∈FE (δ) ρP (f, g).
Now we may state our second main result of this section.

Theorem 5.2. Suppose Assumption B holds. Suppose that there exists some L > 0, κ ≥ 1 such that

D(δ) ≤ Lδ1/κ . (5.3)

Further assume that F is a uniformly bounded VC-subgraph class. Then for any t, s, u ≥ 0, if

rN ≥ K1

[(
logN

N

) κ
4κ−2 +

(
s ∨ t2

N

) κ
4κ−2 +

(
s ∨ u

N

)1/2]
,

we have

P
(
EP

(
f̂ π

N

) ≥ r2
N

)
≤ K2

(
e−s/K2/s + e−u2/m/K2

) + P

(∣∣∣∣∣ 1√
N

N∑
i=1

(
ξi

πi

− 1

)∣∣∣∣∣ > t

)
.

Here the constants K1,K2 > 0 only depend on m, π0, κ .

Condition (5.3) is comparable to [12], Assumption 4, in the case m = 2. This condition is well-
understood for the usual empirical risk minimization problems, typically under the name of ‘low-noise’
condition, cf. [28,36]. In particular, if κ is close to 1, then a faster rate than the standard

√
N rate is

possible.
Specializing our result to the case m = 2 and i.i.d. sampling, we recover [13], Corollary 6. It is easy

to see from the proofs that F being a VC-subgraph class is not a crucial assumption. Indeed one can
replace it with more general super-polynomial uniform entropy conditions with slight modifications of
the proofs. We omit these digressions here.

6. Proofs for Section 2

6.1. Proof of Theorem 2.2

Proof of Theorem 2.2. Since the class F contains degenerate kernels of order m − 1, conditional on
ξ , by decoupling (cf. [14], Theorem 3.1.1) and symmetrization, we have with Cm ≡ 2m

∏m
k=2(k

k − 1)

(as in [14], Theorem 3.1.1)

E

∥∥∥∥ ∑
1≤i1,...,im≤n

ξi1 · · · ξimf (Xi1, . . . ,Xim)

∥∥∥∥
F

≤ Cm ·E
∥∥∥∥ ∑

1≤i1,...,im≤n

ξi1 · · · ξimf
(
X

(1)
i1

, . . . ,X
(m)
im

)∥∥∥∥
F
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≤ 2mCm ·E
∥∥∥∥ ∑

1≤i1,...,im≤n

ξi1 · · · ξimε
(1)
i1

· · · ε(m)
im

f
(
X

(1)
i1

, . . . ,X
(m)
im

)∥∥∥∥
F

= 2mCm ·E
∥∥∥∥ ∑

1≤i1,...,im≤n

|ξi1 | · · · |ξim |

× sgn(ξi1)ε
(1)
i1

· · · sgn(ξim)ε
(m)
im

f
(
X

(1)
i1

, . . . ,X
(m)
im

)∥∥∥∥
F

. (6.1)

Note here in the second inequality where the symmetrization is carried out according to the degeneracy
level of F due to [14], Remark 3.5.4 (2). The constant 2m appears by tracking the constant in the
arguments in [14], pp. 140. Since (sgn(ξ1)ε

·
1, . . . , sgn(ξn)ε

·
n) is independent of (ξ1, . . . , ξn) and has the

same distribution as (ε·
1, . . . , ε

·
n), we have

E

∥∥∥∥ ∑
1≤i1,...,im≤n

ξi1 · · · ξimf (Xi1, . . . ,Xim)

∥∥∥∥
F

≤ 2mCm ·E
∥∥∥∥ ∑

1≤i1,...,im≤n

|ξi1 | · · · |ξim |ε(1)
i1

· · · ε(m)
im

f
(
X

(1)
i1

, . . . ,X
(m)
im

)∥∥∥∥
F

. (6.2)

Let |ξ(1)| ≥ · · · ≥ |ξ(n)| be the reversed order statistics of {|ξi |}ni=1, and π be a permutation over
{1, . . . , n} such that |ξi | = |ξ(π(i))|. By the invariance of (Pε ⊗ P)mn and the fact that ξ is indepen-
dent of X·, ε·, we have that

Eε,X

∥∥∥∥ ∑
1≤i1,...,im≤n

|ξi1 | · · · |ξim |ε(1)
i1

· · · ε(m)
im

f
(
X

(1)
i1

, . . . ,X
(m)
im

)∥∥∥∥
F

= Eε,X

∥∥∥∥ ∑
1≤i1,...,im≤n

|ξ(π(i1))| · · · |ξ(π(im))|ε(1)
i1

· · · ε(m)
im

f
(
X

(1)
i1

, . . . ,X
(m)
im

)∥∥∥∥
F

= Eε,X

∥∥∥∥ ∑
1≤i1,...,im≤n

|ξ(i1)| · · · |ξ(im)|ε(1)

π−1(i1)
· · · ε(m)

π−1(im)
f

(
X

(1)

π−1(i1)
, . . . ,X

(m)

π−1(im)

)∥∥∥∥
F

= Eε,X

∥∥∥∥ ∑
1≤i1,...,im≤n

|ξ(i1)| · · · |ξ(im)|ε(1)
i1

· · · ε(m)
im

f
(
X

(1)
i1

, . . . ,X
(m)
im

)∥∥∥∥
F

. (6.3)

Using |ξ(i)| = ∑
�≥i (|ξ(�)| − |ξ(�+1)|) (with |ξ(n+1)| ≡ 0) and combining (6.1)–(6.2), we have that

(
2mCm

)−1 ·E
∥∥∥∥ ∑

1≤i1,...,im≤n

ξi1 · · · ξimf (Xi1, . . . ,Xim)

∥∥∥∥
F

≤ E‖
∑

1≤i1,...,im≤n

∑
�k≥ik,1≤k≤m

(|ξ(�1)| − |ξ(�1+1)|
) · · · (|ξ(�m)| − |ξ(�m+1)|

)
× ε

(1)
i1

· · · ε(m)
im

f
(
X

(1)
i1

, . . . ,X
(m)
im

)‖F
≤ E

[ ∑
1≤�1,...,�m≤n

(|ξ(�1)| − |ξ(�1+1)|
) · · · (|ξ(�m)| − |ξ(�m+1)|

)
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×E

∥∥∥∥ ∑
1≤ik≤�k,1≤k≤m

ε
(1)
i1

· · · ε(m)
im

f
(
X

(1)
i1

, . . . ,X
(m)
im

)∥∥∥∥
F

]

≤ E

[ ∑
1≤�1,...,�m≤n

∫ |ξ(�1)|

|ξ(�1+1)|
· · ·

∫ |ξ(�m)|

|ξ(�m+1)|)
ψn(�1, . . . , �m)dtm · · ·dt1

]

≤ E

[ ∑
1≤�1,...,�m≤n

∫ |ξ(�1)|

|ξ(�1+1)|
· · ·

∫ |ξ(�m)|

|ξ(�m+1)|)
ψn

(∣∣{i : |ξi | > t1
}∣∣, . . . , ∣∣{i : |ξi | > tm

}∣∣)dtm · · ·dt1

]

≤ E

[∫
R

m≥0

ψn

(∣∣{i : |ξi | > t1
}∣∣, . . . , ∣∣{i : |ξi | > tm

}∣∣)dt1 · · ·dtm

]
.

In the second inequality in the above display, we changed the order of the summation. The first claim
now follows from Fubini’s theorem.

Now suppose that ψn(�1, . . . , �m) = ψ̄n(
∏m

k=1 �k). Then we may further bound the above display
by

∫
R

m≥0

Eψ̄n

(
m∏

k=1

n∑
i=1

1|ξi |>tk

)
dt1 . . .dtm

=
∫
R

m≥0

Eψ̄n

( ∑
1≤i1,...,im≤n

m∏
k=1

1|ξik
|>tk

)
dt1 . . .dtm

≤
∫
R

m≥0

ψ̄n

( ∑
1≤i1,...,im≤n

E

m∏
k=1

1|ξik
|>tk

)
dt1 . . .dtm (by Jensen’s inequality )

≤
∫
R

m≥0

ψ̄n

( ∑
1≤i1,...,im≤n

m∏
k=1

P
(|ξik | > tk

)1/m

)
dt1 . . .dtm,

where the last inequality follows from generalized Hölder’s inequality and the assumption that ψ̄n is
non-decreasing. �

6.2. Proof of Proposition 2.4

Proof of Proposition 2.4. Let α = 2/(γ − 1). By [21], Lemma 6, F̄1 ≡ C1/α([0,1]) is an α-full
class on [0,1]. Let F1 be the P -centered version of F̄1, i.e. F1 ≡ {f − Pf : f ∈ F̄1}. Take F ≡
{f (x1, . . . , xm) = ∏m

k=1 ϕk(xk) : ϕk ∈ F1,Pϕ2
k ≤ n−2/(2+α),1 ≤ k ≤ m}. By Lemma 10.8, for any 1 ≤

k ≤ m, and 1 ≤ �1, . . . , �m ≤ n, we have

E sup
ϕk∈F1:

Pϕ2
k≤�

−2/(2+α)
k

∣∣∣∣∣
�k∑

ik=1

εk
ik
ϕk

(
Xk

ik

)∣∣∣∣∣ � √
�k

(
�
−1/(2+α)
k

)1−α/2 = �
α

2+α

k . (6.4)
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Hence, for all 1 ≤ �1, . . . , �m ≤ n,

E

∥∥∥∥ ∑
1≤ik≤�k,1≤k≤m

ε
(1)
i1

· · · ε(m)
im

f
(
X

(1)
i1

, . . . ,X
(m)
im

)∥∥∥∥
F

=
m∏

k=1

E sup
ϕk∈F1:

Pϕ2
k≤n−2/(2+α)

∣∣∣∣∣
�k∑

ik=1

εk
ik
ϕk

(
Xk

ik

)∣∣∣∣∣
≤

m∏
k=1

E sup
ϕk∈F1:

Pϕ2
k≤�

−2/(2+α)
k

∣∣∣∣∣
�k∑

ik=1

εk
ik
ϕk

(
Xk

ik

)∣∣∣∣∣
≤ Cα

m∏
k=1

�
α

2+α

k

= Cα

m∏
k=1

�
1/γ

k .

This proves the upper bound. Next we consider the lower bound. Let {ξ ′
i } be an independent copy of

{ξi}. Then

E

∥∥∥∥ ∑
1≤i1,...,im≤n

ξi1 · · · ξimf (Xi1, . . . ,Xim)

∥∥∥∥
F

=
m∏

k=1

E

[
sup

ϕk∈F1:
Pϕ2

k≤n−2/(2+α)

∣∣∣∣∣
n∑

i=1

ξiϕk(Xi)

∣∣∣∣∣
]

≥
m∏

k=1

1

2
·E

[
sup

ϕk∈F1:
Pϕ2

k≤n−2/(2+α)

∣∣∣∣∣
n∑

i=1

(
ξi − ξ ′

i

)
ϕk(Xi)

∣∣∣∣∣
]

(by triangle inequality)

= 1

2m

m∏
k=1

E

[
sup

ϕk∈F1:
Pϕ2

k≤n−2/(2+α)

∣∣∣∣∣
n∑

i=1

εi

∣∣ξi − ξ ′
i

∣∣ϕk(Xi)

∣∣∣∣∣
] (

by symmetry of ξi − ξ ′
i

)

≥ 1

2m

m∏
k=1

E

[
sup

ϕk∈F1:
Pϕ2

k≤n−2/(2+α)

∣∣∣∣∣
n∑

i=1

εiE
∣∣ξi − ξ ′

i

∣∣ϕk(Xi)

∣∣∣∣∣
]

(by Jensen)

≥ ‖ξ1‖1

2m

m∏
k=1

E

[
sup

ϕk∈F1:
Pϕ2

k≤n−2/(2+α)

∣∣∣∣∣
n∑

i=1

εiϕk(Xi)

∣∣∣∣∣
]

� nm/γ ,

where in the last line we used (6.4) with �1, . . . , �m = n, and the fact that E|ξi − ξ ′
i | ≥ E|ξi − Eξ ′

i | =
E|ξi | = ‖ξ1‖1 for all i = 1, . . . , n. �
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6.3. Proof of Corollary 2.6

Proof of Corollary 2.6. Take ψn(�1, . . . , �m) ≡ a(�1, . . . , �m)(
∏m

k=1 �k)
1/2. By Theorem 2.2,

E

∥∥∥∥ ∑
1≤i1,...,im≤n

ξi1 · · · ξimf (Xi1, . . . ,Xim)

∥∥∥∥
F(n,...,n),n

≤ Km

∫
R

m≥0

E

[
a

(
n∑

i=1

1|ξi |>t1, . . . ,

n∑
i=1

1|ξi |>tm

)
m∏

k=1

(
n∑

i=1

1|ξi |>tk

)1/2]
dt1 · · ·dtm

≤ Km

∫
R

m≥0

A2,n(t1, . . . , tm)

{
E

m∏
k=1

n∑
i=1

1|ξi |>tk

}1/2

dt1 · · ·dtm

≤ Km

∫
R

m≥0

A2,n(t1, . . . , tm)

( ∑
1≤i1,...,im≤n

m∏
k=1

P
(|ξik | > tk

)1/m

)1/2

dt1 · · ·dtm

= nm/2Km

∫
R

m≥0

A2,n(t1, . . . , tm)

m∏
k=1

P
(|ξ1| > tk

)1/2m
dt1 · · ·dtm.

Here

A2,n(t1, . . . , tm) ≡
{
E

[
a2

(
n∑

i=1

1|ξi |>t1, . . . ,

n∑
i=1

1|ξi |>tm

)]}1/2

→ 0

as long as none of {P(|ξ1| > tk) : 1 ≤ k ≤ m} vanishes. The claim now follows from dominated conver-
gence theorem. �

7. Proofs for Section 3

7.1. Proof of Theorem 3.1

Proof of Theorem 3.1. We only need to check the asymptotic equi-continuity. For any δ > 0, let
Fδ ≡ {f − g : f,g ∈ F,‖f − g‖L2(P

m) < δ}. For any f ∈ F , let f̃ (x1, . . . , xm) ≡ f (x1, . . . , xm) if
x1 �= · · · �= xm and 0 otherwise, and let F̃ ≡ {f̃ : f ∈ F}. Then the L2 distance associated to the
conditional (partially decoupled) Rademacher chaos process{

1

(
∏m

k=1 �k)1/2

∑
1≤ik≤�k,1≤k≤m

ε
(1)
i1

· · · ε(m)
im

f (Xi1, . . . ,Xim) : f ∈F |X1, . . . ,Xn

}
is given by

e2
�(f, g) ≡ 1∏m

k=1 �k

∑
1≤ik≤�k,1≤k≤m

(f − g)2(Xi1, . . . ,Xim).
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Let ‖f ‖2
� ≡ e2

�(f,0), and r�(δ) ≡ supf ∈F̃δ
‖f ‖2

� . By the entropy maximal inequality for Rademacher
chaos process (cf. [14], Corollary 5.1.8), we have

Eε

∥∥∥∥ 1

(
∏m

k=1 �k)1/2

∑
1≤ik≤�k,1≤k≤m

ε
(1)
i1

· · · ε(m)
im

f (Xi1, . . . ,Xim)

∥∥∥∥
F̃δ

≤ C1

∫ r�(δ)

0

(
logN (ε,F, e�)

)m/2 dε

= C1‖F‖� ·
∫ r�(δ)/‖F‖�

0

(
logN

(
ε‖F‖�,F, e�

))m/2 dε

≤ C1‖F‖� ·
∫ r�(δ)/‖F‖�

0

(
sup
Q

logN
(
ε‖F‖L2(Q),F,L2(Q)

))m/2
dε. (7.1)

Without loss of generality, we may take F ≥ 1 so the upper bound in the integral can be replaced by
r�(δ). By Proposition 10.1, ‖F‖� →p ‖F‖L2(P ) as �1 ∧ · · · ∧ �m → ∞, and hence by the integrability
on the far right-hand side of (7.1) it suffices to show that r�(δ) →p 0 as �1 ∧ · · · ∧ �m → ∞ followed
by δ → 0. Clearly it only remains to show that

sup
f ∈F̃δ

∣∣∣∣ 1∏m
k=1 �k

∑
1≤ik≤�k,1≤k≤m

(
f 2(Xi1, . . . ,Xim) − P mf 2)∣∣∣∣ →p 0 (7.2)

as �1 ∧ · · · ∧ �m → ∞. To this end we verify (10.1) in Proposition 10.1. We only do this for k = m.
Note that e�,j ′ (introduced in the statement of Proposition 10.1) can be bounded by the L1 dis-
tance corresponding to the uniform measure on the (random set) {(Xi1, . . . ,Xim) : 1 ≤ ij ≤ �j ,1 ≤
j ≤ m}, and hence by the L2 distance e� (cf. Remark 10.2). Furthermore, it is easy to verify that
N (δ,F2

M,L2(Q)) ≤ N (δ/2M,FM,L2(Q)). Hence,

max
1≤j ′≤m

E

(
logN (δ,F2

M,e�,j ′)

�j ′

)1/2

≤ (δ/2M)−1(�1 ∧ · · · ∧ �m)−1/2
E

[∫ δ/2M

0

(
logN (ε,FM,e�)

)m/2 dε

]
≤ (δ/2M)−1(�1 ∧ · · · ∧ �m)−1/2

×
∫ 1

0

(
sup
Q

logN
(
ε‖F‖L2(Q),F,L2(Q)

))m/2
dε · ‖F‖L2(P

m) → 0

as long as �1 ∧ · · · ∧ �m → ∞. Hence, (10.1) is verified and Proposition 10.1 applies to conclude that
(7.2) holds. Combined with (7.1) and decoupling inequality (cf. [14], Theorem 3.5.3), we have shown
that for any {δ�} such that δ� → 0 as �1 ∧ · · · ∧ �m → ∞, there exists some sequence {a�} with a� → 0
as �1 ∧ · · · ∧ �m → ∞ such that

E

∥∥∥∥ ∑
1≤ik≤�k,1≤k≤m

ε
(1)
i1

· · · ε(m)
im

f
(
X

(1)
i1

, . . . ,X
(m)
im

)∥∥∥∥
F̃δ�

≤ a�

(
m∏

k=1

�k

)1/2

.
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Now for any {δn} such that δn ↘ 0, let δ� ≡ δmaxk �k
. Then for any 1 ≤ �1, . . . , �m ≤ n, F̃δ� = F̃δmaxk �k

⊃
F̃δn . The above display holds for such constructed {δ�}. Apply Corollary 2.6, we obtain

E

∥∥∥∥n−m/2
∑

1≤i1,...,im≤n

ξi1 · · · ξimf (Xi1, . . . ,Xim)

∥∥∥∥
F̃δn

→ 0.

This completes the proof for the asymptotic equi-continuity. �

7.2. Proof of Theorem 3.2

Proof of Theorem 3.2. We first prove finite-dimensional convergence. By Cramér-Wold and count-
ability of F , we only need to show that for any f ∈ L

c,m
2 (P ),

sup
ψ∈BL

∣∣∣∣∣E
[
ψ

((
n

m

)1/2

Ũ
(m)
n,ξ (f )

)∣∣∣{Xi}
]

−Eψ
(
c · KP (f )

)∣∣∣∣∣ → 0 a.s. (7.3)

By [14], (4.2.5), page 175, and [2], Section 2A, any f ∈ L
c,m
2 (P ) can be expanded in L2(P

m) by

f = ∑∞
q=1 cqh

ψq
m , where {cq} is a sequence of real numbers, and h

ψq
m (x1, . . . , xm) ≡ ψq(x1) · · ·ψq(xm)

for some bounded ψq ∈ L
c,1
2 (P ). Fix ε > 0. Then there exists Qε ∈ N such that with fε ≡ ∑Qε

q=1 cqh
ψq
m ,

‖f − fε‖L2(P
m) ≤ ε. The left-hand side of (7.3) can be further bounded by

sup
ψ∈BL

∣∣∣∣∣E
[
ψ

((
n

m

)1/2

Ũ
(m)
n,ξ (f )

)∣∣∣{Xi}
]

−Eψ
(
c · KP (f )

)∣∣∣∣∣
≤ sup

ψ∈BL

∣∣∣∣∣E
[
ψ

((
n

m

)1/2

Ũ
(m)
n,ξ (f )

)∣∣∣{Xi}
]

−E

[
ψ

((
n

m

)1/2

Ũ
(m)
n,ξ

(
f ε

)) ∣∣∣{Xi}
]∣∣∣∣∣

+ sup
ψ∈BL

∣∣∣∣∣E
[
ψ

((
n

m

)1/2

Ũ
(m)
n,ξ

(
f ε

)) ∣∣∣{Xi}
]

−Eψ
(
c · KP

(
f ε

))∣∣∣∣∣
+ sup

ψ∈BL

∣∣Eψ
(
c · KP

(
f ε

)) −Eψ
(
c · KP (f )

)∣∣
≡ (I ) + (II) + (III). (7.4)

For notational convenience, we let f̄ε ≡ f −fε and E
X[·] ≡ E[·|{Xi}]. For the first term in (7.4), using

the Lipschitz property of ψ and the fact that ψ is bounded by 1, we have

(I )2 ≤ E
X

∣∣∣∣∣2 ∧
(

n

m

)1/2

Ũ
(m)
n,ξ

(
f̄ ε

)∣∣∣∣∣
2

� E
X

(
1 ∧ n−m/2

∑
1≤i1<···<im≤n

(ξi1 − 1) · · · (ξim − 1)f̄ε(Xi1, . . . ,Xim)

)2

� E
X
ξ ER

(
1 ∧ n−m/2

∑
1≤i1 �=···�=im≤n

(ξRi1
− 1) · · · (ξRim

− 1)f̄ε(Xi1, . . . ,Xim)

)2
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�
∑

αi∈{1,2}:∑l
i=1 αi=2m,

α1≥···≥αl,1≤l≤m

E
X
ξ

[
1 ∧ n−m

ER

[
l∏

i=1

(ξRi
− 1)αi

]

×
∑

i1 �=···�=im,

i′1 �=···�=i′m,

ij =i′j ,1≤j≤max{j :αj =2}

f̄ε(Xi1, . . . ,Xim)f̄ε(Xi′1, . . . ,Xi′m)

]

�
∑

αi∈{1,2}:∑l
i=1 αi=2m,

α1≥···≥αl,1≤l≤m

E

[
1 ∧ 1

n

n∑
i=1

(ξi − 1)2

]m

× n−l
∑

i1 �=···�=im,

i′1 �=···�=i′m,

ij =i′j ,1≤j≤max{j :αj =2}

f̄ε(Xi1, . . . ,Xim)f̄ε(Xi′1 , . . . ,Xi′m),

where the last inequality follows from Lemma 10.4. By the usual law of large number for U -statistics
(cf. [14], Theorem 4.1.4), we have

n−l
∑

i1 �=···�=im,

i′1 �=···�=i′m,

ij =i′j ,1≤j≤max{j :αj =2}

f̄ε(Xi1, . . . ,Xim)f̄ε(Xi′1, . . . ,Xi′m)

→a.s. Ef̄ε(X1, . . . ,Xm)f̄ε

(
X′

1, . . . ,X
′
m

) (
where Xj = X′

j for 1 ≤ j ≤ max{j : αj = 2})
≤ P mf̄ 2

ε ≤ ε2.

Combining the above two displays, we obtain

lim sup
n→∞

(I ) �m,ξ ε, a.s. (7.5)

Next, we handle the second term in (7.4). Note that(
n

m

)1/2

Ũ
(m)
n,ξ

(
f ε

)
=d

1(
n

m

)1/2

Qε∑
q=1

cq

∑
1≤i1<···<im≤n

(ξRi1
− 1) · · · (ξRim

− 1)ψq(Xi1) · · ·ψq(Xim)

= nm/2(
n

m

)1/2

Qε∑
q=1

cqRm

(
1

n1/2

n∑
i=1

(ξRi
− 1)ψq(Xi), . . . ,

1

nm/2

n∑
i=1

(ξRi
− 1)mψm

q (Xi)

)

≡ (
1 + o(1)

)
(m!)1/2

Qε∑
q=1

cqRm

(
A(1)

n,q , . . . ,A(m)
n,q

)
,
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where Rm is determined through (3.2). Below we determine the limits of A
(�)
n,q , � = 1,2,3, . . . ,m.

(� = 1) Apply Lemma 10.5 with ai ≡ ψq(Xi) −Pnψq and ξi replaced by ξRi
− 1 in our setting, we

see that A
(1)
n,q �d c · GP (ψq) a.s.

(� = 2) Note that

E
X,ξ
R

(
A(2)

n,q

) = 1

n

n∑
i=1

(ξi − 1)2 · 1

n

n∑
i=1

ψ2
q (Xi) →Pξ c2

Eψ2
q , a.s.

Furthermore,

VarX,ξ
R

(
A(2)

n,q

)
= E

X,ξ
R

(
A(2)

n,q

)2 − (
E

X,ξ
R

(
A(2)

n,q

))2

= E
X,ξ
R

[
1

n

n∑
i=1

(ξi − 1)2ψ2
q (XRi

)

]2

−
[

1

n

n∑
i=1

(ξi − 1)2
Pnψ

2
q

]2

= 1

n2

∑
i,j

(ξi − 1)2(ξj − 1)2[
E

X
Rψ2

q (XRi
)ψ2

q (XRj
) − (

Pnψ
2
q

)2]
= 1

n2

∑
i

(ξi − 1)4[
E

X
Rψ4

q (XRi
) − (

Pnψ
2
q

)2]
+ 1

n2

∑
i �=j

(ξi − 1)2(ξj − 1)2[
E

X
Rψ2

q (XRi
)ψ2

q (XRj
) − (

Pnψ
2
q

)2]

≤ 1

n2

∑
i

(ξi − 1)4 · Pnψ
4
q + 1

n2

(∑
i

(ξi − 1)2
)2

· 1

n − 1
Pnψ

4
q

� 1

n2

n∑
i=1

(ξi − 1)4 · Pnψ
4
q

� ‖ψq‖4∞
maxi (ξi − 1)2

n
· 1

n

n∑
i=1

(ξi − 1)2 →Pξ 0, a.s.

The first inequality in the above display follows since

E
X
Rψ2

q (XRi
)ψ2

q (XRj
) − (

Pnψ
2
q

)2

= 1

n(n − 1)

[∑
i �=j

ψ2
q (Xi)ψ

2
q (Xj )

]
− (

Pnψ
2
q

)2

≤ 1

n − 1

(
Pnψ

2
q

)2 ≤ 1

n − 1
Pnψ

4
q .

This shows that A
(2)
n,q →Pξ c2

Eψ2
q a.s.
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(� ≥ 3) Note that

E
X,ξ
R

∣∣A(�)
n,q

∣∣ ≤ 1

n�/2

n∑
i=1

|ξi − 1|� · 1

n

n∑
i=1

∣∣ψq(Xi)
∣∣�

≤
(

maxi |ξi − 1|2
n

) �−2
2 · 1

n

n∑
i=1

|ξi − 1|2 · ‖ψq‖∞

→Pξ 0, a.s.

This shows that A
(�)
n,q →Pξ 0 a.s.

We have thus shown Rm(A
(1)
n,q , . . . ,A

(m)
n,q ) �d Rm(GP (cψq),E(cψq)2,0, . . . ,0) = c(m!)−1/2 ·KP (ψq)

a.s. By linearity of Kp , it follows that
( n

m

)1/2
Ũ

(m)
n,ξ (f ε) �d c · KP (f ε) a.s. Hence,

lim
n→∞(II) = 0, a.s. (7.6)

For the third term in (7.4), note that

(III) ≤ c

√
EK2

P

(
f̄ ε

) → 0 (ε → 0) (7.7)

by the definition of KP (cf. [14], page 176). Combining (7.4)–(7.7) and taking the limits as n → ∞
followed by ε → 0, we see that (7.3) holds, and hence proving the finite-dimensional convergence.

For asymptotic equi-continuity, we need to prove that for any ε > 0 and δn → 0,
P

X
ξ (‖Ũ (m)

n,ξ (f )‖Fδn
> ε) →P ∗

X
0. Hence, it suffices to prove that P(‖Ũ (m)

n,ξ (f )‖Fδn
> ε) → 0, or even

the stronger E‖Ũ (m)
n,ξ (f )‖Fδn

→ 0. This can be checked using similar arguments as the proofs of The-
orem 3.1, and hence completing the proof. �

8. Proofs for Section 4

Proof of Theorem 4.2. For notational convenience, let

Dn,ξ (f ) ≡ D
(m)
n,ξ (f ) ≡ 1

m!
(

n

m

) ∑
i1 �=···�=im

ξi1 · · · ξimf (Xi1, . . . ,Xim),

Dn(f ) ≡ D(m)
n (f ) ≡ 1

m!
(

n

m

) ∑
i1 �=···�=im

f (Xi1, . . . ,Xim),

and D(f ) ≡ P mf . We claim the following:

(Claim 1)
√

n‖θ∗
n − θ0‖ =OPξ (1) in PX-probability, and

√
n‖θ̂n − θ0‖ =OP(1).

(Claim 2) For any δn → 0,

max
2≤k≤m

E sup
θ :‖θ−θ0‖≤δn

∣∣∣∣n−k+1
∑

i1 �=···�=ik

ξi1 · · · ξikπk(fθ − fθ0)(Xi1, . . . ,Xik )

∣∣∣∣ → 0.
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Proofs of these claims will be deferred towards the end of the proof. Then with gθ ≡ fθ − fθ0 and
ḡθ = fθ − fθ0 − P m(fθ − fθ0), we have

n
(
Dn,ξ (fθ∗

n
) − Dn,ξ (fθ0)

)
= n

(
D(fθ∗

n
) − D(fθ0)

) + nDn,ξ

[
(fθ∗

n
− fθ0) − P m(fθ∗

n
− fθ0)

]
+ n(Dn,ξ − D)

(
P m(fθ∗

n
− fθ0)

)
= −1

2
n
(
θ∗
n − θ0

)�
V

(
θ∗
n − θ0

)
+ n

m!
(

n

m

) ∑
i1 �=···�=im

ξi1 · · · ξim

{
(fθ∗

n
− fθ0)(Xi1, . . . ,Xim) − P m(fθ∗

n
− fθ0)

}

+ n

m!
(

n

m

) ∑
i1 �=···�=im

(ξi1 · · · ξim − 1)P m(fθ∗
n

− fθ0) + oP(1)

(
by assumption (M1) and Claim 1

)
= −1

2
n
(
θ∗
n − θ0

)�
V

(
θ∗
n − θ0

) + n

m!
(

n

m

) ∑
i1 �=···�=im

ξi1 · · · ξim

m∑
j=1

π1(ḡθ∗
n
)(Xij )

+ n

m!
(

n

m

) ∑
i1 �=···�=im

ξi1 · · · ξim

∑
2≤k≤m

∑
j1<···<jk

πk(ḡθπ
n
)(Xij1

, . . . ,Xijk
)

+
(

1

m!
(

n

m

) ∑
i1 �=···�=im

ξi1 . . . ξim − 1

)
· n(

D(fθπ
n
) − D(fθ0)

) + oP(1)

= −1

2
n
(
θ∗
n − θ0

)�
V

(
θπ
n − θ0

)
+ n

(m − 1)!
(

n

m

) n∑
i1=1

ξi1π1(ḡθ∗
n
)(Xi1)

( ∑
i2,...,im:i1 �=i2 �=···�=im

ξi2 · · · ξim

)

+
∑

2≤k≤m

Cm,k

n(
n

m

) ∑
i1 �=···�=ik

ξi1 · · · ξikπk(ḡθ∗
n
)(Xi1 , . . . ,Xik )

×
( ∑

ik+1,...,im:i1 �=i2 �=···�=im

ξik+1 · · · ξim

)

+
(

1

m!
(

n

m

) ∑
i1 �=···�=im

ξi1 . . . ξim − 1

)
· n(

D(fθ∗
n
) − D(fθ0)

) + oP(1)

= −1

2
n
(
θ∗
n − θ0

)�
V

(
θ∗
n − θ0

) + (I ) + (II) + (III) + oP(1). (8.1)
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For (I ) in (8.1), note that

(I ) = n

(m − 1)!
(

n

m

) n∑
i1=1

ξi1π1(ḡθ∗
n
)(Xi1)

×
( ∑

i2,...,im:i2 �=···�=im

ξi2 · · · ξim −
m∑

j=2

∑
i2,...,im:

ij =i1,i2 �=···�=im

ξi2 · · · ξij · · · ξim

)

=
n∑

i1=1

ξi1π1(ḡθ∗
n
)(Xi1)

×
(

n

(m − 1)!
(

n

m

) ∑
i2,...,im:i2 �=···�=im

ξi2 · · · ξim +OP
(
n−1))

=
n∑

i1=1

ξi1π1(ḡθ∗
n
)(Xi1)

×
(

nm(
n

m

) · Rm−1

(
1

n

n∑
i=1

ξi, . . . ,
1

nm−1

n∑
i=1

ξm−1
i

)
+OP

(
n−1))

= (
1 + oP(1)

)
m

n∑
i1=1

ξi1π1(ḡθ∗
n
)(Xi1). (8.2)

Here in the last equality we used Assumption A and the fact that Rm−1(1,0, . . . ,0) = 1/(m − 1)!. For
(II ) in (8.1), note that

(II) =
∑

2≤k≤m

Cm,k

n(
n

m

) ∑
i1 �=···�=ik

ξi1 · · · ξikπk(ḡθ∗
n
)(Xi1 , . . . ,Xik ) (8.3)

×
( ∑

ik+1,...,im:i1 �=i2 �=···�=im

ξik+1 · · · ξim

)

=
∑

2≤k≤m

C′
m,k

(
n−(k−1)

∑
i1 �=···�=ik

ξi1 · · · ξikπk(ḡθ∗
n
)(Xi1 , . . . ,Xik )

)

×
(

n−(m−k)
∑

ik+1,...,im:ik+1 �=···�=im

ξik+1 · · · ξim + oP(1)

)
= oP(1).

Here in the last line we used Claim 2.
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For (III) in (8.1), note that

(III) =
(

nm(
n

m

) · Rm

(
1

n

n∑
i=1

ξi,
1

n2

n∑
i=1

ξ2
i , . . . ,

1

nm

n∑
i=1

ξm
i

)
− 1

)
·OP(1)

= oP(1). (8.4)

Combining (8.1)–(8.3), we see that

n
(
Dn,ξ (fθ∗

n
) − Dn,ξ (fθ0)

)
= −1

2
n
(
θ∗
n − θ0

)�
V

(
θ∗
n − θ0

) + (
1 + oP(1)

)
m

n∑
i=1

ξiπ1(ḡθ∗
n
)(Xi) + oP(1).

Since π1(ḡθ ) = π1(fθ − fθ0)(x) = (θ − θ0) · 
(x) + (‖θ − θ0‖ ∨ n−1/2)rn(x, θ), it follows that

n∑
i=1

ξiπ1(fθ∗
n

− fθ0)(Xi)

= (
θ∗
n − θ0

) ·
n∑

i=1

ξi
(Xi) + [∥∥θ∗
n − θ0

∥∥ ∨ n−1/2] n∑
i=1

ξirn
(
x, θ∗

n

)
= (

θ∗
n − θ0

) ·
n∑

i=1

ξi
(Xi) + oP(1).

Here we used the assumption (M3), ‖θ∗
n − θ0‖ =OP(n−1/2) and the multiplier inequality Theorem 2.2

with m = 1 (see also [21], Theorem 1) to conclude that |[‖θ∗
n −θ0‖∨n−1/2]∑n

i=1 ξirn(x, θ∗
n )| = oP(1).

Combining the above displays, we have

n
(
Dn,ξ (fθ∗

n
) − Dn,ξ (fθ0)

)
= −1

2
n
(
θ∗
n − θ0

)�
V

(
θ∗
n − θ0

) + n
(
θ∗
n − θ0

) · 
∗
n + oP(1), (8.5)

where 
∗
n = m · 1

n

∑n
i=1 ξi
(Xi). Expand n(Dn,ξ (fθ0+V −1
∗

n
) − Dn,ξ (fθ0)), we have

n
(
Dn,ξ (fθ0+V −1
∗

n
) − Dn,ξ (fθ0)

)
= −1

2
n
(

∗

n

)�
V −1
∗

n + n
(
V −1
∗

n

) · 
∗
n + oP(1)

= 1

2
n
(

∗

n

)�
V −1
∗

n + oP(1). (8.6)

Combining (8.5)–(8.6), we have

1

2
n
(

∗

n

)�
V −1
∗

n + oP(1)

= n
(
Dn,ξ (fθ0+V −1
∗

n
) − Dn,ξ (fθ0)

)
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≤ n
(
Dn,ξ (fθ∗

n
) − Dn,ξ (fθ0)

)
= −1

2
n
(
θ∗
n − θ0

)�
V

(
θ∗
n − θ0

) + n
(
θ∗
n − θ0

) · 
∗
n + oP(1),

which is equivalent to

n
∥∥V 1/2(θ∗

n − θ0
) − V −1/2
∗

n

∥∥2 = oP (1) ⇔ √
n
(
θ∗
n − θ0

) = V −1√n
∗
n + oP(1).

On the other hand, expanding n(Dn(fθ̂n
) − Dn(fθ0)) yields that

√
n(θ̂n − θ0) = V −1√n
n + oP(1),

where 
n ≡ m · 1
n

∑n
i=1 
(Xi), and hence

√
n
(
θ∗
n − θ̂n

) = V −1√n
ξ
n + oP(1) ≡ V −1 · m · 1√

n

n∑
i=1

(ξi − 1)
(Xi) + oP(1).

By Lemma 10.5,
√

n

ξ
n is asymptotically normal with covariance matrix m2c2 · Cov(
) in PX-

probability, while
√

n
n has asymptotic covariance m2 · Cov(
). The theorem then follows from
Lemma 10.6 and [37], Lemma 2.11, modulo the claims made in the beginning, the proofs of which we
will present now.

First, we prove Claim 1. To this end, let λ ≡ λmin(V )/4 > 0. Then

λn
∥∥θ∗

n − θ0
∥∥2

≤ 1

2
n
(
θ∗
n − θ0

)�
V

(
θ∗
n − θ0

) − λn
∥∥θ∗

n − θ0
∥∥2

(≡ Zn)

≤ Zn1 1
2 (θ∗

n−θ0)
�V (θ∗

n−θ0)−D(fθ0 )+D(fθ∗
n
)≤λ‖θ∗

n −θ0‖2

+ Zn1 1
2 (θ∗

n−θ0)
�V (θ∗

n−θ0)−D(fθ0 )+D(fθ∗
n
)>λ‖θ∗

n−θ0‖2

≤ −n
(
D(fθ∗

n
) − D(fθ0)

) + oP(1)
(
by assumption (M1)

)
= n(Dn,ξ − Dn)(fθ∗

n
− fθ0) + n(Dn − D)(fθ∗

n
− fθ0)

− nDn,ξ (fθ∗
n

− fθ0) + oP(1)

≤ n(Dn,ξ − Dn)(fθ∗
n

− fθ0) + n(Dn − D)(fθ∗
n

− fθ0) + oP(1)(
by definition of θ∗

n

)
= n

(
θ∗
n − θ0

) · (
∗
n + 
n

) + oP(1)(
by similar derivations as in (8.1)–(8.5) using Claim 2

)
=OP(1) · √n

∥∥θ∗
n − θ0

∥∥ + oP(1).

Solving for a quadratic inequality we obtain
√

n‖θ∗
n − θ0‖ = OP(1), and hence by Lemma 10.6,√

n‖θ∗
n − θ0‖ = OPξ (1) in PX-probability. Similar arguments conclude that

√
n‖θ̂n − θ0‖ = OP(1)

and hence Claim 1 is proved.
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Next, we prove Claim 2. We only need to show that for any {δ�} such that δ� → 0 as �1 ∧· · ·∧�k → 0,
there exists some uniformly bounded sequence a� with a� → 0 as �1 ∧ · · · ∧ �k → 0 such that

E sup
f ∈F̃δ�

∣∣∣∣ ∑
1≤ij ≤�j ,1≤j≤k

ε
(1)
i1

· · · ε(k)
ik

πk(f )
(
X

(1)
i1

, . . . ,X
(k)
ik

)∣∣∣∣ ≤ a�

(
k∏

j=1

�k

)1/2

,

as �1 ∧ · · · ∧ �k → ∞.
This can be proved following the strategy of that in Theorem 3.1, with a different choice of metric

and some resulting technicalities. We provide some details below for the convenience of the reader. Let

e2
�,k(f, g) ≡ 1∏k

j=1 �j

∑
1≤ij ≤�j ,1≤j≤k

(
πk(f − g)

)2
(Xi1, . . . ,Xik ),

ē2
�,k(f, g) ≡ 1∏k

j=1 �j

∑
1≤ij ≤�j ,1≤j≤k

(f − g)2(Xi1, . . . ,Xik ).

Let ‖f ‖2
�,k ≡ e2

�,k(f,0) and r�,k(δ) ≡ supf ∈F̃δ
‖f ‖2

�,k . We claim that there exists some C0 = C0(k) > 0
such that

logN
(
ε,πk(F), ē�,k

) ≤
k∑

r=0

∑
1≤j1<···<jr≤k

logN (ε/C0,F, e(j1,...,jr )), (8.7)

where the metric e(j1,...,jr ) is defined by

e2
(j1,...,jr )

(f, g) ≡
[
P m−r ⊗

(
1∏r

q=1 �jq

∑
1≤ijq ≤�jq ,1≤q≤r

δ(Xij1
,...,Xijr

)

)]
(f − g)2.

To see this, note that

(
πk(f − g)

)2
(x1, . . . , xk) ≤

k∑
r=0

∑
1≤i1<···<ir≤k

dk,r

[
P m−r (f − g)2(xi1, . . . , xir )

]
holds for some constants {dk,r : 0 ≤ r ≤ k}, and hence for some dk > 0,

e2
�,k(f, g) ≤ dk

k∑
r=0

∑
1≤j1<···<jr≤k

1∏k
j=1 �j

∑
1≤ij ≤�j ,1≤j≤k

P m−r (f − g)2(Xij1
, . . . ,Xijr

)

= dk

k∑
r=0

∑
1≤j1<···<jr≤k

1∏r
q=1 �jq

∑
1≤ijq ≤�jq ,1≤q≤r

P m−r (f − g)2(Xij1
, . . . ,Xijr

)

= dk

k∑
r=0

∑
1≤j1<···<jr≤k

e2
(j1,...,jr )

(f, g).
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Let d̄k ≡ dk

∑k
r=0

∑
1≤j1<···<jr≤k 1. Then

logN
(
ε,πk(F), ē�,k

) ≤
k∑

r=0

∑
1≤j1<···<jr≤k

logN (ε/

√
d̄k,F, e(j1,...,jr )),

proving the claim (8.7).
Let ‖f ‖2

(j1,...,jr )
≡ e2

(j1,...,jr )
(f,0). By a conditioning argument and the entropy maximal inequality

for Rademacher chaos process (cf. [14], Corollary 5.1.8), similar to (7.1) we have, with the notation
Fδ ≡ {fθ − fθ0 : ‖θ − θ0‖ ≤ δ} (and F̃ similarly defined as in the beginning of the proof of Theo-
rem 3.1)

Eε

∥∥∥∥ 1

(
∏k

j=1 �j )1/2

∑
1≤ij ≤�j ,1≤j≤k

ε
(1)
i1

· · · ε(k)
ik

πk(f )(Xi1, . . . ,Xik )

∥∥∥∥
F̃δ

≤ C1

∫ r�,k(δ)

0

(
logN

(
ε,πk(F), ē�,k

))k/2 dε

≤ C2

k∑
r=0

∑
1≤j1<··· ,jr≤k

∫ C2r�,k(δ)

0

(
logN (ε,F, e(j1,...,jr ))

)k/2 dε

(
using the claim (8.7)

)
= C2

k∑
r=0

∑
1≤j1<··· ,jr≤k

‖F‖(j1,...,jr )

×
∫ C2r�,k(δ)/‖F‖(j1,...,jr )

0

(
logN

(
ε‖F‖(j1,...,jr ),F, e(j1,...,jr )

))k/2 dε

≤ C2

k∑
r=0

∑
1≤j1<··· ,jr≤k

‖F‖(j1,...,jr )

×
∫ C2r�,k(δ)

0
sup
Q

(
logN

(
ε‖F‖L2(Q),F,L2(Q)

))k/2 dε. (8.8)

Here F is an envelope for F which we assume without loss of generality F ≥ 1. By Proposition 10.1,
‖F‖(j1,...,jr ) →p ‖F‖L2(P ) as �1 ∧ · · · ∧ �k → ∞. So we only need to show that r�,k(δ) →p 0 as
�1 ∧ · · · ∧ �k → ∞ followed by δ → 0, which reduces to show that

sup
f ∈F̃δ

∣∣∣∣ 1∏k
j=1 �j

∑
1≤ij ≤�j ,1≤j≤k

(
πk(f )2(Xi1, . . . ,Xik ) − P kπk(f )2)∣∣∣∣ →p 0

as �1 ∧ · · · ∧ �k → ∞. This can be shown using similar arguments in the proof of Theorem 3.1 by
applying Proposition 10.1. The entropy term involving πk(F) can be handled using (8.7) and the above
arguments. �
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9. Proofs for Section 5

9.1. Proof of Theorem 5.1

Proof of Theorem 5.1. The proof follows the idea of the proof in Theorem 4.2. For notational sim-
plicity, let

Dπ
N(f ) ≡ 1

m!
(

N

m

) ∑
i1 �=···�=im

ξi1

πi1

· · · ξim

πim

f (Xi1, . . . ,Xim),

and D(f ) = P mf as usual. Further let ηi ≡ ξi/πi and gθ ≡ fθ − fθ0 . We claim the following:

(Claim 1)
√

N‖θ̂π
N − θ0‖ =OP(1)

(Claim 2) For any δN → 0,

max
2≤k≤m

sup
θ :‖θ−θ0‖≤δN

∣∣∣∣N−k+1
∑

i1 �=···�=ik

ηi1 · · ·ηikπk(fθ − fθ0)(Xi1, . . . ,Xik )

∣∣∣∣ = oP(1),

Then using similar arguments as in the proof of Theorem 4.2, we have

√
N

(
θ̂π
N − θ0

) = mV −1 · 1√
N

N∑
i=1

ηi
(Xi) + oP(1),

as desired, modulo Claims 1 and 2. Claim 1 can be proved along exactly the same lines as that in the
proof of Theorem 4.2. Now we prove Claim 2. Note by Proposition 10.3 and using the same notation
as in the proof of Theorem 4.2

E sup
f ∈F̃δN

∣∣∣∣ ∑
i1,...,ik

ηi1 · · ·ηikπk(f )(Xi1, . . . ,Xik )

∣∣∣∣
≤ E max

1≤�1,...,�k≤N
sup

f ∈F̃δN

∣∣∣∣ ∑
ij ≤�j :j=1,...,k

πk(f )(Xi1, . . . ,Xik )

∣∣∣∣
≤ C ·E max

1≤�1,...,�k≤N
sup

f ∈F̃δN

∣∣∣∣ ∑
ij ≤�j :j=1,...,k

πk(f )
(
X

(1)
i1

, . . . ,X
(k)
ik

)∣∣∣∣
(using the same proofs as in [14], Theorem 3.1.1)

= C ·E
[
EX(1) max

1≤�1,...,�k≤N
sup

f ∈F̃δN

∣∣∣∣∣
�1∑

i1=1

∑
ij ≤�j :j=2,...,k

πk(f )
(
X

(1)
i1

, . . . ,X
(k)
ik

)∣∣∣∣∣
]

= C ·E
[
EX(1) max

1≤�1,...,�k≤N
sup

f ∈F̃δN

∣∣∣∣∣
�1∑

i1=1

∑
ij ≤�j :j=2,...,k

πk(f )
(
X

(1)
i1

, . . . ,X
(k)
ik

)

+
N∑

i1=�1+1

EX(1)πk(f )
(
X

(1)
i1

, . . . ,X
(k)
ik

)∣∣∣∣∣
]
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by degeneracy of πk(f )

)
≤ C ·E max

1≤�2,...,�k≤N
sup

f ∈F̃δN

∣∣∣∣ ∑
1≤i1≤N,

ij ≤�j :j=2,...,k

πk(f )
(
X

(1)
i1

, . . . ,X
(k)
ik

)∣∣∣∣
(by Jensen’s inequality)

≤ · · ·

≤ C ·E sup
f ∈F̃δN

∣∣∣∣ ∑
1≤i1,...,ik≤N

πk(f )
(
X

(1)
i1

, . . . ,X
(k)
ik

)∣∣∣∣.
From here the proof of Claim 2 proceeds along the same lines as in the proof of Theorem 4.2. �

9.2. Proof of Theorem 5.2

Proof of Theorem 5.2. Let f̄ (x) ≡ Ef (x,X2, . . . ,Xm). Note that with the usual notation ηi ≡ ξi/πi ,
and by similar arguments in the proof of Theorem 5.1,

1

m!
(

N

m

) ∑
i1 �=···�=im

ηi1 · · ·ηimf (Xi1 , . . . ,Xim)

= 1

m!
(

N

m

) ∑
i1 �=···�=im

ηi1 · · ·ηim

m∑
j=1

f̄ (Xij )

+ 1

m!
(

N

m

) ∑
i1 �=···�=im

ηi1 · · ·ηim

∑
2≤k≤m

∑
j1<···<jk

πk(f )(Xij1
, . . . ,Xijk

)

= (
1 + o(1)

)
mP

π
N f̄ + C1
N

where


N ≤ EN ≡ max
2≤k≤m

N−k sup
f ∈F

∣∣∣∣ ∑
i1 �=···�=ik

ηi1 · · ·ηikπk(f )(Xi1, . . . ,Xik )

∣∣∣∣.
In other words, f̂ π

N is a C2
N -empirical risk minimizer of arg minf̄ ∈F̄ P
π
N f̄ . The key observation here

is that EP (f ) = EP (f̄ ). On the other hand, it is shown in [22], Theorem 4.1, that

P

(
sup

f̄ ∈F̄ :EP (f̄ )≥r2
N

∣∣∣∣EPπ
N
(f̄ )

EP (f̄ )
− 1

∣∣∣∣ ≥ 3/4

)

≤ C3

s
e−s/C3 + P

(∣∣∣∣∣ 1√
N

N∑
i=1

(
ξi

πi

− 1

)∣∣∣∣∣ > t

)
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Here the constants {Ci} only depend on π0, κ . Hence,

P
({
EP

(
f̂ π

N

) ≥ r2
N

} ∩ {

N ≤ r2

N/(4C2)
})

≤ P
({
EP

(
f̂ π

N

) ≥ r2
N

} ∩ {
EPπ

N

(
f̂ π

N

) ≤ r2
N/4

})
≤ P

(
sup

f̄ ∈F̄ :EP (f̄ )≥r2
N

∣∣∣∣EPπ
N
(f̄ )

EP (f̄ )
− 1

∣∣∣∣ ≥ 3/4

)

≤ C3

s
e−s/C3 + P

(∣∣∣∣∣ 1√
N

N∑
i=1

(
ξi

πi

− 1

)∣∣∣∣∣ > t

)
.

This implies that

P
(
EP

(
f̂ π

N

) ≥ r2
N

)
≤ C3

s
e−s/C3 + P

(∣∣∣∣∣ 1√
N

N∑
i=1

(
ξi

πi

− 1

)∣∣∣∣∣ > t

)
+ P

(

N > r2

N/(4C2)
)

≤ C3

s
e−s/C3 + P

(∣∣∣∣∣ 1√
N

N∑
i=1

(
ξi

πi

− 1

)∣∣∣∣∣ > t

)
+ P(
N > u/N),

as long as K1 ≥ 2
√

C2. To handle the third probability in the last display, note that for any p ≥ 1, by
Proposition 10.3 and [14], Corollary 5.1.8,

E

p
N ≤ EE

p
N

≤ C
p

5 max
2≤k≤m

N−kp
E sup

f ∈F

∣∣∣∣ ∑
i1 �=···�=ik

πk(f )(Xi1 , . . . ,Xik )

∣∣∣∣p
≤ C

p

6 max
2≤k≤m

N−kp/2pp/(2/m) = C
p

6 N−ppp/(2/m).

This means that P(N
N > u) ≤ C7e
−u2/m/C7 . Combining the estimates in the above displays proves

the claim of the theorem. �

10. Auxiliary results

Proposition 10.1. Let {Xi} be i.i.d. random variables with law P . Let H be a class of measurable
real-valued functions defined on (Xm,Am) with an P m-integrable envelope such that the following
holds: for any fixed δ > 0, M > 0, 1 ≤ k ≤ m,

max
1≤j ′≤k

E

(
logN (δ, (πkH)M, e�,j ′)

�j ′

)1/2

→ 0 (10.1)
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holds for any �1 ∧ · · · ∧ �k → ∞. Here for � = (�1, . . . , �k) and {Xi}∞i=1,

e�,j ′(f, g) ≡ 1

�j ′

�j ′∑
ij ′=1

∣∣∣∣ 1∏
j �=j ′ �j

∑
1≤ij ≤�j :j �=j ′

(f − g)(Xi1 , . . . ,Xik )

∣∣∣∣,
and (πkH)M ≡ {h1Hk≤M : h ∈ πkH}, where Hk is an envelope for πkH. Then

sup
h∈H

∣∣∣∣ 1∏m
k=1 �k

∑
1≤ik≤�k,1≤k≤m

(
h(Xi1 , . . . ,Xim) − P mh

)∣∣∣∣ → 0

in L1 as �1 ∧ · · · ∧ �m → ∞. The above display can be replaced by the decoupled version.

Remark 10.2. Note that for any 1 ≤ j ′ ≤ k,

e�,j ′(f, g) = 1

�j ′

�j ′∑
ij ′=1

∣∣∣∣ 1∏
j �=j ′ �j

∑
1≤ij ≤�j :j �=j ′

(f − g)(Xi1, . . . ,Xik )

∣∣∣∣
≤ 1∏k

j=1 �j

∑
1≤ij ≤�j ,1≤j≤k

|f − g|(Xi1, . . . ,Xik )

≤
(

1∏k
j=1 �j

∑
1≤ij ≤�j ,1≤j≤k

(f − g)2(Xi1, . . . ,Xik )

)1/2

,

so we may use �2-type metrics to verify the condition (10.1).

Proof of Proposition 10.1. Without loss of generality we assume that H is P m-centered. By decou-
pling inequality (more precisely, the proof of [14], Theorem 3.1.1), we only need to show

E sup
h∈H

∣∣∣∣ 1∏m
k=1 �k

∑
1≤ik≤�k,1≤k≤m

h
(
X

(1)
i1

, . . . ,X
(m)
im

)∣∣∣∣ → 0. (10.2)

Note that by expanding h(xi1, . . . , xim) = (δxi1
− P + P) × (δxim

− P + P)h, we have that

∣∣∣∣ 1∏m
k=1 �k

∑
1≤ik≤�k,1≤k≤m

h
(
X

(1)
i1

, . . . ,X
(m)
im

)∣∣∣∣
≤ Cm

∣∣∣∣∣
m∑

k=1

∑
σk

1∏k
j=1 �σk(j)

∑
1≤iσk(j)≤�σk(j):1≤j≤k

(πkh)
(
X

(σk(1))
iσk(1)

, . . . ,X
(σk(k))
iσk(k)

)∣∣∣∣∣,
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where the summation over σk runs over all possible selections of subsets of {1, . . . ,m} with cardinal-
ity k. Since πkh is degenerate of order k − 1, it follows by a simple conditioning argument that

E sup
h∈H

∣∣∣∣ ∑
1≤iσk(j)≤�σk(j):1≤j≤k

(πkh)
(
X

(σk(1))
iσk(1)

, . . . ,X
(σk(k))
iσk(k)

)∣∣∣∣
= E

{
EXσk(1) sup

h∈H

∣∣∣∣ ∑
1≤iσk (1)≤�σk(1)

[ ∑
1≤iσk(j)≤�σk(j),

2≤j≤k

(πkh)
(
X

(σk(1))
iσk(1)

, . . . ,X
(σk(k))
iσk(k)

)]∣∣∣∣}

� E

{
EXσk(1) sup

h∈H

∣∣∣∣ ∑
1≤iσk (1)≤�σk(1)

[ ∑
1≤iσk(j)≤�σk(j),

2≤j≤k

ε
(σk(1))
iσk(1)

(πkh)
(
X

(σk(1))
iσk(1)

, . . . ,X
(σk(k))
iσk(k)

)]∣∣∣∣}

(by symmetrization for empirical processes)

= E sup
h∈H

∣∣∣∣ ∑
1≤iσk(j)≤�σk(j),

1≤j≤k

ε
(σk(1))
iσk(1)

(πkh)
(
X

(σk(1))
iσk(1)

, . . . ,X
(σk(k))
iσk(k)

)∣∣∣∣
= E sup

h∈H

∣∣∣∣ ∑
1≤iσk(j)≤�σk(j),

1≤j≤k

(
ε
(σk(1))
iσk(1)

+Eε
(σk(2))
iσk(2)

+ · · · +Eε
(σk(k))
iσk(k)

)
(πkh)

(
X

(σk(1))
iσk(1)

, . . . ,X
(σk(k))
iσk(k)

)∣∣∣∣
≤ E sup

h∈H

∣∣∣∣ ∑
1≤iσk (j)≤�σk(j),

1≤j≤k

(
ε
(σk(1))
iσk(1)

+ ε
(σk(2))
iσk(2)

+ · · · + ε
(σk(k))
iσk(k)

)
(πkh)

(
X

(σk(1))
iσk(1)

, . . . ,X
(σk(k))
iσk(k)

)∣∣∣∣
(by Jensen and independence of decoupled Rademachers)

� E sup
h∈H

∣∣∣∣ ∑
1≤iσk (j)≤�σk(j),

1≤j≤k

(εiσk(1)
+ εiσk(2)

+ · · · + εiσk(k)
)(πkh)(Xiσk(1)

, . . . ,Xiσk(k)
)

∣∣∣∣
(by undecoupling inequality [14], Theorem 3.1.2)

≤
k∑

j ′=1

E sup
h∈H

∣∣∣∣ ∑
1≤iσk(j)≤�σk(j),1≤j≤k

εiσk(j ′) (πkh)(Xiσk(1)
, . . . ,Xiσk(k)

)

∣∣∣∣.
Combining the above displays yields that

E sup
h∈H

∣∣∣∣ 1∏m
k=1 �k

∑
1≤ik≤�k,1≤k≤m

h
(
X

(1)
i1

, . . . ,X
(m)
im

)∣∣∣∣
≤ Cm

m∑
k=1

∑
σk

∑
1≤j ′≤k

E sup
h∈H

∣∣∣∣ 1∏k
j=1 �σk(j)

∑
1≤iσk(j)≤�σk(j),

1≤j≤k

εiσk(j ′) (πkh)(Xiσk(1)
, . . . ,Xiσk(k)

)

∣∣∣∣.
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Hence for (10.2) to hold it suffices to prove the following claim:

max
1≤j ′≤k

E sup
h∈H

∣∣∣∣ 1∏k
j=1 �j

∑
1≤ij ≤�j ,1≤j≤k

εij ′ (πkh)(Xi1, . . . ,Xik )

∣∣∣∣ → 0 (10.3)

holds for any 1 ≤ k ≤ m and �1 ∧ · · · ∧ �k → ∞. Recall that H(k) is the envelope for H(k) ≡ πkH.
Then

max
1≤j ′≤k

E sup
h∈H

∣∣∣∣ 1∏k
j=1 �j

∑
1≤ij ≤�j ,1≤j≤k

εij ′ (πkh)(Xi1 , . . . ,Xik )

∣∣∣∣
≤ max

1≤j ′≤k
E sup

h∈H

∣∣∣∣ 1∏k
j=1 �j

∑
1≤ij ≤�j ,1≤j≤k

εij ′ (πkh1H(k)≤M)(Xi1, . . . ,Xik )

∣∣∣∣
+ P kH(k)1H(k)>M.

The second term in the above display vanishes as M → ∞ by the integrability of H(k), and hence we
only need to show that

max
1≤j ′≤k

E sup
h∈H(k)

M

∣∣∣∣ 1∏k
j=1 �j

∑
1≤ij ≤�j ,1≤j≤k

εij ′ h(Xi1, . . . ,Xik )

∣∣∣∣ → 0 (10.4)

holds for any �1 ∧ · · · ∧ �k → ∞ followed by M → ∞. To see this, fix 1 ≤ j ′ ≤ k and δ > 0, let H(k)
M,δ

be a minimal δ-covering set of H(k)
M under e�,j ′ . Then

Eε sup
h∈H(k)

M

∣∣∣∣ 1∏k
j=1 �j

∑
1≤ij ≤�j ,1≤j≤k

εij ′ h(Xi1, . . . ,Xik )

∣∣∣∣
≤ δ +Eε sup

h∈H(k)
M,δ

∣∣∣∣ 1∏k
j=1 �j

∑
1≤ij ≤�j ,1≤j≤k

εij ′ h(Xi1, . . . ,Xik )

∣∣∣∣
≤ δ + C∏k

j=1 �j

√
logN

(
δ,H(k)

M , e�,j ′
)

sup
h∈H(k)

M,δ

[ �j ′∑
ij ′=1

( ∑
1≤ij ≤�j :j �=j ′

h(Xi1, . . . ,Xik )

)2
]1/2

(by subgaussian maximal inequality, cf. [38], Lemma 2.2.2)

≤ δ + C∏k
j=1 �j

√
logN

(
δ,H(k)

M , e�,j ′
) ·

(
M

√
�j ′

∏
j �=j ′

�j

)

≤ δ + CM

(
logN (δ,H(k)

M , e�,j ′)

�j ′

)1/2
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Hence for any δ > 0, by the assumption,

max
1≤j ′≤k

E sup
h∈H(k)

M

∣∣∣∣ 1∏k
j=1 �j

∑
1≤ij ≤�j ,1≤j≤k

εij ′ h(Xi1 , . . . ,Xik )

∣∣∣∣
≤ δ + CM max

1≤j ′≤k
E

(
logN (δ,H(k)

M , e�,j ′)

�j ′

)1/2

→ 0 (10.5)

as �1 ∧ · · · ∧ �k → ∞ followed by δ → 0, completing the proof. �

Proposition 10.3. Suppose Assumption B holds. Then with ηi ≡ ξi/πi , for any r ≤ m, and p ≥ 1,

E

∥∥∥∥ ∑
1≤i1,...,im≤n

ηi1 · · ·ηir f (Xi1, . . . ,Xim)

∥∥∥∥p

F

≤ (1/π0)
rp
E max

1≤�1,...,�r≤n

∥∥∥∥ ∑
1≤ik≤�k,1≤k≤r,

1≤ik≤n,r+1≤k≤m

f (Xi1, . . . ,Xim)

∥∥∥∥p

F
.

Proof. The proof is essentially a variant of the proof of Theorem 2.2 so we only sketch some details
here. Let η(1) ≥ · · · ≥ η(n) be the reversed order statistics of {ηi}. By using η(i) = ∑

�≥i (η(�) − η(�+1)),
we have

E

∥∥∥∥ ∑
1≤i1,...,im≤n

ηi1 · · ·ηir f (Xi1, . . . ,Xim)

∥∥∥∥p

F

= E‖
∑

1≤i1,...,im≤n

∑
�k≥ik,1≤k≤r

(η(�1) − η(�1+1)) · · · (η(�r ) − η(�r+1))

× f (Xi1, . . . ,Xim)‖p

F

≤ E

[( ∑
1≤�1,...,�r≤n

(η(�1) − η(�1+1)) · · · (η(�r ) − η(�r+1))

)p

× max
1≤�1,...�r≤n

∥∥∥∥ ∑
1≤ik≤�k,1≤k≤r,

1≤ik≤n,r+1≤k≤m

f (Xi1, . . . ,Xim)

∥∥∥∥p

F

]

≤ (1/π0)
pr
E max

1≤�1,...,�r≤n

∥∥∥∥ ∑
1≤ik≤�k,1≤k≤r,

1≤ik≤n,r+1≤k≤m

f (Xi1, . . . ,Xim)

∥∥∥∥p

F
,

as desired. �

Below we collect some technical lemmas that will be useful in the proofs.

Lemma 10.4 (Lemma in [23]). Let (ξ1, . . . , ξn) be a non-negative vector such that
∑n

i=1 ξi =
n. Let R = (R1, . . . ,Rn) be a random permutation of {1, . . . , n}. Then for any l ∈ N and α =
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(α1, . . . , αl) ∈ Nl , ∣∣∣∣∣ER

[
l∏

i=1

(ξRi
− 1)αi

]∣∣∣∣∣ ≤ Cl,αn−l

[
n∑

i=1

(ξi − 1)2

]∑
i αi/2

.

The following result is taken from [38], Lemma 3.6.15.

Lemma 10.5. Let (ai, . . . , an) be a vector and (ξ1, . . . , ξn) be a vector of exchangeable random vari-
ables. Suppose that

ān = 1

n

n∑
i=1

ai = 0,
1

n

n∑
i=1

a2
i → σ 2, lim

M→∞ lim sup
n→∞

1

n

n∑
i=1

a2
i 1|ai |>M = 0,

and

ξ̄n = 1

n

n∑
i=1

ξi = 0,
1

n

n∑
i=1

ξ2
i →Pξ τ 2,

1

n
max

1≤i≤n
ξ2
i →Pξ 0.

Then 1√
n

∑n
i=1 aiξi �d N (0, σ 2τ 2).

The following result is taken from [11], Lemma 3, or [39], pp. 53.

Lemma 10.6. The following statements are valid.

(1) 
n =OP(1) if and only if 
n ≡OPξ (1) in PX-probability.
(2) 
n = oP(1) if and only if 
n ≡ oPξ (1) in PX-probability.

Definition 10.7. A function class F is α-full (0 < α < 2) if and only if there exists some constant
K1,K2 > 1 such that both

logN
(
ε‖F‖L2(Pn),F,L2(Pn)

) ≤ K1ε
−α, a.s.

for all ε > 0, n ∈N, and

logN
(
σ‖F‖L2(P )/K2,F,L2(P )

) ≥ K−1
2 σ−α

hold. Here σ 2 ≡ supf ∈F Pf 2, F denotes the envelope function for F , and Pn is the empirical measure
for i.i.d. samples X1, . . . ,Xn with law P .

The following result is taken from [15], Theorem 3.4.

Lemma 10.8. Suppose that F ⊂ L∞(1) is α-full with σ 2 ≡ supf ∈F Pf 2. If nσ 2 �α 1 and√
nσ(‖F‖L2(P )/σ )α/2 �α 1, then there exists some constant K > 0 depending only on α, K1, K2

such that

K−1√nσ

(‖F‖L2(P )

σ

)α/2

≤ E

∥∥∥∥∥
n∑

i=1

εif (Xi)

∥∥∥∥∥
F

≤ K
√

nσ

(‖F‖L2(P )

σ

)α/2

.
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