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The theory for multiplier empirical processes has been one of the central topics in the development of the classical
theory of empirical processes, due to its wide applicability to various statistical problems. In this paper, we de-
velop theory and tools for studying multiplier U -processes, a natural higher-order generalization of the multiplier
empirical processes. To this end, we develop a multiplier inequality that quantifies the moduli of continuity of
the multiplier U-process in terms of that of the (decoupled) symmetrized U-process. The new inequality finds a
variety of applications including (i) multiplier and bootstrap central limit theorems for U-processes, (ii) general
theory for bootstrap M-estimators based on U -statistics, and (iii) theory for M-estimation under general complex
sampling designs, again based on U-statistics.
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1. Introduction

1.1. Overview

Let X1, ..., X, be i.i.d. random variables with law P on (X, A), and &1, ..., &, be random variables
independent of X1, ..., X,,. Multiplier empirical processes of the form
n
£ ) & (X0, (1.1)

i=1

where f € F for some function class F, have a long history in the development of the classical em-
pirical process theory [26,38]. See also [29,30] for some recent developments. Apart from being of
theoretical interest in its own right, the multiplier empirical process has also found numerous impor-
tant applications in the statistical theory. Here is a partial list:

(P1) (Bootstrap theory). The seminal paper [18] gives sufficient and necessary characterizations for
the bootstrap central limit theorem to hold uniformly over a class of functions F. The key idea
there is to view the bootstrap empirical process as certain (conditional) multiplier empirical
process. This idea is further exploited in [33] to general bootstrap schemes D exchangeable
weights.

(P2) (Estimation theory). The bootstrap (multiplier empirical) theory in (P1) can be combined with
M- or Z-estimation theory to study asymptotic properties of bootstrap finite-dimensional pa-
rameters: the paper [39] studied bootstrap Z-estimators; the paper [11] further studied boot-
strap M-estimators in a semiparametric setting. In an infinite-dimensional setting, the mul-
tiplier empirical process naturally arises in the theory for regression estimators, where the
multipliers play the role of the errors in the regression model, cf. [21].
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(P3) (Complex sampling). [9] pioneered the study of empirical process theory under two-phase strat-
ified sampling by using the exchangeably weighted bootstrap empirical process theory devel-
oped in [33]. Therefore the crux of problem rests in suitable form of the multiplier empirical
process theory.

As a natural analogue of the empirical process in a higher-order setting, U-process (of order m) of
the form

fe Y [ X)) (1.2)

1<ij<-<ip<n

received considerable attention during the late 1980s and early 1990s due to its wide applications to
the statistical theory, see, for example, [1,3-5,31,32]. On the other hand, despite notable progress of
the theory for the multiplier empirical process (1.1) and its applications thereof, corresponding theory
for multiplier U -processes of the form

fe > & E XL X)), (1.3)

1<ij<-<ip<n

has been lacking. Not surprisingly, the lack of such a theory has hindered further theoretical under-
standing for various statistical problems (in particular the above (P1)—(P3)) that involve U -statistics.
One of the goals of this paper is to fill in this lack of understanding, by developing further theory and
tools for understanding multiplier U -processes (1.3), along with a particular eye on applications to the
aforementioned statistical problems.

It has now been clear from the author’s previous work [20-22] that the key step in getting a precise
understanding of the behavior of the multiplier empirical process (1.1) is a strong form of the so-called
‘multiplier inequality’ that quantifies the moduli of continuity of the multiplier empirical process in
terms of that of the empirical process itself, or its symmetrized equivalent

fe) e f(X), (1.4)

i=1

in a non-asymptotic setting. Here ¢;’s are i.i.d. Rademacher random variables (i.e., P(¢; = £1) =
1/2) independent of X1, ..., X,. Indeed, an improved version of the multiplier inequality is proved
in [21] that gives sharp non-asymptotic bounds for the moduli of the multiplier empirical process.
The benefits of such a sharp multiplier inequality are exploited in a few different problems, including
(i) convergence rates of least squares regression estimators in a heavy-tailed regression setting under
various models [20,21]; (ii) empirical process theory under general complex sampling designs [22],
and more technically, (iii) theory for lower bounds of empirical processes through Gaussianization
[19].

This is the program we will continue in this paper, but now in the setting of multiplier U-process
(1.3). We prove in Theorem 2.2 a sharp multiplier inequality used to study the moduli of continuity of
the multiplier U-process (1.3), in terms of that of the (decoupled) symmetrized U -process

fe >0 DM p(xP L x ™), (1.5)

Im
1<ij<--<im<n

an object that has been well-studied throughout a series of ground-breaking works in the 1990s, cf.
[3,4,14].
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With the help of the multiplier inequality for the multiplier U-process (1.3), we further study the
statistical problems in the directions (P1)—(P3) mentioned above, in which various forms of U -statistics
are involved. More specifically:

(Q1) We prove a multiplier central limit theorem and a bootstrap central limit theorem with general
exchangeable weights for U-processes, in analogy to the duality between the multiplier cen-
tral limit theorem for empirical processes developed in [16,17] and the exchangeably weighted
bootstrap theory for empirical processes developed in [33]. These uniform central limit the-
orems are valid under the same conditions for the usual uniform CLTs for U-processes as
developed in [3,14], and similar conditions on the exchangeable weights as in [33].

(Q2) We develop a general theory for bootstrap M -estimators based on U -statistics, continuing
the line of works pioneered by [39] in the context of Z-estimation based on the empirical
measure, and by [11] in the context of M -estimation in a semi-parametric setting. See also
[7,8,10]. The bootstrap theory is valid under essentially the same conditions as the master
asymptotic normality theorem as studied in [1,14], and therefore validates the use of bootstrap
M -estimators based on U -statistics, at least asymptotically.

(Q3) We develop a general M -estimation theory based on U -statistics under general complex sam-
pling designs. Our theory generalizes the work of [1,14] concerning finite-dimensional M-
estimators based on U-statistics, and the work of [13] concerning infinite-dimensional M -
estimators based on U-statistics, by going beyond the standard setting of i.i.d. sampling de-
sign. The theory here can also be viewed as an extension of the author’s previous work [22], in
which a general empirical process theory for various sampling designs is developed with the
help of the improved multiplier inequality for empirical processes proved in [21].

The rest of the paper is organized as follows. We develop the multiplier inequality for U-processes
in Section 2. Sections 3-5 are devoted to applications (Q1)-(Q3). Most detailed proofs are collected in
Sections 6-10.

1.2. Notation

For a real-valued random variable £ and 1 < p < oo, let [[§], = (E|§ |P)!/P denote the ordinary p-
norm. The L, ; ‘norm’ for a random variable £ is defined by

||5||p,lz/0 B( > 1)/ dr.

Strictly speaking ||-|| ;1 is not a norm, but there exists a norm equivalent to ||| 5,1 (cf. [35], Theo-
rem 3.21). Let L, be the space of random variables &’s with [|£]|,,1 < co. It is well known that
Lyie CLp1 C Ly holds for any underlying probability measure, and hence a finite L, ; condition
requires slightly more than a p-th moment, but no more than any p + ¢ moment, see [26], Chapter 10.

For a real-valued measurable function f defined on (X, A, P), I,y =1fllpp= (P|fIPHV/P
denotes the usual L ,-norm under P, and || f ||oo = sup, x| f(x)|. f is said to be P-centeredif Pf =0,
and F is P-centered if all f € F are P-centered. To avoid unnecessary measurability digressions, we
will assume that F is countable throughout the article. As usual, for any ¢ : F — R, we write ||¢ ()| r
for sup r< 716 (/).

Let (F, ||-]|) be a subset of the normed space of real functions f : X — R.Fore > 0let M (g, F, ||-||)
be the e-covering number of F; see [38], page 83, for more details.

Throughout the article €1, ..., &, will be i.i.d. Rademacher random variables independent of all other
random variables. C, will denote a generic constant that depends only on x, whose numeric value may
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change from line to line unless otherwise specified. a <, b and a 2, b mean a < Cyb and a > Cyb
respectively, and a <y b means a <y b and a 2, b [a < b means a < Cb for some absolute constant
C1]. For two real numbers a, b, a V b = max{a, b} and a A b = min{a, b}. Op and op denote the usual
big and small O notation in probability.

2. Multiplier inequality for U-processes

Recall that a kernel f : X — R is (permutation) symmetric if and only if f(xi,...,x,) =
fz@ys - -y Xzn)) for any permutation 7w of {1, ..., m}. Further recall the notion of degenerate ker-
nels (cf. [14], Definition 3.5.1) as follows.

Definition 2.1. A symmetric and P™-integrable kernel f : X — R is P-degenerate of order r — 1,
notationally f € L, (P™), if and only if

/f(xl,...,xm)dP’"_’H(xr,...,xm)=/fde

holds for any x1,...,x,—1 € X, and
(xl,...,xr)l—>/f(xl,...,xm)defr(xr_;.l,...,xm)

is not a constant function. If f is furthermore P™-centered, that is, P f =0, we write f € Lg’r(Pm).
For notational simplicity, we usually write L™ (P™) = Ly (P).

Any U -statistic with a symmetric kernel f

1
Urim)(f)E@ Z f(Xil,...,Xim) (21)
1§i1<”'<im§n
m

can be decomposed into the sum of U-statistics with degenerate kernels:

m

U=y (’Z) U (i ). 22)

k=0

Here mx f(x1,..., %) =0y, — P) X -+ x (8, — P) x P"’"kf is P-degenerate of order k — 1. The
equation (2.2) is also known as Hoeffding decomposition. The limit behavior of (2.1) then typically
reduces to the study of the leading non-trivial term (k > 1) in (2.2), so below we proceed without loss of
generality by assuming that the kernels f are P-degenerate of order m — 1 unless otherwise specified.

The main result of this section is the following multiplier inequality for U-processes with degenerate
kernels.

Theorem 2.2. Let X1, ..., X, be i.i.d. random variables with law P on (X, A), and F be a class of
measurable real-valued functions defined on (X™, A™) such that F is P-centered and P-degenerate
of order m — 1. Let (&1, ..., &,) be a random vector independent of (X1, ..., Xn). Suppose that there
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exists some measurable function V¥, : Rgo — Rx¢ such that the expected supremum of the decoupled
L U-processes satisfies

E| > eVee™r(xi L x™)

1<ip<ly,1<k=<m

' Ellfn(ela"‘9zm)
f

forall1 <ty,...,¢y, <n.Then

E

in S Xiy, oo Xy,
Do &, S |

1<iy,...in<n

n n
<Ky /ﬂ;m EWn<Zl|§,-|>zl»---vzléibtm)dtl"'dtm
2o i=1 i=1

Furthermore, if there exists a concave and non-decreasing function ¥, : R — R such that ¥, (€1, . . .,
L) =Y (HZL] L), then

E Z éil"'gimf(xilsu-s
1<iy,.im<n
- 1
me/m wn< > T > n) /'")dtl...dtm
Rzo 1<iy,...,in<nk=1

Here K,, > 0 is a constant depending on m only, and can be taken as K,, = 2°" ]_[2”:2(1(/‘ — 1) for
m>2.

As an immediate consequence of Theorem 2.2, we have the following corollary.

Corollary 2.3. Suppose that the conditions on (X1, ..., X,) and (&1, ...,&,) in Theorem 2.2 hold, and
that &;’s have the same marginal distributions. If there exist some y > 1 and ko > 0 such that

1 1
El > eDe™r(xiD L x™) ’ <K0]_[z/y (2.3)
1<ip<ly,1<k<m
holds forall 1 < ¢y, ...,¢, <n, then
E Z E i, Xy X)) | < KkollEn I, 0™ (2.4)
1<i{,...,im<n F

L Here ‘decoupled’ refers to fact that {X i(k)}, k € N are independent copies of {X;}, and {sl(k)}, k € N are independent copies of
the Rademacher sequence {¢;}.
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Proof. Let ¥, ({1, ..., ¢n) = ko([They €)Y = ¥u([Th, L) where ¥, (t) = ko - t'/7. By Theo-
rem 2.2, the LHS of the above display can be bounded by

m 1/y
Kuko /R’" ( Z HP(lEH > tk)l/m> dey ---dt,,
>0

1<ip,...in<nk=1

mo e
1
= Koo 1" [T [ PG> 0)™ d = Kol 0"
0
k=1

as desired. O

The above corollary shows that the multiplier U-process (2.4) enjoys the same size n™/? as the
Rademacher randomized U -process (2.3), as long as the multipliers &;’s satisfy the moment condition
I€1llmy < oo. Whether this moment condition is necessary remains open for general m > 2. Form =1,
this moment condition cannot be substantially improved, see [21], Theorem 2.

The next proposition shows certain sharpness of Corollary 2.3 in terms of the size of the multiplier
U -process. In particular, we prove that there exists F verifying the condition (2.3), while the inequality
(2.4) cannot be further improved for i.i.d. centered multipliers &;’s with sufficient moments.

Proposition 2.4. Suppose that X = [0, 1] and P is the uniform probability measure on X . Fix y > 2.
Then there exists some F defined on X for which

m
) (m) 1 (m) 1/y
Bl Y ey )H <[]
1<ig<lg,1<k<m F kel
holds for all 1 < £y, ..., 4, < n, such that for any centered i.i.d. random variables &1, ..., &, with
0 <&l < o0,
E Z éil“.sim‘f()(iﬂ"‘7}(l‘m) ZKmyy,E'nm/y.
f

I<it,....im=n

Here the constant kp, & only depends on m, y and the law of &;.

Remark 2.5. In the special case of m = 1, the multiplier inequality for U-processes in Theorem 2.2
reduces to (a special case of) the improved multiplier inequality for empirical processes proved in [21],
Theorem 1. The reader is referred to [21], Section 2.3, for a detailed comparison of the improvement
in this case over the classical multiplier inequality (cf. [38], Lemma 2.9.1).

In the applications in the next section, the following result will be useful in verifying asymptotic
equicontinuity of the multiplier U-processes.

Corollary 2.6. Consider the setup of Theorem 2.2. Let {F,,. . e,)n:1=<4£1,..., 4y <n,n e N} be
function classes such that F, .. ¢,)n D Fn,..nyn forall 1 <€y, ..., Ly <n. Suppose that &;’s have
the same marginal distributions with ||&1|l2m.1 < 00. Suppose that there exists some bounded measur-
able function a : R’;’O — R witha(ly,...,4n) = 0as €y A--- Ay — 00, such that the expected

,,,,,
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supremum of the decoupled U -processes satisfies

E

Z 81'(11)“'81'(;")f(Xi(11)’""X'(m))’

I<ig<Ly,1<k=<m

m 1/2
ga(el,...,(im)<1_[£k>
k=1

forall1 <{ty,...,¢, <n.Then

Flysrtm)on

n "R -0, n— oo.

Yoo &, (XL X))

I<iy,....in<n

]:(n,.,,.n).n

3. Multiplier central limit theorem and the bootstrap

In this section, we will apply the multiplier inequality in Theorem 2.2 to establish a multiplier cen-
tral limit theorem and an exchangeably weighted bootstrap central limit theorem for U -processes. As
already mentioned in the introduction, the duality between these two limit theorems is akin to the
development from the empirical process theory side: a multiplier central limit theorem for empirical
processes is established in [16,17], which serves as a cornerstone for the bootstrap central limit theo-
rems in [18,33].

Below we review some basic facts for the central limit theorems for degenerate U -statistics. The ma-
terials below come from [14], Section 4.2; the reader is referred therein for a more detailed description.
Let K p be the Gaussian chaos process defined on R @ LE’N(P) =R® (@), Ly"(P)) as follows.2
Let hY(x1, ..., xm) = [To2, ¥ (xe) for ¢ € LS’I(P). Then the linear span of (hl e LS’I(P)} is
dense in the space of Lg’m(P) with respect to Ly (P™). Hence, we may define

Kp(hl) = m)'?Ry(Gp(),Ey?,0,...,0), 3.1

and extend this map linearly and continuously, with Kp(1) =1, on R & L;‘N(P). Here Gp is the
isonormal Gaussian process on LE’I(P) with covariance structure EGp(f)Gp(g) = P(fg)(f,g €
L;l (P)), and Ry, is the polynomial of degree m given by the Newton’s identity (cf. [14], pp. 175):

n n n
> t,'l-~-t,~m=R,,1<Zti,Ztl»2,...,Zt{'1). (3.2)
izl i=l i=1

1<ij<-<ip<n

With these notations, if f; € L5™*(P)(1 < £ < k), then the following central limit theorem holds (cf.
[14], Theorem 4.2.4):

" 1/2 n 1/2
<< ) U,Em”(fl),...(mk) U,imw(fk))w(Kp<f1>,...,1<p<fk>).

mi

2@ is the orthogonal sum in L, (X, A%, P).
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It is also well known that if a class of measurable functions F satisfies good entropy conditions, then a
central limit theorem in £°°(F) holds (cf. [14], Theorem 5.3.7): forany 1 <k <m,

1/2
{(Z) UPGf): fe ]—"} g {Kp(mef): f €F} int™(F),
or equivalently,

sup
Y €BL(E>(F))

12
By ((’;) U,” (m)) —Ey(Kp (m))‘ -0,

where E* is the outer expectation (cf. [38], Section 1.2)). Now we consider the multiplier U-process:
for any f € F and §;’s, define

1
U=~ Y EyE, (X X, (3.3)

n . .
1<ij<-<ip<n
m

Our first result in this section establishes a multiplier central limit theorem for U -processes.

Theorem 3.1. Let {§;}{°, be i.i.d. centered random variables with variance 1 and ||&1|l2m,1 < 00. Let
FC Lg’m(P) admit a P™-square integrable envelope F such that

1 m/2
/0 (stéplogN(SHFHLZ(Q), F, LQ(Q))) de < o0,

where the supremum is taken over all discrete probability measures. Then

172
E*y ((,’:,) U,Ef?) —Ey (Kp)

Note that the entropy condition required in Theorem 3.1 is exactly the same for the uniform central
limit theorem of U-processes (cf. [3,14]). Furthermore, the moment condition for the multipliers is a
finite Ly;,,1 moment, which agrees with the multiplier central limit theorem for empirical processes
when m = 1, cf. [25,26,38].

One natural ‘application’ for the multiplier central limit theorem in Theorem 3.1 is to suggest how to
proceed with the formulation of the bootstrap for U-processes with general weights. First, let us state
some assumptions on the weights.

sup — 0.

Y EBL(L®(F))

Assumption A. Assume the following conditions on the weight (&1, ..., &,) = (&1, - . ., &) defined
on (W, .Ag, Pe):

W1) (&4,...,&,) are exchangeable,3 non-negative and Z?:l & =n.
(W2) sup,lI&1ll2m,1 < o0, n-! maxi<j<n (& — 1)2 —>p 0 and there exists ¢ > 0 such that

1 n
S) E =1 —p
i=1

31n other words, (¢, ..., &) =d Gry.---> §x(n)) for any permutation 7 of {1, ..., n}.
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These assumptions are familiar in the context of exchangeably weighted bootstrap limit theory for

emplrlcal processes developed in [33]. For instance, by taking (&1, ..., &,) = Multinomial(rn, (1/n),
., (1/n)) we obtain Efron’s bootstrap; by taking & = Y; /Y where Y; ~;i;q. exp(1), Y =n"! Y Y
we obtain the Bayesian bootstrap. We refer the reader to [33] for a detailed account for various boot-
strap proposals.

The condition n™" maxj<;j<, (& — 1)2 —p. 0 is automatically satisfied by the moment assumption
sup, I€11l2m,1 < 0o when m > 2. We include this condition here to match the same conditions as studied
form =1 in [33].

For any f € Ly"™(P), let

-1

(= Y G = — DKy X)), (3.4)

n . .
1<ij<--<ipm=<n

[23] considered the special case m = 2 and derived asymptotic distribution for a single function f.
Below we will prove a bootstrap uniform central limit theorem.

Theorem 3.2. Suppose Assumption A holds. Let F C L;‘m (P) admit a P™-square integrable envelope
F such that

1 m/2
[) (stéplogj\/(sHFHLz(Q), F, Lz(Q))> de < 00,

where the supremum is taken over all discrete probability measures. Then

172
Ecy ((,’;) U,E"?) ~Ey(c-Kp)

where c is the constant in (W2), and the convergence in probability — Py IS with respect to the outer
probability of P*° defined on (X*°, A%).

sup

—)P* 0,
X
Y €BL(L>®(F))

Theorem 3.2 extends the exchangeably weighted bootstrap central limit theorem for the empirical
process studied in [33] to the context of U-processes. To the best knowledge of the author, there
is very limited understanding for bootstrap central limit theorems for degenerate U-processes. The
paper [4] considered Efron’s bootstrap and proved bootstrap CLTs by a straightforward conditioning
argument along with the VC-type assumption that gives a uniform control for the empirical measure.
The paper [40] considered Bayesian bootstrap, but his results are confined to the non-degenerate case.
Our Theorem 3.2 holds under the same condition for the CLT for degenerate U -processes, and under
general bootstrap schemes.

4. Bootstrapping M -estimators

In this section, we will investigate the bootstrap theory under the M -estimation framework based on
U -statistics. Let ® C R? index a class of symmetric kernels F = { fp : X — R, 6 € ©}. Let 6y be the
unique maximizer of 8 — P™ fp, and an estimator of 6y based on (X1, ..., X,) is given by maximizing
a U -statistic

0, € argrgleagUrEm)(fg) = argmax. ;; foXiys.on Xi,). 4.1)
11 FFiy
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In typical applications, F contains non-degenerate (and non-negative) kernels and hence under regu-
larity conditions \/n (é\n — b)) is asymptotically normal, the variance of which depends on the unknown
distribution P. For bootstrap weights (£1, ..., &,) defined on OV, Ag, Pg), consider the following boot-
strap estimate

eargmax Z i & fo(Xiy, .0, Xiy). 4.2)

e ()
i

We will be naturally interested in the asymptotic behavior of \/n (6" — 6,) conditional on the observed
data {X;}.

Before formally stating our results, we need the following notions concerning bootstrap in probabil-
ity statements.

Definition 4.1. Let {A,}7° | be a sequence of random variables defined on (2, B,P) = (X*°, A%,
P>®) x (W, Ag, Pe).

(1) We say that A, =op, (1) in Px-probability if and only if for any & > 0, Py x (A, > ¢€) =

op, (1).
(2) We say that A, = (91:é (1) in Px-probability if and only if for any L, — oo, Pw|x (A, > L,) =

opy(1).
The main result of this section is the following theorem.

Theorem 4.2. Suppose that the bootstrap weights (&1, ..., &,) satisfy Assumption A, and the following
conditions hold.

(M1) The map 6 — D(fy) = P™ fy has a unique maximizer at 0 = 0y and there exists some positive
definite matrix V such that for 6 € ® close enough to 6y,

1
D(fo) = D(fo) ==5(0 = 00) " V(0 — o) +o(110 — 6ol1?).

M2) F={fp:0 € O} admits a P™"-square integrable envelope F such that
1 m/2
/0 (SUPIOgN(SIIFIILZ(Qy F, Lz(Q))) de < o0.
Q

(M3) There exists a measurable map A : X — R? such that PA(X) =0 and P||A||2 < 00, and
such that {r,(-,0) : 0 € ®}, defined by

71 (fo — fa))(x) — (0 —6p) - A(x)

(. 0) = 16 — G0l v 172

k]

satisfy the following: for any &, — 0,

sup  |Gura(-, 0)] = op(1).
0:16 60| <8

If 16, — 6ol = op(1) and 116 — 6o = op. (1) in Px-probability, then V@, — 0p) ~oq m -
N, V-teov(A)Y(VHT) and

sup [Pwix (v(6; = 8) <1) = P(c- Vi@, —60) <1)| > 5y O

teR4

Here c is the constant in (W2).
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Condition (M1) requires that the population loss D( fp) is maximized at 0 = 6y and an associated
local Taylor expansion is valid with Hessian matrix V. Condition (M2) is a very typical requirement
on the complexity of the model. Condition (M3) is a stochastic differentiability condition, where A is
regarded as the derivative of 1 (fp) at @ = 6p.

Our conditions (M1)—(M3) are almost the same as the machinery in [14], Theorem 5.5.7, (see also
[1]). Note that although our condition (M2) is stronger than [14], condition (ii) of Theorem 5.5.7, there
are few methods of checking (ii) in that theorem other than our (M2), so the examples studied therein
can be applied quite immediately.

One particularly interesting example is the simplicial median (cf. [27]) defined as follows: For
any (x1,x2,x3) € (R2)3, let S(x1,x2, x3) be the open triangle determined by x|, xp, x3. For any
0 € R2, let fy(x1,x2,x3) = 1¢, (x1, %2, x3) Where Cyg = {(x1,x2,x3) € (R»)?: 60 € S(x1,x2, x3)}.
The simplicial median is defined as any maximizer of the map 6 +— U,?)( fo) over 0 € O, that is,
/9\,, € argmaxgpeo U,£3) (fa). A central limit theorem for é:l is obtained in [1], where the covariance of the
normal limiting law depends on the law P of the i.i.d. samples X1, X», .. .; see also [14], Section 5.5.2.
To apply Theorem 4.2, the only ‘additional work’ is to verify the slightly stronger condition (M2). This
immediate follows as {1¢, : 6 € RR?} is known to be a VC-subgraph class, see [14], Example 5.2.4.

Our results here concerning bootstrap M -estimators can also be viewed as extensions of bootstrap
theory for M-(or Z-) estimators under (i) the usual empirical measure studied in [7,10,11,39] and (ii)
criteria functions that are convex with respect to the underlying parameter space, cf. [8].

5. M -estimation under complex sampling

In this section, we will study M -estimation under complex sampling designs. The exposition below
largely follows [22]. Let Uy = {1, ..., N}, and Sy = {{s1,...,s,} :n < N,s; € Uy, s; #5;,Vi # j}
be the collection of subsets of Uy . We adopt the super-population framework as in [34]: Let {(X;, Z;) €
X x Z},N: , be i.i.d. super-population samples defined on a probability space (), A, P(x,z)), where
XM = (Xq,..., Xy) is the vector of interest, and Z\) = (Z,, ..., Zy) is an auxiliary vector. A sam-
pling design is a function p : Sy x Z®N — [0, 1] such that

(1) forall s € Sy, z™  p(s, z™) is measurable,
) forall zV) € Z®N s p(s, zM)) is a probability measure.

The probability space we work with that includes both the super-population and the design-space is
the same product space (Sy x YV, o(Sy) x A, P) as constructed in [6]. We include the construction
here for convenience of the reader: the probability measure P is uniquely defined through its restriction
on all rectangles: for any s X E € Sy x A,

P(s x E) E/Ep(S,Z(N)(a))) dP(X,Z)(U))E/EPd(SaCU) dPx,z)(w).

We also use P to denote the marginal law for X for notational convenience.

Given (XM, Z(")) and a sampling design p, let {£}Y., C [0, 1] be random variables defined on
(Sn x V,0(Sy) x A, P) with 7; = 7;(ZN)) = E[£1ZN)]. We further assume that {Ei}lNzl are inde-
pendent of XM conditionally on Z™). Typically we take & = 1;¢,, where s ~ p, to be the indicator
of whether or not the i-th sample X; is observed (and in this case 7; (Z™N)) = D seSyies PGS zZMy),
but we do not require this structure a priori. 7r;’s are often referred to be the first-order inclusion prob-
abilities, and 7;; = 7;;(Z My =E[g §ilZ (M1(i # j) are the second-order inclusion probabilities.
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Assumption B. Consider the following conditions on the sampling design p:

B1) minlS[SN w; > 1y > 0.
(B2-LLN) 3 Y10 (5 — 1) = op(1).

(B1) is a common assumption in the literature. (B2-LLN) says that the weights {&; /7;} satisfy a law
of large numbers. For various sampling designs satisfying Assumption B, including sampling with-
out replacement, Bernoulli sampling, rejective/high entropy sampling, stratified sampling (with and
without overlaps), etc., we refer the reader to [22].

Under the complex sampling setting, it is natural to use the following (inverse-weighted) M-
estimator based on univariate kernels

N
~ &
% e = fo(X;
I arggleag;mfe( )

that maximizes the Horvitz—Thompson weighted empirical measure over { fp : 8 € ®}. For multivariate
kernels, it is natural to consider the following generalization:

o7 € S S e X X)), 5.1
v € argmax w Jo (X, im) (5.1
ll# ?élm

We let PY(f) = 3 L, £ £(Xi) and G, (f) = V/N(P§, — P)(f) denote the Hortivz—Thompson
empirical measure and empirical process, respectively.

Our first main result in this section is the following.

Theorem 5.1. Suppose Assumption B, and conditions (M1)—(M3) in Theorem 4.2 hold. Then
VN (87 —60) =mV G A +op(1).

For a general sampling design, the asymptotic distribution of G} A is not entirely a trivial problem.
We refer the reader to [22], Proposition 1, for a summary for the asymptotic variance (more generally,
the covariance structure of the limit of G%,) for various sampling designs illustrated above.

In Theorem 5.1, we considered a finite-dimensional M -estimation problem. It is also possible to con-
sider M-estimation problem in an infinite-dimensional setting based on Horvitz—Thompson weighted
U -statistics:

i —argmm Z Siv . Sin fXiys .. X)), (5.2)

T i,
1195 Fip !

where F is a class of symmetric non-degenerate (and typically non-negative) kernels. The quality of
the estimator defined in (5.2) is evaluated through the excess risk of f v » denoted Ep( f v )» Where

Ep(f)=Pf — inf Pg, VfelF.
geF

The problem of studying excess risk of empirical risk minimizers under the usual empirical measure has
been extensively studied in the 2000s; we only refer the reader to [15,24] and references therein. The
paper [13] extended the scope of ERM to criteria functions based on U -statistics of order 2 under the
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i.i.d. sampling. Our goal here will be a study of the excess risk for the M-estimator based on Horvitz—
Thompson weighted U -statistics as defined in (5.2) for the general empirical risk minimization problem
under general sampling designs.

To this end, let Fg(8) = {f € F : Ep(f) < 82}, let pp : F x F — Rxq be such that ,olzp(f, g) >

P(f —8)*— (P(f—g)?% and D(8) =sup; e 7, (5) PP ([, 8)-
Now we may state our second main result of this section.
Theorem 5.2. Suppose Assumption B holds. Suppose that there exists some L > 0, k > 1 such that

D(8) < L§'/x. (5.3)

Further assume that F is a uniformly bounded VC-subgraph class. Then for any t, s, u > 0, if

K K

log N \ %2 sV 2\ &2 svu\'?
rN = Ky N + N + N ;

P(Ep(f3) = rR)

Condition (5.3) is comparable to [12], Assumption 4, in the case m = 2. This condition is well-
understood for the usual empirical risk minimization problems, typically under the name of ‘low-noise’
condition, cf. [28,36]. In particular, if « is close to 1, then a faster rate than the standard /N rate is
possible.

Specializing our result to the case m = 2 and i.i.d. sampling, we recover [13], Corollary 6. It is easy
to see from the proofs that F being a VC-subgraph class is not a crucial assumption. Indeed one can
replace it with more general super-polynomial uniform entropy conditions with slight modifications of
the proofs. We omit these digressions here.

we have

< Kr(e™/%2/s +e_"2/m/K2) —HP’(

(&)

Here the constants K1, Ky > 0 only depend on m, mg, k.

6. Proofs for Section 2

6.1. Proof of Theorem 2.2

Proof of Theorem 2.2. Since the class F contains degenerate kernels of order m — 1, conditional on
&, by decoupling (cf. [14], Theorem 3.1.1) and symmetrization, we have with C,, = 2™ ]_[anz(kk -1
(as in [14], Theorem 3.1.1)

E

Z i & f(Xiys o X))
_F

1<it,usim<n

Z %‘1’] Elmf(Xl(ll)”Xl(Zl))H
f

1<iy,....im=n
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1 1
<omc,, K Z gil...gimgl_(l)...gl.(;”)f(Xfl),...,Xl-('T))H
1<ifyooim<n F
=2"Cu B Y I& ] &,
1<it,.im<n
1 1
x sgn(&i e, - sgn(&, e £ (X X)) H : 6.1)

F

Note here in the second inequality where the symmetrization is carried out according to the degeneracy
level of F due to [14], Remark 3.5.4 (2). The constant 2" appears by tracking the constant in the
arguments in [14], pp. 140. Since (sgn(§1)¢}, ..., sgn(§,)e,) is independent of (§1, ..., &,) and has the
same distribution as (e}, ..., &,), we have

E Z &iy &, f Xy, o0, X5y
1<ifyorosim<n F
1 1
<omc, - Z |gil|...|gim|gl.(l)...gl.(;")f(Xl.(I),...,Xl.(;"))H ) (6.2)
1<iq,.oim<n F

Let &1yl > --- > |u)| be the reversed order statistics of {|&;[}'_,, and 7 be a permutation over
{1,...,n} such that || = | () |. By the invariance of (P, ® P)™" and the fact that & is indepen-
dent of X', &°, we have that

R

(D (m) (1 (m)
=Ee x Z eyl Eannle, &l F(XG5 - X )H

I<iy,..., im=<n

EE,X

1 1
Yo Al lg Lol e F (XD, X )

Im
1<iy,..., im<n

]:

1 (m) (e9) (m)
=Bex| > el 1€amle i, o S (X1 X )HI

ﬂ_l(im) n_l(im)
1<iy,..., im<n

1 1
“Eex| Y ol mle e p (XD, X0 H; (6.3)

1<iy,...im=n

Using |&;)| = Zezi(|§(/é)| — 1&w+1]) (with [£4,41)| = 0) and combining (6.1)—(6.2), we have that

@"c,) " E

Z éil"'fimf(xip---,xim)
‘F

1<it,..,in=<n

<E| ) > (el = E@nl) - (Eew! — Een+])

1<iy,...im=<n€y>ir,1<k<m

(€8] (m) (D) (m)
X &g f(Xi1 le )||]:

< E[ > (el = E@l) - (€| = E@,n))
1<
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Y e p(xD x}?)”f}

1<ix<ly,1<k=<m

Eepl 1Ecem)!
=D R | wnazl,...,em)drmmdn}
1€y +1)] [Eem+1D

Li<ey,.lpm<n

x E

Eepl 1€
<E Z /E( ) ..,/|§< ! wn(’{i3|5i|>“}"”" {i3|§i|>tm}})dtm~~-dt1:|

L1<ty,otm<n? S+l m+n)D

<B| [ wn(lliziel>n)
0

- =

g ooy

{i 2&il >tm}|)dt1 "'dtm:|-

In the second inequality in the above display, we changed the order of the summation. The first claim
now follows from Fubini’s theorem.

Now suppose that ¥, (£1, ..., &n) = ¥ ([ Ti=, €x). Then we may further bound the above display
by

m n
f ) m,,(nzllgm) dry ...d
Ry k=1i=1
m
:/m ]El/fn< Z H1|§ik>,k) dty ...dt,
RZ 1<iy,oim<n k=1

m
=< fm 1},,( Z E 1—[ 151k|>”<) dt;...dt,, (byJensen’s inequality )

1<iy,...in=<n k=l

S/Rm 1p”( Z H]P’(léikl>fk)1/m>dt1...dtm,

I<it,..,im=nk=1

where the last inequality follows from generalized Holder’s inequality and the assumption that 1, is
non-decreasing. 0

6.2. Proof of Proposition 2.4

Proof of Proposition 2.4. Let « =2/(y — 1). By [21], Lemma 6, F = cle(o, 1]) is an a-full
class on [0, 1]. Let F; be the P-centered version of Fi, i.e. F| = {f—Pf:f¢€ ]:'1}. Take F =
{ferseexm) =T k() ok € Fi, Po} <n= 2@+ 1 <k <m}. By Lemma 10.8, for any 1 <
k<m,and1<¥q,...,¢, <n,we have

SNl =e,{ﬁ. (6.4)

173
> eho(XF)

ir=1

E sup

oreF1:

Pw}%ﬁlk—Z/(Z-%—a)
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‘ F

Hence, forall 1 <¥¢q,...,4¢,, <n,

E

Z 81.(11)--~sfr:")f(Xfll),...,X§;"))

I<ix<ly,1<k<m

m L
=[[E sw|D elo(X])
k=1

(pke}—li ir=1
P(pESn—Z/(ZJra)

m L
< HIE sup Zsl]»‘kgok(Xﬁ)
k=1

Dk 6.7'—1 : ir=1
P¢]§§Z;2/(2+u)

m

9

<Ca e
k=1

m
1
=c. [
k=1

This proves the upper bound. Next we consider the lower bound. Let {£/} be an independent copy of
{&;}. Then

Z iy i f Xiys ooy X))

> (& —&)on(Xi)

i=1

F

ok (X;)
1

1

n

oreF1:
P¢£Sn—2/(2+m)

|
ZHEE[ sup

:| (by triangle inequality)

n

:il_[IE sup 28i|§i — & |loe(Xi)

— oREF]: i
k=1 “pgl<n-2/etae) ! !

/
1

(by symmetry of & — & )

1 m n
>—[1El swp  |d aEls —&|oc(X)
k=1 L @sFi o [is)
PgR<n~2/@+e)

(by Jensen)

| I

D eign(Xi)

i=1

Il 1
> 11l_[]E sup

k=1 Dk G.F] :
P(plzfn—Z/(2+tx)

i| >nM/y’

where in the last line we used (6.4) with £y, ..., {,, = n, and the fact that E|§; — &/| > E|§; — E£/| =
E|&| =&l foralli=1,...,n. O
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6.3. Proof of Corollary 2.6

Proof of Corollary 2.6. Take ¥, (€1, ..., Ln) =a(ly,..., ¢n)([T{; €)"/?. By Theorem 2.2,

Bl > & &, X, X))

1<iy,...im<n

n n m n 1/2
SKm \/Rm E[a(zllsi>t1""’21|§[|>fm> l_[(21|5i>fk) }dtldtm
=0 i=1 =

(n,....,n),n

12
<K, / A2n(t1,.. tm){El_[ZIEIblk} de; -+ -dty,

k=1i=1

m 172
1
SKm/]R"’ Azyn(tl,...,tm)( E | |P(|§ik|>tk) /m> dry -+ - diy,
20

1<iy,....in<nk=1

—nm/zK/ Axp(t, ... tm)l_[]P|§1|>fk) "dry - iy

k=1

Here

n n 1/2
A2,n(tla ) tm) = {E[az (Zl|§i>t1’ ) Zl|éi|>tm>}} —0
i=1 i=1

as long as none of {P(|&1| > #) : 1 <k < m} vanishes. The claim now follows from dominated conver-
gence theorem. 0

7. Proofs for Section 3

7.1. Proof of Theorem 3.1

Proof of Theorem 3.1. We only need to check the asymptotic equi-continuity. For any ¢ > 0, let

= {f _g : f’g 6]:5 ||f _g”Lz(Pm) <~8} Fgr any f E./—", let f(-xls"'9xm) = f(xl""’-xm) lf
X1 # -+ # x,, and 0 otherwise, and let F = {f : f € F}. Then the L, distance associated to the
conditional (partially decoupled) Rademacher chaos process

1 1
[ e e )
k=1"%k 1<ig<ty,1<k<m
is given by

1
GlO=mr—r Y, (- X X,

k=1%k i <o 1<k<m
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Let || 117 = €;(f£,0), and re(8) = SUp /7, I £117. By the entropy maximal inequality for Rademacher
chaos process (cf. [14], Corollary 5.1.8), we have

1 1
Yoo g™ (X X))

Ee| =17
12
(T &) 1 <ig<tp,1<k<m T

) 2
<C / (logN'(e, F.ep))"' " de
0

re(8)/I1Flle m)2
=Cl||F||e./O (log N (e[| Flle. . eg))™ de

re@®/IF Il m/2
<Cj IIFlle‘/0 (SléplogN(SIIFllmQ)’f’ Lz(Q))) de. (7.1)

Without loss of generality, we may take F > 1 so the upper bound in the integral can be replaced by
r¢(8). By Proposition 10.1, || Flle = p | FllL,(p) as €1 A -+ A £, — 00, and hence by the integrability
on the far right-hand side of (7.1) it suffices to show that r¢(§) —, 0 as £ A --- A £,,, — o0 followed
by § — 0. Clearly it only remains to show that

1
S Yoo (X X)) = P )| =50 (7.2)

P | T
k=1 | iy <t 1<k<m

feFs

as {1 A --- Ay, — o0. To this end we verify (10.1) in Proposition 10.1. We only do this for k = m.
Note that e ;» (introduced in the statement of Proposition 10.1) can be bounded by the L; dis-
tance corresponding to the uniform measure on the (random set) {(X;,..., X;,) : 1 <i; <¢;,1 <
j < m}, and hence by the L, distance ey (cf. Remark 10.2). Furthermore, it is easy to verify that
N @, Fyy. La(Q)) < N(3/2M, Fyr, L2(Q)). Hence,

max
1<j'<m

E(log/\/(c‘i, F3 ,ee,,-,)>1/2
Zj/
8/2M m)2
<@2M)7 e A A em)‘”zE[ f (log (e, Fr, er)) ds}
0
< G2M) A A ly) T

1 m/2
< [ (sup 108 N (1 F a0 7. £2(0))) " de - 1 Flzm) = 0

as long as £; A --- A £, — 00. Hence, (10.1) is verified and Proposition 10.1 applies to conclude that
(7.2) holds. Combined with (7.1) and decoupling inequality (cf. [14], Theorem 3.5.3), we have shown
that for any {8¢} such that §p — 0 as £; A --- A £,;; — 00, there exists some sequence {ay} with ag — 0

as £y A --- AL, — oo such that
m 1/2
E < ay (H&) .
k=1

Z 8511)...8l§rzﬂ)f(xl(ll)’.._’xl§r:n))

1<ip<lp,1<k<m

8¢
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Now for any {3, } such that §, \ 0, let §¢ = Smax, ¢, Thenforany 1 < ¢y,..., ¢, <n, .7-',se = j-:(smm(k )
.77'5". The above display holds for such constructed {5¢}. Apply Corollary 2.6, we obtain

E

— 0.

Y E e, f X X |

Fin

I<iy,..., im=<n

This completes the proof for the asymptotic equi-continuity. g

7.2. Proof of Theorem 3.2

Proof of Theorem 3.2. We first prove finite-dimensional convergence. By Cramér-Wold and count-
ability of F, we only need to show that for any f € L5" (P),

sup
Y eBL

12
E |:1/f ((Z) U(’")(f)) ‘{X }:| —El//(c . KP(f))‘ 50 as. (73)

By [14], (4.2.5), page 175, and [2], Section 2A, any f € Lg’m(P) can be expanded in L,(P™) by
f= Z;ozl g h,ﬁ" , where {c,} is a sequence of real numbers, and h:,@q X1y Xim) =Yg (x1) -+ Yg (xm)

for some bounded v, € Lg‘l (P).Fix ¢ > 0. Then there exists Q, € N such that with f, = Zq 1 thz/;, s
Il f — fellL,(pmy < &. The left-hand side of (7.3) can be further bounded by

E [vf ((;’l)l/ U(’")(f)) x; }} —Ey(c- Kp(f))'

sup
WeBL
< E n) g X; AN oee(re) ) i
s () en) o | =2 v (( ) ) i
n\ />
+ sup E[w ((m) 0 (£¢ ) X }] _M(C.KP(fs))‘
YeBL

+ sup |]E170(C . Kp(fe)) — EW(C . KP(f))|

Y eBL
=)+ U+ ). (7.4)

For notational convenience, we let f_g = f — f. and EX[-]=E[-|{X;}]. For the first term in (7.4), using
the Lipschitz property of v and the fact that v is bounded by 1, we have

2 (”)1/ <m) ;
M) U L (f°)

2
(I)? <EX

2
;SIEX<1/\n_”’/2 z: (&1—1%-(&m—4)ﬁ(xnw~,XmJ)

I<ij<-<im<n

2
§E§‘ER<1M—'"/2 > @R,-l—1>-~-(5R,-m—1>ﬂ<xi1,...,xim)>

lfil7é"'7éil;15n
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I
< Z ng[l An""Eg []‘[@R,. - 1)“i]

@ e{1,2):Y0 ai=2m, i=1
a=>ap, 1<l<m

x > ﬁ(xil,...,xim)ﬁ(xi;,...,X,-;n)}
iy,
i i

ij :i} J1<j<max{j:a;=2}

m
1n
S I (V55 »TEt
o €12 i =2m, =1
o>z, 1<I<m
wn! Z feXiys oo Xig) fe (Xt oo Xip ),
i1 #Fim,
i i,

ij=i},1§j§max{j:aj=2}

where the last inequality follows from Lemma 10.4. By the usual law of large number for U -statistics
(cf. [14], Theorem 4.1.4), we have

n~! > feXiys oo X)) feXyr s X))

il#“'?éim,
.7 v
il

ij=i},1§j§max{j:aj=2}

—as. Efe(X1, .. X)) fo (X1, ... X,

m

) (where X; = X'; for 1 < j <max{j:a;=2})
< P"f2<¢?,
Combining the above two displays, we obtain

limsup(l) Sme e, as. (7.5)

n—oo

Next, we handle the second term in (7.4). Note that

=i ;5D ¢ ), (r, —D-(Er, — D¥(Xi)--vg(Xi,)

n g=1 1<ij<-<im<n
m

n

m/2 O 1 n | n

= —(n>1/2 ZCqu (m Z(ER[ — Dy (X)), ..., T Z(ER,- _ 1)mw(,]n(xi)>
g=1 i=1 izl

m

0.
= (1+o(1))(m)"/? Zchm(A,g{;, LA,
qg=1
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where R, is determined through (3.2). Below we determine the limits of AE,QI, £=1,2,3,...,m.

(¢ =1) Apply Lemma 10.5 with ¢; = ¥, (X;) — P, ¥, and §; replaced by &g, — 1 in our setting, we
see that Afll,zl ~gc-Gp(fy) as.
(£ =2) Note that

n
Ex©(A) = Z(s,—l)2 ng(xiwpgczw, as.
i=1

Furthermore,

VarX 4 (Aflzzl)

; 2 , 2
=Ep(A)" — (Bx*(A%)

2 2
1 & 1
=E}* [; G 1)%5()@,)} - [; G 1>2w§}

i=1 i=1

1
= Z@i — D2 — D[EX2(Xr)V2(Xr) — (Bav2)’]
Z(& DA EXYEXR) — (Bav2)]

+ n—2 3 & — D2 — DAERY2R(Xp)v2(Xr) — (Pav?)’]
i#]

Z@,—l) Pag + — (Z(&—l)) Py,
1 n
S =2 E =D Py
i=1

< ||1/fq||§o% — Z(& —1)? —p 0, as.

The first inequality in the above display follows since
2
Ex x/ﬂ(xR,.)wz(XR.) — (Pavy)

:n( [Zw (XD (X, )] ~ (Bavy)’
i#]
1

2\2 1 4
=— (Puy,)” < — Py

This shows that A,(lz()l — P C2EW3 a.s.
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(£ > 3) Note that

n
Exf|af)| < m Z|s, —11t = Z|m/fq<xl-)|‘
i:l
=2

max; & — 17\ 2 1 ¢ 2
§<+ -;;m—u Mg lloo
1=

—>p 0, a.s.

This shows that A,(fgi —>p Oas.

We have thus shown Ry, (AS), ..., AT ~sq Ry (G p(ciry), B(c¥g)2, 0, ..., 0) = c(m)) ™" /2 K p ()
a.s. By linearity of K, it follows that ( )I/ZU(m)(fs) ~q ¢+ Kp(f%) as. Hence,

lim (II) =0, a.s. (7.6)
n—>oo

For the third term in (7.4), note that

(i < c\JEK3(f¢) >0 (¢ —0) (7.7)

by the definition of Kp (cf. [14], page 176). Combining (7.4)—(7.7) and taking the limits as n — oo

followed by ¢ — 0, we see that (7.3) holds, and hence proving the finite-dimensional convergence.
For asymptotic equi-continuity, we need to prove that for any ¢ > 0 and 4§, — O,

IF’?(IIU(m)(f)H}-an > ¢g) — P 0. Hence, it suffices to prove that P(”U(m)(f)”]-‘a > &) — 0, or even

the stronger E|| U,E"g)( I 7, — 0. This can be checked using similar arguments as the proofs of The-
orem 3.1, and hence completing the proof. g

8. Proofs for Section 4

Proof of Theorem 4.2. For notational convenience, let

Due(f) =Dy (f) = Xi,).

Z Eil"'éimf(xilsu's
'<”) e

1

D, (f)= Dy (f) = D f Xy Xy,
ny . .

mz( ) et
m

and D(f) = P™ f. We claim the following:

(Claim 1) /n||6} — 6]l = Op, (1) in Px-probability, and \/E”é; — 6|l = Op(1).
(Claim 2) For any §, — 0,

max E  sup
2=k=m 90— || <8

I’l_k+1 Z éil"'Eikﬂk(fﬂ_f90)(Xi1""’Xik) —0.
17 Fik
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Proofs of these claims will be deferred towards the end of the proof. Then with gg = fy — fg, and
g0 = fo — fo, — P" (fo — fa,), we have

n(Dn.&(for) — Dne(fa))
=n(D(for) — D(fa,)) + nDu e[ (for — fa,) — P (for — fa,)]
+n(Dpg — D)(P" (for — fa))

1
=—5n(6y - 60) 'V (6; — 60)

L > & o = fa) Ky Xi) = P (o — o)
m'(Z) i1 FFim

> (&, — DP"(for — fay) +op(1)

n
m'( >117é FEim
m

(by assumption (M1) and Claim 1)

i1 i j=1

1 m
= —5n(67 —60) V(65 —60) + () o g g, Y M) (X))
m!

Z iy - &y Z Z ”k(gG”)(XI,I ljk)

m( >ll5‘é Fim 2<k<m ji<--<ji
m

( Z & ... &, — 1) n(D(for) — D(fa,)) + op(1)
m! (m> i) FFim

1
= —3n(67 —00) "V (67 — o)

i1=1 i2,..., Im:i1 7 Fim

+—" Zalm(ge;)<xil>< > s,»zmsl-m)
(m — 1)!(”)

n -
+ ) Gk~ D &y Em@e) Xy, Xiy)

2<k<m <”) s
m

X < Z ‘i:ikJr] $1m>

ik+la-~-,im:il7$i27é“'7£im

Z &y .-, — 1) -n(D(for) — D(fa,)) + op(1)

(m( >ll5‘é Fim
m

1
= —3n(6; - 60) "V (6 — 60) + (I) + (II) + (I) + op(1). ®.1)
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For (7) in (8.1), note that

(= —" > & mi (@) (Xi)

(m — 1! (Z) =1

><< > Eiy B — Y Siz-"éi,'-'&'m)
i j=2 2

(2, es b 27 Flm

..... im:

ij=i1,ip#Fim

= > & mi(ge)(Xi)

i1=1

x <$ > EyE,+ Op(n‘1)>
(m —1)! (:1) ir

,,,,, Imiia 7 Fim

= & m @ (Xi)
i1=1
n" R R PP -1
X T-Rm_l ;;Sl,,nm—_l;f; +Op(n )
m 1= 1=
= (14 op(1)m Y & m1(286:)(Xi)). (8.2)
i1=1

Here in the last equality we used Assumption A and the fact that R,,,_1(1,0,...,0) =1/(m — 1)!. For
(I1) in (8.1), note that

n

=Y Cok7—~ > & &m@o)Xips ..o, Xip) (8.3)

2<k=<m M\ Gty
m

X ( Z %—ik+1 §Im>

Tt 1seees i i\ FlpFEFim

= Z C,/n,k<n_(k_l) Z Eil"'Eikﬂk(ée,j)(xil,-~-,Xik))

2<k<m 17 Fik

X (n(mk) Z Sigar *Ei T 0P(1)>

Dkt 1seem kg1 7 Fm

=op(1).

Here in the last line we used Claim 2.
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For (ZI) in (8.1), note that

"m) Ry (%Za, niz Y OE. %Zs{") - 1) -Op(1)
i=1 i=1 i=1

= (—
<n

m
= op(1). (8.4)

Combining (8.1)—(8.3), we see that

n(Dn,g (fox) — D g (f90))

1
= —En(e,’f - QO)TV(G,T —60) + (14 op(1))m Zfzm(ée:)(xi) +op(1).
Since 71(8g) = 71 (fo — foo)(x) = (0 — o) - A(x) + (/160 — 6ol vV n=Y2)r (x, 0), it follows that

> & (for — fa)(Xi)

i=1

= (65 = 60) - D_&AX) + [[l67 = 6o v~ 2] Y ira(x.67)

i=1 i=1

= (65 — o) - ZE:’A(X,') + op(1).

i=1
Here we used the assumption (M3), |16, — 6|l = Op(n~'/?) and the multiplier inequality Theorem 2.2

with m = 1 (see also [21], Theorem 1) to conclude that |[[|6; — 6ol vn =213, &1 (x, 6)| = op(1).
Combining the above displays, we have

n(Dug(fo) — Dug(fay))
_ _én(@j —00) V(67 — 60) + (6} — o) - A%+ op(1), (8.5)
where A* =m - -+ Zl 1 & A(X:). Expand n(Dy ¢ (fg,+v- 1A*) — Dy, £(fg,)), we have
n(Dn,g(fgorv-1a:) — Dng(fay))
= —%n(AZ)TV’]AZ +n(V7IAY) - A +op(1)
1

En(A) VlAx +op(D). (8.6)

Combining (8.5)—(8.6), we have
1
5n(A;;)Tv—lA;; +op(1)

= n(Dnforv-1a2) = D (fa))



112 0. Han
< n(Du g (fo3) = D (far))
= —%n(é’: —60) V(6 —60) +n(6F —60) - AF +op(1),
which is equivalent to
n|VV2(6F —60) = VIPAE P =op(l) & Ju(6F—60) =V ' VaAL +op(1).
On the other hand, expanding n(Dy(f ) — Dx(fy,)) yields that ﬁ(@; —6p) = V_lﬁAn + op(1),
where A, =m - % > A(X;), and hence

I 1 <
V(6 =0,) =V 'WnAL +op() =V om NG D & = DAX) + op(l).
i=1

By Lemma 10.5, \/ﬁAi is asymptotically normal with covariance matrix m>c? - Cov(A) in Px-
probability, while \/nA, has asymptotic covariance m?> - Cov(A). The theorem then follows from
Lemma 10.6 and [37], Lemma 2.11, modulo the claims made in the beginning, the proofs of which we
will present now.

First, we prove Claim 1. To this end, let A = Anpin (V) /4 > 0. Then

|6 — 6o

NNl*—‘

n(0F —00) V(607 — 60) — |07 — 60|’ (= Zu)
w11

IA

565 —=00) TV (6;—60)— D(fog)+D(fyx) <1165 —60l1?

F 2oL 600 TV (03 -0~ D foy)+ D fy) > 116560 2
< —n(D(fsx) — D(f4,)) + op(1)(by assumption (M1))
=n(Dp.g — Dn)(for — fo,) +n(Dy — D)(for — fo,)
—nDy e (for — fo,) +op(1)
<n(Dng — Dn)(for — fo,) +n(Dn — D)(for — fo,) + op(1)
(by definition of 6;)
=n(0) —60o) - (A} + Ay) + op(1)
(by similar derivations as in (8.1)—(8.5) using Claim 2)
=Op(1) - V|6 — 6o + op(1).
Solving for a quadratic inequality we obtain \/n||6 — 6p] = Op(1), and hence by Lemma 10.6,

V6% — 6|l = Op, (1) in Px-probability. Similar arguments conclude that /n 18, — 6oll = Op(1)
and hence Claim 1 is proved.
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Next, we prove Claim 2. We only need to show that for any {§¢} such that §¢ — Oas£;A-- AL — O,
there exists some uniformly bounded sequence ay with ag — 0 as £; A - - - A £ — 0 such that

X 172
SCM(H&) ,
j=1
as i A--- Al — 00.

This can be proved following the strategy of that in Theorem 3.1, with a different choice of metric
and some resulting technicalities. We provide some details below for the convenience of the reader. Let

E sup

(n (k) (1) (k)
p oo eV emnx P, xP)
feFs,

I<ij=t;1<j<k

1
e%’k(f’ g)E —k 5 Z (nk(f_g))z(xilv"'vxik)v
1'[j=1 J1<ij<ej,1<j<k
1
G f=——— Y. (= Xip .. X

njzl Jl<ij=e;,1<j<k

Let ||f||%‘k = e%’k(f, 0) and re x (8) = Sup r 7 ||f||%’k. ‘We claim that there exists some Cy = Co(k) > 0
such that ‘

k
logN (e, me(F).ee) <Y > logN(e/Co. Fey....j): (8.7)
r=01<j1<--<j <k
where the metric e(j; ..., j,) is defined by

1
2 _ - 2
jrvenin) (1 8) = [P’" '® (W—g > b xi,r>>](f -8
9=1"Ja 1<ij, <t;, 1=q=r
To see this, note that
) k
(m(f =) ) <Y Y d [P = 9 iy,
r=01<iy<--<i,<k

holds for some constants {dk , : 0 <r <k}, and hence for some d; > 0,

k
Sfo=dY Y = Y P (X, Xiy)

k
r=01<ji<<j,<k l_[j:1 E/ I<ij<t;1<j<k

k
—4> Y Y o, X))

-
E .
pr iyl § AR I<ij, <tj,.1<q<r

r=01<ji<<jr<k
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7 k
Let dy = di Zr=0 Zlfj1<"'<jy5k 1. Then

k
log NV (&, i (F), eex) < Z Z log N (e/+/di, FreGy....in)s

r=01<jj<--<j <k

proving the claim (8.7).

Let || f ||%j1 A e(zjl .... i ( /5 0). By a conditioning argument and the entropy maximal inequality
for Rademacher chaos process (cf. [14], Corollary 5.1.8), similar to (7.1) we have, with the notation
Fs=1{fo — fo, : I8 — Oll <} (and F similarly defined as in the beginning of the proof of Theo-
rem 3.1)

1 k
Yoo eV ePm (X X)) |

172
Tz e I<ij<t;,1<j<k Fs

7,k (8) k2
<C / (log N (g, ik (F), eg.x))"' ~de
0

Corg x(8)

<sz > f (logN'(e, F. ey i) de

r=01=<ji<-,jr<k

(using the claim (8.7))

k
=G> Y FlG...

r=01<ji<,jr<k

k
<Gy Y NFlNG

r=01<ji <. jr<k

k24

Carg k(9)
x/o sup(logN(5||F||L2(Q) F, Lz(Q))) (8.8)

Here F is an envelope for & which we assume without loss of generality F > 1. By Proposition 10.1,
WENGy,ojy —>p WFLypy @s €9 A -+ ALy — 00. So we only need to show that rg ;(8) —, 0 as
L1 A -+ AL — oo followed by § — 0, which reduces to show that

1
— Y (@K Xi) = Pr(f)7)| =5 0

sup
[Tj=1¢s I<ij<t;1<j<k

reFs

as £1 A --- A €y — oo. This can be shown using similar arguments in the proof of Theorem 3.1 by
applying Proposition 10.1. The entropy term involving mx (F) can be handled using (8.7) and the above
arguments. ]
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9. Proofs for Section 5

9.1. Proof of Theorem 5.1

Proof of Theorem 5.1. The proof follows the idea of the proof in Theorem 4.2. For notational sim-
plicity, let

1 §i §i,
DN =—F7os 20 ho Ko Xiy),
m! ( ) i i ! m
m
and D(f) = P" f as usual. Further let n; = &; /7; and g9 = fo — fo,- We claim the following:
(Claim 1) /N[0 — 6oll = Op(1)
(Claim 2) For any §y — O,

N7y migm(fo = fa) X+ Xi)| = op(1),
17

max sup
2<k=m g:||0—6y|| <5

Then using similar arguments as in the proof of Theorem 4.2, we have

_ .
VN(BF —60) =mV™" - —=" " mAX:) +op(D),
N i=1

as desired, modulo Claims 1 and 2. Claim 1 can be proved along exactly the same lines as that in the
proof of Theorem 4.2. Now we prove Claim 2. Note by Proposition 10.3 and using the same notation
as in the proof of Theorem 4.2

E sup Z Miy i T ()Xo Xi)
fG}—SN i1,.
<E _max_osup | ) m(H) (X X

feFsylij<tj:j=1,..k

1 k
<C-E max sup E ﬂk(f)(Xlgl),--.,Xi(k))‘
1<ly,..0k<N . _# |. -
JeFoylij<t;ij=1,...k

(using the same proofs as in [14], Theorem 3.1.1)

£
=C. ]E|:EX<1) max sup Z Z nk(f)(Xl.(ll),...,Xi(f))

1<t <N
1o b= FeFsyliv=1ij<t;:j=2....k

|

£
CIE|: xo _max s |0 Y (XD, X )

1<t <N
Lo b=V p e By T2t =2k

|

N
+ Z ]EX<1)7Tk(f)(Xi(ll)v e Xi(:))

i1=f1+1
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(by degeneracy of 7y (f))

<C-E max sup
1<ly,...¢k<N ,_=F
feFsyt

(by Jensen’s inequality)

S .
1 k
<C-Esup | > nk(f)(xfl),...,xfk>)‘.
feFsy'1<iy,....ix<N
From here the proof of Claim 2 proceeds along the same lines as in the proof of Theorem 4.2. ]

9.2. Proof of Theorem 5.2

Proof of Theorem 5.2. Let f x)=Ef(x, X2,..., X;n). Note that with the usual notation n; = &; /7;,
and by similar arguments in the proof of Theorem 5.1,

S miy i f Xy X))
m'( )H# Fim
m

Z UITRE -mme(Xi,)

m. >ll5‘é ?élm j:]
m
Z Niy=--1M Z Z ”k(f)(Xl,l . z,k)
m'( )117é Fim 2<k<m]1< ~<Jjk
m

= (1+o(1))mP}, f 4+ C1Ay

where

Ay < Exy = max Nk sup
2<k<m feF

D mi o mim ()X X)) .
17 Fig

In other words, ﬁ,’ is a Co A y-empirical risk minimizer of arg min FeF P% f. The key observation here
is that Ep (f) = Ep(f). On the other hand, it is shown in [22], Theorem 4.1, that

P( v [P 1‘ ) 3/4)
feFEntpzry EPC)
N
3 s 1 §i
<T /C3+P(—N§<n—i—l> >t>
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Here the constants {C;} only depend on g, k. Hence,
P({ep (FF) = ra} n{An =ry/GC))
<P({ep(F7) = i} n{eey (7)) <ri/4))

Epr, (f) B
Er(f)

A

<P sup
feFEp(f=rk

1‘ z3/4>

< &e—s/c,z +]P’(
s

This implies that
P(er(fY) 2 7)

> t) +P(Ay > ry/(4C2))

as long as K| > 24/C3. To handle the third probability in the last display, note that for any p > 1, by
Proposition 10.3 and [14], Corollary 5.1.8,

EAR <EE}
p
> m(HKiy o Xiy)
17k

<! max N=kP/2 pp/Clm) — Cé’N—ppp/(Z/m).

2<k<m

<C? max N~*PE sup
2<k<m feF

This means that P(NAy > u) < C7e_“2/m/ €7, Combining the estimates in the above displays proves
the claim of the theorem. ]

10. Auxiliary results

Proposition 10.1. Ler {X;} be i.i.d. random variables with law P. Let H be a class of measurable
real-valued functions defined on (X™, A™) with an P™-integrable envelope such that the following
holds: for any fixed 6 >0, M >0, 1 <k <m,

max (10.1)

1=<j'<k

<logN<a, mH)m, €e,j/)>1/2 o
j
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holds for any £1 A --- A&y — 00. Here for £ = (£1, ..., L) and {X,-}?il,

L

1
i (fR=7

J iy=1

1
- 5 (f_g)(xlssxl)
ol Z ! k
Mzt 1<ij<tj:j#]

’

and (mH)m = (hlp,<m : h € miH}, where Hy is an envelope for iy H. Then

1
sup

Yoo (X X)) - P’"h)‘ -0
heH

[Tiz &
k=178 1 <jy <ty 1<k<m

inLyas i A--- ANy — 00. The above display can be replaced by the decoupled version.

Remark 10.2. Note that for any 1 < j’ <k,

L
' 1
A(f. ) = — - — Xy, Xi
()= 2. M.t ) - it)
=112 TS i<t
1
S D el Xy, Xi)

1_[] le/ 1<ij<t;,1<j<k

1 1/2
s(n— > (f—g)%xil,-.-,xik)),

Jj IZJ I<ij<t;,1<j<k

so we may use {»-type metrics to verify the condition (10.1).

Proof of Proposition 10.1. Without loss of generality we assume that 7 is P -centered. By decou-
pling inequality (more precisely, the proof of [14], Theorem 3.1.1), we only need to show

m; >oooonx L x™M)| > o. (10.2)

E sup
i
[T b 1<ip<t,1<k<m

heH

Note that by expanding h(x;,, ..., x;,) = (S,Cl.l — P+ P)x (8xim — P 4+ P)h, we have that

Yoo a(x(), ...,Xl.(:))‘

‘l_[k 1 k 1<ip<ly,1<k<m

> B D DR GO e

<Cn
14
k=1 oy ] 1 *ox(j) <io (j)<lop(jp:1=j<k

)
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where the summation over o} runs over all possible selections of subsets of {1, ..., m} with cardinal-
ity k. Since i h is degenerate of order k — 1, it follows by a simple conditioning argument that

E sup Z (mch)(XFG"(l)), .. X(U"(k)))‘

log (1) A (5)
het 1=<ig () <lop(p:1=j=<k

S D e |

1<io (1) <toy (1) ~1=ioy () <loy(j)»
2=j=<k

(ox (1)) (0% (1)) (o (k))
Z |: Z Siak(l) (nkh)( log (1) ""’Xiak(k) )]H

1Sl'ak(l)feak(l) lfiak(j)flak(j)v
2<j<k

= ]E{Exak(l) sup
heH

< E{Exaka) sup

heH

(by symmetrization for empirical processes)

_ (ox(1) (or(1) (ox (k)
=E sup Z ek (ih) ( ik X )
WMl <ig, () <to i,

1<j<k

_ (ox (1)) (ox(2) ; . (ox (k) (ox (1)) (ox (k)
_I[<I:u7;_)'5 Z (eiak“) +E8iak(2) + +E8iak(k) ) Greh) ( o ""’Xigk(k) )‘
S <io () <lo ()

1<j<k

(ox (1)) (0% (2)) (0% (k)) (0% (1)) (ox (k))
EE::% Z (Ei"k“) +8if’k<2> +“.+8i”k(k) )(m‘h)(Xiak(l) ""’Xiak<k> )’

1<igy (j) <loy (j)-
1<j<k

(by Jensen and independence of decoupled Rademachers)

<E sup
heH

Z (gio'k(l) + eigk(z) +--- 4+ giak(k))(nkh)(xio'k<l) gy Xio'k(k))
=i () =Lop(j):
i<j<k

(by undecoupling inequality [14], Theorem 3.1.2)

k

§Z]Esup

Ei (eh) (X, OO R Xi, (k>)
heH Z K ‘ ‘

1=<ioy (jy<loy (j) 1= =<k

=1

Combining the above displays yields that

1 0 (m)
]ESllp I—[m—ﬁ Z h(Xil ""’Xim )
heHI k=1%o <o 1<k<m
= 1
= Cm Z Z Z E Sup k Y) . Siak(j’) (nkh)(Xiak(l) e Xiak(k)) :
k=1 ox 1<j<k N€H Hj=1 k() 1<igy (jy <oy (j)-

1<j<k
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Hence for (10.2) to hold it suffices to prove the following claim:

max [E sup -0 (10.3)

I<j'<k  pheH

Z &i; (meh) (Xiys ..o, Xiy)

J1sij=t;1<j<k

k
Hj:l ¢

holds for any 1 <k <m and £{ A --- A £; — oo. Recall that H® is the envelope for H® = m H.
Then

1
max E sup|——— &, mh)(X;,, ..., X,
max Esupl o > ay X, i)
j=1%J I<ij<t;,1<j<k

< max E sup

&, (mphl Xi, .., X;
Tk pen 1_[]; 1 £ Z iy (B L <)X i

=1YJ 1<ij<t;,1<j<k

+ PkH(k)lH(k)>M.

The second term in the above display vanishes as M — oo by the integrability of H®, and hence we
only need to show that

1
— > si, h(Xiy, .., Xi)| > 0 (10.4)

max E sup
[Tj=1¢ I<ij<t;,1<j<k

i
1<j'<k he%;@)

holds for any £ A --- A £ — oo followed by M — oo. To see this, fix I < j' <k and § > 0, let 7—[5{25

be a minimal §-covering set of 7—[5{,;) under ey ;. Then

1
E; sup — Z 8ij/h(X,'l,...,Xik)
heﬂﬁﬁ’ Hj:lej I<ij<€;,1<j<k
1
<é+E; sup |—F— Z Si.,h(Xil,...,Xik)
(k) k E J
heHy s Vj=1"7 1<i;<t; 1<j<k
C Ly 2 1/2
k
<8+ — ¢%N@Jﬂ}qj)wp[z: > hamnqxw>}
=ity hey)s Liy=1 Msij<t;:j2)

(by subgaussian maximal inequality, cf. [38], Lemma 2.2.2)

53+TFSEWA%Aa&H$%q¢y(Mv@?f14>
J

j=1 J#i

log N'(8, 1\ eq ;1) ) 172

S8+CM<
ey
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Hence for any § > 0, by the assumption,

1
max E sup —_ Z 8ij,h(Xil,...,Xik)
l=j'=k heH%;) Hj:lzj I<ij<t;1<j<k
log N'(8, H\Y, eq i\ /2
<5+ CM max E( gN( “)> -0 (10.5)
1<j’<k Zj/
as {1 A --- Ay — oo followed by 6§ — 0, completing the proof. O

Proposition 10.3. Suppose Assumption B holds. Then with n; = &; /w;, foranyr <m, and p > 1,

p
Z 771'1"'nirf(Xil”"’Xi”’)
F

I<ii,...im=n

E

p
Z fXiy, oo X)) .

I<ip<ly,1<k<r,
1<ig<n,r+1<k<m

< (1/7t0)’1’IE1 max

<li,..=<n

Proof. The proof is essentially a variant of the proof of Theorem 2.2 so we only sketch some details
here. Let n¢1y > - -+ > n(,) be the reversed order statistics of {»;}. By using n¢) = Zezi(’?(i) —Ne+n);
we have

p
E Z nil.”T]irf(Xil""’Xim)
1<iyyensim<n F
=E| Z Z ey = ne+1) - ey = Neg+1)
1<ip,...ipm<nl>ig,1<k<r
X f(Xiys o X I
p
< E[( Z (e = ne+0) - (e — n(z,+1)))
1<ly,...8,<n
p
xl<lma)é< Z S Xy, oo, X)) i|
== s <1<k, F
1<ix<n,r+1<k<m
p
=< P'E Xifyooo, Xi
=(/m)"E _max | D 1O NS ] I
1<ip <y, 1<k<r,
1<ig<n,r+1<k<m
as desired. g
Below we collect some technical lemmas that will be useful in the proofs.
Lemma 104 (Lemma in [23]). Let (§1,...,&,) be a non-negative vector such that Y ;_ & =

n. Let R = (Ry, ..., Ry) be a random permutation of {1,...,n}. Then for any | € N and a =
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(@r,...,a) €N,

n diai/2
<Cran™' {Z(&- — 1)2} :
i=1

l
Er []‘[(éR,- — 1)“11

i=1

The following result is taken from [38], Lemma 3.6.15.

Lemma 10.5. Let (a;, ..., ay) be avector and (&1, ...,&,) be a vector of exchangeable random vari-
ables. Suppose that

1o I ¢ Iy
Gp==3 ai=0, 3 ai—o’,  lim limsup =3 el -y =0,
i=1 =1

£ M—00 psoo N4
i=1 i

and

S 1 ¢ 1
bo=—) &=0, -} goptl - maxE—p0.
i=1 i=1

nl<i<n
Then = Y1 ai§i ~a N'(0,077%).
The following result is taken from [11], Lemma 3, or [39], pp. 53.

Lemma 10.6. The following statements are valid.

(1) Ay =O0p(1) ifand only if Ay = Op, (1) in Px-probability.
(2) Ay =op(l) ifand only if A, = op, (1) in Px-probability.

Definition 10.7. A function class F is a-full (0 < o < 2) if and only if there exists some constant
K1, K> > 1 such that both

log N (e[| FllL,@,). F. L2(Pn)) < K167%,  as.
foralle > 0,n €N, and
og N (o || FllLo(py/ K2, F, La(P)) = Ky 'o™

hold. Here o' = sup rer Pf 2, F denotes the envelope function for F, and PP, is the empirical measure
for i.i.d. samples X1, ..., X,, with law P.

The following result is taken from [15], Theorem 3.4.

Lemma 10.8. Suppose that F C Loo(1) is a-full with o? = SUp re F Pf% If no* >, 1 and
ﬁ0(||F||L2(p)/a)“/2 2o 1, then there exists some constant K > 0 depending only on «, K|, K»
such that

2
K1ﬁ0<||F||L2(P)>a/ <E

o o

- a/2

F
Eé‘if(Xi) SKﬁg(M) '
i=1 7
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