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OPTIMAL IN GENERAL DIMENSIONS
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Entropy integrals are widely used as a powerful empirical process tool
to obtain upper bounds for the rates of convergence of global empirical risk
minimizers (ERMs), in standard settings such as density estimation and re-
gression. The upper bound for the convergence rates thus obtained typically
matches the minimax lower bound when the entropy integral converges, but
admits a strict gap compared to the lower bound when it diverges. Birgé
and Massart (Probab. Theory Related Fields 97 (1993) 113-150) provided
a striking example showing that such a gap is real with the entropy struc-
ture alone: for a variant of the natural Holder class with low regularity, the
global ERM actually converges at the rate predicted by the entropy integral
that substantially deviates from the lower bound. The counter-example has
spawned a long-standing negative position on the use of global ERMs in the
regime where the entropy integral diverges, as they are heuristically believed
to converge at a suboptimal rate in a variety of models.

The present paper demonstrates that this gap can be closed if the models
admit certain degree of “set structures” in addition to the entropy structure.
In other words, the global ERMs in such set structured models will indeed
be rate-optimal, matching the lower bound even when the entropy integral
diverges. The models with set structures we investigate include (i) image and
edge estimation, (ii) binary classification, (iii) multiple isotonic regression,
(iv) s-concave density estimation, all in general dimensions when the entropy
integral diverges. Here, set structures are interpreted broadly in the sense that
the complexity of the underlying models can be essentially captured by the
size of the empirical process over certain class of measurable sets, for which
matching upper and lower bounds are obtained to facilitate the derivation of
sharp convergence rates for the associated global ERMs.

1. Introduction.

1.1. Overview. Empirical risk minimization (ERM) is one of the most widely used sta-
tistical procedures for the purpose of estimation and inference. Theoretical properties for
various ERMs, in particular in terms of rates of convergence, have been intensively inves-
tigated by various authors [2—4, 24, 39-42, 44, 47, 48], in a number of by-now standard
settings. To motivate our discussion, let us focus on the standard Gaussian regression setting:
Let X1, ..., X, be i.i.d. covariates taking value in (X', A) with law P, and the responses Y;’s
are given by

(1.1) Yi=fo(X)+&, i=1,....n,

where &;’s are i.i.d. N (0, 1), and fj belongs to a uniformly bounded class F C Lo (1). One
canonical global ERM in the regression model (1.1) is the least squares estimator (LSE):

fue argminZ(Y,- — f(X,-))z,

fe]-' i=1
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The performance of ﬁ, is usually evaluated through the risk under squared L; loss E 4 || ﬁ —
f0||% L(P) OF its “probability” version.

The seminal work of Birgé and Massart [4] (and other references cited above) shows that
an upper bound r2 for the risk [E ¢ || fu— foll? 1,(p) can be obtained by solving

(12) /2 Jog (e, F, La(P)) de =< v/ - 72.

Here, Np(¢, F, LZ(P)) is the e-bracketing number of F under L,(P). On the other
hand, a lower bound r for the risk, often evaluated in a minimax framework, that is,
mff supfoef]EfO ||fn f0||L2(P) > gﬁ, can be obtained (cf. [3, 49]) via a different equation

(13) ray10g N (£, F. La(P)) = v/ - £2,

where N (¢, F, Ly(P)) is the e-covering number of F under L, (P). Note that the left-hand
side of (1.2) is no smaller than the left-hand side of (1.3), so we always have r,, < 7,,. Suppose
for now that the difference in the covering and bracketing entropy can be ignored, and it holds
for some « > 0 that

(1.4) log NV (e, F, La(P)) < log Np(e, F, La(P)) =< e~ 22,

The parameter o > 0 measures the complexity of F, and is closely related to the “smooth-
ness” of F, cf. [16, 44, 45]. Solving the equations (1.2) and (1.3) yields that

- . S W _
(1.5) r,=<n_ 20+, o = (n” 2@ v T ) logl(“—l)n'

Modulo the logarithmic factor in the boundary case o = 1, we see a somewhat strange phase-
transition phenomenon:

o Ifae(0,1),0 <liminf, 7, /r, < lim,, Fn/r, < oo. In this regime, F is Donsker since a
central limit theorem in £°°(F) holds for the empirical process due to the convergence of
the bracketing entropy integral at O; cf. [47], Section 2.5.2.

o If @ > 1, liminf, r, /r,, = co. In this regime, F is non-Donsker since there does not exist
a central limit theorem in £°°(F) for the empirical process—the limiting Brownian bridge
process indexed by F is not sample bounded.

Although at this point (1.2) only gives an upper bound for r,,, Birgé and Massart [4] showed
by a stunning example that in the regime o > 1, r,, can actually be attained (up to loga-
rithmic factors) for the global ERM (called “minimum contrast estimators” therein) over a
slightly constructed F based on Holder classes on [0, 1] with smoothness less than 1/2.
Consequently, there is a genuine gap between the upper bound r, and the lower bound r,,
obtained from general empirical process techniques based on L, entropy structures (1.2) and
(1.3) alone, in the regime o > 1.

The counterexample in [4] results in a long-standing negative position on the use of global
ERMs in the regime o > 1, as they are heuristically believed to be rate-suboptimal in vari-
ous problems falling into the non-Donsker regime, beyond the natural setting of Holder-type
smoothness classes; cf. [18, 23, 37, 44], just to name a few references. A common (but per-
haps vague) heuristic is that when o > 1, the class F is too “massive” for global ERMs to
achieve the optimal rate.

It should be mentioned that the rate suboptimality phenomenon is due to the global nature
of ERM that searches over the entire parameter space, since it is easy to construct a “theoret-
ical” rate-optimal estimator by searching over certain maximal packing sets of F even in the
regime « > 1 (usually known as the “sieve” estimator [17, 28]). For instance, the LSE over a
maximal r,-packing set of F typically leads to the desired optimal rate of convergence. Such
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a theoretical construction often occurs in a minimax approach for a given statistical model;
cf. [5, 18, 30].

At a deeper level from the perspective of empirical process theory, the upper bound (1.2)
comes from the Dudley’s entropy integral, and the lower bound (1.3) is inherited with Su-
dakov minorization. From the recent work [7, 22, 36, 43], it is now understood that the risk
r,% =E f0||f;l — f0||%2( p) can be completely characterized (at least in the simple Gaussian
regression model with uniformly bounded F), by the following (not fully rigorous but essen-
tial)! equation:

(1.6) E sup G ()] < /n-r2.
feF=fol fllL,py<rn

Here, G,, = \/n(P, — P) is the empirical process. Since Dudley’s entropy integral provides an
upper bound, while the Sudakov minorization gives a lower bound, for the empirical process
in (1.6) as soon as it enters the “Gaussian domain” (= for n large in our case), the only
possibility for which r, and r,, do not match lies in situations where the entropy integral
bound deviates substantially from the Sudakov minorization. This is indeed the case in the
non-Donsker regime « > 1: under a variant of the L, entropy condition (1.4) (see (2.7)),
standard bounds lead to the estimates

(1.7) n @ D@D < sup |G, (f)| S n@ D/,

feF
The upper and lower bounds above do not match, and neither of them can be improved with-
out further structural assumptions. In particular, (1.7) leads to the discrepancy between 7, and
r,, in (1.5) for non-Donsker F’s.

Despite the strong suspicion in the literature (cited above) that the actual rate r,, of global
ERMs will likely match r,, which has a strict gap compared to the minimax lower bound r,,,
there appears recently some surprising special cases in which global ERMs are proved to be
rate optimal even in the regime o > 1. One example is given by the multiple isotonic regres-
sion model studied by the author in [20]. When d > 3, by the entropy estimate in [14], the
class of multiple isotonic functions is in the non-Donsker regime « > 1, but interestingly [20]
proved that the natural LSE (= global ERM) is still minimax rate-optimal (up to logarithmic
factors) in L, loss. The proof techniques in [20] are rather intricate and somewhat indirect,
so they unfortunately do not shed light on why the LSE must be rate-optimal (see Remark 5.5
for more technical details).

The purpose of the present paper is to demonstrate a general underlying mechanism for the
rate-optimality phenomenon for global ERMs beyond the isotonic LSE in general dimensions
as mentioned above. This amounts to the identification of a sub-family of J’s satisfying the
L» entropy condition (1.4) (or see its variant (2.7)), in which the the associated global ERMs
remain rate-optimal. As one may expect, the key step is to close the gap between the upper
and lower bounds in (1.7) under suitable structural assumptions on F, and for the purpose of
rate-optimality, one should aim at improving the upper bound 1n®~1D/2¢ to match the lower
bound n@=D/2@+D i5 (1.7). We show (cf. Theorem 2.1) that this is indeed possible for
F C Lso(1) in the non-Donsker regime « > 1, under a stronger L entropy condition:

(1.8) log Vi (e, F, L1(P)) <e™ 2.

An important class of F that verifies (1.8) is the class of indicators indexed by a class of
measurable sets. More specifically, for a class of measurable sets ¢, as the L1(P) size of

1Rig0rously, rp is determined by the location of the maxima of the map r — sup re 7_ 7. 7| Ly =T GuEf —

fz) - ﬁrz provided it exists uniquely; cf. [22, 43]. For Gaussian errors &;’s and uniformly bounded F, the order
of r; can typically be obtained by matching upper and lower moment estimates for the LHS of (1.6).
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any element 1¢ where C € % is the same as its squared Ly (P) size, (1.8) is automatically
verified provided the L, entropy condition (1.4) (or (2.7)) is satisfied. Therefore, under the
prescribed L, entropy condition alone, as long as the L,-size of € is not too small, it holds
for o # 1 that
(1.9) E sup |G,(C)|=max|o!™® n@-D/2@th)

Ce%€ (o)
Here, €(c) = {C € € : P(C) < o2}, and for a measurable set C, G,(C) = G,(1¢). For
a > 1, the empirical process (1.9) is in the non-Donsker regime, and our estimate (1.9) is still
sharp in this challenging regime thanks to the improved estimate of the generic bound (1.7)
due to the L entropy condition (1.8).

In light of (1.9), we will show that in models with certain “set structures,” the global
ERMs will achieve the minimax optimal rates of convergence, that is, r, < r, <r, (up to
logarithmic factors) even in the regime « > 1 when the entropy integral diverges. Here, “set
structures” are interpreted broadly in the sense that the size of the underlying empirical pro-
cess (1.6) indexed by F can be characterized by an empirical process indexed by certain class
of measurable sets for which an estimate of the type (1.9) is possible. This concept will be
illustrated throughout a detailed study on the risk behavior (or rates of convergence) for the
natural global ERMs in the following models:

1. Image and edge estimation;

2. Binary classification;

3. Multiple isotonic regression (revisited);
4. s-concave density estimation,

all of which will be considered in general dimensions, where the problems necessarily fall
into the non-Donsker regime « > 1. In the special case of the multiple isotonic regression
model, our new techniques present a much easier and intuitive proof (compared to the pre-
vious work [20]) that explains the reason why the natural least squares estimator is indeed
rate minimax (up to logarithmic factors) for d > 3—the complexity of the isotonic LSE is
captured by that of the class of upper and lower sets that arise naturally in the min-max
representation of the isotonic LSE; cf. [35].

1.2. Related works. Prior upper bounds for the empirical process (1.9) in the regime
« > 1 are obtained in, for example, [12], Theorem 2, or [13], Theorem 11.4, with additional
logarithmic factors and in the weaker “in probability” form. This paper provides stronger
matching upper and lower bounds for the expected supremum of the empirical process in
(1.9), and in fact the bounds hold in much greater generality; see Theorem 2.1 for precise
statements.

The major part of this work is based on Chapter 4 of the author’s University of Washington
Ph.D. thesis in 2018. During the preparation the paper, the author becomes aware of the very
nice work [9] which derives, among other things, global risk bounds for the log-concave
(= 0-concave) maximum likelihood estimators (MLEs) based on a reduction scheme of [6]
and an upper bound similar to (1.9). Here, we prove that the rate-optimality in example (4)
holds for the maximum regime of s in which the s-concave MLE exists. See Remark 3.9 for
more technical remarks.

1.3. Organization. The rest of the paper is organized as follows. Section 2 is devoted to
the new upper and lower bounds for the size of the empirical process indexed by a class of
functions satisfying certain special entropy conditions that includes the class of measurable
sets. Applications of these new bounds to the models mentioned above are detailed in Sec-
tion 3. For clarity of presentation, proofs are deferred to Sections 4-5, and the Supplementary
Material [19].
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1.4. Notation. For a real-valued random variable § and 1 < p < oo, let |&], =
(E|£|7)!/P denote the ordinary p-norm.

For a real-valued measurable function f defined on (X, A, P), | fllL,cp) = fllp.p =
(P|fI1”)V/P denotes the usual L ,-norm under P, and || flooc = sup,cx|f(x)|. f is said to
be P-centered if Pf =0. L, (g, B) denotes the L, (P)-ball centered at g with radius B. For
simplicity, we write L, (B) = L,(0, B).

Throughout the article, €1, ..., &, will be i.i.d. Rademacher random variables independent
of all other random variables. C, will denote a generic constant that depends only on x,
whose numeric value may change from line to line unless otherwise specified. a <, b and
a Zx b mean a < Cyb and a > Cyb, respectively, and a <, b means a Sy b and a >, b
[a < b means a < Cb for some absolute constant C]. For two real numbers a, b, a V b =
max{a, b} and a A b = min{a, b}. Slightly abusing notation, we write log(x) = log(e V x),
and loglog(x) = log(e Vv log(e V x)).

2. Empirical processes indexed by sets.

2.1. Setup and assumptions. Let X1, ..., X, be i.i.d. random variables with distribution
P on a sample space (X, .A), and € be a collection of measurable sets contained in X. To
avoid measurability digressions, we assume that % is countable throughout the article. For
any o > 0,let €(0) ={C € € : P(C) <0o?)}.

Following the standard notation for covering and bracketing numbers (cf. [47], pp. 83),
for a normed linear space (F, ||-||), let the covering number N (g, F, ||-||) be the minimum
number of balls {g : ||[g — f|| < ¢} of radius € under ||-|| needed to cover F. Let the bracketing
number Nj.j(e, F, ||-||) be the minimum number of ¢-brackets under |-|| needed to cover
F, where an e-bracket [¢,u]={f : ¢ < f <u} with |lu — £] < &. Following the notation
in [13], p. 270, (7.4), let Nj(¢, %, P) be the e-bracketing number for " under P, that is,
Ni(e, €, P)=Np(e, 14, L1(P)) with 14 = {1¢ : C € €}.

ASSUMPTION A. Fixa > 0.

(E1) logNi(e, %, P)<Le™“.
(E2) log N (g/4,%(/e), P)> L™ 'e7,

For examples satisfying the above entropy conditions see, for example, [13], Sec-
tions 8.3/8.4, or Theorem 8.3.2, on the class of upper/lower sets and convex bodies (cf. [13],
Theorem 8.4.1/Corollary 8.4.2). L will be a large enough absolute constant throughout the
article, the dependence on which will not be explicitly stated in the theorems.

For 0 < o < 1, the bracketing condition in (E1) can also be replaced by a uniform entropy
condition sup, log N(e, €, Q) < Le™®, where the supremum is taken over all finitely dis-
crete probability measures Q. Such a uniform entropy condition is satisfied if € is a VC-class
(cf. [16], Section 3.6).2 This case is essentially covered in [15].

2.2. Upper and lower bounds. We first state the general upper and lower bounds for
empirical processes indexed by general function classes satisfying certain entropy condi-
tions.

2Baraud [1] advocates the notion of weak VC-major class as a generalization of VC-major class. The class of
indicators over a class of sets € is weakly VC-major if and only if 4 is VC (cf. [1], Definition 2.2).
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THEOREM 2.1.

L. Fix p=1. Let F C Loo(1), and sup s || fllL, < 0. Suppose there exists some a > 0

such that for all ¢ > 0, 1og N{(e, F, L,(P)) <Le *. Then

E sup |G, (f)|
feF
i 2)—a}/2 —-1/2 _—
2.1) Sa,p 05;25/2{(01a<p/\2 =+ Vlot>p/\2){(p/\ )=/ +n / o %+ ﬁy}
gl PrD=al2 4 =1 2g e, a<pA2
= a—pA2 a—pA2

nTe =0 407 2 4+n V267% a>pA2.

2. Suppose that the following entropy estimate holds for some o > 0:

22) log N1j(e2, F. Li(P)las1 + L3(P)1og<1) < Le™.

Then for o2 2z n~Veth o # 1, we have

(2.3) E sup |G,(f)| <o max{o!™®, nl@- /2@ty
feF(o)

3. Ifin addition to (2.2), it holds that

(2.4) log N (e/2, F(e), Ly(P)) = L™ 1722,

Then for o> > n= 1@+ o £ 1, we have

(2.5) E sup |Gu(f)| Ze max{al_“, n(“_l)/z(“+l)}.
feF(o)

Here, F(o)={f € F: Pf* <o?}.
PROOF. See Section4. [

REMARK 2.2 (Comparison to classical bounds). By the standard local maximal inequal-
ity for the empirical processes (cf. [47], Lemma 2.14.3), we have for o > 0 not too small,

(2.6) E sup |G,(f)| < inf /z{ﬁy + [U \/log./\/'[.](s, F, Lz(P))ds}.
<o y

feF (o) O<y=<
Suppose F C Lo (1) satisfies the L, entropy condition:
2.7) e <log N (e, F(2¢), La(P)) <logNpj(e, F, Lo(P)) Se™ 2.

In the Donsker regime o < 1, standard upper bound (2.6) and the lower bound (2.5) al-
ready match each other under (2.7). In the non-Donsker regime « > 1, these bounds lead to
(1.7) whose upper and lower bounds do not match, both of which can be attained for cer-
tain instances of F satisfying (2.7). This means improvements for the generic bound (1.7)
must require additional structural assumptions on F. As the L entropy condition (2.2) along
with F C Loo(1) implies the rightmost part of (2.7), it follows that within the family of
F C Loo(1)’s satisfying the Ly entropy condition (2.7) with & > 1, if in addition the stronger
L entropy condition (2.2) is satisfied, then the upper bound in (1.7) can be improved from
n@=D/2¢ 1o p@=D/2@+D that matches the lower bound.

An important family of F satisfying the L entropy condition (2.2) is the class of indicators
over measurable sets. We formalize the results below.
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THEOREM 2.3.  Suppose (E1) holds and 6> > n=1/@+D o £ 1. Then

E sup |Gn(c)},Samax{ol_“’n(a—l)ﬂ(a+l)}'
Ce% (o)

If furthermore (E2) holds, then

E sup |G,(C)|=q maxfo!™, ple=D/2@+hy
Ce% (o)

PROOF OF THEOREM 2.3. (2.2) is verified using the fact that for any measurable set C,
with f =1¢c wehave Pf = sz. (2.4) can be verified by noting that N (¢/4, C5(\/?), P) =
N(VE/2, F(\€'), Ly(P)) holds with F = {1¢ : C € €} and any ¢, ¢’ > 0 (and similarly
for the covering number). [

REMARK 2.4. Some remarks on the upper bounds in Theorems 2.1 and 2.3:

1. Roughly speaking, the improved estimates (2.1) compared to the classical bound (2.6)
come from careful L, chaining with bracketing that provides tighter controls at the finest
resolution of the chaining step; see Section 4.1 for some heuristics and details.

2. It is also possible to consider the boundary case o = 1 in Theorem 2.3. Then the upper
bound deviates from the lower bound by a logarithmic factor. In particular, suppose (E1)—(E2)
hold and 6 2 n™1/2. Then 1 SEsupcey (o) |Gn(C)] < logn.

REMARK 2.5. Some remarks on the lower bounds in Theorems 2.1 and 2.3:

1. The proof for the lower bound (2.5) is based on Gaussian randomization followed by
an application of the multiplier inequality derived in the author’s previous work [22] that
removes the effect of Gaussianization. This only requires some sharp upper bounds for the
unconditional processes, as opposed to the approach of [15] using Rademacher minorization,
which requires sharp upper bounds for conditional processes.

2. Condition (2.4) is also assumed in [15] under the name “«-fullness” (cf. Definition 3.3
therein). This condition is best verified on a case-by-case basis. For instance the o-Holder
class on [0, 1] is a-full; cf. the proof of Lemma 6 in [22].

3. Rate-optimal global ERMs. In this section, we apply the new bounds derived in the
previous section to several models including (i) image and edge estimation, (ii) binary classi-
fication, (iii) multiple isotonic regression, and (iv) s-concave density estimation, all in general
dimensions. Global ERMs in these models are non-Donsker problems in general dimensions,
but we will show that in each of these models, the underlying empirical process problem (1.6)
can be essentially characterized by an empirical process indexed by certain class of measur-
able sets. The bounds in Theorem 2.3 can then be used to prove that these global ERMs
converge at an optimal rate (up to logarithmic factors), rather than a strictly sub-optimal rate
as predicted using the entropy integral (= (1.2)) in [4]. Interestingly, Theorem 2.3 is typi-
cally applied without the localization. This is viable as the size of the expected supremum of
empirical process is already diverging in the non-Donsker regime, so localization is usually
uninformative.

3.1. Image estimation. Let X1, ..., X, be i.i.d. samples with law P on a sample space
(X, A). In this subsection, we consider the regression model:
(3.1 Yi=1c,(X))+&, i=1,...,n.

This model has been considered by [25, 26] and more recently by [5] under the name “image
estimation” (cf. [26], Section 3.1), where Cy is considered as the “image,” and X \ Cy is
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considered as “background.” We assume for simplicity that the &;’s are i.i.d. N'(0, 1) and
are independent of X;’s. Let % be a collection of measurable sets in X', and we will fit the
regression model by {1¢ : C € €’}. Our interest will be the behavior of the least squares
estimator C,, defined by

o~

n
(3.2) Cy cargmin Y _(¥; — 1c(X))®.
Ce?% i=1

We assume that C,, is well defined without loss of generality. We will measure the quality of
C, via the expected symmetric difference of C,, and Co under P defined by

(3.3) PIC,AC| = P(lg, —1¢,)? = /(15” “1¢,)?dP.

By a relatively standard reduction (cf. Lemma 5.1), the risk of C, in symmetric difference
can be related to the expected supremum

E sup
Ce?:P|CACy| <52

i &

and, therefore, we may apply Theorem 2.3 (or the more general Theorem 2.1). We formalize
the result below.

1 n
— > &(lc — 1c0)<xi>',
i=1

THEOREM 3.1. Suppose that for some a # 1,10g Nj(e,¢, P) < Le~*. Then

sup ]ECOP|6,,AC0| < ACR R
Coe?

PROOE. See Section 5. [

By [49], the rate n~!/©@+D cannot be improved in a minimax sense if furthermore a lower
bound on the metric entropy on the same order as that of the upper bound is available.

As a straightforward corollary of the above Theorem 3.1, let ¢, be the collection of all
convex bodies contained in the unit ball in R? and P the uniform distribution on the unit ball.

COROLLARY 3.2. Fixd > 4. Then

sup ECOPla,AC(ﬂ < p 2D
Coety

PROOF. The claim essentially follows from [13], Theorem 8.25, Corollary 8.26, asserting
that we can take « = (d — 1)/2 in Theorem 3.1. [

The corollary shows that we can use a global least squares estimator rather than a sieved
least squares estimator (cf. [5]) to achieve the optimal rate of convergence.

REMARK 3.3. It is possible to impose certain tail conditions on the density of P to
extend the above corollary to a maximum risk bound over all convex sets in R?. In particular,
the above result holds for any P with compact support in R? with a bounded Lebesgue
density. A proof in this vein is carried out in the context of s-concave density estimation in
R? to be detailed ahead.
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3.2. Edge estimation. In this subsection, we consider the regression model studied in
[26, 30]:

(3.4) Yi = fe,(Xini,

where fc,(x) = 21¢,(x) — 1 and n;’s are i.i.d. random variables such that P(n; = 1) =
1/2 4+ a and P(n; = —1) = 1/2 — a for some known constant a € (0, 1/2). Such a model
is motivated by estimation of sets in multidimensional “black and white” pictures, where
Y; = 1is interpreted as observing black, and ¥; = —1 is white. We refer the reader to [30] for
more motivation for this model. The model (3.4) can be rewritten as

(3.5 Y; =2afc,(Xi) + &,

where & = fc,(X;)(n;i — 2a)’s are bounded errors. An important property for these errors
is that E[§;|X;] =0 for all i =1, ..., n. Note here &; is not independent of X; and hence a
different analysis is needed. Now consider the least squares estimator

n
(3.6) Cp =argmin Y _(¥; — 2afc (X))
Ce% i=1

A careful analysis to be detailed in Lemma 5.2 ahead shows that the risk of C, in symmet-
ric difference (3.3) can still be related to the expected supremum of empirical process, so
Theorem 2.3 is applicable in this setting as well. Formally, we have the following.

THEOREM 3.4. Suppose that for some o # 1,1og Ny (e, €, P) < Le~. Then

sup E¢, P|C,ACo| Sn~ 1@+,
Coe¥

PROOF. See Section5. O

Compared to [30], Theorem 4.1, we use an unsieved least squares estimator to achieve the
optimal rate, rather than their theoretical “sieved” estimator. This provides another example
for which the simple least squares estimator can be rate-optimal for non-Donsker function
classes in a natural setting.

3.3. Binary classification: Excess risk bounds. In this subsection, we consider the bi-
nary classification problem in the learning theory; cf. [32, 38]. Suppose one observes
iid. (X1, Y1),...,(Xp, Yy) with law P, where X;’s take values in X, and the responses
Y; € {0, 1}. A classifier g : X — {0, 1} over a class G has a generalization error P(Y # g(X)).
The excess risk for a classifier ¢ over G under law P is given by

Ep(g) =P(Y #g(X)) —;gng(Y#g/(X))-

It is known that for a given law P on (X, Y), the minimal generalized error is attained by a
Bayes classifier go(x) = 1,(x)>1/2 Where n(x) = E[Y|X = x]; cf. [10]. It is then natural to
consider an estimator of go by minimizing the empirical training error:

~ L
3.7) n Eargmm—ZIYi#g(xi).
geg M5

We assume g € G for simplicity. The global ERM g, is previously studied in, for example,
[38], pp. 136, [32], p. 2327, [24], pp. 2627-2629, [15], pp. 1211-1213. The quality of the
estimator g, is measured by the excess risk:

Ep(@n) = P(Y #8u(X)) — P(Y # go(X)).
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Let IT be the marginal distribution of X under P. We assume the following “Tsybakov’s
margin(low noise) condition” (cf. [31, 38]): there exists some ¢ > 0 such that for all g € G,

(3.8) Ep(8) = c(T1(g(X) # g0(X))) = cllg — goll3,(p)-

Here, we have assumed that the margin condition holds with k = 1. Although faster rates are
possible under more general margin condition « > 1 (cf. [31, 38]), we do not go into this
direction to avoid distraction from our main points.

Below is the main result in this subsection, the formulation of which follows that of [15,
24].

THEOREM 3.5. Suppose G = {1¢ : C € €} satisfies the following entropy condition:
there exists some a # 1 such that for all & > 0, log Ny (e, €, P) < Le . If r2 > Kn~!/(@+D
for a large enough constant K > 0, then

P(Ep(3n) > r2) < K'exp(—nr2/K')

holds for some constant K' > 0.
PROOF. See Section5. [

Roughly speaking, the key to prove the above theorem is a control for the random variable
supfe]—'j 1Pn(f) — P(f)l

max 57 ,
1<j<t ry2/

where £ is the smallest integer such that r,%2"Z > 1,and Fj = {1y, (x) — Lyzg,x) 1 EP(ED) V
Ep(gr) < r,%Zf }. A sharp estimate for the above random variable is achieved by an application
of Theorem 2.3 and Talagrand’s inequality (cf. Appendix C).

Examples of G that satisfy the prescribed entropy conditions in the above theorem can
be found in the comments after [31], Theorem 1, p. 1813. To put the above results in the
literature, [38] considered the same problem under the working assumption « € (0, 1) (cf.
[38], Assumption A2, p. 140). Massart and Nédélec [32] used ratio-type empirical process
techniques to give a more unified treatment of deriving risk bounds for this problem, when
the class of classifiers satisfies a Donsker bracketing entropy condition (i.e., 0 <@ < 1), or a
Donsker uniform entropy condition. Giné and Koltchinskii [15] further improved the result of
[32] in the Donsker regime under a uniform entropy condition, by taking into account the size
of the localized envelopes. See also [24], p. 2618, [29], p. 1706, for similar Donsker condi-
tions. To the best knowledge of the author, our Theorem 3.5 gives a first result for the global
ERM g, in (3.7) to be rate-optimal in the non-Donsker regime « > 1 in the classification
problem.

3.4. Multiple isotonic regression. Let X1,..., X, be i.i.d. with law P on [0, 11¢. For
simplicity we assume that P is the uniform distribution on [0, 1]¢. Consider the multiple
isotonic regression model

(39) Yi:fO(Xi)+Si» i:],...,l’l,
where &;’s are i.i.d. Gaussian errors N (0, 1), and fy € My = {f : [0, l]dj R, f(x) <

f(y) for any x < y}. Consider the isotonic least squares regression estimator f,, defined via

o =argmin Y (¥ — £(X)*.

feMa j=
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The performance of ﬁ in the multivariate setting is examined by [8] for d = 2 and [20] for
d > 3. By the entropy estimate for uniformly bounded multiple isotonic functions in [14],
Mg N Ly (1) is in the non-Donsker regime when d > 3, which is the main interesting case
here.

THEOREM 3.6. Letd > 2. Then with yg,iso = (2)14=2 + 14>3,

sup Epllfa— follZ,py San™ /¥ logheion,
SoeMaNLso(1)

PROOF. See Section5. [

Compared to [20], Theorem 4, the above result gives improvements over logarithmic fac-
tors. The logarithmic factors in d > 3 are due to boundary behavior of ﬁ, For instance, if the
errors are bounded, then we may remove these logarithmic factors to get a sharp rate n /¢
for d > 3. These logarithmic factors cannot be removed by the proof techniques in [20] even
if the errors are bounded. The rate n~!/¢ is shown to be minimax optimal for squared L5 loss
in [20].

The proof of Theorem 3.6 contains two inter-related steps:

1. First, we show that with high enough probability,

I Fu — folloo = O(y/logn)

under the Gaussian noise assumption.
2. Second, using the first step, we show that

E sup IGn(f — fo)| S y/logn - E sup |G, (C)

feEMGNL(C/logn) CeLly

El

where L, is the collection of all upper and lower sets contained in [0, 1]¢ (precise definition
see the paragraph before the proof of Theorem 3.6 in Section 5). The expected supremum
on the right-hand side of the above display can be controlled using Theorem 2.3. Finally, the
claim follows by a standard reduction for the risk of LSE to expected supremum of empirical
process.

Compared to the proof of [20], Theorem 4, the proof strategy described above is more
informative by making a clear connection to the class £, that drives the minimax rates of
convergence for the multiple isotonic LSE. See also Remark 5.5 for a detailed technical
comparison.

The approach outlined above can also be adapted to the problem of multivariate convex
regression modulo technical difficulties due to unsolved boundary behavior of the convex
LSE. See Remark 5.6 for some details.

3.5. s-concave density estimation in R?. We first introduce the class of s-concave den-
sities on R¢. The exposition follows that of [21]. Let

(1 —0)a* +6b°)"°, s£0,a,b>0,

0, s <0,ab=0,
Mg (a,b;0) = al_gbg’ s=0,
anb, § = —00.

A density p on R is called s-concave, that is, p € Py if and only if for all xq, x1 € R4 and
0 €(0,1), p((1 —O0)xog+ 0x1) > Ms(p(xp), p(x1); 0). It is easy to see that the densities p



SET STRUCTURED ERMS ARE RATE OPTIMAL 2653

have the form p = (ler/ * for some concave function ¢ if s > 0, p = exp(¢) for some concave
pifs=0,and p = (ler/ * for some convex ¢ if s < 0. The function classes P are nested in s
in that for every r > 0 > s, we have P, C Py C Ps C P—co.

Maximum likelihood estimation over Py is proposed in [37], where existence and con-
sistency of the MLE p,, is proved. Global rates of convergence of the MLE p,, over P; is
primarily studied in the special case s = 0, also known as the log-concave MLE; cf. [23]. For
general s-concave MLEs, the only result concerning global convergence rates is due to [11],
who studied the univariate case d = 1, s > —1, showing that h%(p,, po) = Op(n~*/>), where
h(-,-) is the Hellinger distance. Here, we will be interested in general s-concave MLEs in
general dimensions.

THEOREM 3.7. Suppose s > —1/d and d > 2. Then
hZ(ﬁn’ pO) — OP(n*Z/(d+1) log)’a’.s n)’
where ya,s = (2/3)1a=2 + (2)1a=3 + 1a>4.

PROOFE. See Section 5. O

The most interesting regime here is d > 4 when the entropy integral for the class of s-
concave densities diverges. Modulo logarithmic factors, the rates of convergence for the s-
concave MLE p, in squared Hellinger distance is Op(n~%/*+1), which matches the mini-
max lower bound for the smaller log-concave (= 0-concave) class; cf. [23]. During the prepa-
ration the paper, the author becomes aware of the very nice work [9] which derives, among
other things, global risk bounds for the log-concave (i.e., s = 0) MLEs in the Hellinger dis-
tance. The techniques used in both papers in this example share certain common features,
while our general setting brings about further technical challenges. See Remark 3.9 below
for more technical comments on the proof of Theorem 3.7.

The integrability restriction s > —1/d is very natural in this setting: if s < —1/d, then
there exists a family of s-concave densities with singularities so that the MLE does not exist.
The following proposition makes this precise.

PROPOSITION 3.8. The s-concave MLE does not exist for s < —1/d.

PROOF. Fora e RY, b >0, let Fop(x) = [|x — al|Ljx—af <b + 001jx—q|>b- Since ¢ =
f@;,/; = f&é{; < oo fors < —1/d, pap= @;(Ij/cb is an s-concave density. The log like-
lihood function for observed X1, ..., X, is £(a,b) = log[[/_; pap(Xi) = 27 [(1/5) x
log(|| X; — al|) — logcp] for (a, b) such that max; || X; —a|| <band X; #afori=1,...,n.
For b large enough and a approaches any of X;’s, £(a, b) 1 oo, so the MLE does not exist.

|

The univariate case d = 1 for the above proposition can also be found in [11].

REMARK 3.9. The proof of Theorem 3.7 relies on the following reduction scheme:

(3.10) h? (P, po) < logn -Ecsu%p |(P, — Po)(C)| + Op(n~17?),
€u

where % is the class of convex bodies on R?.

The above reduction scheme (3.10) for s = O is essentially achieved in [6], but a sharp
bound for the expected supremum of the empirical process on the right- hand side of the
above display is not available therein. Here, we show that the reduction (3.10) holds for the
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maximum regime in which the s-concave MLE exists. Once (3.10) is proven, the expected
supremum on its right-hand side can be controlled by Theorem 2.3 combined with a standard
technique of “domain extension” (cf. [46] or [47], Corollary 2.7.4) under the envelope control
(5.7). See the proof of Theorem 3.7 for more details.

4. Proofs for Section 2. We will prove Theorem 2.1 in this section. As (2) is a direct
consequence of (1), we will prove (1) and (3) only.

4.1. Proof of Theorem 2.1(1). A heuristic way of seeing the bound (2.1) is the following.
This requires some understanding for the proof of the classical maximal inequality (2.6):

e The entropy integral term f; VI9ogNpj(e, F, L2(P)de in (2.6) comes from L, chaining
with bracketing in the “Gaussian regime” using Bernstein’s inequality, starting from o
down to y.

e The residual term /ny in (2.6) comes from the bound || f |z, (p) < Il fllL,(p) toward the
end level y of the L chaining.

Now we wish to carry out L, chaining with bracketing for, say, p € [I,2]. Clearly,

2 . . .
I fllL,cpy < IIf ||§f7 (py and [ fllLypy < IfllL,cp)- This naturally hints the following con-
jecture: for o > 0 not “too small,”

oP/?
E sup [G,(f)|< inf fy+f logj\/[.](82/P,]:,L,,(P))ds}
feF(o) 0<y=<o/2
P2 flog N
= f Pr==t /1 Ju, F,L,(P))d
<tV [ log A 7 L) )

g
< inf \/ﬁy—l—/ u(p_“)/z_ldu}
¥

O<y<U/2
~ inf {Vny + P[]

0<y=<o0/2

P

o 2, a<p,
inf {Vny +y~ @ P2} o> p,

0<y=<o0/2
p—a

o2, o<p,

~ a—p .
n2e+-p - o > p.

Below we implement this heuristic program rigorously and identify the regime of o > 0 in
which the above bound holds.

PROOF OF THEOREM 2.1(1). The proof is inspired by the proof of [47], Lemma 2.14.3,
that is originated in [33]. We use the same notation for convenience of the readers. Without
loss of generality, we assume o = 279 for some g € N. By the assumption, there exist nested
partitions {F = Ul 1 Fa.ilg= qo
glllL, <279, and (ii) log N; Sp. 29%. [Such nested partitions can be constructed as fol-

lows. First, taking unnested partitions {F = Ul 1-7:qz a=qo with Nq < /\/[.](2_‘7, F,Lp) <
exp(L - 29%). Then at level g, we use the partition consisting of all intersections of form
{Ui_ =40 Fri, 1<, < Nr, qo <r < q}. The first property above is obvious. The second one

follows as N, <[¢

such that for all g > gg, (i) maxliiquHsupf,gefq‘ilf —

r=go NVr-1-
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Pick any f,; € F,4,;. For any f e F, let n,f = f;,; and A, f = supf,ge;qyilf —
gl if f e Fyi. Let ay =279 9+)/2 Now define the indicator functions A,_;f =
lAqoffﬁaqo ,,,,, Ag_1 f<nag_y> Bé]f = 1Aq0f5ﬁaq0 ..... Ag_1 f<nag_y, Ay f>/nag> and quf =
1 Agy f>~/ag, " In words, A, f indicates the region for which “Gaussian estimates’ are valid
up to level ¢ — 1 for f, while B, indicates the region for which the “Gaussian estimate” is
first violated at level g for f.

By the last display in [47], p. 241, the following chaining holds for any g1 > go:

q1
f_nqof:(f_”qof)quf"‘ Z (f_”qf)qu

(41) g=qo+1

q1
+ Z (an_anlf)Aqflf"i‘(f_nthf)A(hf-

q=qo+1

We bound the expectation of the above four terms when applied with the empirical process,
and name them (/)—(IV). Roughly speaking, ({II) is the term with “Gaussian behavior” due
to the construction of A, f, while for the terms (/)—(I), the Gaussian estimate fails on
B, f atlevel g. This will be compensated by the observation that the Gaussian estimate still
holds at level ¢ — 1. The single term (/V) terminates the chaining and will be handled via an
L, control. Below we implement this rough idea precisely.

For (1) and (II), note that

E sup |Gn(f — 74 f) By f|

feF
<Esup VB |f =y f1Byf + v/ sup PIf =y 1By
4.2
2 <E sup VP, Ay f By f+ﬁsupPA fB,f
feF
§Esup|Gn(Aquqf)|+2ﬁsup PA,fByf.
feF feF
Hence
q
(D+ D= Esup|Gu(f —mgf)Byf]|
4.3) q=q0 JEF

< ZJEsup|G (A, fBy f)|+2fz sup PA,fB, f.

q=q0 [E€F q=q0 f€F

For g = go, we use the trivial bound A, f By, f < 1. For g > go + 1, we will however imple-
ment control at level ¢ — 1: As the partitions are nested, A, fBy f < Ay—1 f By f < /nag—1
for all ¢ > go + 1. In summary, for g > gy,

Agof By f <1 Anag-1.
On the other hand,
sup P(Ay By f)? < sup (P(A, f By )P) /P <27a(pr2),
feFr fer

By Bernstein inequality, for any g > qo,

E sup |G, (A, f By f)]
feF
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4.4) S22 flog Ny +n~ Y2 (1 A V/nag—1) log N,
< p—al(pA2)—a}/2 | (n—1/2 A 2—4{(p/\2)+06}/2) . 049 2=ql{(pA2)—a}/2

Furthermore,

PAGfByf <PAGFLn, o yra, < (Wnag) "' P(Ag )

(4.5)
< n 127127100 =12 =alpAD a2,

Combining (4.3)—(4.5), we have

q
(D) + U < Z 2—a{(pA2)—a}/2
(4.6) 4=4o

=pa 2—610{(IMZ)—OI}/ZIO[<pA2 429 {a—(pA2)}/21a>pA2‘
For (I1I), we have Gaussian estimates as follows. Note that

g f — g1 f1Ag—1f S TA A1 fAGg—1f S 1A \/ﬁaq—la
P(lmg f — g1 f1Ag-1f)’ < P(Ag_1 f)? <277V,

As the cardinality of {(7ry f —mg—1 f)Ag—1f : f € F}isatmost NyN, | < qu, by Bernstein
inequality and a similar argument to (4.4),

q1
D= Y Esup|Gu((tgf —mg—1f)Ag-1f)]

q=qo+1 JEF
q1

(4.7) S Y 2melprv-al2
g=qo+1

o 2702y pala=(prDY2y
For (IV), using similar arguments as in (4.2),

(V) =E sup |G, (f — g f)Ag, ]
feF
(4.8) <Esup|Gu(Ag, fAg )| +2v/nsup PAy, fAg f
feF feF

< 2=qu{(pA2)—a}/2 4+ «/,;2—%‘

Here, in the last inequality we used PAg, fAq f < |Ag, fAq fllL, <279 Finally, using
Bernstein’s inequality again,

(4.9) E sup |Gy (g, f)| < 27901 PAD=d/2 |y =1/2000
feF

Combining (4.1), (4.6)—(4.9), we obtain

o |G (f)| - 2~ qol(pAD)—a}/2 4, —1/29q0 +/n27, a<pA2,
e NS pate= A2y =l2ga0e 4 fo=a g s p a2,

The < does not depend on g;. Now optimize over ¢q; > go to conclude. [J
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REMARK 4.1. Pollard [34] suggested the following key “recursive equality” (cf. [34],
p. 1043, last display)

(4.10) RiT;=Ri1Tiv1 — Ri1 T Tiv1 + (R — Riy ) TiTip1 + RiTi TS

for the chaining method of [33]. See [34] for definitions of the above notation. Interestingly,
(4.10) can also be viewed as a one-step chaining of (4.1) from i toi+ 1, as we may regard
f—mif=Ri,Aif =T, Ais1f =TiTiy1 and B;y f = T; T{, | by translating the notation
used here to those in [34]. Some elementary algebra then reduces (4.1) to (4.10).

4.2. Proof of Theorem 2.1(3). The proof of (2.5) is divided into two steps:

1. First, we establish a lower bound for the Gaussianized empirical process; see Proposi-
tion 4.2. This can be done roughly via Sudakov minimization in the Gaussian regime, that is,
when o is not too small.

2. Second, we will control the Gaussianized empirical process by the standard sym-
metrized empirical process from above. This step requires several subtle estimates as a naive
bound would incur additional undesirable logarithmic factors. This is done via the help of
a multiplier inequality derived in [22] (cf. Appendix C). Roughly speaking, the logarithmic
factors can be removed for the Gaussianized empirical process at sample size n as long as the
empirical process has size no smaller than Gaussian maxima along the “entire path” from 1
to n. Details see the proofs of Propositions 4.4 and 4.6.

We first prove the lower bound for Gaussianized empirical process.

PROPOSITION 4.2. Let F C Loo(1). For any o > 50n=Y2 such that
log N (5/4, F(0), L2(P)) < na?/4000,

we have

E sup >c7\/10g/\/' (0/2, F(0), L2(P)).

if(Xi)
feF () \/_Zg /

Here, g1, ..., g, are i.i.d. N'(0, 1).

PROOF OF PROPOSITION 4.2. By Sudakov minorization (cf. Lemma C.2), for any ¢ >
07

4.11) E sup

> Eo\/log N (0/10, F (o), La(By)).
feF(o)

fzg,f(X)

We claim that for any o > 0 such that log V' (c/4, F(0), L2(P)) < n02/4000,
4.12)  P(N(0/10, F(0), La(Py)) = N'(0/2, F(a), La(P))) > 1 — ™0 /2000,

To see this, let fi, ..., fy be a maximal o/2-packing set of F (o) in the L,(P) metric, that
is, for i # j, P(fi — fj)* > 0%/4. Since P(f; — f;)* <4P(f; — f;)* < 1602, we apply
Bernstein’s inequality followed by a union bound to see that with probability at least 1 —
N2 exp(—1t),

max (nP(fi — fj)2 — Z(ﬁ — fj)z(Xk)) < % +v/32tno?2.

I<i#j<N il
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With ¢ = cno? for a constant ¢ > 0 to be specified below, we obtain

<1<?;1,n<zv - Z(ﬁ X zo*(1/4 =2¢/3 - ~/32c)>

>1— ez1ogD(a/z,f(a),Lz(P))—cna2 >1— 62log./\/'(a/4,.7-'(a),Lz(P))—cnaz’

where D(., -, -) stands for the packing number. By choosing ¢ = 1/10% and log N (¢/4, F (o),
L>(P)) < no?/4000, we have

1<i#j<Nn

( min Z( fi— fj)z(xk)zo.moz) > 1 — exp(—na?/2000).

This entails that D(a /5, F (o), L2(P,;)) = N =D(c/2, F(o), Lo(P)) with the above proba-
bility. Hence for any o > 0 such that log N (¢/4, F (o), L2(P)) < no? /4000, with probabil-

. 2
ity at least 1 — ¢~ /2000,

N(0/10, F(0), L2(Py)) = D(5/5, F(0), L2(Py))
>D(0/2, F(0), L2(P)) 2 N(0/2, F(0), L2(P)),

completing the proof of (4.12). Hence for any o > 50n~1/2 such that the entropy log A/ (o /4,
F(o),Lr(P)) < n02/4000, the claim of the proposition follows from (4.11) and (4.12). [J

Next, we eliminate the effect of the Gaussian multiplier. We need a technical lemma.

LEMMA 4.3. Letgy,..., g, beiid. N(0,1), and lgm)| < -+ <18l be reversed order
statistics of {|g1], ..., 1gn|}. Then there exists an absolute constant K > 0 such that for any

ce(0,K™,and 0 <t < K~ /log(1/c), we have P(g(enpl <1) < e /K.

PROOF. For notational convenience, we assume that cn € N. Let ¢ (1) =P(|g1| > ). By
[16], (2.23), V2] - zire e12 < ¢ (t) < min{l, /2/7 - t~"}e="*/2. Let £ > 0 be such that

¢ (t.) =2c. Thent, < /2log(1/2c). By Bernstein’s inequality, for 0 <t <t.,2c < ¢(t) <1,
SO

n
P(|g(cn)| =< t) < P(Z 1|gi\>l‘ < Cn)

i=1

= P(i(hgm —¢®) =—(¢(®) — C)n>

i=1

< ex (_ (¢ (1) — c)*n? > < o=Cn/K
=P\ T 0060 + 40 (1) —omy3) = ’

proving the claim. [

PROPOSITION 4.4. Let the conditions in Theorem 2.1(3) hold for some o € (0, 1) and

L > 0 large enough Then for o*,% > en V@D with some constant ¢ > 0,

ESUp e 75, | Gn () Za 0, %

PROOF. By Proposition 4.2, the Gaussianized empirical process satisfies

E sup

> ouylog N (04/2. F (o). La(P)) = C; o
feF(on)

fzg,f(X)
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Suppose that o,% < c¢. Without loss of generality, we assume that 0,12 =o0,(y)? =cn~? for
some 0 <y < 1/(a + 1) and define o7 = ck™". We first prove the following claim: there
exists some c¢; = ci(c, o) > O such thatforany 0 <y <1/(a+ 1),

4.13) sup
fe}—(an)

IZS’ (X)| =

To this end, let a, = (anl_“)_lE SqueJ-'(a,,)|% Y& f(X;)]. Then by the local maximal

inequality (cf. Theorem 2.1-(1)), we see that sup,.yax < C2 = Ca(«). Since ﬁa,}_“ =
¢1=0/2nP where B = B(a, y) = 3(1— (1 —a)y) € [a¢/(1+a), 1/2], we have by Lemma C.4
that for a constant ¢’ > 0 to be determined later,

n
Cl—lnﬁ < c—1-02p sup Zgif(Xi)’
feFon)li=1
; k
< c(la)/zE[Z(lg(ml —lgarn)E sup > e f(Xi) ]
= feFon|i=

4.14)
L'n]—1
= E|: Z (lguwy| — |g(k+1)|)akk/3i|

k=1

+E[ > (8wl — Ig(k+1)|)akkﬁ} = (1) + (D).

k=|c'n]

For (1) in (4.14), using the same notation as in the proof of Lemma 4.3,

lc'n]—1
(I)SCz-IE[ > (|g<k)|—|g(k+1)|)kﬁ]

k=1
[8k) !
/ % dt]
lgk+1)!

o/ n B
SCZ‘E/O (legi2f1|g([c/nj)|§t§|g(l)> dr

lc'n]—1

SCz'E[ Z
=1

2
< Con? / P(lg1] > 1)P(1gen] <1 < lg )2 dr

c ﬁ</-K log(l/c/)¢( )5/2]P’(| | )'B/zd +/oo " )/3/2d>
= n t / <t t ¢ t
= (2 0 8(cnl = -1 /om T

K1 /log(1/¢'
< Con® (/ og(1/¢") B JA—BEn /2K g, N /oo b dt)
SV W o

< C3I’l/3 (e—(c/)zn/C3 + e—log(l/c")/C3) < (Cl_l/Z)nﬁ

by choosing ¢’ = exp(—C3log(4C;C3)) and n > Cs log(4C1C3)/(c’)2. On the other hand,
for (II) in (4.14), we have

an < ( max ak)E[Z(lg(k)l - |g(k+1)|)kﬂ} < ( max ak)Ganﬁ,

l¢'n]<k<n k—1 lc'n]<k<n
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where G, = fOOO(P(lg1| > 1)%/d+9) dr < 00 since Gaussian random variables have finite
moments of any order, and the last inequality follows from Jensen’s inequality. Combining
the above displays, we see that

1/2C1Gy) < max ap < max (akl_“)_lIE sup

le'n] <k<n lc'n]<k=n feF(ox)

fzszf(X)’

<o, =9 J1/(c’=1/n)-E  sup
fE}—(O'LC/nJ)

[Z&f(X)

where in the last inequality we used Jensen’s inequality. This proves our claim (4.13) by
adjusting the constant and choosing n > 2/¢’. Now by desymmetrization inequality (cf. [47],
Lemma 2.3.6), we have that

(4.15) E sup
feF(on)

<2E sup |Gn(f)|+ 20,.
feF(on)

ﬁ Z &i f(Xi)
For 0, < (01/4)1/" A cV/2 the claim of the proposition follows from (4.13) and (4.15). On
the other hand, the claim is trivial for o, > (c1/4)Y* A /2. O

REMARK 4.5. From the proof of Proposition 4.4, the bracketing entropy upper bound
is only used to prove sup; yarx < C» = Co(ar). This means that we may impose instead a
uniform entropy upper bound condition as in [15] in the regime 0 < « < 1.

PROPOSITION 4.6. Let the conditions in Theorem 2.1(3) hold for some o > 1 and L > 0

large enough. Then for o,% = cn~ V' @tD with some constant ¢ > 0, Esup re 7o) | Gn ()] e
pn@=D/2(+1)

PROOF. Proposition 4.2 shows that

E sup

> 0ulog N (04/2, F(0), La(P)) Z n@= /2t
feFion

ﬁZglﬂX)

Now applying Lemma C.4 in the following form:

E sup
feF(on)

max E sup
Isk=n feF(o,)

fZglf(X)

we see that for some K > 0,

max E sup |Gi(f)|>K~ 1, @=1)/2(+1)
Isk=n feF(on)

fze,f(X)

On the other hand, by enlarging K if necessary, Theorem 2.1(1) entails that
ESup re 7o) |Gr ()] < K - k@~ D/2@HD ‘and hence

max E sup |Gy(f)| < Kn@ D/2@+D
Isksn feF(on)

by the assumption o > 1. Combining the upper and lower estimates, we see that

K~ lp@=D2+) o pax | sup |Gk(f)|
1<k=<n feF(on)

< max E sup |Gg(f)] < Kn@=D/2+D)
Isk=n  frer(oy)
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Now we will argue that the max operator can be “eliminated.” To this end, let a; =
E sup fef(gn)|Gk( f)] and B = (¢ — 1)/2(a + 1) for notational convenience. Let k, =

arg max, o -, ax. We claim that k, € [cn, n] where ¢ = K~%P € (0, 1). To see this, we only
need to note K ~1nf < max|<k<p ak = dg, < Kk,/f, which entails kﬂ > K 2nf. Hence

K~ lp@=D20e+h - sup |Gy, (f)|<—E sup |G,
feF(on) \/_ feF(on)

where the last inequality follows from Jensen’s inequality, proving the claim. [J

PROOF OF THEOREM 2.1(3). The claims follow by combining Propositions 4.4 and 4.6.
O

5. Proofs for Section 3.
5.1. Proof of Theorem 3.1. Before the proof of Theorem 3.1, we need the following.

LEMMA 5.1. Consider the regression model (3.1) and the least squares estimator C, in
(3.2). Suppose that (&1, X1), ..., (&, Xp) are i.i.d. random vectors with E[&1|X1] = 0 and
E[§12|X1] SV & ||% almost surely. Further assume that

E sup f Z&‘z (Ic — 1) (X))

Ce%:P|CACy|<8?

(5.1)

VE  sup Zsl (1c — 1)) (Xi)
Ce%:P|CACy| <52 \/_
hold for some ¢, such that  — ¢,(8)/6 is nomncreasmg Then IECOP|C ACy| = (9(8,%)
holds for any 8, > n="/?max{1, ||&|», E'/8 max1<,<n|§,| } such that ¢, (5,) < \/_8 where
the constant in O only depends on the constants in (5.1).

S ¢n(9),

PROOF. See Appendix B. [
PROOF OF THEOREM 3.1. By Lemma 5.1, the risk of the least squares estimator

52 = sup Ec,P|C,ACy| = sup Eg, / (1, —1¢p)?dP
Coe? Coe?

can be solved by estimating the empirical processes in (5.1). Since the global entropy estimate
is translation invariant (i.e., the metric entropy of {1¢ — 1¢, : C € €’} is the same as that
of {1¢ : C € ¥'}), by Theorem 2.3, we obtain an estimate for the Rademacher randomized
empirical process:

sup E sup <max{s) ¥, pl@ /2Dy
Coe? Ce%:P|CACy|<82

f Zs, (1c — 1) (X))

It is now easy to see that the choice 83 = n~1/(@+D Jeads to an upper bound of the above
display on the desired order \/56,21 Note that the bound continues to hold when the left-
hand side of the above display is replaced with expected supremum without localization over
C € € for P|CACy| < 82. The Gaussian randomized empirical process can be handled via
the multiplier inequality Lemma C.3 by letting ¥, (r) = v (¢) = t*/@*D, whence

sup I sup |— < ple=D/2(+1)

Coe% Ce%

Zs, (Ic —1e)(XD| S

completing the proof. [
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5.2. Proof of Theorem 3.4. We need the following analogy of Lemma 5.1 before proving
Theorem 3.4.

LEMMA 5.2. Consider the regression model (3.5) and the least squares estimator 6,, in
(3.6). Further assume that

E sup
Ce%:P|CACy|<8?

\/— Zsz(lc 1c))(X;)

VE sup
Ce%:P|CACy| <82
holds for some ¢, such that 6 — ¢, (5)/5 is nonincreasing. Then EC0P|6nAC0| = (9(8,%)
holds for any 8, > n~'/?max{1, ||& |2, EY/® max,<; <, |&|*} such that ¢, (8,) < /n82, where
the constant in O only depends on the constants in the above inequality.

S ¢n(9),

[ 28; (Aency — 1) (Xi)

PROOF. See Appendix B. [

PROOF OF THEOREM 3.4. The proof follows by Lemma 5.2 and similar arguments as in
the proof of Theorem 3.1. [J

5.3. Proof of Theorem 3.5. We need some further notation to implement this program.
For any g € G, write fo(x,y) =1,4(x). Let G(§) ={g € G : Ep(g) < 8}. Let £ be the small-
est integer such that r32€ >1l,andforany 1 < j </, let F; ={fy — fo,:81. 82 € g(r,%Zj)}.

LEMMA 5.3. Suppose G = {1¢ : C € €} satisfies the same entropy condition as in The-
orem 3.5. Then

sup re 7 [P (f) — P(f)I 1 s
P ! . > <— K K— )) <K' —s/K’
(II;IJE'?Z r321 =¢ 4 + 2 nr - exp( s/ )

nr?
holds for some constants K, K’ > 0 provided r,% -nV/ @D > K for a large enough constant
K" > 0 depending on ¢ > 0 in (3.8) only.

PROOF OF LEMMA 5.3. By Talagrand’s concentration inequality (cf. Appendix C), with
of =supser I 1L, p);

P[;;J;JG,,(]’H > K(IEfs:]Ej|Gn(f)| + oij + %)} < K exp(—s;/K).

Let ¥ ={S: f, =15, g € G}. Note that for g1 = 1¢,, g2 =1¢, € G, where C1, C2 € €, we
have f,, =1g,, fg, =1s,, and hence

P(S1AS)) = P(fy — fe,)* < P(g1— 82)> = P(C1AC)).

This shows that N (e, 7, P) < Nj(e, €, P). Furthermore, for any g € G(r22/), let S € .
be such that f, = 15. Then similar to the above display, we have

P(SAS)) < lIg = goll7,p) < 'ra2/,
where the last inequality follows from the margin condition. Now by Theorem 2.3, we obtain

E sup [Gu()|SE sup [Gu(fp)| <E sup |Gn(S)|
fEF; g€G(r22)) Se.7:P(SASy)<c~'r22J

< max{(r32/)(l_“)/2, n@= /2ty
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On the other hand,
2 _ 2 2
0 = Sup ||f||L2(P) = sup I for — fg2||L2(P)
feFj 81,8266 (r327)

<4 sup llg—golli,p <4c™' sup Ep(g) <4c'r2/.
2€G(r32)) 2€G(r22))

This implies that with s; = 52/,
P[supfe;,IIP’n(f) — PNl

57
ry2)

> Kcrn_22_j (max{n_l/z(r,%ﬂ)(l_a)/z, n_l/("‘“)}
+ n_l/z(r,%Zj)l/z\/EZj/z + n_1s2j)} < K exp(—s2//K).
Note that
r227) (max{n =2 (r227) 1702 /@Dy o rl_l/z(r,%Zj)l/Z«/EZj/2 +n~1527)
s s s s

1 1
< max , + [—=+—7== +
B { Jurd T rnl/ @+ } nr? nr2 4K,

2 2
nry nry

under the assumption. Now a union bound leads to the desired claim. [

PROOF OF THEOREM 3.5. Given the estimate in Lemma 5.3, the proof of the theorem
closely follows that of [15], Theorem 7.1. We provide some details for the convenience of the
reader. On the event

£ { sup e, IPn(f) = P(OI _ (1 K KRS )}
=) max - - c\ —
I=j=t r22i - \4 nr?

nr?
we have for any g € g(r32j) \ g(r32j_l) and g’ € G(o) for some 0 < o < r,%2j,

Ep(8)=P(fy — fo) +[P(fg) — Pfey| = P(fo — fo) +o

an(fg - fg’)""a +fsu]lz.’(]?n - P)(f)‘

1 )
fsn»n(g)+o+c(1+1< /nr +KF> r22J
1 Ry
sep,l<g>+a+<—+1< e )zgp(g)

4 nrn Ty

Since o > 0 is taken arbitrarily, we see that on the event E, it holds that

ep,(®) _ . (1
(5.2) g ] (2+2K /nrn —|—2Knr )

forall g € G such that Ep(g) > 2. Furthermore, the above display entails that on the event E,
we necessarily have £p(g,) < r;, for n large enough. Hence for any g € G (r321) \ g(r,%2f -,
we have

Ep, (&) =Pn(fe) —Pu(f3) = Pfy — Pfs, + fSUP [Py — PY(S)|

J

1
ssp<g)+(Z+K /n rK )25p<g>
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This entails that

&p, (8) (1 s s >
5.3 Pl g2k |2k ).
63 S R U PR

The proof of the claim is complete by combining (5.2)—(5.3) along with Lemma 5.3. [J
5.4. Proof of Theorem 3.6.

LEMMA 5.4. It holds for C > 0 large enough that
r 2 I 2 —1
Eollfn = JollTycpy S Epollfn = Soll Ly cp) 1y 7 - sl yiogn + O )
The O term is uniform in fy € Mg N Lyo(1).

PROOF. Fix fop € Mg N Ls(1). By [20], Lemma 10, supplement, supxe[o’l]d(ﬁ, -
Jo)(x) < maxi<i<y i + [ folloo < 2 + maxi<i<, &. Hence with Z, = || fu — folloo, for u
large, P(Z, > u+/logn) < e~ 108 for some ¢ > 0. In particular, EZ# < log?n. Now the
claim of the lemma follows by noting that

= 2
Efollfn = Sl 2,y Xy 7= folloo > C Iogn
2
= IEanZ,,>C«/logn

< JEZ%. \/IP(Z,, > C\/logn) <logn - ¢=¢Clogn/2 — O™
for C > 0 large. [J

Recall that B C R? is a lower (resp., upper) set if and only if for all x € B, y € R with
vi <x; (resp., yi > x;),i =1,...,d, we have y € B. Let LL; be the collection of all upper
and lower sets in R? and £; = {BN]JO, 119:Be LLg}.

PROOF OF THEOREM 3.6. First, consider d > 3. By Lemma 5.4, we only need to com-
pute an upper bound for E ¢ || f — fO”%z(P)l”ﬁz_fO”ooSC«/@ < f,%. Similar to the proof of
Lemma 5.1, this can be done by evaluating the size of two empirical processes

E sup 1Gn(E(f — f0))]
feEMGNL(C/logn):
ILf=foll,(Py<rn

VE sup G ((f = f)?)| S vy
feMgNLso(Cy/logn):
If—follL,(p)<Fn

54

Note that for any f € My,
|(Pn — P)f|=|Ep, f(X) —Ep f(X)|
<|Ep, f+(X) —Ep f+(X)| + |Ep, f-(X) —Ep f-(X)|

=| [T e, (100> )~ Ba(700 > ) e

+ ‘fOOO(IP]P’,,(f—(X) > 1) —Pp(f(X) > t))dt‘

< 2||f||oocsug |(Bn — P)(O)|.
€Ly
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Here, L is the class of all upper and lower sets in [0, 11¢. The last inequality follows since
forany f e Mg, {f+(x) >t} ={f(x) vO>t}e Ly and {f_(x) >t} ={—(f(x) AO0) >
t}={f(x) A0 < —t} € L. Hence by [13], Theorem 8.22, we may apply Theorem 2.3 with
o =d — 1 to see that

E sup |Gn(f — fo)| < y/logn - E sup |Gn(C)|+1§,/10gn-n%.
feMyNLs(Cy/logn) CeLly

Using the multiplier inequality (cf. Lemma C.3) and contraction principle for empirical pro-

cesses (cf. [20], Lemma 6, supplement), we may further bound the two empirical processes

in (5.4) by

E sup 1Ga(ECf — f0))]
feMNL(C/Togn):
If = follLy(P)y<Fa
VE sup Gu((f — f0)?)| ST logn.
feMgNLs(Cy/logn):

If—follL,(py<Fn

Solving (5.4) using the above inequality, we obtain the rate 7, for d > 3.
For d = 2, we may estimate the empirical process with an additional log x:

E sup |Gn(f — f0) <log*?n,
feEMgNLoo(Cy/Togn)

and the rate can be obtained similarly as above. [J

REMARK 5.5. The proof for the analogue of Theorem 3.6 in [20], that is, [20], Theo-
rem 4, uses a completely different strategy. A rough argument is as follows. Han et al. [20]
first consider the problem fy = 0, where it is shown in Proposition 9 therein that for §,, > 0
not too small,

(5.5) E sup G ()] <8y - 02V 10g? n.
FEMNLoo (TGN f Iy (P <80

Then by a simple triangle inequality, if d > 2,

E sup G (f — fo)]
fEM4NLoo(Cy/logn):
(5.6) If = folly(py=<6n
<E sup Gn()] +E|Gn(fo)| < (8n + Il folloo)n />~ V4 10g” n.
feMyNLs(Cy/logn):

I F Ly Py <én+l folloo

Using the above inequality and (5.4), we obtain F,% < n~14 up to logarithmic factors. It is
clear from the sketch here that the property of isotonic regression functions is only used in
(5.5) where the problem is fy = 0. The proof for general fy € L(1) in (5.6) is not very
informative in the sense that the method of (5.6) is valid for any problem as long as one could
solve the risk problem (= empirical process problem (5.5)) for one particular fy. In contrast,
the proof of Theorem 3.6 here shows that it is the complexity of the class of upper and lower
sets L4 that leads to the minimax rate of convergence for the multiple isotonic LSE.

REMARK 5.6. It is possible to adapt the present approach to the problem of multivari-
ate convex regression. The major difficulty here is to understand the boundary behavior
for the convex LSE f,”¥*. In particular, if we can prove that the convex LSE f** satisfies

[ /;CVX — folloo = Op(L,) for some slowly growing L, (in similar spirit to Lemma 5.4 for
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the isotonic LSE), then using similar arguments as in the proof of Theorem 3.6, we may
conclude IIf;'fVX — Jollypy = Op(n~ 1/ @+D Ly for some slowly growing L. Interestingly,
recently [27] proved that under a fixed lattice design in a polytopal domain, the rate of the
convex LSE can be improved to n=%/@+% for d <4 and n='/¢ for d > 5 (up to logarithmic
factors) and these rates cannot be further improved in the worst case. These improved rates
are due to reduced complexity of the class of convex functions on polytopal domains than
those on smooth domains. Similar rates are obtained in [27] for bounded and Lipschitz con-
vex LSEs under random designs. It remains open whether the unconstrained convex LSEs
attain these rates over polytopal and more general domains under random designs, where the
boundary behavior of /;,CVX may play a crucial role.

5.5. Proof of Theorem 3.7.

PROOF. We only provide the proof for the most difficult case —1/d < s < 0; the other
cases are similar or simpler.

(Case 1: d > 4). We will relate the squared Hellinger distance h2(po, p,) to that of the
expected supremum of empirical process over the class of convex sets. The proof for this
reduction is largely inspired by the idea of [6].

Using same arguments as in Step 1 of the proof of [11], Theorem 4.3, we may assume
without loss of generality that py € Py /2 and p, belongs to

={pePs: <M, inf >1/M
Ps.m {p Ps xseuﬂgdp(X)_ et P =1/ }

for some large M with high probability. By the proof of [21], Lemma FE.7 (especially (F.3)
therein),

d 1/s
(5.7) sup p@)scMa+wum”ssch(L+rhmH”) :
PEPs.m k=1
Furthermore, it is not hard to see that p, is supported in the convex hull of X1,..., X,.

By (5.7), kg = Ex~py(1/po(X))? = fpé_q < oo for g € (0,1 + sd). This means that
Ex~pomaxi<j<,(1/po(X;))? <n - k4, so logmax;(1/po(X;)) < Cilogn with high proba-
bility for large C| > 0. Hence with ¢,, = n € X,,....X, € {po > ¢, } with high probability.
Let pn = (Pn vV cn)lpg>c,/ [ (Pn V cn)lpy=c,. Then with b, = [(Py V ¢x)1py>c,, it follows
that with high probability

b;‘:b;‘ ﬁnsb;‘/ (PnVen)=1,
Po=cn Po=cn

bn—lzf |(Pu V en) — Pl < cnl{po = cn}| Sy ™.
P0o=Cn
The last inequality in the second line of the above display follows as {x : || x|| > (¢,/Cm)*} C
{x : po(x) < ca} by (5.7) and, therefore, [{po > cu}| C [{x : x|l < (ca/Cu)*} =a.m . As
s > —1/d, by choosing C; > 0 large, we have 0 < b, — 1 < O(n~"). This implies with high
probability,

hz(ﬁnv ﬁn) S /|ﬁn - ﬁn| = /|ﬁn - (ﬁn Vcn)lpozcn/bn|
(5.8) <=t [ B+t [ =G

Po=cn

=|1=b' | +b, by —1)=0(n"1).
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On the other hand, let po = polyy>c,/ ) Polpy=c, and by = [ polpy>c,. As s > —1/d,
with g € (0, 1 + sd),

bo = / p01pozcn <1,
1— b= / polpyec, St /(1 + xS de = O(cd).
This means by choosing C; > 0 large, we have 0 < 1 — bg < O(n~"). Hence

12 (po, o) = / polpyc, + / (VB0 — /P0/bo) 1y,

(5.9)
= 0(el) + (1= [ polpze, =07,
and
‘/Pologpo—/ﬁologﬁo’

< ‘/Po log polpy<c, | + / polog po — (po/bo) log(po/bo)
(5.10) Doz

<0 +1-05" [ Ipolog pol +logbo/bol [ o

pPo=cn Po=Cn

=0n™),
and
5.11) [1po=pol = [ potpoee, +11=55"1 [ po=0(").

Po=Cn

Now by the integrability Ep, log? po < oo, with P, Py denoting the distributions of pg, po,
it follows that with high probability,

B2 (po, Pn) < W (po, Do) + h*(Bos Pu) +h>(Pu, Pn)
< Ep log(Po/Pn) + O(n~")(by (5.8) and (5.9))

Ep, log po — Eg log p, + O(n~ 1) (by (5.10))
0

IA

A

Ep, log po — E, log §, + Op(n~'/?)(by integrability of log po)

IA

Ep, log p, — Ej, log P, + Op(n~'?)(as p, is the MLE)

[A

EPH lOg[b;l(ﬁn 4 Cn)lpozcn] - Eﬁo log ﬁn + log bn + OP(n_l/z)
(5.12) < |(®y — Po)1og Pu| + Op(n~' /2 v |1 = by))

A

‘ [ (B, (@0g 7400 2 1) ~ B ((og 74 () = r))dr‘

+ 'fOOO(IP’P,,((IOg Pn)—(X) <1) = Pp ((log pn)-(X) < t))dt‘

+ OP(nfl/Z)

(%) ~
< logn - E sup |(P, — Py)(C)| +(9p(n*1/2)
Cety
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< logn-[E sup | (B — Po)(C)| + sup |po—ia‘o|] + Op(n'1?)
Ce%y Ce%y

Clogn - E sup |(B, — Po)(C)| + Op(n~"/2).
Ce%y
Here, %, is the set of all convex bodies in R¢. The inequality (x) follows as for any s-
concave density p, {(log p(x))y+ >t} ={logp(x) VO>t}={px)ViI>e}={p(x) Al <
e''} and {(log p(x))- <t} ={—(logp(x) ANO) <t} = {p(x) Al > e} ={p(x) V1 <e "}
are convex sets, and —C;logn <logc, <log p, <log(M) for n large. The inequality ()
follows from (5.11).

Hence we only need to bound the entropy Nj (¢, €, Po). To this end, for a multiindex ¢ =
(01, ..., Lq) € 24, Tet Iy = [T¢_, [2% — 1,2%F1 — 1]. Then |I,| = 22k %. Let {(A, ;, By, ;) :
1 < j < N¢} be an gg-bracket for {C|;, : C € €'} under the Lebesgue measure. By [13],
Theorem 8.25, we have log Ny <y (|1¢|~ 185)(1 D2 Letey =ay - e, where ap = |Ig|(1+5) for
some § > O suchthat 1 <148 < (—sd)~! € (1, 00). Then {2, lAz,MlIz’ Y, le,Mllz) 1<

je < Np, L e Zio} forms a bracket for ¥ N R‘éo with Py-size

PO <Z lBg,jé 11( ZIA(J )
l

The logarithm of the number of the brackets can be bounded by

- 1-d)/2 _ —1\(1=d)/2 _
Clelel(d 1)/2815 )/ 55(1 d)/ZZ(azllel 1)( )/ 58(1 d)/2
¢ Vi

1
<> e SUPPO(X)<8ZaeIIeI (s <,
Vs xelp

Other quadrants can be handled similarly. This means that log N7 (g, €, Py) < e1=9/2 and
hence Theorem 2.3 applies to (5.12).

(Case 2: d = 3). The situation for d = 3 is similar; but with an additional logn term in the
estimate for the empirical process E SUPCey, |G, (C)| <logn (cf. Remark 2.4) and, therefore,
the rate in squared Hellinger comes with an additional logn.

(Case 3: d =2). We employ an idea in [11] in d = 1, which first calculates the L, entropy
of the class of bounded s-concave functions on [0, 1] by discretization of the range of the
underlying convex functions until a prescribed L, error is reached at the level of s-concave
densities, and then use the integrability of Ps s to extend the brackets from [0, 1] to R. Our
arguments below substantially simplify those presented in [11]. A similar idea is exploited in
[23] in d =2, 3 in the context of log-concave densities, with further technicalities due to the
unknown shapes of domain at the truncated levels in dimensions 2 and 3 (for d =1 they are
simply intervals).

Let 73s(1, B) = {piss-concaveon I C R?:0 < px) < B,Vx € I}. We write 75s =
733([0, 113, 1) for simplicity. We claim that for s > —1,

(5.13) log NV (e, Py, L) <s e~ log(1/e).

Fix ¢ > 0. Let y, = 2k 1<k< ko, where ko is the smallest integer such that y,:O/ ¥ < g, that
is, ko = [log,((1/e)™%)]. Let {(A;,Bj): A; D Bj}?ll be an sg—bracket for all convex sets
in [0, 1]2 under the Lebesgue measure. By [13], Theorem 8.25, Corollary 8.26, we have
log N1 < 80_1. By [23], Proposition 4, supplement, foreach j =1,..., Nj,andk =1, ..., ko,
we may find a lower ¢; ;-bracket {ij e - 1 <m <N, ,}in Ly (resp., upper ¢; r-bracket

{ f_ka ‘l<m<N k) irl L) for nonnegative convex functions defined on B; with an upper
bound 2, such that log(Njk VN ) < (Zk/ej,k) log(2k/aj,k).
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For any p € Py, let @ = p* be the underlying convex function. Let Cx = {¢ < yi}. Let
(Aj.,Bj),Aj. D Bj, be abracket for Aj D Cy D Bj,, and let ijk,k,m (resp. fj,.k,m) be a
lower (resp., upper) bracket for ¢|p, I

Let Aj, = @ and yo = 1. Consider an upper bracket for p of form

ko
1
Z[(ijk,k,m Vye-D1p0a, ] Z k=D A 1] 11a; 8, + el 1P\Aj,

1/s

and a lower bracket of p of form lezozl [( fjk,k,m A yi)l B\ Ajk—l] . For the choice gg = ¢

andej=¢- 22k this bracket has squared L, size bounded, up to a constant depending only
on s, by

ko

Zs]k (252057 4 g2 Y [Gr-D A1)+ S e
k=1

The logarithm of the total number of brackets can be bounded by

ko 2/( 2k |
10g|:l_[ NN kN k:| < Z(so : log( : )) <e& ' log(l/e),

k=1 € ji,k € jk.k

proving the claim (5.13). Let I, be the same as in the proof for d > 4. By rescaling, it follows
that

(B21D'"? | ((lelzl)m)
&

log Ni(e, Ps (I, B), L2) < .

By (5.7), 0n I¢, sup, ¢, sup ep, ,, P(x) < |1e|'/*. Let by = | 1|~ for some §' € (0, (—1/s —
1)/2), and {ij o f_j,g :1 < j < Ny} be a bye-bracket for Ps p]7, under L. A global bracket

for Ps pr can be obtained by assembling these local brackets for all(= four) quadrants, with
squared L;-size at most €2y, b% < ¢2, and the logarithm of the number of brackets is

7,1(/s+1)/2 1,|(1/s+1)/2
|22l log<| d >§£llog(1/s).

bee

D logNe <Y
¢ €

¢
Hence for s > —1/2, log N|.(e, Ps.m, b)) = log Nij(e, Pas.m» L2) < e~ Hlog(1/¢). The rest
of the proof is a standard computation of the size of the localized empirical process via
Hellinger bracketing numbers (cf. [47], Theorem 3.4.4), so we omit the details. [
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