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In the Gaussian sequence model ¥ = pu + &, we study the likelihood ra-
tio test (LRT) for testing Hy : 4 = o versus Hy : u € K, where g € K, and
K is a closed convex set in R". In particular, we show that under the null
hypothesis, normal approximation holds for the log-likelihood ratio statistic
for a general pair (i1(, K), in the high-dimensional regime where the estima-
tion error of the associated least squares estimator diverges in an appropriate
sense. The normal approximation further leads to a precise characterization of
the power behavior of the LRT in the high-dimensional regime. These charac-
terizations show that the power behavior of the LRT is in general nonuniform
with respect to the Euclidean metric, and illustrate the conservative nature
of existing minimax optimality and suboptimality results for the LRT. A va-
riety of examples, including testing in the orthant/circular cone, isotonic re-
gression, Lasso and testing parametric assumptions versus shape-constrained
alternatives, are worked out to demonstrate the versatility of the developed
theory.

1. Introduction.

1.1. The likelihood ratio test. Consider the Gaussian sequence model
(1.1) Y=p+§,

where u € R” is unknown and & = (&1, ..., &,) is an n-dimensional standard Gaussian vector.
In a variety of applications, prior knowledge on the mean vector  can be naturally translated
into the constraint i € K, where K is a closed convex set in R”. Two such important exam-
ples that will be considered in this paper are: (i) Lasso in the constrained form [71], where K
is an £1-norm ball and (ii) isotonic regression [22], where K is the cone consisting of mono-
tone sequences. We also refer the readers to [4, 5, 21, 40, 47] and many references therein
for a diverse list of further concrete examples of K. In this paper, we will be interested in the
following “goodness-of-fit” testing problem:

(1.2) Hy:u=uo versus Hi:puek,

where (o € K CR”, and K 1is an arbitrary closed and convex subset of R". Throughout the
manuscript, the asymptotics will take place as n — o0, and the explicit dependence of u, (o,
K and related quantities on the dimension n will be suppressed for ease of notation.

Given observation Y generated from model (1.1), arguably the most natural and generic
test for (1.2) is the likelihood ratio test (LRT). Under the Gaussian model (1.1), the log-
likelihood ratio statistic (LRS) for (1.2) takes the form

TY) =Y = pol® = Y - fix|®
(1.3) 5
=l +& —pol® = |n+§& Mk +5)| = 0.
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Here, fix =[x (Y) = argmin, ek ||Y — v||? is the metric projection of ¥ onto the constraint
set K with respect to the canonical Euclidean £, norm || - || on R”. As K is both closed and
convex, [Tk is well defined, and the resulting fig is both the least squares estimator (LSE)
and the maximum likelihood estimator for the mean vector x under the Gaussian model (1.1).
The risk behavior of [ix is completely characterized in the recent work [21].

The LRT for (1.2) and its generalizations thereof have gained extensive attention in the
literature; see, for example, [6-10, 23, 30, 49, 50, 53-55, 57, 62-64, 66, 68, 69, 77, 78] for an
incomplete list. In our setting, an immediate way to use the LRS 7'(Y) in (1.3) to form a test
is to simulate the critical values of 7' (Y) under Hy. More precisely, for any confidence level
a € (0, 1), we may determine through simulations an acceptance region Z, C R such that the
LRS satisfies P(T'(Y) € Z,) = 1 — o under Hp, and then formulate the LRT accordingly. In
some special cases, including the classical setting where K is a subspace, the distribution of
T (Y) under the null is even known in closed form, so the simulation step can be skipped.

Clearly, the almost effortless LRT as described above already gives an exact type I error
control at the prescribed level for a generic pair (19, K). The equally important question of
its power behavior, however, is more complicated and requires a much deeper level of inves-
tigation. In the classical setting of parametric models and certain semiparametric models, the
power behavior of the LRT can be precisely determined, at least asymptotically, for contigu-
ous alternatives in the corresponding parameter spaces; cf. [73, 74]. An important and basic
ingredient for the success of power analysis in these settings is the existence of a limiting
distribution of the LRT under Hp that can be “perturbed” in a large number of directions of
alternatives.

Unfortunately, the distribution of the LRS 7'(Y) in (1.3) under the null, for both finite-
sample and asymptotic regimes, is only understood in very few cases. One such case is, as
mentioned above, the classical setting where K is a subspace of dimension dim(K). Then
the null distribution of 7'(Y) is a chi-squared distribution with dim(K') degrees of freedom.
Another case is ;o = 0 and K is a closed convex cone. In this case, the null distribution of
T (Y) is the chi-bar squared distribution (cf. [6, 9, 49, 50, 64, 68]), which can be expressed
as a finite mixture of chi-squared distributions. Apart from these special cases, little next to
nothing is known about the distribution of the LRS 7 (Y) for a general pair of (uo, K) under
the null Hy, owing in large part to the fact that the null distribution of 7 (Y') highly depends on
the exact location of 1o with respect to K and is thus intractable in general. Consequently, the
lack of such a general description of the limiting distribution of 7(Y) causes a fundamental
difficulty in obtaining precise characterizations of the power behavior of the LRT for a general
pair (ug, K). On the other hand, such generality is of great interest as it allows us to consider
several significant examples, for instance testing general signals in isotonic regression and
with constrained Lasso. See Section 4 for more details.

1.2. Normal approximation and power characterization. The unifying theme of this pa-
per starts from the simple observation that in the classical setting where K is a subspace, as
long as dim(K) diverges as n — oo, the distribution of 7'(Y) has a progressively Gaussian
shape, under proper normalization. Such a normal approximation in “high dimensions” also
holds for the more complicated chi-bar squared distribution; see [31, 35] for a different set
of conditions. One may therefore hope that normal approximation of 7 (Y) under the null
would hold in a far more general context than just these cases. More importantly, such a
distributional approximation would ideally form the basis for power analysis of the LRT.

1.2.1. Normal approximation. The first main result of this paper (see Theorem 3.1)
shows that, although the exact distribution of 7' (Y) under Hy is highly problem-specific and
depends crucially on the pair (1o, K) as described above, Gaussian approximation of 7 (Y)
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indeed holds in a fairly general context, after proper normalization. More concretely, we show
that under Hy,

T(Y)—my,

(1.4) ~N(0,1) in total variation

gm
holds in the high-dimensional regime where the estimation error E,[[itx — woll? diverges
in some appropriate sense; see Theorem 3.1 and the discussion afterwards for an explana-
tion. Here and below, A/ (0, 1) denotes the standard normal distribution, and we reserve the
notation

(1.5) my =B, (T(Y)) and o, = Var,(T(Y))

for the mean and variance of the LRS 7'(Y) under (1.1) with mean p, so that m,, and 050 in
(1.4) are the corresponding quantities under Hy. In a similar spirit, we use the subscript @ in
[P, and other probabilistic notation to indicate that the evaluation is under (1.1) with mean .

When the normal approximation (1.4) holds, an asymptotically equivalent formulation of
the previously mentioned finite-sample LRT is the following LRT using acceptance region
determined by normal quantiles: For any o € (0, 1), let

(1.6) W) =W(Y;myy, o) = 1(M

€ Ag),

where A, is a possibly unbounded interval in R such that P(A(0, 1) € Ay) = 1 —a. Common
choices of A, include: (i) (—00, z] for the one-sided LRT and (ii) [—2q/2, Z«/2] for the
two-sided LRT, where z,, for any a € (0, 1), is the normal quantile defined by P(N(0, 1) >
Zo) = a. Although m,,, 0, do not admit general explicit formulae (some notable exceptions
can be found in, for example, [52], Table 6.1, or [35], Table 1), their numeric values can be
approximated by simulations. In what follows, we will focus on the LRT given by (1.6), and
in particular its power behavior, when the normal approximation in (1.4) holds.

Opg

1.2.2. Power characterization. Using the normal approximation (1.4), our second main
result (see Theorem 3.2) shows that under mild regularity conditions,

(1.7) IEM\IJ(Y;mMO,GMO)%P[N<w, 1) eAg]

Oy
This power formula implies that for a wide class of alternatives, the LRS T'(Y) still has an
asymptotically Gaussian shape under the alternative, but with a mean shift parameter (m, —
my,) /0y, In particular, (1.7) implies that

(1.8) ﬁ({%}) CALB) & EW(¥imuy,ou)— Bel011.
o

Here, R = R U {00}, and for a sequence {w,} C R, £L({w,}) denotes the set of all limit

points of {w,} in R, and the power function A 4, :R — [0, 1] is defined in (3.2) be-

low. For instance, when A, = (—00, 7,] is the acceptance region for the one-sided LRT,

A(—o0,z,1(w) = P(—2z4 + w). In general, A 4,(0) =« and A 4, (w) =1 only if w € {+o0}.

Hence the LRT is power consistent under u, that is, E, W (Y; m,,, 0,,) — 1, if and only if

(1.9) c({wD C ALl (1) C {00},

Oug

The asymptotically exact power characterization (1.8) for the LRT is rather rare beyond the
classical parametric and certain semiparametric settings under contiguous alternatives (cf.
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[73, 74]). The setting in (1.8) can therefore be viewed as a general nonparametric analogue
of contiguous alternatives for the LRT in the Gaussian sequence model (1.1).

A notable implication of (1.9) is that for any alternative u € K, the power characterization
of the LRT depends on the quantity m, — m,,, which cannot in general be equivalently re-
duced to a usual lower bound condition on || — wo|l. This indicates the nonuniform power
behavior of the LRT with respect to the Euclidean norm ||-||. As the LRT (with an optimal cal-
ibration) is known to be minimax optimal in terms of uniform separation under ||-|| in several
examples (cf. [78]), the nonuniform characterization (1.9) hints that the minimax optimality
criteria can be too conservative and noninformative for evaluating the power behavior of the
LRT.

Another implication of (1.9) is that it is possible in certain cases that the one-sided LRT
(i.e., Ay = (—00, z¢]) has an asymptotically vanishing power, whereas the two-sided LRT
(i.e., Ay =[—2a/2, Za/2]) is power consistent. This phenomenon occurs when the limit point
—o0 in (1.9) is achieved for certain alternatives u € K in the high-dimensional limit. See
Remark 3.5 ahead for a detailed discussion.

1.3. Testing subspace versus closed convex cone. A particularly important special setting
for (1.2) is the case of testing Hp : © = 0 versus H; : u € K, where K is assumed to be a
closed convex cone in R"”. We perform a detailed case study of the following slightly more
general testing problem:

(1.10) Hy:ne Ky versus Hi:ueKk,

where Ko C K C R” is a subspace, and K is a closed convex cone. The primary motivation
to study (1.10) arises from the problem of testing a global polynomial structure versus its
shape-constrained generalization; concrete examples include constancy versus monotonicity,
linearity versus convexity, etc.; see Section 4.5 for details. The LRS for (1.10) takes the
slightly modified form

T(Y)ETKO(Y)
(1.11) =||Y — fig,I> — 1Y — x|

= |u+E—Tgu+8|° = |n+&-Tgu+8|>

The dependence in the notation of the LRS 7' (Y) on K¢ will usually be suppressed when no
confusion could arise.

Specializing our first main result to this testing problem, we show in Theorem 3.8 that nor-
mal approximation of 7(Y) under Hp holds essentially under the minimal growth condition
that g — dim(Kg) — oo, where dk is the statistical dimension of K (formally defined in
Definition 2.2). Similar to (1.8), the normal approximation makes possible the following pre-
cise characterization of the power behavior of the LRT under the prescribed growth condition
(see Theorem 3.9):

ﬁ({EnnK(u —Mgy(w) + &7 - E[k @)
a0

A—l
(1.12) }) C Ay, (BNIO, +o0]

& E W (Y;mp,00) — Be[0,1].

As 002 = Var(T (§)) < §g — dim(K() (cf. Lemma 2.4) for the modified LRS T'(Y) in (1.11),
the LRT is power consistent under p if and only if

|k (1 — Mgy () + I° — Ik 1
(8x — dim(Ko))'/2

(1.13) oo
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Formula (1.13) shows that power consistency of the LRT is determined completely by (a com-
plicated expression involving) the “distance” of the alternative ; € K to its projection onto
Ko in the problem (1.10). Compared to the uniform || - ||-separation rate derived in the recent
work [78] (cf. (3.19) below), (1.12)—(1.13) provide asymptotically precise power character-
izations of the LRT for a sequence of point alternatives. This difference is indeed crucial as
(1.13), similar to (1.9), cannot be equivalently inverted into a lower bound on || — Ik, (1) ||
alone. This illustrates that the nonuniform power behavior of the LRT is not an aberration
in certain artificial testing problems, but is rather a fundamental property of the LRT in the
high-dimensional regime that already appears in the special yet important setting of testing
subspace versus a cone.

1.4. Examples. As an illustration of the scope of our theoretical results, we validate the
normal approximation of the LRT and exemplify its power behavior in two classes of prob-
lems:

1. Testing in orthant/circular cone, isotonic regression and Lasso;
2. Testing parametric assumptions versus shape-constrained alternatives, for example,
constancy versus monotonicity, linearity versus convexity and generalizations thereof.

1.4.1. Nonuniform power of the LRT. Some of the above problems give clear examples
of the aforementioned nonuniform power behavior of the LRT: In the problem of testing
w = 0 versus the orthant and (product) circular cone, the LRT is indeed powerful against
most alternatives in the region where the uniform separation in ||-|| is not informative. More
concretely:

e In the case of the orthant cone, the LRT is known to be minimax optimal (cf. [78]) in
terms of the uniform || - ||-separation of the order n'/4. Our results show that the LRT
is actually powerful for “most” alternatives y with ||i|| = O(n'/%), including some with
|| - |I-separation of the order n® for any 8 > 0. This showcases the conservative nature of
the minimax optimality criteria. See Section 4.1 for details.

e In the case of (product) circular cone, the LRT is known to be minimax suboptimal (cf.
[78]) with || - ||-separation of the order n!/% while the minimax separation rate is of the
constant order. Our results show the minimax suboptimality is witnessed only by a few
unfortunate alternatives and the LRT is powerful within a large cylindrical set including
many points of constant || - ||-separation order. This also identifies the minimax framework
as too pessimistic for the suboptimality results of the LRT; see Section 4.2 for details.

1.5. Related literature. The results in this paper are related to the vast literature on non-
parametric testing in the Gaussian sequence model, or more general Gaussian models, under
a minimax framework. We refer the readers to the monographs [34, 45] for a comprehensive
treatment on this topic, and [2, 4, 5, 15-18, 25, 26, 28, 46, 47, 58, 75] and references therein
for some recent papers on a variety of testing problems. Many results in these references es-
tablish minimax separation rates under a prespecified metric, with the Euclidean metric |||
being a popular choice in the Gaussian sequence model. In particular, for the testing prob-
lem (1.10), this minimax approach with ||-|| metric is adopted in the recent work [78], which
derived minimax lower bounds for the separation rates and the uniform separation rate of
the LRT. These results show that the LRT is minimax rate-optimal in a number of examples,
while being suboptimal in some other examples.

Our results are of a rather different flavor and give a precise distributional description of
the LRT. Such a description is made possible by the central limit theorems of the LRS under
the null proved in Theorems 3.1 and 3.8. It also allows us to make two significant further
steps beyond the work [78]:
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1. For the testing problem (1.10), we provide asymptotically exact power formula of the
LRT in (1.12) for each and every alternative, as opposed to lower bounds for the uniform
separation rates of the LRT in ||| as in [78]. As a result, the main results for the separation
rates of the LRT in [78] follow as a corollary of our main results (see Corollary 3.11 for a
formal statement).

2. Our theory applies to the general testing problem (1.2), which allows for a general
pair (1o, K) without a cone structure. This level of generality goes much beyond the scope
of [78] and covers several significant examples, including testing in isotonic regression and
Lasso problems.

The precise power characterization we derive in (1.12) has interesting implications when
compared to the minimax results derived in [78]. In particular, as discussed in Section 1.4.1,
(1) it is possible that the LRT beats substantially the minimax separation rates in ||-|| metric for
individual alternatives, and (ii) the suboptimality of the LRT in [78] is actually only witnessed
at alternatives along some “bad” directions. In this sense, our results not only give precise
understanding of the power behavior of the canonical LRT in this testing problem, but also
highlights some intrinsic limitations of the popular minimax framework under the Euclidean
metric in the Gaussian sequence model, both in terms of its optimality and suboptimality
criteria.

From a technical perspective, our proof technique differs significantly from the one
adopted in [78]. Indeed, the proofs of the central limit theorems and the precise power formu-
lae in this paper are inspired by the second-order Poincaré inequality due to [20] and related
normal approximation results in [35]. These technical developments are of independent in-
terest and have broader applicability; see, for instance, [41] for further developments in the
context of testing high-dimensional covariance matrices.

1.6. Organization. The rest of the paper is organized as follows. Section 2 reviews some
basic facts on metric projection and conic geometry. Section 3 studies normal approximation
for the LRS T (Y) and the power characterizations of the LRT both in the general setting (1.2)
and the more structured setting (1.10). Applications of the abstract theory to the examples
mentioned above are detailed in Section 4. Proofs are collected in Sections 5 and 6 and the
Appendix [42].

1.7. Notation. For any positive integer n, let [1 : n] denote the set {1, ...,n}. Fora,b €
R, a vV b =max{a, b} and a A b = min{a, b}. For a € R, let a1 = (+a) Vv 0. For x € R", let
lx]| , denote its p-norm (0 < p < 00), and B,(r;x) ={z € R" : [z — x|, <r}. We simply
write ||x|| = ||x|l2, B(r; x) = Ba(r; x), and B(r) = B(r; 0) for notational convenience. By
1,, we denote the vector of all ones in R”. For a matrix M € R"*", let |M|| and ||M|
denote the spectral and Frobenius norms of M, respectively.

For a multiindex k = (ki,...,k,) € ZZ ), let |[k| =} ;_ k;. For f:R" - R, and k =

ki, ... ky) € Z2, let O f(2) = akazll:l% for z € R" whenever definable. A vector-valued
= 1 nin

map f :R" — R™ is said to have subexponential growth at oo if lim”x”_wollf(x)e_“x” I =
0.For f=(f1,.... fu) :R" = R" let Jr(z) = (afi(z)/azj)?’j:l denote the Jacobian of f
and

n
. 0
div f(2) =) 5 i@ =ul/s@)
i=1
for z € R™ whenever definable.

We use C, to denote a generic constant that depends only on x, whose numeric value
may change from line to line unless otherwise specified. a <y b and a 2, b mean a < C,b
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and a > C,b, respectively, and a <, b means a <, b and a =, b (a < b means a < Cb for
some absolute constant C). For two nonnegative sequences {a,} and {b,}, we write a, < b,
(respectively a,, > by,) if lim,,_, oo (@, /by) = 0 (resp., lim,,— 5o (a, /by) = 00). We follow the
convention that 0/0 = 0. Op and op denote the usual big and small O notation in probabil-
ity.

We reserve the notation & = (&1, ..., &,) for an n-dimensional standard normal random
vector, and ¢, ® for the density and the cumulative distribution function of a standard normal
random variable. For any o € (0, 1), let z, be the normal quantile defined by P(N (0, 1) >
Z¢) = o. For two random variables X, Y on R, we use drv(X, Y) and dgy (X, Y) to denote
their total variation distance and Kolmogorov distance defined respectively as

drv(X,Y)= sup |P(X € B)—P(Y € B)|,
BeB(R)

dxol(X,Y) =sup|P(X <1) —P(Y <1)|.
teR

Here, B(R) denotes all Borel measurable sets in R.

2. Preliminaries: Metric projection and conic geometry. In this section, we review
some basic facts on metric projection and conic geometry. For any x € R”, the metric projec-
tion of x onto a closed convex set K C R” is defined by

[Mg (x) =argmin|lx — y||2.
yekK
It is a standard fact that the map [Tk is well defined, 1-Lipschitz and hence absolutely con-

tinuous. The Jacobian Jy,, is therefore almost everywhere (a.e.) well defined.
Let G : R"” — R be defined by

G(y)=|y—Txk|*

We summarize some useful properties of G and Jrj, in the following lemma.

LEMMA 2.1. The following statements hold:

1. G is absolutely continuous and its gradient VG(y) = 2(y — g (y)) has subexpo-
nential growth at 0.
2. Fora.e.y € R, [Jng DI VI = Jng W) < 1and Jrg () TTIg (0) = Jng () Ty

PROOF. (1) follows from [35], Lemma 2.2, and the proof of [35], Lemma A.2. The first
claim of (2) is proved in [35], Lemma 2.1. For the second claim of (2), note that VG (y) =
201 = I ) T (y =g (). By (1), VG (y) = 2(y =k (), 50 Jrig () T (y =Tk () =0,
proving the claim. [

Recall that a closed and convex cone K C R” is polyhedral if it is a finite intersection of
closed half-spaces, and a face of K is a set of the form K N H, where H is a supporting
hyperplane of K in R”. Let lin(F) denote the linear span of F. The dimension of a face F is
dim F = dim(lin(F)), and the relative interior of F is the interior of F in lin(F).

The complexity of a closed convex cone K can be described by its statistical dimension
defined as follows.

DEFINITION 2.2. The statistical dimension 5k of a closed convex cone K is defined as
Sk =E|Tk (©)*.
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The statistical dimension §x has several equivalent definitions; see, for example, [1],
Proposition 3.1. In particular, §x = Esup,cgnp1)((v, § ))2. For any polyhedral cone K C R"
and j € {0, ..., n}, the jth intrinsic volume of K is defined as

(2.1) v;(K)=P(Tg (&) € relative interior of a j-dimensional face of K).

More generally, the intrinsic volumes {v;(K )}?:0 for a closed convex cone K C R" are
defined as the limit of (2.1) using polyhedral approximation; see [52], Section 7.3. These
quantities are well defined and have been investigated in considerable depth; see, for example,
[1, 35, 52].

DEFINITION 2.3. For any closed convex cone K C R”, let Vk be a random variable
taking values in {0, ..., n} such that P(Vg = j) = v;(K).

We summarize some useful properties of §x and Vi in the following lemma. An elemen-
tary and self-contained proof is given in Appendix A.1.

LEMMA 2.4. Let K be a convex closed cone. Then:

1. g =EVg;
2. Var(||TTg (€)1?) = Var(Vk) + 28k;
3. 28k < Var(|TIg (§)|1?) <28k +2||Elg (£)]|> < 45k

For any closed convex cone K C R”, its polar cone is defined as

(2.2) K*={veR":(v,u) <0, forallu € K}.

With Ik denoting the metric projection onto K*, Moreau’s theorem [65], Theorem 31.5,
states that for any v € R",

v=IIg )+ Ig+(v) with <HK(U), HK*(U)> =0.
3. Theory.

3.1. Normal approximation for T (Y) and power characterizations. We start by present-
ing the normal approximation result for 7(Y) in (1.3) under the null hypothesis (1.2); see
Section 5.1 for a proof. This will serve as the basis for the size and power analysis of the LRT
(1.6) in the testing problem (1.2).

3.1 drv

THEOREM 3.1. Let K C R" be a closed convex set and g € K. Then under Hy,
(T(Y )

— 8 Eyolliix — 1ol
7’”“0’/\/’(0’ 1)) < A\/ Ko . -

10 2| E itk — poll + 1B Jak Iy
Here, Jiy = Jag (§) = Jng (no +§), and my,,, 0y, are as defined in (1.5).

The bound (3.1) is obtained by a generalization of [35], Theorem 2.1, using the second-
order Poincaré inequality [20], together with a lower bound for aﬁo using Fourier analysis
in the Gaussian space [61], Section 1.5. The Fourier expansion can be performed up to the
second order thanks to the absolute continuity of the first-order partial derivatives of 7' (Y)
(cf. Lemma 2.1).

We now comment on the structure of (3.1). The first term || E, iig — woll? in the denomi-
nator is the squared bias of the projection estimator fi g, while the second term [|E,,, J7, |I%,

which depends on the magnitudes of the first-order partial derivatives of fig, can be roughly
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understood as the “variance” of {gx. Consequently, one may expect that the denominator is

of the order £, [litx — woll?, so the overall bound scales as O(l/\/EuollﬁK — 1oll?). As
will be clear in Section 4, this is indeed the case in all the examples worked out, and the
major step in applying (3.1) to concrete problems typically depends on obtaining sharp lower
bounds for the “variance” term ||E,, Ja, ||%, which may require nontrivial problem-specific
techniques.

Using Theorem 3.1, we may characterize the size and power behavior of the LRT. For a
possibly unbounded interval I C R, let A; :R — [0, 1] be defined as follows: For w € R,

(3.2) Arw)=1—PWN©,1) el —w)=PWN(O,1) el —w),

and Aj(fo0) = limy,—, 400 Ar(w), which is clearly well defined. Aj is either monotonic
or unimodal, so Al_l(,b’) contains at most two elements for any 8 € [0, 1]. Two primary
examples of [ are A = (—00, z¢ ] and AL = [—za/2, za2] — the acceptance regions for the
one- and two-sided LRTs, respectively, where we have

(3.3)  Aus(w) =D(—z4 +w), Aps(w) = P(—za2 +w) + P(—2¢/2 — W).
It is clear that A 49(0) = A 45 (0) = &, Asx(1) = {+00}, and A (1) = {z£00}. Recall the
definitions of m,, and aﬁ for general 1 € K in (1.5). The following result (see Section 5.2 for

a proof) characterizes the power behavior of the LRT.

THEOREM 3.2. Consider testing (1.2) using the LRT as in (1.6). There exists some con-
stant C 4, > 0 such that

m, —m
E V(Y5 mpu, 0u0) — A, (%)‘
0
GH I = ol
<2-erry, +C -Z(l/\ )
o Aa lmy —my, |V oy,
Here,
T _
erry, = dKol( (o ‘:5) Mo ,N(0, 1)) < right hand side of (3.1),
o

and £ (x) = x/1 V1og(1/x) for x > 0 and £ (0) = 0. Consequently:
1. The LRT in (1.6) has size
|EM0\I’(Y; Mygs Opg) — O‘| <2-erry,.

2. Suppose the normal approximation of T (Y) holds under Hy, that is, err;,, — 0. Then,
for any u € K such that

(3.5) le — poll KL lmy —my, |V oopu,,
we have

(3.6) ﬁ({@}) CALB) & EV(;myuy, ou)— pel0,11.
o

Hence under (3.5), the LRT is power consistent under i, that is, B,V (Y; m,, 0,,) — 1, if
and only if

3.7) ﬁ({w}) C AL (1) C {00},
0

Ou
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REMARK 3.3. The validity of the normal approximation in Theorem 3.2(2) is imposed
to express the exact power behavior (3.6) with the normal quantile. More generally, as long
as the normalized LRS (T'(Y) — m,)/oy, has a distributional limit under Hy, (3.6) can be
obtained accordingly with the corresponding quantiles.

REMARK 3.4. Some comments on conditions (3.5) and (3.7) in detail.

1. Condition (3.5) centers around the key deviation quantity
(3.8) ATy pgE) =T (n+8) — T (o +8),
which can be shown to satisfy
E(ATjupug) =mp—mugs  Var(ATp ) < [l — ol

Moreover, it can be shown that AT}, ,, concentrates around its mean m, — m,, with sub-
Gaussian tails (see Proposition 5.3). This concentration result allows us to connect the normal
approximation under the null in Theorem 3.1 to the power behavior of the LRT under the
alternative.

2. The condition (3.5) cannot be removed in general for the validity of the power charac-
terization (3.6). In fact, in the small separation regime ||t — poll < 07, (3.5) is automatically
fulfilled; in the large separation regime where ||t — poll > 0y,, (3.5) can typically be verified
by establishing a quadratic lower bound |m,, —m,,| 2 |n — woll. In this sense, (3.5) ex-
cludes possibly ill-behaved alternatives that violate the prescribed quadratic lower bound in
the critical regime || — poll < o,. Such ill-behaved alternatives do exist; see, for example,
Example 4.4 ahead for more details.

3. To verify (3.7), some problem specific understanding for m, and o, is needed. As
E. (&, k) =E, diviig by Stein’s identity, we have

(3.9) my = |lu— pol* +2E, diviig — E,llik — ul,

hence the numerator of (3.7) requires sharp estimates of the expected “degrees of freedom”
E, div fig (cf. [56]), and the estimation error E, ||iix — wll?. A (near) matching upper and
lower bound for o,, will also be required to obtain necessary and sufficient characterizations.
We mention that (3.7) cannot in general be equivalently inverted into a lower bound on || x —
ol only; see the remarks after Theorem 3.9 for a more detailed discussion.

REMARK 3.5. The LRT defined in (1.6) depends on the choice of the acceptance region
A. Two obvious choices are:

1. (One-sided LRT). Let A, = AY® = (—00, z4]. This leads to the following one-sided
LRT:
T(Y)—m
(3.10) Wos (V) = Wos (Y5 My, 0,) = 1(7“0 > za).
Ouo
2. (Two-sided LRT). Let A, = Afj = [~Za/2, Zay2]. This leads to the following two-
sided LRT:
> Za/Z)-

In the classical case where K is a subspace of fixed dimension, the one-sided LRT is power
consistent (under pu € K) if and only if the two-sided LRT is power consistent, so one can
simply use the standard one-sided LRT. The situation can be rather different for certain high-
dimensional instances of K. Under the setting of Theorem 3.2(2), as A;lés (1) = {400} while

T(Y)—my,

3.11) Wi (Y) = Wi (Y5 11,00, 0p0g) = 1(‘
O g
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A;Uls (1) = {£00}, power consistency under u for the one-sided LRT implies that for the two-
sided LRT, but the converse fails when the —oo limit in (3.7) is achieved. See Example 4.5
ahead for a concrete example. However, in the special case where g =0 and K is a closed
convex cone, (m;, — my,)/o,, can only diverge to +o00 under mild growth condition on
K, so in this case power consistency is equivalent for one- and two-sided LRTs. Also see
Remark 3.10(1).

As a simple toy example of Theorem 3.2, we consider the testing problem (1.2) in the linear
regression case, where K = Kx = {X0 : 0 € RP} for some fixed design matrix X € R"*?,
with p < n. We will be interested in the high-dimensional regime rank(X) — oo where the
normal approximation for the LRT holds under the null.

PROPOSITION 3.6. Consider testing (1.2) with K = Kx. Suppose that rank(X) — oo.
Let W € {Wy, Wis).
1. If uo € Kx, then
L) N(. 1 ) < L
oo NOD )= Jrank(X)

Consequently, the LRT is asymptotically size o with E,,,W (Y) = o + O(1/+/rank(X)).
2. Forany p € Kx,my —my, = ||n — woll?, and the LRT is power consistent under [,
that is, B, W(Y) — 1, if and only if ||t — poll > (rank(X))/4.

TY
(3.12) dTV( )

PROOF. (1) Note that fig, =g, (Y) = X(XTX)*XTY = PY, where A~ denotes the
pseudo-inverse for A. Then E, /iy = Puo = o, Jug, = P and

EpuolBky — poll® = [Eye Jag, |7 =tr(PPT) = dim(K ) = rank(X).

The claim (1) now follows from Theorem 3.1.
(2) By (3.9), for any . € Ky,

my = | — poll* + E[2(£, P&) — || PE||?]
= llw — poll* + E[I PEN*] = e — poll* + rank(X),
and with ug € Ky,
o5, = Var(|| P£||*) = rank(X).
As |l — poll < lle — poll> v /rank(X) always holds, the claim follows from Theo-

rem 3.2(2). O

More examples on testing in orthant/circular cone, isotonic regression and Lasso are
worked out in Section 4.

3.2. Subspace versus closed convex cone. In this subsection, we study in detail the test-
ing problem (1.10) as an important special case of (1.2). The additional subspace and cone
structure will allow us to give more explicit characterizations of the size and the power of the
LRT; note that here the LRS T (Y) takes the modified form (1.11). We start with the following
simple observation.
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LEMMA 3.7. Let K be a closed convex set in R". Then for u such that K — u C K, we
have

Mg(u+8&)=p+TgE), VEeR"™
Consequently,

s e e S T

PROOF. By the definition of projection, we want to verify

(W +&—(n+Tg@),v—(L+Tk(E)) <0, YveKk.
This amounts to verifying that

(£ —Tkg@©), (v—p) —TMg@©)<0, YveKk.
As v — u € K by the condition K — u C K, the above inequality holds by the projection
property for [Tk (§). O

Recall the definition of the statistical dimension §x in Definition 2.2. The above lemma
provides us with simplifications of m, and oﬁ as defined in (1.5): under the setting of (1.10),
for any u € Ko,

2 2
(B.13)  mu=mo=8k —8k,. 0, =0q=Var(|lIx @] — |, &)
Moreover, as Ky is a subspace, we have dg, = dim(Ky). The following result (proved in
Section 5.3) derives the normal approximation of 7 (Y) with an explicit error bound.

THEOREM 3.8. Suppose Ko C K C R" are such that K is a subspace and K is a closed
convex cone. Then for u € Ko,

m(w,mo, NE

8
(o) JOog — 06 Ko '

It is easy to see from the above bound that under the growth condition §x — g, — o0, nor-
mal approximation of 7 (Y) holds under the null. This growth condition cannot be improved
in general: for a subspace K, T (Y) follows a chi-squared distribution with §x — dg, degrees
of freedom under the null, so normal approximation holds if and only if §x — dg, — oo. The
above theorem extends [35], Theorem 2.1, in which the case Ky = {0} is treated. Compared
to classical results on the chi-bar squared distribution [31], Corollary 2.2, the growth condi-
tion here does not require exact knowledge for the mixing weights, and can be easily checked
using Gaussian process techniques; see Section 4.5 for examples.

Using Theorem 3.8, we can prove sharp size and power behavior of the LRT; see Theo-
rem 3.9 below (proved in Section 5.4). For p > 1, let

Tk, =E|Og+&)|” —E|Nk@&|". veR"

We simply shorthand I'x ; as I'x for notational convenience. Recall the definition of Vg in
Definition 2.3 and that of the polar cone K* in (2.2).

THEOREM 3.9. Consider testing (1.10) using the LRT V(Y ; mq, og) with the modified
LRS T (Y) in (1.11). There exist constants C 4, C;la > 0 such that

Lk 2(u — HKO(H«)))‘

E, W (Y;mg,o00) — AAQ(

00
— 11
(3.14) <2 e+ Ca, _g(m Il — Mgy ) )
Tk 2(n — gy (w))| Voo

(3.15) <Cly, - L(Gk — 8k~ ).
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Here, errg, Z(-) are defined in Theorem 3.2. Consequently:
1. For u € Ko, the LRT has size EqW¥ (Y ; mg, 09), where
16
2. Suppose further §x — 8k, — 0. Then for u € K,
£<{ Ik 2(n — Tk, (1))

00

|EoW (Y; mo, 0p) — | <

}) C AL (B) N0, +00]

N ({ 2l (e — Mgy (1))
V2+r(K, Ko)/1—08k,/8k
& E W (Y;mp,00) — Be[0,1],

(3.16) }) C AZL(B) N0, +00]

where r (K, K¢o) = Var(VKmK()k)/SKmKa« € [0, 2]. Hence the LRT is power consistent under (L,
that is, K,V (Y; mg, 09) — 1, if and only if
P (n— gy ()

r —TII
k2(1 Ko (1)) oo o S 4o

Bk — k)2 V1= 8k,/8k

REMARK 3.10.

(3.17)

1. By the proof of [78], Lemma E.1, I'x 2(v) > ||v||2 > 0 for all v € K, so all the limit
points in (3.16) are nonnegative. This leads to the equivalence of the power consistency prop-
erty for the one-sided LRT (3.10) and the two-sided LRT (3.11).

2. With the help of Lemma 3.7 and (3.13), which holds for any u € K¢, some calcula-
tions yield that

(3.18) my —mo =Tk — k() > |1 — Mgy (w7
Therefore, the counterpart of the generic condition (3.5) under (1.10)
| = Mgy ()] K Imy —mol v oo
is automatically satisfied due to the global quadratic lower bound (3.18). In particular, (3.15)

vanishes under the growth condition §x — §x, — 00.

The power behavior of the LRT is characterized using I'x 2 and I'x in Theorem 3.9. The
function I'k > is usually more amenable to explicit calculations in concrete examples, while
the formulation using ' allows us to recover the separation rate in | -|| for the LRT derived
in [78] in the setting (1.10). We formally state this result below; see Section 5.5 for a proof.

COROLLARY 3.11. For W € {Wys, Wi}, (3.17) is satisfied for any pu € K such that

12
8¢ >
0V infyexnp)(n, Elg (€)))

(3.19) lw — Mg, ()] > 5}</4/\(

Below we give a detailed comparison of (3.17) and its sufficient condition (3.19) due to
[78]:

e (Optimality) By [78], condition (3.19) cannot be further improved in the worst case in
the sense that for every fixed pair (Ko, K), there exists some p € K violating (3.19) that
invalidates (3.17). Furthermore, the same work also shows that the uniform || - ||-separation
rate in (3.19) is minimax optimal in many cone testing problems.
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e (Nonuniform power) On the other hand, it is important to mention that (3.17) is not equiv-
alent to (3.19). In fact, as we will see in the example of testing O versus the orthant cone
K and the product circular cone K« o (to be detailed in Corollary 4.2 and Theorem 4.6),
the worst case condition (3.19) in terms of a separation in ||| is too conservative: condi-
tion (3.17) allows natural configurations of u € {Ky, K o} whose separation rate in |||
can be n’ for any § € (0, 1/4), while (3.19) necessarily requires a separation rate in |-|| of
order at least n!/4. Therefore, although (3.19) gives the best possible inversion of (3.17) in
terms of uniform separation in ||-||, condition (3.17) can be much weaker than (3.19), and
characterizes the nonuniform power behavior of the LRT.

To give a better sense of the results in Theorem 3.9, we consider a toy example where K
is also a subspace.
PROPOSITION 3.12. Let W € {W,s, Wis}. Suppose S — 6k, — oo.

1. If u € Ko, the LRT is asymptotically size o with E, W (Y; mg, 09) = o + O((6x —
Sko) ).
2. For n € K, the LRT is power consistent under , that is, £, V(Y ; mg, 09) — 1, if and
lyif|p—TI Sk — g )4
only if || Kol > 8k — 8k,) /™.

PROOF. (1) is a direct consequence of Theorem 3.9(1). (2) follows from Theorem 3.9(2)
upon noting that

Txa(uw— Mgy () =E| Mg (1 — Mg () + &) |* —E[ Mg &)]* = |1 — i, ()

2
0 = Var(| Mgnk; €)|°) =28k nk; =20k — 8k,)-
The second line of the above display uses Lemma 2.4(3). [

2
9

More examples on testing parametric assumptions versus shape-constrained alternatives
will be detailed in Section 4.

4. Examples. This section is organized as follows. Sections 4.1—4.4 study the generic
testing problem (1.2) in the context of orthant/circular cones, isotonic regression and Lasso,
respectively. Section 4.5 specializes the subspace versus cone testing problem (1.10) to the
setting of testing parametric assumptions versus shape-constrained alternatives. For simplic-
ity of presentation, we will focus on the two-sided LRT (3.11), and simply call it the LRT
unless otherwise specified.

4.1. Testing in orthant cone. Consider the orthant cone

K+E{V=(V1»---’Vn)€RnlviZO,iE[l:n]}.

We are interested in the testing problem (1.2) with K = K . Testing in the orthant cone has
previously been studied by [49, 62, 78]. The following result (see Section 6.1 for a proof)
gives the limiting distribution of the LRS and characterizes the power behavior of the LRT in
this example.

THEOREM 4.1.

1. There exists a universal constant C > 0 such that for po € K4,

<7T(Y) — i (0 1)) <<

Jn

Consequently, the LRT is asymptotically size a with W (Y;my,, 04) =a + O(n=1?).

drv
O
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2. Forany ju € K, the LRT is power consistent under v, that is, £, W (Y m ), 0) —
1, if and only if

n

{8 (i) — S ((o)i)} + e — moll*[ > n'/2.
i=1

Here, S is an increasing, concave and bounded function on [0, co) with S4(0) = 0 and
defined as

4.1) S'+(x)E<I>(x)+x(p(x)—xz(l—CD(x))—%, x>0.

Let us further investigate the special case pug = 0 to illustrate the nonuniform power be-
havior of the LRT mentioned after Theorem 3.9. In other words, we consider testing u = 0
versus the orthant cone K ;. Let

_ 1
S.() =81 (x) +x2=D(x) +xp(x) + x> (x) — 5 %20
As S’ (x) =2[p(x) + xP(x)], §.(0) =2¢(0) > 0, and S (x) =2 (x) >0, S, is a strictly
increasing and convex function on [0, co) with Sy (0) = 0. Furthermore, it can be verified
via direct calculation that uniformly over x > 0, S;(x) < x V x2. Theorem 4.1 immediately
yields the following corollary.

COROLLARY 4.2.

1. For u =0, the LRT is asymptotically size a with EqW(Y; mg, 09) = o + O~V
2. For i € K, the LRT is power consistent under |1, that is, E, W (Y'; mg, 09) — 1, if
and only if |l v [|l|* > n'/2.

The results in [78], Section 3.1.5, or equivalently, condition (3.19) show that the type II
error of an optimally calibrated LRT vanishes uniformly for i € K such that ||| > n'/4.
Our results above indicate that the regime where the LRT has asymptotic power 1, for the
orthant cone K, is actually characterized by the condition |||/1 V ||¢]|? 3> n'/? and is hence
nonuniform with respect to ||-||. We give two concrete examples below.

EXAMPLE 4.3. Letq € (0, 1/2) and 11, 72 > O be two fixed positive constants. Consider
the following alternatives: (1) u = (tin"9)1, € Ky, and (2) u = (r2i~?)}_, € K. In both
cases, ||l =< n'=% and || 7 |2 < n'=24. The above corollary then yields that the LRT is power
consistent under p if and only if ¢ € (0, 1/2), while the characterization of [78] guarantees
power consistency of the LRT only for ¢ € (0, 1/4). In particular, as ¢ — 1/2, the LRT is
power consistent for certain alternative 1 with ||i|| =< n® for any § > 0. See Section 4.1.1
ahead for some simulation evidence.

One may further wonder whether the above examples only highlight “exceptional” alter-
natives in the regime where the uniform separation in ||-|| fails to be informative, that is, with
M, ={neK;: lell?> < Cn'/?} for some large enough absolute constant C > 0, whether
the above examples only constitute a small fraction of M,,. To this end, let A, ={u € M,, :
Il v lwll> = Cn'/?} be the region in M, in which the LRT is indeed powerful. By a stan-
dard volumetric calculation, it is easy to see that A, /M, — 1. In other words, the LRT is
indeed powerful for “most” alternatives in the region where the uniform separation in ||-||
is not informative as n — oo. Hence the nonuniform characterization in Corollary 4.2(2) is
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essential for determining whether the LRT is powerful for a given alternative u € K in the
regime [|u| = O(n'/*).

As the separation rate n'/%in ||-|| is minimax optimal for testing O versus K (cf. [78],
Proposition 1), the discussion above also illustrates the conservative nature of the minimax
formulation in this testing problem.

4.1.1. An illustrative simulation study. Below we present simulation results under the
two settings considered in Example 4.3. The confidence level will be taken as o = 0.05.

The power of the LRT in both the simulations below is calculated using an average of 2000
replications.

e InFigure 1, we take 71 = 2, 7o = 1 and examine the sharpness of the power characterization
q € (0, 1/2) predicted by Corollary 4.2(2). Clearly, Figure 1 shows that g € (0, 1/2) is the
correct range where the LRT is powerful in both the settings of Example 4.3, rather than
g € (0, 1/4) as predicted by [78].

e In Figure 2, we fix ¢ = 0.3, n = 20,000, and examine the validity of the normal power
expansion (3.14) in Theorem 3.9 along the alternatives considered in Example 4.3 with
71, 72 € {0.01,0.02, ..., 1}. Formally, we consider two power curves: (i) the power of
the LRT, that is, E, W(Y; mo, 09), (ii) theoretical power given by the normal approx-
imation, that is, A 4,(I'k 2(u)/00), for alternatives of the form p = (rln_O'S)?zl and
u= (rzi_0'3)§‘:1 with the prescribed 7, 12’s. Figure 2 clearly shows that the two power

curves are very close to each other.

4.1.2. Counterexamples. Let uo =1, € K, and u = cl1,, for some fixed ¢ > 0 to be
determined. As long as ¢ # 1, we have ||u — uoll®> = n(c — 1)? < n. We also have o2 =

"
n-Var[(c +& — 12— (c+ £)2]1=np%(c) < n, and

my—mp = Il — poll* + Y (81.() = S1.(1) =nf(c — D>+ 81(c) — 51D},
i=1

where S, is defined in (4.1). Let F(c) = (c — 1)* 4+ S4(c) — S4(1). Then F(1) =0, F(0) =
0.5753...,and F'(1) = 8 (1) =0.1666.... > 0.

o | . .- o |
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FIG. 1. The power curves for the alternatives n = 2n—9)"_. (in the left panel) and pu = (i_q)l-=1 (in the right

i=1

panel) as q varies, for sample sizes n € (2¢, ¢ € [1:20]}. The plots illustrate that the LRT has power in the range

q € (0, 1/2) in both the examples.
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F1G. 2. Fixed q = 0.3 and n = 20,000. The alternatives are yu = (11n70'3) in left panel and p = (1'21'70'3)
in the right panel with t, 7 € {0.01,0.02,...,1}. The red line denotes the power curve of LRI, that is,
{EupWis(Y; mg, 09) : 11}, while the blue line denotes the theoretical power curve via normal approximation, that
is, {A 4, (T 2(w)/00) : 12}

We first present a choice of ¢ that leads to an example showing the necessity of (3.5) for
the power characterization (3.6).

EXAMPLE 4.4. By the previous discussion, F must admit a zero in the open interval

(0, 1), which we denote as c¢o. With ¢ = ¢p, we then have m, = m,,. Moreover, as 0% =

"
np*(co) #np*(1) = o3, so by Theorem 4.1(1),

T(ut&) —my,  T(u+&—mu op »d/v(o p*(co)

0,1).
p%l))ﬁm’)

Oug Ou Oug
This means (3.6) fails.

Next, we present a choice of ¢ that leads to an example showing the necessity of consider-
ing two-sided LRT.

EXAMPLE 4.5. By the previous discussion, F(c) < 0 for ¢ € (0, 1) near 1. Pick any
c1 € (0, 1) such that F(c;) <0 and consider ¢ = ¢y. Let u = c11,. As 0y, < nl/2, (my, —
mu,) /0, < —n'/2, so by Theorem 4.1(1),

T(M‘f‘g)_mug _ T(M'f‘é}_)_mu .O—_M_f_mlt_m/to 0o
O oy O O

in probability. This means that the two-sided LRT in (3.11) is powerful under u = c1,, that
is, K, W (Y; my,, 0u,) — 1, but the one-sided LRT in (3.10) is not powerful under p, that
is, K, Wos (Y my,, 0yy) — 0.

4.2. Testing in circular cone. For any « € (0, w/2), let the -circular cone be defined by
Ke={veR" v > || cos(a)},

and let K« o = Ky x R C R". Consider the testing problem (1.2) with uop =0 and K €
{K«, Kx .o} The circular cone has recently been used in modeling by [12, 36]. The following
result (see Section 6.2 for a proof) gives the limiting distribution of the LRS and characterizes
the power behavior of the LRT in this example.



HIGH-DIMENSIONAL ASYMPTOTICS OF LIKELIHOOD RATIO TESTS 393

THEOREM 4.6.

1. Let K € {Ky, K« o). There exists some universal constant C > 0 such that

dTV(M,N(O, 1)) < %

00 n

Consequently the LRT is asymptotically size a with W (Y'; mo, 00) = + Omn~1?).
2. (a) For any n € Ky, the LRT is power consistent under (v, that is, F,W(Y;
mo, 0g) —> 1, if and only if ||| > 1.
(b) For any u € Ky «, the LRT is power consistent under i, that is, K, W(Y;
mo, 0g) — 1, if and only ifllulll > 1or |,u2| > nl/4,
Here, for any n € R, = (u', u?) e R x R with u' € R*~! denoting the first
n — 1 components of i and > € R denoting the last.

Regarding the two cones {K, K« o}, [78] showed the following:

e For K,, an optimally calibrated LRT is powerful for u € K, such that ||| > 1. The
minimax || - ||-separation rate is of the same constant order, so the LRT is minimax optimal.
e For K o, an optimally calibrated LRT is powerful for u € K« , such that ||| > n'/4,
while the minimax || - ||-separation rate is of constant order, so the LRT is strictly minimax

suboptimal.
Theorem 4.6(2) is rather interesting compared to the above results of [78]:

e For K, Theorem 4.6(2)(a) shows that the power behavior of LRT is uniform with respect
to ||-|| for K. In other words, for any u € K, with ||| = O(1) the LRT is necessarily not

powerful.
e For K o, Theorem 4.6(2)(b) shows that the only bad alternatives that drive the uniform
separation rate n'/% in |-|| are those u = (u', u?) € K x.o lying in the narrow cylinder

Iutll = ©1) and |u?| = O(n'/*), and the LRT will be powerful for points of the form, for
example, (1!, 0) as soon as || 1! > 1. This is in line with the result of Theorem 4.6(2)(a),
and provides another example where the LRT exhibits nonuniform power behavior with
respect to |||

Similar to the LRT in the orthant cone, one may easily see that the conservative uniform
separation rate (i.e., ||u| > n/*yin ||| for K <. fails to detect “most” alternatives where
the LRT is powerful, as n — oo. In this sense, the minimax sub-optimality of LRT for testing
0 versus K  is also conservative as the LRT behaves badly for only a few alternatives with
large separation rate in ||-||.

The phenomenon observed above for the product circular cone can be easily extended
as follows. For some positive integer m and generic closed convex cones K; C R", i =
1,....m, let Ky = X", K; C RXi=1" be the associated product cone. Then the LRT for
testing O versus K » is power consistent under p = (,lL")l’.":1 € XL, K; = K if and only if

Z;n:] FK,',Q(/'Li)
(o 8x)Y?
The proof is largely similar to Theorem 4.6(2)(b) so we omit the details.

4.3. Testing in isotonic regression. Let the monotone cone be defined by
Kiy=Kyo={v=1,...,vm) eR"1v; <--- <y}

We consider the testing problem (1.2) with K = K4 using the two-sided LRT (as in (3.11)).
The following result (see Section 6.3 for a proof) gives the limiting distribution of the LRS
and characterizes the power behavior of the LRT in this example.
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THEOREM 4.7.

L. Suppose o € K4, and for a universal constant L > 1,

1 }
(4.2) 7= 15?23—1”““0)"“ — (no)i) < lsrgfiln((uo)iﬂ — (no)i) < L.
Then

ar(FE N 0,1) = .

Ko
Here, C > 0 is a constant depending on L only. Consequently, the LRT is asymptotically size
a with B, W (Y my, o) =a + On=1/9).

2. Let po = (fo(i/n))}_, and u = (f(i/n));_,, where f, fo:[0,1] - R are C? mono-
tone functions related by fo = f + pp8 for some C' function 8 : [0, 1] — R with I §2=1
and §' is bounded away from 0 and oo. Suppose the first derivatives f', fi are bounded away
from 0 and oo and second derivatives f", fy are bounded away from oo. Then the LRT is
power consistent under v, that is, K, W (Y;my, 0,,) — 1, if and only if p, > n=/12, if
and only if || — poll > n'/12,

A few remarks are in order.

e (Normal approximation) The normal approximation in Theorem 4.7(1) settles the problem
of the limiting distribution for the LRT used in the simulation in [30], Section 4. There
the LRT is compared to a goodness-of-fit test based on the central limit theorem for the
£ estimation error of isotonic LSE (cf. [29, 37, 38]). We note that condition (4.2) on the
sequence [ is equivalent to a bounded first derivative away from 0 and oo at the function
level. This condition is commonly adopted in global CLTs for £, type losses of isotonic
LSEs; cf. [29]. In fact, the condition in [29] is stronger than (4.2) to guarantee a CLT for
£, estimation error of the isotonic LSE.

e (Rate of normal approximation) We conjecture that the error rate O(n~1/°) in the above
normal approximation is optimal based on the following heuristics. Writing & as a short-
hand for & Ky the LRS 7' (Y) can be written, under Hy, as

n
T(Y)=2(€, 1 — po) — 1@ — poll> = D_(2& (i — (ro)i) — (i — (10):)%)-
i=1

Under the regularity condition (4.2), the isotonic LSE & is localized in the sense that each
i roughly depends on 1o and & only via indices in a local neighborhood of i that contains
O(n?/3) many points. So one may naturally view 7 (Y) as roughly a summation of O(n'/3)
“independent” blocks, each of which roughly has variance of constant order. This naturally
leads to the O(1/+/n1/3) = O(n~/%) rate in the Berry-Esseen bound of Theorem 4.7(1).
Our Theorem 4.7(1) formalizes this intuition, but the proof is along a completely different
line.

e (Local power analysis) The “local alternative” setting in Theorem 4.7(2) follows that of
[30]. In particular, the separation rate in Theorem 4.7(2) is reminiscent of [30], Theo-
rem 3.1. [30] obtained, under similar configurations and regularity conditions, a separation
rate for a goodness-of-fit test based on the CLT for the £; estimation error of the isotonic
LSE of order p, > n=>/12 v n_l/zén_l/z, where &, is the length of the support of the func-
tion 8. Our results here show that the LRT has a sharp separation rate p, > n~>/!2 under
the prescribed configuration, which is no worse than the one derived in [30] based on ¢
estimation error.
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In the isotonic regression example above, the main challenge in deriving the normal ap-
proximation for 7'(Y) is to lower bound the quantity ||, Jz, II% in (3.1). We detail this
1

intermediate result in the following proposition, which may be of independent interest (see
Section 6.3 for a proof).

PROPOSITION 4.8. Under the setting of Theorem 4.7(1), there exists a small enough
constant k > 0, depending on L only, such that

(7 ‘]ﬁKT )ij = kn?/3

for {G, j):1i — jl <«n®3,0.1n <i, j <0.9n} for n large enough.

The above proposition is proved via exploiting the min-max representation of the isotonic
LSE, a property not shared by general shape-constrained LSEs. We conjecture that results
analogous to Theorem 4.7 hold for the general k-monotone cone K4 x, to be formally defined
in Section 4.5, but an analogue to Proposition 4.8 above is not yet available for general K4 .

4.4. Testing in Lasso. Consider the linear regression model
Y=pn+&=X0+E,

where X € R"*? is a fixed design matrix with p < n and full column rank. Let £ = X" X/n
be the Gram matrix. Let 8% = (X" X)"!XTY be the ordinary LSE, 8 = 6(1) be the con-
strained Lasso solution defined as

- 1
(4.3) O(A) =argmin=||Y — X0|> s.t |01 <4,
gerr 2

and 1 = (L) = XO()). The setting here fits into our general framework by letting
K=Ky.={n=X60:]61 <)

and [{x = ii. Note that we do not impose sparsity of 6 here. We will be interested in the test-
ing problem (1.2), that is, Hy : . = po versus Hy : u € Ky 5, where puo = X6y € Kx ; with
16o]l1 < A. Such a goodness-of-fit test and the related problem of constructing confidence
sets for the Lasso estimator has previously been studied in [19, 60, 67, 76]. In the follow-
ing, we use the two-sided LRT W (Y; mq, 0p) (as in (3.11)) to test (1.2) and study its power
characterization (see Section 6.4 for a proof).

THEOREM 4.9. Suppose p — oo. For p € Kx 3, let

P = Pu(||5°||1 > ).

1. There exists a universal constant C > 0 such that, for po € Kx ;,

72
TY)— C +n
ar(FE 0, 1) < DT

T (p = Cnpr )+

Oug
Consequently, the LRT is asymptotically size o with E;,,Ws(Y;my,, 04,) = + O(p~1/?),
provided that npi{io =o0(1).
2. Suppose n - (pi{i \Y pi{io) =o(l). For any n € Kx ,, the LRT is power consistent,
that is, K, W (Y;my,, 04,) = 1, if and only if | — woll > pl/4.
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The proof of Theorem 4.9 relies on the following proposition, which may be of indepen-
dent interest (see Section 6.4 for a proof).

PROPOSITION 4.10. The following hold:
- MBIk, 1% > p/2 — 4(nps. )
2 Foranypc e Kx ., [Ey dlvp,K“ —PpI<2p-prpu.
1 2
3. Forany p € Kx.. [Eullfiky, — ul® — pl < Cnp)/>

Here, C > 0 is an absolute constant.

The proof of the above proposition makes essential use of an explicit representation of the
Jacobian J Ky derived in [48], which complements its analogues for Lasso in the penalized
form derived i 1n [72, 79].

REMARK 4.11. A few remarks are in order.

1. (Choice of A) To apply Theorem 4.9, we need to control the probability term p;
for a generic © = X0 € Kx . This can be done via the following exponential inequality (see
Lemma 6.3): for any ¢ > 1,

p —12/C
P<§0 > |16 —l—t/—)fe’/.
123 || ||1 || ”1 n)\‘min(z)

Here, C > 0 is a universal constant and A (%) is the smallest eigenvalue of X. Therefore,
for any choice of the tuning parameter A satisfying

(4.4) A= 160ll +ra, with ry = Cy/ plogn/(nhmin(S))

for a large enough constant C > 0, we have n - (pi/ i \Y, pi/ io) = 0(1) uniformly in p €

Kx 5—r,. Hence Theorem 4.9 yields that the LRT is asymptotically size o and power con-
sistent for all such prescribed p’s if and only if || — poll > pl/ 4. To get some intuition for
this result, for the tuning parameters XA satisfying (4.4) above, the proof of Proposition 4.10
shows that the Jacobian J; Kx» of iy, (cf. equation (6.14)) is close to that of the least

squares estimator 6° with high probability. From this perspective, the separation rate p'/* is
quite natural under (4.4) in view of Proposition 3.6 with rank(X) = p in the current setting.

2. (Lasso in penalized form) Theorem 4.9 is applicable for Lasso in its constrained form
as defined in (4.3). The penalized form of Lasso

45) Fpen(c) =argmin| 2V = X012 + 21011 ]

feRr
however, does not fit into our general testing framework (1.2) and, therefore, there is no nat-
ural associated “likelihood ratio test”. An interesting problem is to study the behavior of the
statlstlc T (Y) defined in (1.3) with fix replaced by the penalized Lasso estimator fipen(T) =
X 9pen(r) The major hurdle here is to, as in Proposition 4.10(1), evaluate a lower bound for

the Frobenius norm of the the expected Jacobian EJg ., (r) = EX5;) (X S(I)X S X5 S(r)

(see, e.g., [11], Proposition 3.10), where §(r) is the (random) support of é\pen(‘[). Al-
though the penalized form (4.5) is known to be “equivalent” to the constrained form (4.3)
in that for each given 7 > 0, there exists some data-dependent A = A(z, X, Y) > 0 such that
@(A) = é;)en(r), due to the random correspondence of T and A, the techniques used to prove
Proposition 4.10 do not translate to a lower bound for ||Efﬁpen(r) ||%. We leave this for a future
study.
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4.5. Testing parametric assumptions versus shape-constrained alternatives. For fixed
k € Z>o and n > k + 2, and consider the testing problem

(4.6) Hy:pe Koy versus Hy:p€ Ky

Here, K1 4 ={u e R" : VA1 > 0} and Ko = (u e R” : VA1 = 0}, with V : R” — R~
denoting the difference operator defined by V (u;)7_; = (i1 — Ml-)l'.’:_ll ,and VAl =vo. ..o
V:R" > R" %1 with k + 1 compositions. It can be readily verified that K 4 is a subspace
of dimension k + 1, K4 x is a closed and convex cone, and Koy C K4 C R". Hence (4.6) is
a special case of the general testing problem (1.10).

Testing a parametric model against a nonparametric alternative has previously been studied
in [3, 24, 27, 32, 33, 39, 44, 59, 66, 70] among which the shape-constrained alternatives in
(4.6) are sometimes preferred since the model fits therein usually do not involve the choice
of tuning parameters. In particular:

1. When k£ =0, (4.6) becomes:
Hp : p is “constant” versus Hj : u is “monotone.”
2. When k =1, (4.6) becomes:
Hy : i is “linear” versus Hjp : u is “convex.”
The above two settings have previously been considered in [7, 8, 64, 66].
THEOREM 4.12. Fix k € Zx¢. Consider testing (4.6) using the two-sided LRT W(Y;
mo, 09), as in (3.11).
1. There exists a constant C > 0, depending on k only, such that for u € Ko i,
<T(Y) —M0 . 1)> < ¢ _
00 1;—0+/Tog(en) + 1x=1+/Toglog(16n)

Consequently, for 1 € Kok, the LRT is asymptotically size o with E, W (Y; mo, 09) = a +
O(1i—o(log(en)) "2 + 141 (loglog(16n)) ~'/%).

2. For p € Ky with || — g, , (|| > log1/4(en), the LRT is power consistent under
W, that is, &, W (Y mg, 0g) — 1.

drv

The key step in the proof of Theorem 4.12 (proved in Section 6.5) is to obtain the correct
order of the statistical dimension dk, ,. The discrepancy between k =0 and k > 1 in claim
(1) is due to the fact that while a universal upper bound of the order log(en) can be proved
for any fixed k > 0, only a lower bound of the order loglog(16n) can be proved for k > 1.
We conjecture that the correct order of § Krx should be log(en) for all fixed k > 0.

The above theorem can be easily extended to the multidimensional analogue of (4.6) in
the context of, for example, testing constancy versus coordinatewise monotonicity, linearity
versus multidimensional convexity, by using results of [43, 51]; we omit the details here.

5. Proofs of results in Section 3.

5.1. Proof of Theorem 3.1. We need the following proposition, which can be proved
using techniques similar to [35], Theorem 2.1. We provide the details of its proof in Ap-
pendix A.2 for the convenience of the reader.
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PROPOSITION 5.1.  Suppose Ko, K are two nonempty closed convex sets in R". Let

Tro.x ) = |y — Mg, M| = |y = Tx M.

Then for any u € R", under the model (1.1),

16\/Eyllfik — fik,|I?
Varu(TK(),K(Y))

J (TKO,K(Y) —E, Tk, k(Y)

N0, 1 )_
N, (Txo k (V) O.D)=

The next lemma provides a lower bound for the variance of F(£), where the absolute
continuity of F : R" — R is valid up to its first derivatives. The proof is based on Fourier
analysis in the Gaussian space in the spirit of [61], Proposition 1.5.1.

LEMMA 5.2. Let F :R" — R be such that {0y F : |k| < 1} are absolutely continuous
and {0 F : |k| < 2} have subexponential growth at co. Then

1
Var(F(£)) = Y (B F(§))* + D _(Ed;j F(£))” + 3 > (B8 F(§)).
i i£j i

PROOF. We only need to verify the above claimed inequality for EF(§) = 0. Let
Hi(x) = (—l)kexz/ zd‘i—kke_xz/ 2 be the Hermite polynomial of order k. For a multiindex
k=(ki,...,ky) and y e R", let Hy(y) =[1;_; H, (i). Then {Hy : k € Z )} is a complete
orthogonal basis of Ly(y;,), where y;, is the standard Gaussian measure on R”. On the other
hand, the absolute continuity and growth condition on F ensures the validity of the following
Gaussian integration-by-parts: For all multiindices k such that |k| < 2,

E[F (&) Hy(§)] =Eog F (£).
As E|Hy(£€)|? = k!, it follows by Plancherel’s theorem that

(EF (§) Hy(§))*
E|Hi(8)[?

’

Var(F(§)) =EF*(€) > Y

k:lk| <2

which equals the right-hand side of the claimed inequality. [

PROOF OF THEOREM 3.1. Let
F(E)=T(uo+&) = llo+& — pol® — o +& — Mg (o + ).
By Lemma 2.1(1),
VF(E)=VT (o + &) =2(Ig (o + &) — o).
Hence
%jF (&) =8;;T (no+8) =2(Jny (o +8)) ;-

We verify that F satisfies the condition of Lemma 5.2. By the above closed-form expression
of F and VF, the absolute continuity for {0g F : |k| < 1} holds by noting that VF is 2-
Lipschitz. On the other hand, as

|FE)| = IIEN? = 1o+ & — Tk (o + 6| < C - (IEIP V lloll?),
IVE@®)] <C-(lwoll VIEN, [VEFEE) | =2]Jng (ro+6) | <2,
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it follows that {0xF : |k| < 2} have subexponential growth at co. Now we may apply
Lemma 5.2 to see that

050 = Var(T(Y))
2, 1 2
=) (B3 F©)" + 5 (Ed; F(§))
i i
2 2
= 4|Ek (1o + &) — pol ™ +2 Y (EJny (1o +6));5
iJ

as desired. The claim of the theorem now follows from Proposition 5.1. [

5.2. Proof of Theorem 3.2. A simple but important observation in the proof of Theo-
rem 3.2 is the following.

PROPOSITION 5.3. Let
Z(w, o) = ATy 4y (E) —E(AT, 1) =T +8) — T (o + &) — (my —my,).
Then for any t > 0,

2
P(Z (1, o) > 1) VIP(Z (i, po) < —t) < eXp<_m)'

PROOF. As

2
VT () =V(lly = mol* = [y = Tk 0 |7) = 2(Mk () = o)
by Lemma 2.1(1), it follows that
IVeZ(p, no)| = 2|k (1 + &) — Tk (o + &) || < 2l = poll-
The claim now follows by Gaussian concentration inequality for Lipschitz functions; cf. [14],

Theorem 5.6. [

LEMMA 5.4. For any t € R, there exists some C; > 0 such that for all u € R, n €
[—1/2,1/2],

PN, 1) < 1) =P ((1+mu, 1) <0)| < C; - Inl.
Furthermore, sup,c,; Cr < 00 for any compact subset M of R.
PROOF. We assume 1 > 0 without loss of generality. Note that with ¢ denoting the d.f.
for standard normal,

IP(N(O,1)§t—(1+17)u)§IP’(N(0,1)§t—u)+n- sup @ (v)|u]
ve[(t—u)En|ul]

<PWN(@©O,1)<t—u)+n-C,

where C; = sup,, SUP,¢[(;—u)+(ju|/2)) ¢ (V) U] < 0o depends on 7 only. U]

PROOF OF THEOREM 3.2. First, note that under the model (1.1), the normalized LRS
T (Y) satisfies the decomposition
5.1) T(Y)—my, T(M+§)—T(M0+§)+T(M0+§)—mu()

Oug O g Oug
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Using Proposition 5.3, on an event E, with P(E,) > 1 — 26‘”2, we have |Z(u, no)| <
3ullp — poll with Z(u, po) defined therein. Then for any ¢ € R,
P<TWH£)—meg>
Oug

— P(mu — My, + Z(w, 1o) + T(uo+8)— m < t)
(5.2) 0#03 ” ” Ouo

51@(’"“ Mo 7 ST T KON Ar (o, 1)§t> +2e7 ferr,,

O g
=P(@(1 + W) + N, 1) < t) +2e7 erry,,
©o
where
nu)=—3u- M.
my, —my,

By choosing u < |m, — my;,|/(6lli — woll), we have |n(u)| < 1/2, so we may apply
Lemma 5.4 to see that

A* EP<T(“+S) — Mo 51‘) —P(w +N(©,1) 5;)

Oug Oug

5 _
<2 g TRl
|mﬂ - mlto|
Optimizing u < |my, — my,|/ (6|l — poll), the first two terms in the error bound above can
be bounded, up to an absolute constant, by

v ) .Dgﬂ(l A M)

lmy —my,l

Next, we will obtain a similar upper bound for A*, but replacing |m, — m,,| in the above
display by o,,. To see this, (5.2) along with

P(mpb — My, — 3””[’(“ - /’L()”

Oug

+N(,1) §t>

m, —m 3u —
< P(u LN, 1) < t) gl - 2l = oll
O Ko

yields that
e = ol

A* < inf{ze—“2 +3u
u>0 UMO

} +erry, < C-.i”(l A M) +erry,.

Ouo
Similar lower bounds can be derived. Applying the above arguments to the (at most 2) end
point(s) of A, proves the inequality (3.4). Now (1) is a direct consequence of (3.4), while (2)
follows by further noting A4, (w,) — B if and only if all limit points of the sequence {w,}
are contained in Agi B). O

5.3. Proof of Theorem 3.8. By Lemma 3.7, we only need to consider u = 0. Note that:
@ 115 — Mg @1 = 1§11 — Mg (E)11* for K € {Ko, K}, (ii) (Ko, K) is a nonoblique pair
of closed convex cones in that [Tg, = 1k, o 1k, so I (§) = Nk, (§) + HKng (&) with
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(Mky(§), Mgk (§)) = 0 (cf. [78], equation (25)), and hence [Tk (§)[|* = Tk, (§)|* +
IT gz (§)II7. Thus,
E[Mk &) — Mk, &) = E[Mgags @] =E[| Tk )] — [Tk, &[] = 6k — k.
and
(%)
o = Var(| Tk, &)]* — Tk &)|?) = Var([Tgngg ©)]°) = 28xnx; =2k — 8x)-
Here, the inequality (x) follows by Lemma 2.4(2). The claim now follows from Proposi-

tion 5.1.

5.4. Proof of Theorem 3.9. First, note that we have the decomposition
T(w+8)—mo T(u+8)—T(@) . T (&) —mo
00 00 00 ‘

(5.3)
As
my =E[|u+& — gy (u+8)|* — |u+&—gu+8)]7]
= E[| Ty (i + &) — p|* = 2(6. Tk, (e + &) + &1
— (IMk (e +8) — | = 2{&, T (0 + ) + 1£11%)]
= {1t — iy (W) |* +2E(E, Tk (1 + &) — E| Tk (1 + &) — [ *} = 8k
we have (as §x = E[[ Tk (§)|? = E(£, Tk (§)))
my, —mo=E[2(&, g (u+&)) — Mg +&) — pf> — (6, Tx@)] + | — Dgo ()|
=E[2(¢, Mg (1 — Mgy (1) +£))
— |k (i = Ty (1) + &) = (1 = Ty ) |* = (&, Tk (©)]
+ |t = Tk, (w)[* (by Lemma 3.7)
= E[2(u — Mgy () + & Mg (1 — Mg,y (1) +£))
— |\ (i = Ty () + )| = |1 = T () |* = (€. Tk )]
+p = Mgy
=E|Nk (- Ng,(w) +£)|* - E[ Mg )|
=Tk 2(n— Mg, (w).
Here, in the last line of the above display we used that
E{p — Mg, (1) + & Mg (n — Mg, (10) +§)) = E| Mg (e — gy () + )| %,
E(g, Mk (6)) = E| Nk )]
Let
Zo(w) =T (u+8) — T(E) — (my —my).
AsVT(y) =V(ly —Tg,(WI* = ly = Mg (1) = 2(Mk (y) — M, (y)) by Lemma 2.1(1),
Ve Zo(w) = 2(Mg (1 + §) — Mg (§)) — 2(M gy (1 + &) — Mg, (6))
=2(Mg(u — Mgy(n) +&) — Mk (§))
—2(Mky (1 — Mgy (1) +&) — Mg, (§)),  (by Lemma 3.7)
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and hence

Ve Zo(u)|| < 4]p — Tig, (W]

Now using the Gaussian concentration inequality for Lipschitz functions; cf. [13], Theo-
rem 5.6, it holds for any ¢ > 0 that

2
P(Zo(w) > 1) VP(Zo(w) < —t) < eXp<_ D2 — ;—IK (u)ll2>'

From here, we may conclude (3.14) by using similar arguments as in the proof of Theo-
rem 3.2. Furthermore, by the proof of [78], Lemma E.1, 'k 2(v) > ||v||2 >0 forany v € K,
o)

i — gy ()l (%) vl 1 Gen) 1
<SUp —————— =< su = 13-
Tk o2(uw—Tg, () Voo~ vexk Tk 2(v) Voo ™ vek VIV (oo/lIvI) Uo/

The inequality (x) follows as u — Ik, () € K for u € K, and (xx) follows as inf,cg {[|v] V
(00/ v} = infy=o{t V (00/1)} = 0y As 0& = 8k — Sk, the second inequality (3.15) fol-
lows by the bound errg < 8(5x — (SKO)_I/Z via Theorem 3.8.

Note that (1) is a direct consequence of (3.14) (as errp can be bounded above by Theo-
rem 3.8 and -Z(0) = 0) so we prove (2) below. To see the claimed power characterization,

note that
E| Tk (u — Hgy(w) +&)II> — BTk &))?
o0

_ (ETMk(n — Mk, (1) + &)1 — ElT g &))? 4O
00

= Bk (1 = Tky () +8)| - E|Mx ($)])

(o5")

y [2E||HK(§)|I n E|Tg (u — Mgy (u) + ) — E T &)l ] +O(OO_1)
o0 o))
_ _ Sk +O(1) Mg (pn— HKO(U«))] _1
=Tk (u HKO(M))[z\ 2ox —dx0) + Var V) o +0(0p ")

1+ 065"
@+ Var(Vins) [k nieg) - (1 — k0 /3K)

=k (1 — k, (M))[z

n Fg(u— Tk, ()]

oo ).
o + 00y )

Under the growth condition oy — 00, direct calculation now entails that

EllMk (n — Mg, (w) +&)1* — E|[ Mg &)
o0

2l g (u — T gy ()

2+ Var(Vkakg) /8x g y/T= 8k, /3k

The proof is now complete.

— w* € [0, +00]

— w* [0, +o00].
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5.5. Proof of Corollary 3.11. We will prove a slightly stronger (than (3.17)) claim that
condition (3.19) implies

(5.4) T (1 — T (1)) — oo

Suppose ||u — Ik, ()| is greater or equal than L, times the right-hand side of (3.19) for
some slowly growing sequence L, 1 oo. Then either (i) || — g, ()l > L,,(Sl/ 4, or (ii)
Il — g, (Wl < Lsd* and (u — Mg, (w), ENg (¢)) > L,8/>. In both cases, we have

e — Mg, () || — oo as there exists some universal constant co > 0 such that the right-hand
side of (3.19) is bounded below by cg. In case (i), using [78], (74a),

[ — Tk, () |I?
I'k I -2
(=T u0) = 50— = rsEime @~ 2 Ve
(5.5) > (1/16) | — Tk, )| A (|12 — Tk )| /8¢%) — 2/4/e

> (1/16) | — Tg, (W] A Ly —2//e — o0

as n — 00, so (5.4) is verified. In case (ii), we may assume without loss of generality that

i — Mg, ()l < Ll/ 4 / * because otherwise we can follow the same arguments as in the
previous case. Then usmg [78], (74b), with

o =oa(pn— k(1)

— | — o~ =TIk (). ETk (§))*/8lln—T ko ()1
1/2
>1—e /8 1,

we have

— _ _ 2
FK(M_HKO(M))EOZ' (= gy (n), ENg &) — lln — Mg, Wl _i

allu — Mg () || + 2E Tk (5)[l2 Ve
1/2, o1/2
(Ly — Ly 7)ok
2 1/481/4+81/2 —O(l) = o0

as n — 00, so (5.4) is verified. The proof is complete.
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