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1. Introduction

1.1. Overview

As recorded in [20, Question 1], R. Greenberg has asked when the 2-dimensional p-adic
Galois representation ps of Gal(Q/Q) attached to a p-ordinary cuspidal eigenform f of
weight k > 2 has the property of being p-locally split, i.e. its restriction to a decomposi-
tion group Gal(@p /Qp) at p is isomorphic to the sum of two characters. An equivalent
form of this question, which appears to be a very subtle problem in the p-adic theory of
modular forms, was independently raised by R. Coleman [7, Remark 2, p. 232].!

One easily sees that p-ordinary eigenforms with complex multiplication have p-
locally split associated Galois representations, and the converse is expected to hold, i.e.
(see [14, Conj. (0.1)]):

?
pr |Ga1(@,, /Q,) is split => Jf has complex multiplication. (CG)

Let Q(f) C C be the Hecke field of f. The Galois representation ps is valued in
GL,(FE), where E is the completion of Q( f) at a prime v above p. Serre [47] established
(CG) when k = 2 and Q( f) = Q using Serre-Tate deformation theory. Still in weight 2,
Serre’s argument was extended independently by Emerton [14] and Ghate [18] provided
py is ordinary and p-split for all primes v of Q(f) above p (we then say that ps is
totally p-split); the general weight 2 case was recently established by Zhao [55] building
on Hida’s breakthrough [30]. For weights k > 2, Emerton [14] showed that (CG) follows
from a p-adic analogue of Grothendieck’s variational Hodge conjecture, at least when py
is totally p-split. In a different direction, building on modularity lifting results [4, 5] in
weight 1, Ghate—Vatsal [20] showed under mild hypotheses that (CG) holds for all but
finitely many p-ordinary eigenforms in any single Hida family.

The main result of this paper is Theorem 1.3.1, which gives a sufficient condition
for (CG) to hold for all forms in a fixed congruence class f, allowing for any p-adic
weight. The condition is that a certain quotient X (later denoted X (/7)) of the p-part of
the class group of the number field cut out by the associated mod p Galois representation
Py is zero. Such an X can be associated to any congruence class that contains some
member with complex multiplication; we impose only mild additional assumptions. We
list some examples of vanishing X in §1.8.

Greenberg’s pseudo-nullity conjecture [22, Conj. (3.5)] suggests that a certain
Iwasawa-theoretic class group X5 (later denoted X (™)), which surjects onto X, has
finite cardinality. To illustrate the influence of X2, under an extra assumption, we prove
in Theorem 1.4.1 that the finiteness of X__ can be used to produce another proof of the
main result of [20] for the class of pr we consider in this paper.

It is natural to ask whether there exist converse arguments establishing the finiteness
of X . In this direction, we give modular characterizations of the vanishing of X (The-
orem 1.3.4) and its finiteness (Theorem 1.4.4).

ISee [3, Theorems 4.3.3, 4.4.8] for the equivalence between the two formulations.
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1.2. Setup

In order to state question (CG) and the main result of this paper precisely, we introduce the
objects of study. Here Gr denotes an absolute Galois group of a field F, O denotes the
appropriate standard integer ring of F', and “CM” is short for “complex multiplication.”
Let p be a prime (later, p > 5).

1.2.1. The question. We fix embeddings of algebraically closed fields @ — @q for all
primes ¢, and Q < C. These embeddings give rise to a choice of g-adic valuation on
any algebraic complex number. They also determine a choice of decomposition group
G, = Gal(Q,/Qq) — Gg and complex conjugation ¢ € Gg. We write I, C G for the
inertia subgroup.

Choose a classical normalized cuspidal Hecke newform f” of weight k > 2 and level
N’ > 1.If p 4 N’,let f be a p-stabilization of f’ of level Ty(p) N T';1 (N'); otherwise,
let f = f’.Thus f is an eigenvector for the Uj,-operator. Let

=Y an(f)q"

n>1

be the g-expansion of f at the cusp oo, write Q(f)/Q for the subfield of C generated
by the coefficients (also the Hecke eigenvalues) a, (), and write v = vy for the prime
of Q(f) over p that is distinguished by the embeddings above. We call f p-ordinary
when its Up-eigenvalue a, (f) € C, which is known to be an algebraic integer, is a p-adic
unit.

There is attached to f an absolutely irreducible p-adic Galois representation

pr: Go = GL2(Q(f)v) (1.2.1)

characterized by the property that
trace ps (Froby) = a,(f) forall primes g t N'p, (1.2.2)

where Frob, € Gg is a choice of arithmetic Frobenius element at ¢. It is known that
f is p-ordinary if and only if pr|g, admits a 1-dimensional unramified quotient with
Frob,-eigenvalue a, (f).

We call such a representation of Gg, when equipped with the Frob,-eigenvalue,
p-ordinary. Similarly, we call a representation p of Gg p-locally split when, in addi-
tion, p|g, is isomorphic to the direct sum of two characters. We ask the question recorded
in §1.1: when k > 2, what property of f determines whether pr is p-locally split?

As discussed above, the proposal, denoted (CG), is that such f have CM. Recall that
f is called CM when there exists an imaginary quadratic field K /Q such that the attached
quadratic Dirichlet character (&) satisfies

an (f)(@) =a,(f) foralmostalln >1 (the CM condition). (1.2.3)
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1.2.2. Fixing the congruence class. It is natural to study (CG) over one congruence class
of eigenforms modulo p at a time. Let IF be a finite field of characteristic p. Let f € F[q]
be the reduction modulo vr of the f € Ogq(r)[g¢] that we designated above. Let

P := (pf mod vr) : Gg — GLy(F)

be the associated representation. The Hecke eigenvalues of f are determined by p simi-
larly to (1.2.2). Since f is a p-ordinary eigenform, we know that

(1”) pisodd and p|g, admits an unramified quotient with Frob,-eigenvalue &, :=a,( f ).
Let N > 1 denote the tame level of f , which equals the (prime-to- p) Artin conduc-
tor of p. While in general N divides the prime-to-p part N(/ » of N, in this paper we
address f that are minimal, that is, N = N(’p).
Because question (CG) addresses p-ordinary eigenforms f* such that pr|g, splits,

[19, Prop. 6] ensures that in the presence of (2') and (3’) below, we may replace (1”) with
the more restrictive assumption

(1') pisoddand plg, ~ Y1 @ X2, where )5 is unramified and j»(Frob,) = @,.
Our results on (CG) rely on conditions that imply that all Galois representations that

give rise to p arise from Hecke eigenforms, i.e. “R = T.” Such R = T-type results are
subject to the following assumptions, when p is odd.

(2') j1 # )2, which is known as the residually p-distinguished condition on p.

(3') pla,, is absolutely irreducible, where M = Q(+/(—1)P=1/2p).

1.2.3. The residually CM p-ordinary setting. The following (0)—(4) are the assumptions
we work under for the results of this paper.

©0) p>5and f has CM, in the sense of (1.2.3).
It follows that there exists an imaginary quadratic field K/Q and a character

¥ :Gg — F* suchthat p = Indg V.

Let ¥ : Gx — W(F)* denote the Teichmiiller lift of v/, let ¢’ C 'Ok denote the conductor
of ¥, and let ¢ C Ok be the (prime-to-p) Artin conductor of . Recalling the complex
conjugation ¢ € Gq established above, the anti-cyclotomic character associated to ¥ is

V=)
where /¢ (y) denotes ¥ (cyc).
Having assumed (0), assumptions (1')—(3’) are implied (respectively) by
(1) psplitsin K, i.e.
pOg = pp™,
where p is the prime distinguished by our fixed embedding Q —> @p, and also

Y is unramified at p* with &(Frobp*) = ®p. One may then check that N =
Normg /g (¢)|Disc(K)].
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(2) ¥~ |g, is non-trivial and vy(c') < 1.

3) Iﬁ_ has order at least 3.

(For (3)=(3'), see [31, Prop. 5.2(2)].) Finally, we impose the following mild assumption.
(4) ¢+ ¢ = Ok.

1.3. Results, Part [

Our first main result addresses the representation pg : Gg — GL» (@p) attached to a nor-
malized p-ordinary p-adic eigenform g € Zp [¢] that has tame level N, arbitrary p-adic
weight, and a congruence with f. We refer to whether g has CM by the same definition
(1.2.3), which makes sense for any p-adic weight.

The theorems in this section are subject to a condition on the following ideal class
group. Let ¥~ : Gg — WX denote the Teichmiiller lift of ¥/~ to the Witt vector ring
W = W(F). Let K(y¥~)/K be the finite abelian extension cut out by ¥ ~, and denote
by X(¥~) the ¥ -isotypical component of the p-cotorsion of the ideal class group
of K(y7).

Theorem 1.3.1. Assume (0)~(4) of §1.2. Let g denote a p-ordinary p-adic eigenform
of tame level N and arbitrary p-adic weight that is congruent to f. If X(¥~) = 0 and
pglcG, is split, then g has CM.

We apply the theorem to (CG).
Corollary 1.3.2. Assume (0)-(4) of §1.2.If X( ™) =0, then (CG) is true when restricted

to those eigenforms of level N that are congruent to f.
See §1.8 for explicit examples where (CG) is satisfied.

Remark 1.3.3. The condition X (/™) = 0 can be ensured analytically in some cases: it is
implied by the anti-cyclotomic Katz p-adic L-function L, (7)™ in §3.2 being a unit (see
e.g. [2, Cor. 5.2.7]). We also note that the implication (CG) is trivial in the congruence
class of f unless a different Katz p-adic L-function L, (™), also defined in §3.2, is not

aunit. Indeed, when L, (™) is a unit, any g congruent to f_ has CM (see Theorem 4.2.2).

In fact, we prove that the vanishing of X (™) is equivalent to a stronger form of
the expected implication (CG). To formulate this, we refer to a modulo p generalized
eigenform g’ € F[g] whose eigensystem equals that of f_ . We specify these objects in
§2.2, also explaining that such a g’ induces a Galois representation

Pg’ GQ — GLZ(Ag/),
where Az is a finite-dimensional augmented I -algebra, such that
(g’ mod mAé,) ~p and pz % p®F Az

We also explain that the conditions “p-locally split” and “CM” can be sensibly applied to
such g’.
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Theorem 1.3.4. Assume (0)—(4) of §1.2. The following conditions are equivalent.
@ X)) #0.
(ii) There exists a modulo p generalized eigenform g’ such that
(a) the Hecke eigensystem of g’ is equal to that of ]; ,
(b) g’ does not have CM, and
(©) pg'lg, is split.
If these conditions are true, then g’ in (ii) may be chosen so that its Hecke span is
2-dimensional, or equivalently Ag: ~ T [€]/(€?).

1.4. Results, Part 11

We expect that there are many choices of (K, 1) such that X (1) does not vanish, as the
results of §1.3 require. The following theorems address the general case.

We consider the following Iwasawa-theoretic class group tower over X(y~). Let
K /K be the anti-cyclotomic Z,-extension of K. Let K_ (1) be the composite of K
and K(y7), and let X_(3~) be the ¥~ -isotypical component of the Galois group
of the maximal pro-p abelian unramified extension of K_ (™). There is a surjection
Xo(¥™) > X(¥7), and standard arguments about the action of Gal(K_ (¥ ™)/K)
on X (™) imply that

Xo(¥7)=0 ifandonlyif X(y~) =0.

In light of Greenberg’s pseudo-nullity conjecture [22, Conj. (3.5)], it is natural to expect
that X__ (¥ ™) is finite in cardinality (note that our assumptions rule out trivial zeros). We
prove a proportionally weakened version of Theorem 1.3.1 in this case.

Theorem 1.4.1. Assume (0)—(4) of §1.2 and that the class number of K is prime to p.
If Xoo (W) has finite cardinality, then there exist at most finitely many ordinary p-adic
eigenforms g of tame level N congruent to f such that pg|g, is split and g does not have
complex multiplication.

Remark 1.4.2. We note in §3.3 that X_ (") is infinite if and only if the p-adic L-
functions L, (¥7) and L, (y~)* mentioned in Remark 1.3.3 have a common factor. It
follows from smoothness results of the ordinary eigencurve in cohomological weights (i.e.
k € Zs>; see [25, Cor. 1.4], along with a duality argument) that such a common factor
cannot correspond to a p-adic weight in Z ~ {1}.

Remark 1.4.3. The conclusion of Theorem 1.4.1 was proven subject only to the con-
ditions (1")—(3’) of §1.2 by Ghate—Vatsal [20, Thm. 13]. We describe the relationship
between the two methods in Remark 6.2.2.

In analogy with Theorem 1.3.4, we can also give a modular characterization of the
infinitude of X (¥ ). However, a more pleasant criterion applies to a mild generalization
Xoo (™) of X (™), which surjects onto X (™) (see §3.3 for the definition), and is
isomorphic to it when p does not divide the class number of K.
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Similarly to the mod p case above, to any generalized p-adic eigenform g’ with eigen-
system equal to that of a p-adic eigenform with CM f with coefficient field £/ W |1/ p],
there is associated a Galois representation

pg : Gg = GL(Ag/),
where Ag/ is a finite-dimensional augmented local E-algebra, such that

(pgr mod my,,) >~ pr and  pgr % pr ®F Ag.

As before, the conditions of being p-locally split and of being CM can be sensibly applied
to pgr.
Theorem 1.4.4. Assume (0)—(4) of §1.2. The following conditions are equivalent:
(1) Xoo (™) has infinite cardinality.
(2) There exists a generalized p-adic eigenform g’ of tame level N such that
(a) the Hecke eigensystem of g’ has CM and is congruent to f ,
(b) g’ does not have CM, and

(©) pg'lG, is split.
If these conditions are true, then g' in (2) may be chosen so that its Hecke span is
2-dimensional, or equivalently Agr ~ E[€]/(€?).

Remark 1.4.5. Recently and independently, a similar analysis was carried out by Hsu
[37, §4], with a focus on the influence on the geometry of the eigencurve.

1.5. Method of Galois deformation theory

By Hida’s influential work [25], p-ordinary p-adic eigenforms of tame level N that are
congruent to f (such as g in the statement of Theorem 1.3.1, for example) are in bijective
correspondence with ring homomorphisms T — @p, where T is the “big” local p-adic
Hecke algebra arising from the Hecke action on p-ordinary modular forms of tame level
N whose residual Hecke eigensystem is congruent to . On the other hand, upon assump-
tions (1”) and (2'), there exists a universal p-ordinary deformation ring R (constructed
by Mazur [42]) parameterizing p-ordinary deformations of p. Hida’s further result [24] —
that the Galois representations attached to p-ordinary eigenforms interpolate in families —
implies that there exists a natural map R°¢ — T. Under assumptions (1”), (2’), and (3')
along with mild local conditions, Diamond [11], following Wiles [54], has shown that this
induces an isomorphism R¢ = T.

Replacing (1”) with (1) so that the expected implication (CG) is not trivial on T, we
use a universal Galois deformation ring denoted R*?' (constructed by Ghate—Vatsal [21])
that parameterizes p-locally split representations of Gal(Q/Q) deforming p. It fol-
lows from the definitions that there is a surjection R4 —» R*P'. Thus, homomorphisms
R @I, are in bijection with normalized p-ordinary eigenforms g such that p, |, is
split.
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Assuming (0), there exist p-ordinary CM forms congruent to f_ , resulting in a quotient
T — TM, where TM arises from the Hecke action on these CM forms. The fact that
the Galois representations arising from p-ordinary CM eigenforms are p-locally split is
reflected in the fact that there exists a surjection R®' — TM fitting in a commutative
diagram

Rord ~ T

]

Rspl =T CM

In terms of this deformation-theoretic picture, our main result is Theorem 5.5.1, which
states that the surjection R*®' — TM is an isomorphism if and only if X(¥~) = 0.
Theorem 1.3.1 follows directly from this. The argument for Theorem 1.4.1 is similar,
with the addition of commutative algebra arguments set up in §6 and further results on
the structure of T reviewed in §4.

Theorem 5.5.1 is deduced from Theorem 5.4.1, which shows that X (1 ™) constitutes
the conormal module of Spec(T M) C Spec(R*"). With this structure of R*?' understood,
Theorems 1.3.4 and 1.4.4 are applications of R®Y = T and the duality between Hecke
algebras and cusp forms.

1.6. A question

One upshot of Theorem 5.5.1 is that (CG) lies somewhat deeper than the simplest possible
“big R=T"-type theorem one could hope for, namely, R =~ TM, [s there a Hecke
algebra that always corresponds to R*P'? What is the module of **p-split” modular forms?
We intend to take this up in future work.

1.7. The appendix to this paper

These Jinvestigations arose from an attempt to study (CG), for congruence classes p =
Ind ¥ as introduced in §1.2.3 above, after restriction of the Galois representations
from Gg to Gk, using the methods of Wake and the second author [52] to control resid-
ually reducible representations. In the process, we realized that some of these arguments
amounted to an application of a refined version of Shapiro’s lemma to move between
deformations of representations of Gg and Gg. This is the method that is developed
in §5 to prove the key Theorem 5.4.1; in particular, the proof of our results makes no use
of the theory of ordinary pseudorepresentations of [52].

Independently and at about the same time as us, Haruzo Hida established similar
results to ours by building on [52] as well as his recent work [32]; see §A.3 for a dis-
cussion of the theory of ordinary pseudorepresentations. He has very kindly offered to
write his proof of our Theorem 1.3.1 (assuming the class number of K is prime to p) as
an appendix to this paper.
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1.8. Examples

Theorem 1.3.1 applies to tuples (p, K, ), where the ¥ ~-isotypical part of the ideal class
group of K (™) vanishes. In order for the theorem to apply non-trivially, we are interested
in cases where

(i) T % TM, i.e. there exist non-CM cusp forms congruent to f , and

(i) X(y~) =0.
This is because it is in these cases that Theorem 1.3.1 implies that there are no exceptions
to (CG) congruent to f.

There are seven examples of (p, K, ¥) satisfying (i) listed in [49, p. 268] (four of
which appear in [23, p. 142]), calculated by Maeda or Mestre. They also each satisfy the
running assumptions in our paper, because pOx = pp*, ¥~ has order at least 3, and
is ramified exactly at p. Among these examples, three of them satisfy [K(¥ ™) : K] < 13,
so that we found it manageable to calculate K(1~) and its class group using PARI/GP
or Magma on a single machine. In each of these three cases, p does not divide the class
number of K(17), so that (ii) is satisfied and Theorem 1.3.1 applies. These examples are

p K 14

13 Q) o§
23 QW=7 o)°
9 QW=7 oy

The character wp, of G is the Teichmiiller lift of the following character wp : Gg — F .
Letw :=#Og andlet wy : (Ok /p)* — [, be the canonical identification. Then, for every
multiple @ of w, one makes sense of wy by taking the (a/w)-th power of the character
of Gk associated via class field theory to the character

@y (Ok/p)*/O0g — F.

To illustrate the example (p, K, ¥) = (13, Q(i), a)g), we observe that ¥~ has order 3
and cuts out the S3-extension of Q with minimal polynomial

x® —2x% +2x* — 6x3 4+ 25x% —20x + 8.
Its class number is 3.

Remark 1.8.1. At the moment, we know of no single example where (ii) fails (which
implies that (i) holds), so that the surjection R**' —» TM is not an isomorphism and also
the conditions of Theorem 1.3.4 are satisfied.

1.9. Notation and conventions

Homomorphisms between profinite topological groups and algebras, and related Galois
cohomology modules, are implicitly meant to be continuous.
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When F is a number field with a set 2 of places, we let G 5. denote the Galois group
of Fy/F, where Fy is the maximal subextension of @/F that is ramified only at the
places in X. Other conventions about Galois groups, such as decomposition groups Gy,
have been stated in §1.2. We use the case that F = QQ and X is the set S of places
supporting Npoo, thus the Galois group Gg,s. We use Gk s to denote Gk, s, , Where
Sk is the set of places of K over S.

When F is either K or Q and T is a GF s-module, we write C'(Of[1/pN], T)
for the standard cochain complex of (inhomogeneous) G r,s-cochains valued in 7', and
H(Ofr[1/pN],T) for its cohomology. We also use the notation Z'(Or[1/pN], T) and
B'(Op[1/pN], T) for the submodules of cocycles and coboundaries, respectively. For
a local field M arising as a completion of F, with absolute Galois group Gjs, we use
C'(M,T), H(M,T), Z'(M, T), and B (M, T) to denote the analogues of the global
objects above.

2. Ordinary modular forms and Galois representations

In this section, we review background from the theory of p-adic interpolation of p-ordi-
nary modular forms and Galois representations.

2.1. Hida theory

Throughout this paper, we freely refer to the p-adic families of p-ordinary eigenforms
constructed by Hida (see [24, 25]), along with the associated Hecke algebras and big
Galois representations. This section summarizes the parts of this theory that we shall
apply, following [52, §3] in some of this summary.

We take the data f, p, and N of §1.2.2 to be fixed in advance.

2.1.1. Ordinary A-adic cusp forms and Hecke algebras. For r > 1, let Sz(Fl(Np’))"Zri
be the ordinary summand of the Z,-module of cuspidal forms of weight 2 and level Np”
with coefficients in Z,. Let

I 1 d
Sh = lim S2(T (Np"))g,.
;

the limit being over the natural inclusion maps. Let T’ be the Z,-algebra generated by
the endomorphisms of S, given by the Hecke operators

T,.Up, Uy, (d), where (n,Np)=1,(d,Np)=1,L|N isprime. 2.1.1)

The action of these operators on the modulo p p-stabilized eigenform f_ gives rise to
a maximal ideal of T’ with residue field F. Let T"” denote the completion of T’ at this
maximal ideal.

We write y for det p, and y for the Teichmiiller lift of y. Using the isomorphism
Gg’ ~ 7% of class field theory to think of y as a Dirichlet character on (Z/ pN Z)* valued
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in @; we define A as the y-isotypical quotient of Z,[Z, x (Z/NZ)*]. Likewise,
using the projection 7% — Z, x (Z/NZ)*, we define the character

(-)o : Go = Ag» (2.1.2)

which is a deformation of y from F to Ag.
There is a natural map Z, [Z,; x (Z/NZ)*] — T" sending d + (d) for d € Z with
(d,Np) = 1. We let
T :=T" ®z,[z;x@/N2)<] A

that is, we specialize T so that the nebentype on (Z/pN Z)* is constant and equal to y
(as opposed to a non-constant deformation, which is possible when p | (N)). Let Sp :=
S, ®T T} this is the module of p-ordinary A-adic cusp forms congruent to f and with
nebentype precisely y, and T the corresponding Hecke algebra.

By Hida’s control theorem [25, §3], both T and S are free Ag-modules of finite
rank, and by [25, §2] the pairing

(,):Tx8Sx—>Ag, (T, f)a(T-f), (2.1.3)

is a perfect pairing of Ag-modules. Consequently, we may view J € S as a A-adic
g-series in Ag[q] via
F Y (Th. F)q". (2.1.4)
n>1
where T,, = T, for (n, Np) = 1, and otherwise 7, is the usual polynomial (see e.g. [48,
Thm. 3.24]) in the operators of (2.1.1) with coefficients in Z.

2.1.2. Cohomological weights. We define a p-adic weight to be a characteristic zero
height 1 prime P of Ag. Any weight arises from a pair of characters (¢, x'),

b2, —>@; and y :(Z/p"NZ)* —>@; (for some r > 1)

such that
(@x - DN @/pnzy = X

under the canonical decomposition Z ;

but when we start with k € Z, then ¢y is the homomorphism ¢ (x) := x¥~!. The height
1 prime P = Py, C Aq associated to (¢x, x’) is defined to be the kernel of the factor-
ization of the ring homomorphism Z,[Z; x (Z/NZ)*] — @p through Ag induced by
or - X' A weight (¢, x) is called cohomological when k € Z .

By Hida’s control theorem, T and S, interpolate their classical analogues in coho-
mological weight. That is, for any p-adic weight (¢, ') with k € Z,, we recover the
module of cusp forms of this weight k and nebentype y’ that are congruent to f via

Sa ®rg A/ Pry = Sy = S(Ti(NP"). 1)F C ST (NP"). X, -

=~ [F x (1 + pZp). In general k is a formal label,
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Similarly, denoting by Ty, the Hecke algebra generated by the Hecke action on Sk -,
we have a ring isomorphism

T ®A@ AQ/Pk,)(’ = Tk,x’

and the Aq-adic duality (2.1.3) specializes modulo Py - to the f-congruent part of the
classical duality between Sy (1 (Np”), x') and its Hecke algebra.
We will use these consequences of the foregoing theory.

Lemma 2.1.5. There is a bijection between forms in S QAg/ Py @p and Ag-linear

maps T — @p factoring through T ® Ao, AqQ/ Pk, restricting to a bijection between
normalized eigenforms and multiplicative maps.

Proof. This is standard: see [25, Cor. 3.2] and [24, Thm. 1.2]. [
Lemma 2.1.6. T is reduced.

Proof. This follows from the argument of [31, Lem. 5.4]. Indeed, the nilradical of Ty ,-
is known to act faithfully on oldforms that are old at levels dividing N according to
[25, Cor. 3.3], and there are no such oldforms in cohomological weight by the assumption
that N is the Artin conductor of p. Therefore T ®a,, A/ P,y is reduced for k € Z>,
and since cohomological weights are dense in Spec Ag and T is flat over Ag, T is
reduced. ]

2.1.3. Associated Galois representations. Hida [25] proved that the Galois representa-
tions pr of (1.2.1) associated to p-ordinary cuspidal eigenforms f interpolate along T.
Under some assumptions, this interpolation takes on the following particularly strong
form. For the statement, we write xy : T — Ef C @p for the homomorphism associated
to a cohomological p-ordinary eigenform f as per Lemma 2.1.5, where E is the residue
field of xz.

Proposition 2.1.7. Upon assumptions (1) and (2') of §1.2, there exists a continuous
representation
pr : Gg — GL,(T)

characterized by the interpolation condition

pr =~ pt ®T,x, Ef.

Moreover, pr is ramified only at places supporting Npoo and restricts to G, with

J— . 71
erle, =~ (< )Qk(;f Y j) (2.1.8)

where v : G, — T is an unramified character sending an arithmetic Frobenius Frob,
to Uy and (—)q was defined in (2.1.2).
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Proof. Using assumptions (1”) and (2’), Hida’s interpolation result [25, Thm. 2.1] may
be upgraded to the claimed form: see e.g. [15, Props. 2.2.7 and 2.2.9]. Then the character-
ization claim follows from the fact that T is flat over Ag and reduced by Lemma 2.1.6,
as T therefore injects into the product of the E. ]

Also, it follows from the above interpolation and the properties of ps that
detpr = (—)gp ®ag T. (2.1.9)

In particular, we have equality of F-valued characters of Ggq, (det pr mod mT) =
((—)Q mod mAQ) = .

2.1.4. Complex multiplication in Hida families. When we impose assumption (0) —i.e.,
that p is induced from v — there exist classical p-ordinary eigenforms with CM that are
congruent to f and have tame level N. In each cohomological weight (¢, x'), these form
Hecke submodules
CcM
Sk,x’ C SksX"

The action of T on these submodules in cohomological weight results in a quotient
T — TM which acts faithfully on them (see e.g. [31, Prop. 5.1]).

Recalling from (1.2.3) the definition of CM form, we observe that this also applies to
any element of Sx, using (2.1.4). Thus we have a Ag-submodule of A-adic CM forms
SXM C SA.

It is known (see e.g. [31, §5]) that S$M is Hecke-stable, T and S are free Aq-
modules, and the duality (2.1.3) restricts to a Ag-linear perfect pairing

TMx SM — Ag.

This duality along with the control theorem results in a CM-version of the control in
cohomological weights (¢, x’),

TM®rp Aa/Pry = Tiy,  SEM ®ag Ao/ Pry = Sy

We let Icy := ker(T — TM), and denote by pcy the restriction of pr to the CM
locus: pcy = pr ®T TM.

2.2. Non-classical weights and generalized eigenforms

We will have significant interest in both
(i) p-ordinary p-adic cusp forms of non-cohomological weight, and
(ii) p-ordinary modulo p cusp forms.

In both cases, we also need to define generalized eigenforms and their associated Galois
representations.

We define p-ordinary cusp forms of non-cohomological weight by interpolation.
These are all implicitly “of tame level N”.
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Definition 2.2.1.
(1) A p-adic p-ordinary cusp form of p-adic weight (¢, x’) that is congruent to fisan
element of Sy, := SA ®ag AQ/ Pr,y-

(2) A p-ordinary p-adic Hecke eigensystem congruent to f is a homomorphism
T — Q. and its weight (¢, x’) is determined by the unique height 1 prime P C Ag

through which the composite Ag — T — @p factors.

Remark 2.2.2. Note that Si ,- is equal to the module of classical p-ordinary forms,
denoted identically, when the weight is cohomological.

The notions of
e Hecke eigenform,
e generalized Hecke eigenform, and
e CM by K (the condition of (1.2.3))

apply to such objects in the same manner as to their classical counterparts. In particular,
Lemma 2.1.5 generalizes straightforwardly to any p-adic weight. Thus the eigensystems
from Definition 2.2.1(2) are in natural bijection with normalized eigenforms, i.e., “multi-
plicity one” holds in the presence of (1”)—(3’).

For the sake of clarity, we specify the meaning of “generalized eigenform”. We use
the notation (—)[1/ p] as shorthand for (—) ®z, Q,.

Definition 2.2.3. Let g’ be a p-adic p-ordinary cusp form in Sk, that is congruent to f .
Denote by T[1/p]g’ the T[1/p]-span of g’ in Sk ,/[1/ p]. We call g’ a generalized eigen-
form when

(i) g’ is not an eigenform, and

(ii) soc(T[1/p]g’) is simple as a T[1/p]-module, where soc(T[1/p]g’) denotes the
socle of T[1/p]g’ as a T[1/p]-module.
From such a generalized eigenform, we obtain a p-adic p-ordinary eigensystem
T — Q, of weight (¢, x') via the T-action on this socle. Denote by Egs the sub-

field of @p generated by the image of T in Endg, (soc(T[1/p]g’)). We also say that
the Hecke eigensystem of g’ is g when g € Sk, is an eigenform and also is an Eg/-basis

for soc(T[1/plg").

We also define the p-ordinary modulo p cusp forms required for Theorem 1.3.4.

Definition 2.2.4. A p-ordinary modulo p cusp form (of tame level N) congruent to f is
an element of Sp := SA Qg F.

Exactly as in the p-adic case, the definition of eigenform, generalized eigenform, and
CM by K are identically formulated in Sr. Note, however, that the socle of the Hecke
span of an element of Sy is always simple and even 1-dimensional over IF, being spanned
by f. Thus every element of Sy is a generalized eigenform with Hecke eigensystem

precisely f.
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Finally, we require Galois representations associated to generalized eigenforms
g € Sk, and g’ € Sf.

Definition 2.2.5. Let Ag/ be the Q,-subalgebra of Endg, (T g’ ®z, Qp) generated by
the Hecke action on the Hecke span T[1/p]g’ of g’. Thus we have a natural homomor-
phism T — A, and the Galois representation pg associated to g’ is given by

P’ i= pT QT Al
The definition for pg is formulated identically.

Lemma 2.2.6. There is a canonical structure of augmented Eg/-algebra on Agr, compat-
ible with the maps they receive from T. There is an identical statement for a generalized
eigenform g' € Sy in place of g'.

Proof. Observe that Eg is the residue field of T ®, Aq/ Pk, at its prime ideal g7,
because g, is the kernel of the Hecke action homomorphism

T ®aq A/ Py — Endg, (soc(T[1/plg")).

Likewise, Ags admits a surjection from the completion (T ®4, Aq/ Pk,x)gg/ at this
residue field. As this completion is naturally endowed with the structure of an augmented
local Artinian E/-algebra, this gives A,/ the same kind of structure. This augmentation
structure Eg/ <> Agr —> Eg is T-equivariant, by construction. m

2.3. The ordinary deformation ring

In this section, we recall a minimal ordinary deformation ring and its comparison to a
Hecke algebra.

Recall that we have fixed p as in §1.3, with coefficient field F, and that W = W(IF) is
the Witt ring of IF. Recall also that we denote the semisimplification of p|g, by y1 @ ¥2.
where y; is assumed to be unramified. We use =~ to represent isomorphisms of represen-
tations up to conjugation, while we use = to denote identical homomorphisms into GL,.
Finally, recall also the notation Gg s from §1.9.

Let CNLy denote the category of complete Noetherian local W-algebras A with
residue field A/my =~ F.

Definition 2.3.1 (The minimal ordinary deformation functor, e.g. [12, §3.1]). Let Dord -
CNLw — Sets be the functor associating to A the set of strict equivalence classes of
homomorphisms p4 : Gg,s — GL2(A) such that

(i) pa ®aF = p;
(i) palg, ~ (4! fz), where y» : G, — A* deforms j, and is unramified;
(iii) for primes £ | N such that#p(I;) # p, reduction modulo 4 induces an isomorphism
pa(le) = p(1y);
(iv) for primes £ | N such that #p(I;) = p, pj‘ is A-free of rank 1.
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The “strict” equivalence relation is conjugation by an element of 1 + M, (1 4) C GL,(A).
Note also that #o0(I;) = p is equivalent to p(I¢) having unipotent image.

Deformations py4 of f satisfying the conditions defining D° will be called p-ordinary
of tame level N, or just p-ordinary.

The term “minimal” refers to conditions (iii) and (iv), while “ordinary” refers to con-
dition (ii). These conditions are well-known to be relatively representable on deformation
problems, as follows.

Proposition 2.3.2. The conditions (1") and (2') of §1.2 imply that D is representable
by R° € CNLyy . In this case, there is a universal ordinary deformation p°™ : Gg. s —

GL2(R) of p.

Proof. Upon these conditions, the representability of a deformation ring for conditions (i)
and (ii) of Definition 2.3.1 is originally due to Mazur [42, §1.7, Prop. 3]. A simplification
of the argument for (ii) applies to show that (iv) is relatively representable as well. It is
standard that condition (iii) is relatively representable. ]

Assuming (1”)—(3’), and under some mild additional conditions, one may produce a
map R°“ — T corresponding to the representation p and prove that it is an isomorphism.
This was first done in many cases by Wiles [54], followed by generalizations such as
those of Diamond [10, 11]. Note, however, that some of these generalizations require
modifications to R° or T. We state here only the case we need, where we assume (0)—(4)
of §1.2. In this generality, the isomorphism is due to Wiles [54, Thm. 4.8].

Theorem 2.3.3 (Wiles). Assume (0)—(4) of §1.2. Then the representation pt of Proposi-
tion 2.1.7 induces an isomorphism R4 = T of complete intersection rings.

Due to assumption (4), there are no £ | N of type (iv) in the sense of Definition 2.3.1;
they are all of type (iii). While it is implicit in Theorem 2.3.3 that pt satisfies condi-
tion (iii), it will be useful later to have seen the following verification.

Lemma 2.3.4. Assume conditions (0)—(4) of §1.2. Then reduction modulo wt induces
isomorphisms

pr(Ie) = p(Ig) forall {|N.

Proof. Because T is reduced (Lemma 2.1.6), by Lemma 2.1.5 it will suffice to prove the
result after replacing pt by py for an eigenform f with a cohomological weight (k, ')
of Ag.

Choose some prime £ | N, and write p|lg, = j¢,1 D Xe2, Where (only) jgp is
ramified. It follows that H'(Q¢, (f¢,1 4z 3)™) = 0. This in turn implies that ps|g, ~
Xea D xe2, where yg; deforms j, ;. Because we have fixed the determinant at £ (i.e.
detprlz, = x'l1,), we observe that the claimed isomorphism fails if and only if y; , is
ramified if and only if the conductor of pr|g, exceeds that of p|g,. However, we have
assumed that f is of level N, which is defined to be the prime-to-p conductor of p. =
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‘We have this addendum to Lemma 2.2.6.

Lemma 2.3.5. Ifwe let g denote the eigensystem of g’, we have

Pg’ # Pg QE, Ag'-

Proof. Since the socle of T'[1/p]g’ is 1-dimensional over Eg but g’ is not an eigenform,
the Hecke action map T — A, cannot factor through the T -algebra map Egs — A,/ that
corresponds to the Hecke action on g. Since R4 and hence T as well (Theorem 2.3.3),
is a quotient of the unrestricted deformation ring of p, this means that distinct homomor-
phisms to Ag/ out of T must correspond to non-isomorphic Galois representations. ]

2.4. The p-locally split deformation ring
The following deformation problem was first considered by Ghate—Vatsal [21].

Definition 2.4.1. Let D*' : CNLy — Sets be the subfunctor of D° associating to A the
set of strict equivalence classes of homomorphisms of the form

0
palG, =~ ()8 )(2)'

Deformations p4 of p satisfying the conditions defining D*?' will be known as p-split.

Proposition 2.4.2 (Ghate—Vatsal). Assume conditions (1') and (2') of §1.2. Then D is
representable by R € CNLyy.

Proof. Thisis [21, Prop. 3.1]. ]

Corollary 2.4.3. Assume conditions (0)—(4) of §1.2. Then the Galois representations pt
and pcy induce diagram (1.5.1).

Proof. We already know that R°® = T from Theorem 2.3.3. The canonical surjection

R° —» R arises from Proposition 2.4.2. Because pcy is induced via Indg (see Propo-
sition 4.1.2 below) and p splits in K, pcm|c, is p-split. Thus pey induces a surjection
R —» TM The commutativity of (1.5.1) is clear. n

3. Anti-cyclotomic Iwasawa theory
In this section, we assemble background information about objects of anti-cyclotomic

Iwasawa theory and their relation to Galois cohomology. We will apply the assumptions
(0)—(4) of §1.2 and use the characters  and ¥~ defined there.
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3.1. Anti-cyclotomic extensions and Iwasawa algebras

Recall that we assume that pOg = pp* splits, with Q C @p inducing p. We have Gk s
as in §1.9. Our notation mostly follows [31, p. 636].

Let € be the prime-to-p conductor of ¥~ : Gg.s — F*, which is equal to ¢ - ¢¢ by
assumption (4). Then we consider the following abelian quotients of Gk s:

3 = the ray class group of K modulo € p*°
Z~ = the maximal quotient of 3 where complex conjugation acts as —1,

Z, = the maximal p-profinite quotient of Z™.

Let K¢ poo be the ray class field of K modulo €p*°. Let K@ oo / K denote the
maximal pro- p anti-cyclotomic subextension of K¢ poo /K, so that the Artln map supplies
canonical isomorphisms

3 = Gal(Kepe/K).  Z, = Gal(Kg poo_,/ K).

We also let 'y, = Z), be the maximal torsion-free quotient of Z ~, and let K. /K be the
corresponding Z,-extension.

Let F’ be the subfield of F generated by the values of ¥ ~, and denote by ¥~
Gk.s — W' the Teichmiiller lift of v, where W’ := W(F’). Then v~ factors through
a character on the quotient Z») := Z~/ Z, (a direct factor of Z7), hence defining a
projection

- Wz7] - w'z,]
sending a group-like element (z,,z(P) € Z= C W/[Z7[* to ¢y~ (z'P)z, € W'[Z,]. In
the following, we let

Ay i=W'[Z;]. Ay = W[kl (3.1.1)

denote the isotypical components of W'[Z~] via 7wy —, and via y— composed with the
natural projection Z, —» I'g, respectively. Let

d = ker(T\_W/ — Ay)

be the kernel of the natural projection.

Notation. For the rest of §3 we drop the subscript W' in K;V,, Aﬁ,/, but we resume this
outside §3.

A choice of section s : I'p < Z " endows A~ with the structure of an augmented
A~ -algebra. Moreover, it is free of finite rank, receiving a natural isomorphism

A~ =~ A~ [Gal(H,/K)]. (3.1.2)

where H;/K is the finite p-primary unramified extension of K cut out by the quotient
Z, > Z,/Tk.
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Let
()1 Gxs = (A (7)1 Grs = (A7) (3.13)

be the canonical characters arising from the projection from the group rings (3.1.1), and
denote by A (resp A >) the free A~-module (resp. A~ -module) of rank 1 on which
Gk,s acts via (—)_ (resp ( )_). In particular, the residual character in both cases is
Y~ Ggs —> F™

The following extension fields of K are cut out by the characters ¢ ~, (—)_, and (:)_,
respectively:

K@) =",

Ko (™) = the composite K_K(y™),
Koo (¥ ™) = the composite K¢ oo , K(Y7).

3.2. Anti-cyclotomic Katz p-adic L-functions

We briefly recall Katz’s p-adic L-functions attached to K. In this section we write 8 for
the Witt ring W(Fp) of an algebraic closure of I,,.

For any prime-to-p ideal € C Ok, Hida-Tilouine [35], following work of Katz [39]
in the case € = 1, produced an element

tp € B3]

(denoted pi, (C€p**°) in [9, Thm. 11.4.14]) characterized by an interpolation property of
critical values of the complex L-functions attached to certain Hecke characters of K mod-
ulo € p*. Taking € to be the prime-to-p conductor of ¥ ~, we shall be concerned with
the projection B
L) eW[Z, ] = A QwT

of uy via the composite of the natural projection W[3] — W[Z ] with 7y—.

By the Weierstrass preparation theorem, we may and do fix a choice of Z; (¥v7)e A~
such that

L, e = (L)
as ideals in A~Qp T, and write L,(y7) € A~ for its further specialization

to A~. Finally, when Spec(I) C Spec(A ) is some irreducible component, we denote
by L (¥ 7)1 the specialization of L (¥7) to I. The same constructions apply when p

is replaced by p* (i.e., starting with Mp*)’ yielding Lp (W)* e A, etc. Altogether we
obtain the following avatars of the Katz p-adic L-functions that we will consider:

L) L) ek,
L,(y7),L,(y")* €A™, (3.2.1)
L,y )L, y)f el.
Since we impose condition (4), the following result gives us that the p-invariants of
these p-adic L-functions (when the coefficient ring is a domain) vanish.
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Proposition 3.2.2 (Finis [16], Hida [29]). The p-invariants of L, (¥~), L, ()%
L (Y 7)1 and L (Y 7)f are zero.

Remark 3.2.3. Each I is abstractly isomorphic to W'[u,»][t] for some n, where ppn
denotes a p"-th root of unity.

3.3. Anti-cyclotomic Iwasawa class groups

Consider the following metabelian field extensions of K:

M, = the maximal p-ramified pro-p abelian extension of K (¥ ™),
M, = the maximal p-ramified pro-p abelian extension of K_ (¥ ™),
L_, = the maximal unramified pro- p abelian extension of K_ (¥ ™),
&£, = the maximal unramified pro-p abelian extension of K (v ™).

We have Iwasawa modules coming from Galois groups of these extensions, along with
the following integral units in these fields:

Yoo =Gal(My /K, (7)), X = Gal(Lo, /K, (¥7)).
Yoo = Gal(M/ Ko (V7)) Koo = Gal(Lo/ Koo (¥7)),
&, = the group of global units in K (¢ 7).,

U=

oo = the group of local 1-units in the completion of K (™) above p.

We note that Y, X are naturally modules over Z,[Gal(K_(¥~)/K)], while
8% Uss Yo, X5, are naturally modules over Z,[Gal(K (¥ 7)/K)]. In either case,
we append (¥ 7), e.g. Y (¥7), to denote their 1~ -isotypical components. Thus
Yo (W), Xoo(¥™) are A™-modules and E (¥ ™), U (V7). Yoo (¥ ), X (Y 7) are
A~-modules, and all of these are known to be finitely generated. They are related by
isomorphisms

Yo (D) =Y (W)Y (W), X)) = Xo (W) /I X (¥ ).
Class field theory then yields the “fundamental” exact sequence of A~ -modules
0=>6,7) > U (¥7) > Yoo (v7) = X (¥7) = 0. (3.3.1)

Proposition 3.3.2 (Anti-cyclotomic main conjecture [28, 36, 45]). The characteristic
ideal in A~ of Y (Y7) is generated by L,(¥™), and the characteristic ideal of

Y (W) is generated by Z;(w_)ﬂ. In particular,
Yoy ) =0 &= Y (y7)=0
and this is implied by L, (™) being a unit in A™.

We apply the main conjecture toward the control of X__ (¥ ™).
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Proposition 3.3.3. The following equivalences hold.

) XW)=0& X (¥y7) =0& X (¥v7) =0, and this is implied by at least one
of L,(¥™) and L, (y™)* being a unit in A™.

(ii) X (¥ 7) is infinite if and only if there exists some irreducible component Spec(I) C
Spec(f\_) such that Z;(Iﬁ_)ﬂ and Z; (Y 7){ have a non-trivial common prime factor
P C 1 of characteristic zero.

Proof. The equivalences of (i) (and the leftmost equivalence of Proposition 3.3.2) follow
from Nakayama’s lemma. For example, X(v7) = X (¥ 7)/mz_ X (¥ ™). The rela-
tion of the vanishing of X__ (3 ™) to the L-functions in the statement of (i) follows from
Proposition 3.3.2 and its variant for the module ¥__ (1 ~)* obtained by swapping the roles
of p and p*.

To prove (ii), for convenience write ¥ (resp. ¥*) for Y (¥ ™) (resp. Y, (v 7)*), ¥
for Y™ (y7), and X for X_ (¥ ™). Because X is a quotient of ¥, and we know from
Proposition 3.2.2 that the p-invariant of Y is zero, Lemma 3.3.4 below implies that X
has a non-zero p-torsion-free quotient.

Therefore X [1/ p] is a non-zero A [1/ p]-module. By examining a choice of presenta-
tion (3.1.2), we see that

All/p) = @A /D1/p]
I

is a regular ring. Therefore X[1/p] is supported at some maximal ideal of (A /I)[1/p]
for some choice of irreducible component Spec(I) C Spec(K‘). Since we know that X
is a quotient of both ¥ and ¥* (whose characteristic ideals on each I are associated to
Z; (¥ 7)1 by Proposition 3.3.2), this means that Chary(¥) and Chary(Y}) have a com-

mon factor. By Proposition 3.3.2 this is a common factor of Z; (¥ 7)1 and Z;(lp_)]’f as
well. |

Lemma 3.3.4. Let Z be a finitely generated A~ -module. If Z is infinite and p-power
torsion, then the ji-invariant of Z := Z ® 3z~ A~ as a A™-module is positive.

Proof. Because Z is finitely generated and p-power torsion, there exists some ¢ € Zx
such that p’ - Z = 0. Because of the surjections -p* : Z/p — p*Z/p**t1Z, the infinitude
of Z implies that Z/ p is infinite. Because A~/ p is generated over A~ /p by adjoining
finitely many nilpotents (via a choice of presentation (3.1.2)), the same argument implies
that Z / p is infinite. As Z is supported on Spec(A~/p) C Spec(A ™), this means that the
J-invariant of Z as a A™-module is positive. ]

3.4. Galois cohomology with support, and duality

In this section, we compute some Galois cohomology groups often known as “Iwasawa
cohomology,” relating them to the Iwasawa-theoretic objects defined in §3.3. We follow
the approach of [52, §6] and parts of [51, §2], using the notation for Galois cohomology
established in §1.9.
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We will make use of the modules A(__>, /~\(__) equipped with the canonical characters
defined in (3.1.3), and respectively denote by

Ay Ay
the same underlying modules equipped with the inverse of those characters.
Let S’ C Sk denote some subset of places of K. We will study the cohomology of a

Gk, s-module T with support in S’, denoted H(is/)(OK[l/pN], T), which is defined to
be the cohomology of the cone of the morphism of complexes

Clsn(Ok[1/pN1, T) := Cone(C'(OK[l/pN], T) - ) C*(K.. T)).

seS’

This gives rise to the standard long exact sequence in cohomology, whose terms in a single
degree are

H{g,(Ok[1/pN].T) - H'(Ok[1/pN].T) > @ H'(K,.T) (34.1)

seS’

We see that we have H (i@) ~ H'.
The following module-theoretic version of global Tate duality will be useful.

Proposition 3.4.2. Let T be a free module of finite rank over a complete local Noethe-
rian Zp-algebra R that is Gorenstein. Equip T with an R-linear action of Gk s. Let V
denote a finitely generated R-module (with a trivial Gk s-action). Then there is a spectral
sequence

Ey/ = Exti(H(s) (Ok[1/pNL.T*(1). V) = H(g/\5(Ok[1/pN].T @& V).

where T* denotes the R-linear dual module with the contragredient Gk s-action.

Proof. This follows directly from [51, Prop. 2.2.1] when R is regular and S’ € {Sk, ¢}.
We explain how to adapt the proof of loc. cit. to prove this proposition.

The generalization to an arbitrary subset S’ C S follows from the fact that classical
Poitou-Tate duality (i.e. for T a finite abelian group and 7* its Pontryagin dual) holds for
an arbitrary S’ C S. For this, see e.g. [17, Thm. B.1].

The first part of the proof of [51, Prop. 2.2.1] reduces to the case V = R. It relies
on a particular case of [44, Prop. 5.4.3], which is an expression of this duality in the
derived category of R-modules. In this setting, 7 may be a bounded complex and 7 * is a
bounded complex representing RHompg (7, wg), where wg is a dualizing complex for R.
In our statement, R is assumed to be Gorenstein (thus one may let wg be R[0]) and T is
R-free, so we may use the standard R-linear dual module 7*.

The second part of the proof of [51, Prop. 2.2.1] uses [41, Prop. 3.1.3], and there is no
difference in its application. ]
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3.5. Kummer theory for anti-cyclotomic Iwasawa cohomology

We are interested in Galois cohomology with coefficients in T = K; (1), which, in view
of the review of Iwasawa cohomology in [52, §6.1], is the case of Kummer theory.

Proposition 3.5.1 (Kummer theory). The long exact sequence (3.4.1) where T = K; (1)
and S’ = {p}, namely,

0= HY, (Ok[1/Np]. Ky (1)) - H'(Ok[1/Npl. Ay (1)) - H'(Ky. Ay (1))
— HZ, (Ok[1/Npl. Ay (1)) > H*(Ok[1/Npl. Ay (1)) - H*(Ky, Ay (1) = 0,

is canonically isomorphic to the fundamental exact sequence (3.3.1). In particular, we
have isomorphisms

2

HZ\(Ok[1/pN]. Ay (1) = Y (v 7). (3.5.2)
H?(Ok[1/pN], Ay (1) = X (¥7). (35.3)

The proof technique is similar to that of [52, §6], which applies when Q is replaced
by K.

Lemma 3.5.4. There are canonical isomorphisms

H'(Ok[1/pN]. Ay (1) = 63,(¥7)
and (3.5.3).

Proof. The isomorphism with &__ (™) appears in [52, Cor. 6.1.3]. The isomorphism
(3.5.3) follows just as in the proof of [52, Cor. 6.3.1]. Namely, because 1/~ is non-trivial
at all primes of K dividing N, and is clearly not congruent modulo p to Z,(1), taking the
¥~ -component of the long exact sequence appearing in the statement of [52, Cor. 6.1.3]
results in the desired isomorphism. ]

Similarly, we have the Kummer isomorphism
H' (Kp, K5 (1) 2= UL, (7).

with respect to which the natural maps H'(Ogk[1/pN]. K;(l)) — HY(K,, K;(l)) and
E(W™) = Uy (™) are coinpatible. Because H(Ky, Ay (1)) = 0, it follows from
(3.4.1) that H(lp)(OK[l/pN], Ay (1)) = 0. By local Tate duality (“derived” as in Propo-
sition 3.4.2, which can be applied with R = A~ since this ring is a complete intersection,
given its presentation (3.1.2)), the vanishing of H?(Kj, A; (1)) follows from the fact that
H°(Ky, A, /T) = 0 forall ideals I C A~

It remains to establish (3.5.2) compatibly with the isomorphisms we have already
drawn. Using the proof of [40, Prop. 5.3.3(b)] (which is written for S = Sk, but applies
to any choice of S’, such as S’ = {p}), we find that

HE,)(Ok[1/Np]. Ay (1)) = lim HE, (O, [1/Np]. (v 7' (D).
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where K¢ poo.p 2 K, is a sequence of p-abelian extensions of K cut out by a fundamen-
tal system of open neighborhoods of the identity in Z_, and the maps of the limit are
corestrictions. We use classical Poitou—Tate duality to draw a canonical isomorphism to

limHom(Arm. Qp/Zp).  Where  Appm 1= H |y o) (Ok,[1/Npl. ¥~ ®z, Z/ p"Z).

r.m

Because ¥~ has order prime to p and is non-constant on G4 for all primes g of K,
dividing N p*, we deduce

Arm = H(le*)(OKrK(Vf—)[l/Np]s Z/sz)v/_

from the analogous isomorphisms for the cohomology theories H'(Ok,[1/Np],—) or
H'(Kg,—) replacing Hy ., (Ok,[1/Np],—). Because taking the v ~-part kills the con-
tribution of the cokernel of

H(Ok, k) [1/Np.Z/p"Z) —  [] H(K KW )a . Z/p" L)
o’lg|Np*

to H(le*)(OKrK(V,—)[I/Np], Z]/p™Z), we know that A, ,, is canonically isomorphic
to the group of ¥~ -equivariant homomorphisms from the absolute Galois group of
K,K(¥~) to Z/p™Z that are trivial on G4 for ¢’ | Np*.

We observe that H1(K,, ¥~) =0 for g | N follows from assumption (4); likewise,
ker(H'(Kp+, V) —> HI(K;'E, V7)) = 0 follows from assumption (2). It follows that
triviality of an element of A;; = H'(Og[1/Np], ¥ ™) at the decomposition group at
q | Np* is equivalent to being trivial on the inertia group at g. It is straightforward to
generalize this conclusion to general K, and m > 1 from this base case (K; = K and
m = 1), as K, /K is ramified only at p. In other words, on the ¥~ branch, p* being split
is equivalent to p* being unramified. Therefore, by definition of ¥__ (™), we deduce a
canonical isomorphism

Arm = Homgz, (Y (v ") @z W'[Gal(K,/K)].Z/p™Z).

Applying this isomorphism to the limits over m and r above, we deduce (3.5.2).

To complete the proof of Proposition 3.5.1, it remains to check that the connecting
map in (3.4.1) is compatible with the map U, (V™) — Y (¥ ™) coming from the Artin
symbol, and that the map from HZ, to H? in (3.4.1) is compatible with Y (y~) —
Xoo (¥ 7). This is standard, so we omit it.

4. Residually CM Hecke algebras

Continuing from §2.1.4, we apply (0)—(4) of §1.2 to describe the structure of T.
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4.1. CM Hecke algebras and associated Galois representations

The point of this section is to study the structure of the CM Hecke algebra T, a quo-
tient of T which we defined in §2.1.4. This will mainly be applied in §6. We do this by
understanding the relation of TM to Galois representations.

Recall that Spec(TM) C Spec(T) is the minimal closed subscheme containing all
of the irreducible components of T with CM by K, and pcy = pr ®T TM denotes
the restriction of p to this CM locus. Recall that ¢ C Ok denotes the prime-to-p Artin
conductor of ¥ : Gx,s — W™,

We will also use the notation for anti-cyclotomic Iwasawa theory established at the
beginning of §3.1. We add to it the following definitions. Let K pco denote the ray class
field of K modulo ¢p®, with ray class group Z. Let Z, denote the maximal pro-p quo-
tient of Z, which is also naturally a direct factor. Also let 'y ~ Z, be the maximal
torsion-free quotient of Z,.

We see that i factors through a character on the quotient Z?) := Z/Z,,, resulting in
a projection

g W[Z] — W[Z,]
sending a group-like element (z,, 2Py e Zto w(z(l’))zp € W[Z,]. In the following, we
let
A:=W[Z,], A:=W][IE],

which are equipped with a canonical surjection A — A.
Similarly to (3.1.3), we denote by

(:) . GK,S — KX, (—) . GK,S — A%
the natural characters arising from projection Gk s — Z and 7y, (resp. also via A= A).
Eachof A and A isa complete local Noetherian W -algebra with residue field I, and these
two characters are residually equal to V.

Similarly to Definition 2.3.1, a deformation ¥4 of gﬁ to A € CNLy is called minimal
at a prime q of K if reduction modulo m4 induces an isomorphism 4 (/4) — v (Ig). Itis

standard (see e.g. [42, §1.4]) that A with (:) is a universal deformation of 1/_/ as follows.

Lemma 4.1.1. There is a canonical isomorphism R, = A, where Ry, represents defor-
mations Y4 : Gg,s — A of ¥ to A € CNLy that are minimal outside p.

Proposition 4.1.2. Assume (0)—(4) of §1.2. Induction Indg produces an isomorphism
A S TM, arising from the isomorphism

peu == Ind (=)
In particular, T is a reduced complete intersection.

Proof. As pointed out in the proof of [31, Prop. 5.7(2)], since we are working in the
minimal case (the tame level of our forms is equal to the prime-to-p conductor of p) this
claim follows immediately from Lemma 4.1.1 as long as p is induced only from K among
all quadratic fields. By [31, Proposition 5.2(2)], assumption (3) of §1.2 implies this. m
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There is a notion of a Zariski-closed maximal induced locus for Indg in Spec R,
where R € CNLy supports a Galois representation pg : Gg,s — GL2(R) deforming

o= Indg xﬁ (See, for example, [8].)

']I*CM

Corollary 4.1.3. The kernel Icy of the canonical surjection T —»> cuts out the

maximal induced locus for pt : Gg,s — GL,(T).

Proof. By Theorem 2.3.3 and the proof of Lemma 2.3.5, any Zariski-closed locus in
Spec(T) is determined by the Galois deformations it supports. Thus the corollary follows
from Proposition 4.1.2 and the fact that the CM condition of (1.2.3) is equivalent to the
induced condition: Ry parameterizes all characters ¥4 such that Ind% Y4 is p-ordinary
of tame level N, and injects into TM, [

Proposition 4.1.2 also allows us to study the weight map Ag — TM =~ A.

Lemma 4.1.4. The composite map B of Ag — T —» TM x~ A satisfies

~ ~.c

Bo(=lalexs =(=) (=) . (4.1.5)
Also, B is an isomorphism if and only if p + hg.

Proof. The first statement follows from (2.1.9), as Proposition 4.1.2 tells us that pcm|G ¢ s
~ Sy @ (%)

A presentation of Aq as a power series ring W [¢] arises from 7 — (y)g — 1, where
y is any element of I, that projects to a generator of the Galois group of the maximal
cyclotomic Z,-extension of Q. From the presentation of A given above, and the equality
(4.1.5), we see that Ag — A is an isomorphism if and only if y — 1 € Ag maps to a
power series generator of A if and only if y maps to a generator of Z,. This is the case if
and only if I, = I, C Gg,s surjects onto Z,, which is equivalent to p } h. |

4.2. Congruence module of the CM locus
We recall Hida’s determination of the characteristic ideal of the congruence module of the
CM locus Spec(TM) c Spec(T).

For this, and for the further study of non-induced deformations of induced representa-
tions in §5, we identify how anti-cyclotomic objects over K;V, setup in §3 (like Z; W)
are presented over A.

Notation. In §3 only, we denoted Kﬁ,,, A;V, without the subscript. Elsewhere, the rela-
tionship between the two notations is

A=Ay ®@w W, A”:= Ay Qw W,

as in (4.2.1). We mildly abuse notation by continuing to use (:)_ (resp. (—)_) for the
base change of this character (as defined in §3.1) via ® 5— A~ (resp. ®ay,, A7).
W/
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These anti-cyclotomic Iwasawa algebras A~ and A~ are domains of isomorphisms
§:ASAK, S§:ASA 4.2.1)

that are characterized by inducing the equality of A (resp. A)-valued characters

5~ ~ ~.c

§o(=)_=(=)-((=))" resp.§o(=)_=(=)-((=))".

They are induced by the canonical isomorphism ¢ : Z, = Z " of [31, p. 636].
Because T and TM are reduced under our running hypotheses (see Lemma 2.1.6,
Proposition 4.1.2), there is a unique algebra decomposition of total fraction fields

Frac(T) =~ Frac(T®™) @ X.

Letting T"“M be the projected image of T in X, we have Icy < T"M and T"M is
Aq-torsion-free. The quotient T"M /Iy is the congruence module, in the sense of e.g.
[26, §5.3.3], between the two components Spec(T"M) and Spec(T M) of Spec(T).

Theorem 4.2.2 (Hida). Assume conditions (0)—(4) of §1.2. Then
T"M/Iew =~ A/(L, (7).

Moreover, we have the following commutative diagram with exact rows and columns:

Inem —— (Z;(T//_))

L

Iem T TM ~ A
ol
Iewm T "M ANL; ()

Proof. This is shown in [31, Thm. 7.2], building on the proof originating from [43] of the
anti-cyclotomic main conjecture (Proposition 3.3.2). There we find the additional assump-
tion that v is ramified at p and p } ¢(N). However, the first assumption is used only in
order to apply [31, Thm. 7.1] and ensure that T is a Gorenstein ring. In our setting, this
follows from Theorem 2.3.3. The assumption p } ¢(N) is used to rule out the failure of
minimality of CM families, but our assumptions guarantee minimality. ]

5. Computation of conormal modules using Shapiro’s lemma
In this section, we give an explicit interpretation of the conormal module of the closed

CM locus inside the p-ordinary (resp. p-locally split) locus. From this, we deduce the
main theorem (Theorem 1.3.1) in §5.5.
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5.1. Conormal modules
Assume (0)—(4) of §1.2 in all that follows. We will study the conormal modules of the
closed subspaces
(1) Spec(TM) c Spec(R*?) = Spec(T), and
(2) Spec(TM) C Spec(R™).
We set
Ji=Icy =ker(T = T™),  J%:=ker(R® — TM),
so that these conormal modules may be denoted

(1) J/J? and (2) J*/(J°)?,

respectively. For convenience, we will use the canonical isomorphism A =~ TM of Lem-
ma 4.1.2 and write A in place of T throughout this section, studying J/J2 and
J5/(J%)? as A-modules.

We also let p represent a member of the strict equivalence class (the equivalence rela-
tion defining D' (A); see §2.4) of pcm characterized by demanding that

p(c)z(‘f (1)) and p|c,<.s=(<g> (_O)c).

Indeed, the left equality fixes a basis up to ordering and scaling, and the second condition
fixes the order.

Let A[V] denote A @ V as a square-zero augmented A-algebra, so V2 = 0. For R* €
{R°4, RP' A}, let Homem (R*, A[V]) denote the fiber of

HomAQ(R*,K[V]) — HomA@(R*,K) (5.1.1)

over the canonical A g-algebra homomorphism ¢, : R* — A induced by p. Here we use
the isomorphism A~ Ry of Lemma 4.1.1 to speak of the identity automorphism of A
induced by p. Note that Homcp (R*, K[V]) has a natural A-module structure coming
from the second argument.

In what follows, we will use, without further comment, the following concrete inter-
pretation of Homey (R*, A[V]) as a modified deformation functor Dy.

Lemma5.1.2. Let D* € {D, D', D, } be the deformation problem represented by R*.

There is a canonical bijective correspondence between Homcm(R™, A [V]) and the subset
D (A[V]) C D*(A[V]) consisting of the image of strict equivalence classes within the

set of homomorphisms py : Gg,s — GLa (K[V]) such that py (mod V') = p and detpy =
<_>Q ®Ag A.

Remark 5.1.3. Strict equivalence classes within D amount to conjugacy classes by
1 + M>(V) C GL,(A[V]), which is why it is non-trivial to take the image in D*.
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Proof of Lemma 5.1.2. Let py represent a strict equivalence class in D* that is the image
of a strict equivalence class in D7. Then py (mod V') > p and det py = (—)q. The first
condition is equivalent to the map ¢,,, : R* — A[V] being induced by py composed
with A V] - A to produce ¢,. By examining (2.1.9), we see that the second condition is
equivalent to R* — A being a A g-algebra homomorphism. Conversely, any strict equiv-
alence class in D*(K[V]) that satisfies both conditions contains a representative py of a
strict equivalence class in Dy (A [V]), and it is clear that such a class is unique. |

We also record the relationship between the Homcm(R™, /~\[V]), which follows
directly from the surjections R4 —» RP' —» A.

Proposition 5.1.4. The conormal modules are characterized as A-modules by

Homjz (J/J2, V) = Homem(R™, A[V])/Homem (A, A[V]),
Homz (J*/(J*)%, V) = Homem (R, A[V])/Homem(A, A[V]),

for all finitely generated A-modules V.

Notation. We will write py for a homomorphism
pv : Gg,s = GLZ(K[V]) such that py (mod V) = p and detpy = (—)q.

That is, py is a representative of D (A[V]). We also mildly abuse terminology by speak-
ing of a deformation py, when really this is the strict equivalence class of py, and refer
to py as an element of D (A[V]) for D] € (D94, D,SJPI, Dy ,}

Next we find these py as elements of an Ext!-module.

Lemma 5.1.5. For any finitely generated A-module V and R* € {Rerd RsP! K} there
exists a A-linear injection

Dy (A[V]) = Homem(R* A[V]) < Extg o (p.p®5 V)
determined by sending any py € D, (A[V]) to the extension class determined by the
surjection

pv = pv ®F 1y A= o

Proof. The condition py € D} (A[V]) implies that py ® AV A = p. One may then read-
ily check that the kernel of py — p is isomorphic to p ® ; V' (where V' has a trivial
Gq,s-action). Then the map to Ext! is injective because strict equivalence in D; amounts

to conjugation by 1 + M5 (V). The fact that this map is A-linear is a functorial (in V)
version of the standard fact (see e.g. [42, p. 399]) that the tangent space of a deformation
ring R, with residue field k is given, as a k-vector space, by Hom(R, k[€]/€?), and admits
a canonical isomorphism of k-vector spaces to Ethlc[G@,S] (p, p). |
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5.2. Local conditions

Next we address the local conditions that define the deformation problems Dord pspl
thereby determining the images of the injections of Lemma 5.1.5. We will decompose the
condition on the constancy of the determinant of Lemma 5.1.2 into a sum of local inertial
conditions.

First we address conditions at p. As we have seen, p|g, ¢ =~ ¥ @ Y. Because p splits
in K (and recall that we have designated p such that G, = G), we also have this decom-
position of p|g,. The characters remain distinct after restriction to both Gk s and Gy
because \MG;, =J1F# J2 = 1}6|Gp, by the assumptions of §1.2. Therefore, restriction
to Gk,s induces a canonical map

Extt (5, () ev) Exi (O ) eV
oP: EXt (p PR V) 1A[G ](<~ ) (~ ) ® ) AlG, ]((~ )C <~ )C® )
Extk i, (C)L.O) @v) Bxk (). () V)
(5.2.1)

(where the matrix stands for the direct sum of its entries). For 1 < i, j <2, write o” for
the projection to the (i, j)-th coordinate of the target of o?. Likewise, write rip i for the
composition of 0 ; with

~ citl o il ~ citl o it

EXt}\[G,,]((—) =) ®V)—> ExtA[I ](( ) (=) V).

Lemma 5.2.2. Let V be a finitely generated A-module.
(1) The ordinarity condition and I,-constant determinant condition on the target of o?
are cut out by the kernel ofoﬁl @ rﬁl ® rﬁz.

(2) The split condition and I,-constant determinant condition on the target of o are cut
out by the kernel of(ré”1 ® 0{”2 ® tlpl @ rfz.

Proof. This computation of the ordinarity condition amounts to the study of ordinary
deformation rings appearing in [42, §1.7, p. 401], and a straightforward generalization
to DI We provide more details, and address the inertial determinant condition.

A choice of V-valued cocycles e = (‘Cl 3) representing a cohomology class in the
codomain of 0” may be represented as

aeZ'(@,V) beZ' QAL ®V)
ceZ Q. A; ®V) deZ'(Qp.V) ’

where A ® V is short for A( ) ®a— V, and where V is made to be a A~ -module via

the homomorphlsm A — AW/ Qw W > A found in (4.2.1). This data determines a
homomorphism

= (=) (1 +a) ”(:)Cb -G, — GLy(A[V]). 523
P ( ye ) -(l+d)> D 2(A[V]) ( )
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Conjugation by 1 + M (V) C GL, (/~\[V]) moves e within its cohomology class. There-
fore, a deformation of p|g, to A[V] satisfies the conditions of the deformation func-
tor D° if and only if ¢ is a coboundary and d | 1, = 0. The additional condition that the
deformation of the determinant is trivial on /, is equivalent to (@ + d)|7, = 0, so we must
have a|7, = 0 as well.

Similarly, a deformation of p to /~\[V] restricting to G, as p, determines an element
of DSPI(K[V]) with a trivial deformation of the determinant on [, if and only if both
and ¢ are coboundaries and d |7, = a|;, = 0. |

Next we address the conditions at primes £ | N. This is fairly simple, as we have noted
that the off-diagonal cohomology is trivial at £ in the proof of Lemma 2.3.4. We set up
the maps o, o£ ;»and rf ; just as for the prime p above.

Lemma 5.2.4. Let £ | N be a prime. The condition of minimality at { is cut out by the
kernel of tf’l @ 12(,2.

Proof. This condition is part (iii) of Definition 2.3.1. As the codomains of of, ; are zero

for (i, j) € {(1,2), (2, 1)}, only the conditions cut out by Tf,p rf’z remain. [
Thus we have determined the image of the injections of Lemma 5.1.5.

Corollary 5.2.5. Let V be a finitely generated A-module.
(1) The image of

ord A 1 ~
Homem (R, A[V]) — ExtK[G@.S](p, PRz V)

is the kernel ofo*é'i1 ® Dyinp (11 & 35)-
(2) The image of _
Homem (R, A[V]) = Extg g (0. p ®F V)

is the kernel ofof'i2 ® 0{1 ® @U‘Np (r{’,1 ® rﬁ”z).

5.3. An explicit form of Shapiro’s lemma

Because p =~ Ind% (:) (see Proposition 4.1.2), we can apply Shapiro’s lemma to the
domain of (5.2.1) to obtain

c

Ext%[G@'S](p,p ®V) = Ext%[GK.S]((:) o O (e D).

We need to relate this isomorphism to (5.2.1). For this, we develop, in this section, an
explicit version of Shapiro’s lemma for this particular case.

In order to state it, we use the notation (—)¢ on an extension class as follows, extending
the notation for representations of Gk established in §1.2.3: When py, p, are representa-
tions of Gg and e € ExtéK (p2, p1) is an extension class represented by the short exact
sequence

0— p1 = pe > p2 = 0,
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then we write e€ € ExthK (05, p§) for the extension class of
0— pf = ps — p5 — 0.

Using the canonical isomorphism between these Ext-groups and group cohomology, we
also use the notation (—)¢ for the map

H'(Ok[1/Npl. p5 ® p1) = H'(Og[1/Npl. p5" ® pf)

induced by the map on Ext-groups.

Similarly, choosing matrix-valued representatives for the p; and choosing some co-
cyclea € Z'(Ok[1/Np), p5 ® p1), we may use the notion of (—)¢ that applies to homo-
morphisms:

a‘(y) = a(cyc) fory € Ggk,s.

We next show that these are compatible.

Lemma 5.3.1. With notation as above, if we write p, for the extension of p, by p1 induced
by the cohomology class of a, then the cohomology class of a® corresponds to the exten-
sion class of pS,.

Proof. Using matrix-valued representatives, we can write p, as a homomorphism

P1 p1-a
1%

and observe that p is represented by the homomorphism

c <. ac
(Pl P1 ! ) ' -
P2
For notational convenience, in the statement of Proposition 5.3.2 we use () in place
of (—).

Proposition 5.3.2. The natural map

ExtL (.0 ®V) Extk 50V
ok EXt;\[G@.S](p’ PRV)— ( A[Gk . s] A[Gk,s] )

1 c 1 c c
Bxtk g (0.0°@ V) Extk o (S0 @ V)
(5.3.3)
is injective, and its image is given by
1 1 c
{(a b) c (EXEK[GK,S](O’ <)C® V) E'XtIK[Glcs](oC ’ (>C® V) ) a¢=d, b = C} .
c d EXtK[GK,S](O’ e EXtK[GK,S](O A eV)
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Proof. Shapiro’s lemma tells us that o X is injective.

Choose e = (‘C‘ 2) in the group of cocycles whose cohomology class lies in the
codomain of o X; for example, b € Z'(Ox[1/Np], (:) . ((:)c)_1 ® V). This is a func-
tion e : Gg,s — Max2 (V) that determines the homomorphism p, : Gkx,s — GL2(A[V])
(similar to (5.2.3)) given by

~ ~c
po i (HE; 0 d)) Grs — GV,
It extends to a function on Gg,s = Gk,s LI Gk, sc that we denote by ﬁec given by
pC : Gr.sc 3 ye > pe(y) - C € GLy(A[V])
(so in particular [)ec (c) = C), where C € GL, ([~\[V]) has order 2 and satisfies
C=(;!)(modV).

We observe that the set of lifts of p to [~\[V] is in bijection with the set of pairs (e, C)
such that [)ec is @ homomorphism. We break the determination of the homomorphism
condition on g€ into cases.

Case C = (, '). WhenC = (; !), we claim that 5< is a homomorphism if and only if
a® = d and b¢ = c, as cocycle functions Gg s — V.

We want to verify that S (y"y") = pS (y")pe(y’) forall y”,y’ € Gg,s. A brief com-
putation reduces this verification to the case where y’ € Gk s and also y” = yc for some
unique y € Gk s. In this case, rewrite y”y’ = (yc)y’ as y(cy’c)c, observing that the
desired equality holds if and only if

pe(C)//C) = ( 1 ! )Pe()//)( 1 ! )
This condition holds if and only if a® = d and b¢ = ¢, proving the claim.

Case of general C. The set of all possible elements GL, (A [V]) satisfying the conditions
demanded of C are in bijection with

e — {(Uu UIZ) € My (V)

Vi2 V22

V11 + V22 = V12 + Va1 = 0}

via C + C — (; ). For the moment, fix (v;,;) so that it equals C — (; !). The function

—v12/2 —v11/2

arising from conjugating ﬁf byl+C =1+ ( w1112 via)2

) satisfies

(A+CHple)a—-cy=(,1).

Thus we may reduce to the case of C = (; !).
In order to carry out this reduction, we need a bit of additional notation. Write 9
for the boundary map C°(Ok[1/Np], My(V)) — CY(Ok[1/Np], Ma(V)), and write

d= (3“ alz) for its decomposition into matrix coordinates. Then we apply the case
921 022
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C = (1 1) and observe that 1 + e is fixed by conjugation by 1 + C’ to deduce that ﬁec is
a homomorphism if and only if

a® =d, b°=c.

A complement to € C pgl, ® V is (9 %). Conjugating 5 by 1 + (9 §)w fixes p€ (c)
= C, fixes a and d, and sends

b b—012(w), crc—0dr(w),

which maintains the equality b€ = c. 5
_ Altogether, we have calculated that lifts of p to A[V] are in bijection with the
A-module

(a.b,v11.v12) € Z'(Ok[1/Npl. V) & Z'(Ok[1/Npl. A, @ V) @ V2

via (a, b, v11,v12) ﬁec where e and C are defined as

=lia) e )R )
The action of conjugation by 1 + Mzx2(V) C GL» (A[V]) on the lifts of p to A[V], under
this bijection, amounts to translation by the A-submodule
B'(Ok[1/Np].V) ® B'(Ok[1/Npl. A, & V) & V2.
The quotient is naturally isomorphic to the claimed image of o X ]

Using the foregoing expression of Shapiro’s lemma, we calculate Homcy (R*, AlV)).
Write H), for the p-primary summand of the ideal class group of K.

Proposition 5.3.4. For any finitely generated A-module V, there are isomorphisms

Homey (R™, A[V]) = Homg,, (Hp. V) & H(y e (Ok[1/Npl.A_, ® V),
Homew (R¥', A[V]) = Homgz,, (Hp, V) @ Hy,)(Ok[1/Npl, Ay @ V),
Homew (A, A[V]) = Homg,, (Hp, V).

Proof. We apply throughout the interpretation of Homey(R*, A[V]) in Lemma 5.1.2.
Thus our goal is to calculate the image of the injections of Lemma 5.1.5, which are deter-
mined by Corollary 5.2.5. So it remains to interpret the conclusion of Corollary 5.2.5 in
terms of Proposition 5.3.2.

We use the notation of Galois cohomology instead of Ext!. For convenience, when v
is a rational prime dividing Np and % = ij fori, j € {1,2}, we use the natural extensions
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of o¥ and 7V to the codomain of oX: these are o2, t2, where v is the prime over v
distinguished by the embeddings of §1.2.1.

oty H'(Ok[1/Npl. A, ®5 V) = H'(Ky. K, ®5 V).
of  H'(Ok[1/Npl. Ky ®3 V) — H'(Ky. Ky ®3 V),
; : H'(Og[1/Npl.V) — HY(Ky™. V), i=1.2.

We also use the isomorphism of Shapiro’s lemma as given by the top row of o X:
Extk g (00 ® V)= H'(Ox[1/Npl.V) & H'(Ox[l/NpL. Ry @5 V). (5.3.5)

The map P, v, (17, ® 75 ,) factors through the summand H L(Og[1/Np],V) of the
codomain of (5.3.5), yielding

H'(Ok[1/Np].V) - @ (H' (K™ V) @ H' (K™, V).
v|Np
a+ ((alr,.a’lr,) | primes v | Np).

Using the equivalence a“|, = 0 < als,. = 0, we find that these are V-valued homo-
morphisms factoring through H,. This establishes the final claimed isomorphism, as
deformations induced from K are split upon restriction to K.

For the first claimed isomorphism, we calculate the ordinary case. Similarly to the
previous paragraph, 05,1 factors through the summand H'(Og[1/Np], /K(__) ®z V) of
the codomain of (5.3.5), yielding

H'(Ox[1/Npl. A, ®3 V) = H'(Kp. Ay ®5 V).

(5.3.6)
b blg,.

Let [ be a prime of K over N. It follows from the cohomology calculation in the proof of
Lemma 2.3.4 that H'? (Ky, Iﬂ_) = 0 for all i > 0. Therefore, the local factors over N of the
long exact sequence in cohomology (3.4.1) arising from the cone construction (with S’ the
set of primes of K dividing Np* and T = 7\; ) are trivial. Likewise, for the local factors
over p, we have H(Ky, ™) = H%(Ky«, ™) = 0, so there are no local terms in degree
zero in this long exact sequence. Also, b¢|g, = 0 if and only if b|g,. = 0. Therefore, the

kernel of (5.3.6) is canonically isomorphic to H(le*)(OK[l/Np], /’{(_7) V).

Recalling the decomposition (5.3.5), we conclude that O'; 1 ® EBU‘ Np (t71 ®15,) has
kernel naturally isomorphic to the direct sum of the two kernels above. This gives the first
isomorphism.

The argument for the second is essentially identical. We replace 05,1 with o} 29D af,l,

which also factors through the summand H'(Og[1/Np]. K(__) ®3z V) of the codomain
of (5.3.5). This factorization is

H'(Ok[1/Npl. A, ®3 V) > H' (Ky. A, ®5 V) ® H' (Ky. Ay ®5 V),
b (blg,.blG,).
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Therefore the kernel of o1, & 03 | & @, |y, (1, @ 73 ,) is naturally isomorphic to the
direct sum of the two kernels from the factorization. Then, (3.4.1) computes this group by
the same argument as before, where S’ is now the set of primes of K dividing Np. ]

Now we can interpret maps out of the conormal modules of the CM locus in the
ambient ordinary or split deformation space.

Corollary 5.3.7. For any finitely generated A-module V, we have canonical isomor-
phisms

Homy (J/J2. V) = H{ly« (Ok[1/Npl. A, ® V).
Homg (J*/(J*)%, V) = H{y,,(Ok[1/Npl.A_, ® V)
that are functorial in V.
Proof. We claim that the injections
Homem (A, A[V]) < Homem(R*, A[V]),  * € {ord, spl},

induced by the canonical surjections R —» R%P! —» A are compatible with the direct
sum decompositions in the statement of Proposition 5.3.4. This follows from the fact that
the image of these injections, say on an element a € Homgz, (H, V'), corresponds exactly

to IndQ (=) - (1 4+ a). By Lemma 4.1.1, induced deformations of p are exactly those that

arise from homomorphisms out of A. Hence the statement follows from Proposition 5.1.4.
(]

5.4. Interpretation as class groups

We arrive at the identification of the conormal modules. We apply the map § of “4.2.1),
usually restricting it from its domain AW/ Qw W to its subring AW, Q1= A;V/.

Theorem 5.4.1. We have isomorphisms
() Yo (¥ ) ®z- 5A — J/J?and
W/s
(i) X)) ®1~\;W,S; A JS/(J)?,
compatibly with the natural surjections J /J? — J*[(J%)? and Y, (¥ ™) = X (¥ 7).

Remark 5.4.2. Case (i) was originally proved by Hida; indeed, it follows immediately
from the computation of Homcp (R, A[V]) in [27, Prop. 3.89, Thm. 5.33] combined
with the argument establishing Corollary 5.2.5.

Proof of Theorem 5.4.1. Let V be a finitely generated A-module. Since A is a complete
intersection (see Proposition 4.1.2), we may apply global Tate duality in the form of
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Proposition 3.4.2. Since ng)(OK[l/Np], /~\;(1)) = 0 for i # 2 according to Proposi-

tion 3.5.1, the application to T = /~\; (1) of the global Tate duality spectral sequence of
Proposition 3.4.2 degenerates. This yields

Homg (HZ, (Ok[1/Npl. Ay (1), V) > Hly, (Ox[1/Npl. Ky ® V).

Because A ®5 3— (Kﬁ,/)#(l) =W Qw (K;V,)#(l), Proposition 3.5.1 allows us to
s W/
replace H(zp)(OK[l/Np], Ay (1) by Y (¥7) ®Kﬁmg A. Corollary 5.3.7 canonically
identifies Homz (J/J 2, —) with

H Ok [1/Np). ALy ® -)

as functors on finitely generated A-modules. Because both J /J?and Y (V™) ®% x5,
are finitely generated as A-modules, Yoneda’s lemma implies the result (i).

The proof of (ii) is essentially the same. Because H'(Og[1/Np], A (1)) = 0 for
i > 2, the duality spectral sequence of Proposition 3.4.2 yields
Homg (H*(Ok[1/Npl. Ky (1). V) = H{y,)(Ok[1/Npl. Ay ® V).

By Proposition 3.5.1, we can replace H?(Og[1/Np], K;(l)) by Xoo(¥7) ®3z- 5 A.
W/’

The rest of the proof proceeds as in the proof of (i). ]

5.5. Proofs of main theorems

In this section, we deduce the main result (Theorem 1.3.1), and also Theorems 1.3.4~and
1.4.4, from the following main technical result. We resume writing TM in place of A.

Theorem 5.5.1. Assume conditions (0)—(4) of §1.2. Then the surjection R® —> T™M s
an isomorphism if and only if X(¥~) = 0.

Proof. We know that X () = 0 if and only if X () = 0 by Proposition 3.3.3(i).
Thus Theorem 5.4.1 implies the theorem as soon as we know that J* = 0 &
J*/(J*)? = 0. This follows from Nakayama’s lemma, as J* is contained in the maxi-
mal ideal of the complete Noetherian local ring R*P'. |

The main theorem now follows.
Proof of Theorem 1.3.1. The conclusion of Theorem 1.3.1 is equivalent to the set
Spec R¥(@,) ~ Spec T™M(Q,,)
being empty. When X (™) = 0, this immediately follows from Theorem 5.5.1. ]

Now we deduce Theorems 1.3.4 and 1.4.4 from Theorem 5.5.1 and the background
in §2.
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Proof of Theorems 1.3.4 and 1.4.4. Tt follows from Proposition 2.4.2 that the p-locally
split condition is well-defined on the Galois representations associated to generalized
eigenforms g’, g’, even though their coefficient rings are not domains. Thus condition
(c) of the theorems is equivalent to the map T — Ay’ (resp. T — Ag-) factoring through
T — R,

Similarly, as we have noted that the CM condition is well-defined on generalized
eigenforms in §2.2, the “not CM” condition (b) of both theorems is equivalent to the map
T — Ag (resp. T — Ag/) not factoring through T —» TM.

Case of Theorem 1.4.4. Assume that X_ (v ™) is infinite, which is equivalent to X :=
Xo(¥™) ®%- 5 A being infinite. Then as a Ag-module (where this module structure
W/ E)

arises from 8 : Ag — A discussed in Lemma 4.1.4), X has support on some height 1
prime P C Agq. By Proposition 3.3.3(ii), P has characteristic zero; hence P = Py , for
some p-adic weight (k, x').

Let E = Ej , denote the residue field of Py ,, which is a finite extension of Q,. We
now consider the surjection with square-zero kernel

(RP/(J*)*) @ng E - TM®@aq E.

By Theorem 5.4.1, its kernel surjects onto X ®a, £, which is non-zero. Because
TM Ao E is a finite product of finite extension fields over E, it has some factor
Ey=(TMg® Ag E)/my with the following property: letting m’. be the kernel of the
surjection from (R%'/(J%)?) ® Ag E 10 Ex, X ® E does not vanish under its natural
map to w’, /%

Choose some 1-dimensional E-vector space quotient X' of X ®a, Ex and let
Ay 1= Ex[X'] = E«[€]/(€?) be the corresponding square-zero extension of Ey. Then
we may factor (R%!/(J*)?) ®Ag E — Ex through Ay — Ej.

We now recall the discussion of generalized eigenforms and their attached Galois rep-
resentations from §2.2. The composite T —> R*®' — A, corresponds (via the duality of
Lemma 2.1.5) to a p-adic p-ordinary generalized eigenform g’ of p-adic weight (k, x’)
with eigensystem corresponding to the composite T — A, —> E. The corresponding
Galois representation pgs : Gg,s — GL2(Ay) arising as pg’ := pT ®T Ay has the fol-
lowing properties:

(a) The eigensystem induced by T — E, has CM and is congruent to f , because it
factors through T —» T M.

(b) g’ does not have CM, because T — Ay cannot factor through TM: indeed, by The-
orem 5.4.1, if it did, then X would vanish when projected to A,. But T — Ay has
been constructed so that this does not happen.

(c) pg is p-locally split, because T = R — A, factors through R —» R,

These are the properties (a), (b), and (c) of Theorem 1.4.4. We have also arranged for
Ay ~ Ex[e]/(€?), as claimed.
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For the converse, note that if g’ inducing T — A, arises from the action on a gener-
alized eigenform with properties (a), (b), and (c), then

(a) implies that the composite map T — Agr — Eg = Ag//my to the residue field of
Ag/ amounts to an eigensystem that has CM,

(b) implies that this map does not factor through T —» TM, and
(c) implies that this map does factor through T —» R,

Consider the image A C A, of R*P' which is a local ring that is not a field (by (a) and (b)).
Writing m4 C A for its maximal ideal, we consider the induced map R*?' — A/ mfl. Its
restriction to J¥ factors through J¥/(J*)2, and (b) implies that its image is non-zero.
Since this image is a Z,-submodule of a Q,-vector space, we deduce from Theorem
5.4.1 that X (™) is infinite.

Case of Theorem 1.3.4. The proof of this case is essentially the same. The only differ-
ence is that IF plays the role of both E and E, while T™M ® Ag F is an Artinian local
FF-algebra. Then the surjection of Artinian local algebras R @ oo, F — TM @, F
induces a surjection of the square-zero extension quotients. By Theorem 5.4.1 and by
letting V' = T in Proposition 5.3.4, this surjection is

FIX(y™) ® (Hy, ®z, F)] > F[H, ®z, F]

(in the notation of Proposition 5.3.4). It is straightforward to deduce the result from here,
using arguments analogous to the case of Theorem 1.4.4. ]

6. Commutative algebra

In this section, we set up a proposition from commutative algebra and deduce Theorem
1.4.1.

6.1. A proposition using the resultant
The following lemma summarizes the theory of the resultant that we will require.

Lemma 6.1.1. Let R be a domain, and let F(y), G(y) € R[y] be polynomials. There is
a resultant w € R of F(y) and G(y) with the following properties.

(1) @ = 0ifand only if F(y) and G(y) have a non-constant common factor.

(2) m € R C R[y] is an R[y]-linear combination of F(y) and G(y), i.e.

L RDT
(F(»),G(»))

In the following proposition, we refer to the generic rank of a module M over a
domain R. This is defined to be the Frac(R)-dimension of M ® g Frac(R).
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Proposition 6.1.2. Let R be a complete Noetherian regular local ring. Let S be an
augmented reduced local R-algebra that is finitely generated and torsion-free as an R-
module. Let T be an augmented local R-algebra quotient of S, and denote by K the
kernel of T — R.

Assume that K/ K? is supported in codimension at least 2 as an R-module. Then T
has generic rank 1.

Proof. For this proof, given an augmented R-algebra R < A — R, we denote by A€ the
R-module complement to the summand R C A determined by the augmented R-algebra
structure. That is, we have a canonical isomorphism of R-modules 4 = R @& A¢. We
note that A has generic rank 1 if and only if A€ is R-torsion; we will implicitly use this
equivalence in this proof.

Denote by J the kernel of S — R, and choose a minimal set § of generators for
the ideal J, which is also a minimal set of generators for S as an R-algebra. Choose an
element y € ¥ and write S; cS, TJj C T for the R-subalgebras generated by y. We
observe that SJ’, — T; is a morphism of augmented R-algebras.

We claim that it suffices to prove that 7 has generic rank 1 for all y € §. Indeed,

consider these product algebras with an augmented R? -algebra structure

Rg—>1_[TJ;—>Rg—»R,
yeg

where the additional rightmost arrow is the diagonal projection homomorphism. We also

have a natural map
/!
[[1,—>T
yeg
lying over the diagonal projection, inducing a surjection of R-modules

P @) - 1°.

yeg

Thus we observe that 7' has generic rank 1 if and only if Ty’ has generic rank 1 for all
yeg.
Having reduced to the case that #§ = 1, we render S and T as

S R[y]
0Py Fa(0)
Rly]
- F1(0)seny - Fa(9), - Gi(y), ...y - Gr(y))
Now we have J = (y). Note that J/J? is a torsion R-module generated by y (mod J?2).

Indeed, if this were not the case, let m > 2 be minimal such that J™/J™"~! is R-torsion.
If P(y) € R[y] is a monic polynomial of minimal degree satisfied by y, then y" | P(y)
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because J'/Ji*! is free of rank 1 for i < m. Thus y - P(y) is a nilpotent element of S,
contradicting our assumption that S is reduced.
Observe that J/J? is a cyclic R-module, generated by y, and isomorphic as an R-

module to
R

(F1(0), ..., Fu(0))

Likewise, its quotient K/ K? is generated by the image y’ of y in T and is isomorphic as
an R-module to

J)J* 5

R
(F1(0),..., F4(0),G1(0),...,G,(0))"

K/K* S

We claim that there exists a pair of polynomials F(y), G(y) in the set

{F1(y). ... Fo (), G1(¥).....G-(»)}

such that R/(F(0), G(0)) is supported in codimension 2. This follows directly from the
assumption that K /K? is supported in codimension 2.
We note that
R[y] Rly]

(y-F(») (-F().y-G»)

are naturally augmented local R-algebras with augmentation ideal generated by y, and
with a surjective augmented R-algebra map to S and 7', respectively. Therefore, it suffices
to replace S and T with these algebras. Indeed, having done this, we observe that J/J?
is torsion and K/ K? is supported in codimension 2. We define

RO
C(F().y-GO))’

the quotient of T by (F(y)), but note that T’ is not an augmented R-algebra. Because the
kernel of T —> T’ is a cyclic R-module (generated by F(y)), and we know that T has
generic rank at least 1, it will suffice to show that 7" is a torsion R-module.

Let m € R be the resultant of the polynomials F(y),y - G(y) € R[y]. By Lemma
6.1.1(2), we have

7-T' =0.

Thus we want to show that # # 0. By Lemma 6.1.1(1), it suffices to prove that F(y)
and y - G(y) do not have any non-constant common factors. Assume, for the sake
of contradiction, that there exists such a divisor H(y) € R[y]. We may assume that
H(y) is irreducible and monic, since both F(y) and y - G(y) are monic. We see that
H(y) # y, because F(0) # 0. Next, note that H(0) is not a unit in R, because if
H(y) | F(y) with quotient Q(y), then S =~ R[y]/(y - H(y) - Q(y)) would not be a local
ring (consider S/mgS). Then H(0) | F(0) and H(0) | G(0). This contradicts the fact that
R/(F(0), G(0)) is finite, as it surjects onto the non-finite R/(H (0)). |
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6.2. Proof of Theorem 1.4.1
We will apply Proposition 6.1.2 to R*! in order to prove Theorem 1.4.1.

Lemma 6.2.1. Assume (0)—(4). Also assume that p t hx and that X (™) has finite
cardinality. Then R has generic rank 1 as a Ag-module.

Proof. We see that the conclusion of the lemma will follow from verifying that the
assumptions of Proposition 6.1.2 about (R, S, T, K) are satisfied by

(R.S.T.K) = (Ag, R™ = T, R™, J%),

where the augmented A g-algebra structure of R = T is understood to be defined by
the ideal J = M,
Recall from Lemma 4.1.4 the sequence of homomorphisms

Ag—>T — R »TMS A » A,

There, we see that these induce isomorphisms Ag = A => A if and only if p + hg. Thus
we apply the assumption p { hg and identify Ag — TM =~ A, treating T —> R*? as a
morphism of augmented A g-algebras.

All of the assumptions of Proposition 6.1.2, except the one that J*/(J*)? is supported
in codimension at least 2, are satisfied by the properties of T checked in §2, especially
Lemma 2.1.6. We will show that the remaining property follows from the assumption that
X (¥7) has finite cardinality.

For R = A, an R-module is supported in codimension 2 if and only if it has finite

cardinality. By Theorem 5.4.1, there is an isomorphism X2, (¥ ™) ® - A ~ JS/(J%)2.
W/

When p { hg, we have X (™) = X (¥ ™), and the tensor product operation ® ;- A
W/
preserves the finite cardinality property of these modules. ]

Proof of Theorem 1.4.1. By Lemma 6.2.1, we know that the assumptions of Theorem
1.4.1 imply that R*?! has generic rank 1 as a A g-module.

Because the locus Spec(T M)  Spec(T) parameterizes exactly the CM p-adic eigen-
forms congruent to f, it follows from the constructions of §4.2 that the map x, : T — @p
of Lemma 2.1.5 corresponding to a p-adic eigenform g (congruent to f) factors through
T — T"M if g does not have CM. We also know that p, is p-locally split if and only if
xg factors through T —»> R*P!. Thus it will suffice to show that

RS -— TnCM QT Rspl

is torsion as a A g-module.
Since we have already deduced that R has generic rank 1, it suffices to show that
the kernel of
Rsp] —» RS

has generic rank 1. In view of Theorem 4.2.2, we want to show that the kernel I,cp C T
of T — T"M injects into R*"' under T —> R*P'. But this follows from the same theorem,
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as we see there that I,cy injects under the composite quotient map T —» R — TM
=~ A, with torsion cokernel. [

Remark 6.2.2. The main result of Ghate—Vatsal [20] establishes the conclusion of The-
orem 1.4.1 upon assumptions (1')—(3’) of §1.2. The additional assumptions we rely on to
prove Theorem 1.4.1 are (0), (4), and the finiteness of X (¢ ™). In [20], the authors use
the fact that the ideal of () C T generated by the image of G, under the “x” of (2.1.8)
cuts out the quotient T —» R*®'. Our method hinges on the study of maximal square-zero
augmented T “™-algebra quotients of T (resp. R*"') over A . We found in Theorem 5.4.1
that this maximal quotient is T —» A[¥z (¥ )] (resp. R®' —» A[X (¥ 7)]), and that
the image of G, cuts out the quotient ¥ (¥ ™) — X (¥ ™). So our method relies on

I3k L)

detecting “*” in the conormal module Icm/ T3y = Yo (V7).

Haruzo Hida
Appendix A. Local indecomposability via a presentation of the Hecke algebra

A.l. Summary

Let p > 5 be a prime. In this appendix, we give a proof of Greenberg’s conjecture ((CG)
in the main text) of local indecomposability of a non-CM residually CM Galois repre-
sentation based on the presentation of the universal ring given in [32] (so, the proof is
different from the one given in the main text). We impose an extra assumption (H3-4) in
addition to the set of the assumptions made in the main text (we list our set of assumptions

as (HO)-(H4) below). We use the notation introduced in the main text. For each Galois

representation p of Gk, we write K(p) = @ker(p) for the splitting field of p. We fix an

algebraic closure F of F and write 0 for the Witt vector ring W(F).

A deformation pq : Gg — GL,(A) for an algebra A in CNLyy of the representation
0= Indg ¥ : Gg — GLy(F) as in §1.2.2 is said to be minimal if ps(I;) = p(I;) by
the reduction map for all primes / | N [12, §3.1, p. 715]. By an R = T theorem (e.g.,
[11, Thm. 2.3]), we have a local ring T of the ordinary Hecke algebra and its Galois rep-
resentation p : Gg — GL,(T) giving a universal ordinary pair with T being naturally an
algebra over the weight Iwasawa algebra A := W[l + pZ,] = W[T]. We assume that
Spec(T) contains a non-CM component Spec(T"M). We made the following assump-
tions in [32] to prove a presentation of T over A:

(HO) ¥~|g, # 1 (alocal condition),
(H1) v has conductor ¢’ such that ¢/ 4+ ¢ = Og and p* } ¢/,
(H2) the character ¥~ has order at least 3 (a global condition),

(H3) the class number hg of K is prime to p,

(H4) the class number /gy —) of the splitting field K(y ™) = @kerwi) of ¢~ is prime

to p.
Assuming T # A, the minimal presentation we found in [32] has the following form:

T = A[T_]/(T-Sy). (A.1.1)
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Here the ring A[7_] is the one-variable power series ring over A with variable 7_ and
Sy is a power series in A[7-] prime to 7_. We have an involution ¢ over A acting
on T corresponding to the operation p — p ® y for y := (w) Non-triviality of o
is equivalent to the existence of a non-CM component of Spec(T). This involution o
extends to an involution oo, of A[T_] so that 05 (7T-) = —T_ and 05(S+) = S4. To
prove the presentation, we made in [32] some extra conditions whose removal will be
discussed in §A.2. To have a one-variable presentation in (A.1.1), we need to assume
p 1 hk (otherwise, we could have variables fixed by 0 in the presentation).

Let T4 be the subring of T fixed by o. Let T"™M := A[T-]/(S+) and TM :=
A[T-]/(T-) = A, and write ® for the image of 7_ in T. Since the CM Galois defor-
mation ppeu into GL, (T M) is induced from K, the involution o is trivial on TM; so,
the image of T_ with 0 (7-) = —T- vanishes in TM; so, ® lives in (0 x T"M) N T
(this is also clear from TM = A[T_]/(T-)). This ® plays the role of L, (¢7) in the
main text in the sense that T"™/(®) = T"M @ T™M = A/(L, (¥7)) (the iden-
tity of the congruence modules) even if ® lives in T"M while L,(y7)) € TM = A.
Then T — T"M x T whose cokernel is isomorphic to T"M /(®) as T-modules and
(®) = (0 x T"M) N T. The congruence module T"M /(®) after extending scalars to
2 is isomorphic to (TM @y W)/ (£, (¥7)) for the anti-cyclotomic Katz p-adic L-
function &£, (™) (of branch character ¥ ~, denoted in the main text as £, (¥ 7); see
Corollary A.2.5); so, ® is a generator of /¢y, and in this sense we regard ® as an element
of T"M,

Let B be a prime factor of p in K(p) (the splitting field of p). Write the image of U(p)

in T as u. Writing the local Artin symbol [x, K] (identifying K, = Q,), for the residual

degree f of L3, the semisimplification of pT ([p, Kp]f) is a conjugate of (”;f u(-)f ) as

det(or ([p, Q,]7)) = 1. Note here that ¥~ ([p, Kp]/) = 1 and u®/ = v~ ([p, Kp]/) =
Il mod mt (as u = ¥ ([p, Kp]) mod m). Put a = u?/ — 1 € mr, and for the Zp-
subalgebra W; of W generated by the values of ¥~ over G,, define Ay := Wi[T, d]
to be the subalgebra of T topologically generated over W1[T] C A by a.

Theorem A.1.2. Let the notation be as above. Assume (H0)—(H4) and o # id on T. Let
7;, be the wild p-inertia subgroup of Gal(K(pT)/Q) for the splitting field K(pT) of pr.
Then we have a decomposition Tp = U % Gal(Qoo/Q) for the Zp-extension Qoo/Q,
where U is an abelian group mapped by pt into the unipotent radical of a Borel subgroup
in GL,(T) whose logarithmic image uw = Lie(U) (in the nilpotent Lie A-algebra T) is
equal to © - Ay. In short, we have an isomorphism pr (1) = {( ’i" ®f1 )} € GLx(T),
wheret =1+ T € A.

This theorem supplies us with a very explicit unipotent element (} (;)) in the image
of pr with (OT & W) N Ag = (&£, (¥7)); therefore, we can answer the question of
Greenberg:

Corollary A.1.3. Assume (HO)-(H4) and o # id on T. For all prime divisors P in
Spec(T™M) with associated Galois representation pp, the following conditions are
equivalent:
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(1) the Galois representation pp is completely reducible over the inertia group I, at p,
(2) P € Spec(T"M) N Spec(T™M),
(3) PI(&£, () Az N A).

As described in the main text, from [14] and [19, Prop. 11], the above corollary
implies:

Corollary A.1.4 (Coleman’s question). Assume (HO)—(H4). For every classical modular
form f of weight k > 2 and of level N with residual representation p, write g for the
p-critical stabilization of the primitive form associated to f. Then g is in the image of

(q diq)k_1 if and only if f has complex multiplication.

A.2. Presentation of a Galois deformation ring

For a set Q of Taylor—Wiles primes satisfying conditions (Q0)—(Q10) in [32, §§3-4],
we write K(p)?2) for the maximal p-profinite extension of K(p) unramified outside
{p} U Q. We simply write K(p)® for K(p)?2L) if O = 0. Let Gg = Gal(K(p)?9/Q)
and Hg = Gal(K(p)?9)/K) with G = Gy and H = Hy. We first note that Gg =
Gal(K (p)?9)/ K(p)) » Gal(K (p)/Q) and Hg = Gal(K(p) "9 /K (p)) x Gal(K (p)/K))
as p>2and p t [K(p) : Q]. We fix such a decomposition; so, Gal(K(p)/Q) = Ag
for a subgroup Ag of Gal(K(p)?)/Q). Write A C Ag for the subgroup isomorphic to
Gal(K(p)/K); so, [Ag : A] = 2.

Let N = DNg/q (c¢)). Let h€ be the big Hecke algebra described in [34, §1] for
each Q. We have a local ring T € of h€ whose residual representation is isomorphic to p.
Let p€ : Go — GL(T 2) be the Galois representation of T such that Tr(p€ (Frob;))
for primes / outside {/ | Np} U Q is given by the image in T € of the Hecke operator T'(]).
On T €, we have an involution o with the property that (p2)% =~ y ® p< for the quadratic
character y = (@) Put Tf ={heT?|o(h) ==xh}.Let]? :=T%0c - 1T =
T2T2 (the o-different) and TCQM := T2/I12.Ttis known that T ¢ and TCQM are reduced
algebras finite flat over A. Further we have an algebra decomposition T¢ ® 5 Frac(A) =
Frac(TCQM) X Frac(TnQCM) for Tn%M ~TQ/ (Frac(TCQM) x 0) N T 2. In the above notation,
if O = @, we remove the superscript or subscript Q from the notation. If o is the identity
on T, we have T"M = (. Otherwise the subring T_’;_CM fixed by o is a non-trivial A-
algebra. The theorem proven in [32, Thms. B and 5.4] is:

Theorem A.2.1. Assume (HO)—(H4), o # id on T and that p splits in K. Let Spec(T)
be a connected component of Spec(h) associated to the induced Galois representation
0= Indg ¥ for the reduction r of ¥ modulo wy for the maximal ideal wy of W. Then
the following assertions hold:

(1) We have presentations
T = A[T-]/(T-S4),  T"M = A[T-]/(S5),
T+ = A[T?]/(T2S4), Ti™M =~ A[T2]/(S+)
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such that the involution 6 : T— + —T_ over A fixes the power series Sy € A[T?]
and induces o on T.

(2) The rings T, Ty, T"M TiCM are all local complete intersections free of finite rank
over A.

(3) The T"M-ideal T = T (o0 — 1)T C T"M is principal and is generated by the image
O of T_ with 0 := ©2% € T, and © is not a zero divisor. The element © generates the
T_T_CM-module TM \phich is free over Tj‘_CM, and T"M = T_T_CM[@] is free of rank 2
over TiCM.

Proof. The result of [32, Thm. 4.10 and Prop. 6.2] asserts that T = A[®] with 0(®) =
—0; so, we have a surjection 7 : A[7_] — T with n(7_) = ©, and [32, Thms. A and B]
asserts that T is a local complete intersection over A. Thus T =~ A[7_]/(S-) for a power
series S_ € A[T-]. By the construction of 7 of [32, §4] via a Taylor-Wiles patching
argument, we have an involution o of A[T_] lifting ¢ such that o(7-) = —7- and
0(S-) = —S_; so, we have 7_ | S_ and hence S— = T_S. Since T is reduced, 7_ and
S+ are co-prime in A[[7_]. This shows the assertion (1). The assertions (2) and (3) follow
from [32, Thm. B].

Strictly speaking, the patching argument is given in [32] under the following extra
assumptions:

(h2) N := DNk/q(c’) for an O-ideal ¢’ prime to D with square-free N ,q(c’) (so, N
is cube-free),

(h3) pisprimeto N ]—[”N(l — 1) for prime factors [ of N.

Here is the reason why we can remove these two assumptions: We studied the minimal
deformation problem in [32] over the absolute Galois group Gg, but as was explained in
[12, p. 717], under the condition that p 4 |p(/;)| (which holds in our case), all minimal
deformations factor through G, and considering the deformation problem over {Ggp}o
for appropriate sets Q of Taylor—Wiles primes satisfying [34, §3 (Q0)—(Q8)], every argu-
ment in the proof of [32, Thm. 5.4] goes through for the above choice of T € (as is easily
checked), and thus we obtain the theorem. Indeed, we used (h3) in [32] just because
the universal minimal ordinary Galois representation of prime-to-p conductor N (con-
sidered in [32]) factors through G; so, just imposing deformations to factor through G
the arguments simply work; so, we do not need to assume (h3). The condition (h2) is
assumed to guarantee the big Hecke algebra is reduced, but again, each deformation over
G has prime-to-p conductor equal to N, which is equal to the prime-to-p conductor of
its determinant (the Nebencharacter). Then, by the theory of newforms, the Hecke al-
gebra is reduced if its tame character has conductor equal to the tame level; so, we do not
need (h2). [ ]

Since o acts trivially on T = T /(®), writing p := (pr mod (®)), we find p =
p® xfor y = (w). Note that p is a minimal deformation of p; so, it factors through G.
Thus by [13, Lem. 3.2] applied to § = G and # = H (under the notation of the lemma),
we find p = Ind% W for a character W : H — T unramified outside ¢’p deforming .
Let I', be the Galois group over K(p) of the maximal p-abelian extension of K inside
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K(p)® unramified outside p. By p } hg, T = Oy ®z Zp, and hence W[Ip] = A
canonically via Z; = O. We identify the two rings. Since p { [K(p) : K], there exists a
class field K(p)/K in K(p)?) with Gal(K(p)/K) = I', by Artin symbol. Define a char-
acter & : Gxg — W[I'p]* = AX by ®(1) = ¥ (1) 7|g(p)- Then ® factors through H. Since
(A, ®) for the character ® : H — A is a universal pair for the deformation problem of ¥
unramified outside pc’ over the group H, we have a canonical surjective algebra homo-
morphism A — TM inducing W. By the same argument which proves [32, Cor. 2.5],
this is an isomorphism. We record this fact as

Corollary A.2.2. We have isomorphisms
T+/(0)=T/(©) =TMx=A, where 6=0*eTiM

Recall G = Gal(K(p)?/Q) and H = Gal(K(p)?)/K). Let pg : Gk — GL,(A) be
a minimal p-ordinary deformation of p for a p-profinite local W-algebra A with residue
field IF. The representation p4 factors through G by minimality (so hereafter we consider
the deformation problem over G). By p-ordinarity, we have

,0A|G,, = (661 ;;1) with (5,4 mod mA) = WC,

where m4 is the maximal ideal of the local ring A. This gives rise to an exact sequence
€4 < pg — 64. Realize s[5 (A) inside the A-linear endomorphism algebra End4(p4), and
write Fy(p4q) for the subspace of {T € sl5(A) | T(¢) = 0} = Homy (84, €4) on which
Ad(py) acts by the character €4/84 (the upper nilpotent Lie subalgebra if p4|g, has
upper triangular form as above). Write Ad(p4)* for the Galois module Ad(p4) ®4 AV
for the Pontryagin dual AV of A, where Gg acts on the factor Ad(p4). Similarly we put
Fi(pa)* := Fy(p4a) ®4 AV, which is a p-local Galois module. Then we define

Ad(PA)* ) « H] *
,Adloa)” (11, Ad(p4)"))
Fy(pa) lll—N[ (A23)

Selg (Ad(pa)) := ker(H'(G, Ad(ps)*) — H' (1,
for the product of restriction maps to the inertia group /; C G of [. In the Galois group
G,forl } N, I, is trivial (as K(p)?)/Q is unramified outside Np); so, in the right-hand
side of the above definition, H!(I;, Ad(p4)*) for [ N does not show up. We write MV
for the Pontryagin dual of a module M.

Recall K /K which is the maximal subextension of K (p)?) p-abelian and anti-
cyclotomic over K, where the word “anti-cyclotomic” means complex conjugation ¢ acts
ont € Gal(K/K) by cte™! = 1. Lifting t € Gal(K¢/K) to h € H and restricting
to K, we have an isomorphism I'y, = Gal(K(p)/K) = Gal(K,,/K) (see [31, p. 636]
and the main text §3). Recall:

Definition A.2.4. Let ¢ : Gk — W™ be a character of order prime to p whose image
generates Z,[¢] in W over Z,. Let Y be the Galois group over K_(¢) of the max-
imal p-abelian extension of K_ (¢) unramified outside p. Regarding Gal(K(¢)/K)
as a subgroup of Gal(K_(¢)/K) = Gal(K(¢)/K) x Gal(K/K), define Y (¢) :=
Yoo ®z,[Gak()/K).¢ Lp(¢). Here Zp(@) is the Zy[¢]-module free of rank 1 on which
Gal(K(¢)/K) acts by ¢.
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Corollary A.2.5. We have canonical isomorphisms of T -modules

Selg(Ad(Ind$ ®)) = (Y (V") ®z,11 W),
Selg (Ad(lnd% P))Y = (0)/(0)* = T_/0T_ = T"M/(®) = TI™M/(6),

TICM/(6) B B 2 As/ (5 (¥7)).

Proof. By the decomposition Ad(Ind% D)=y Ind% Y~ for y = (@) combined with
the functoriality of Greenberg’s Selmer group, we have Selg (Ad(Ind% ®)) = Selg(y) ®

Selg (Indg ¥ ™). The first isomorphism is [27, Thm. 5.33], where we get Selg (Ind% vo)
= Y (¥ 7)Y. Note that Selg(y) vanishes since p } hg. The second isomorphism fol-
lows from cyclicity over A proven in [32, Thm. B] and Theorem A.2.1. The third iden-
tity (x) follows from the proof of the anti-cyclotomic main conjecture shown by Rubin
and Mazur-Tilouine: charp (Y (¥ 7)) = (é(i;(t/f_)) (see [45], [46], [50], [43]) com-
bined with the first two identities. ]

A.3. Modular Cayley—Hamilton representations

We introduce representations with values in a generalized matrix algebra (GMA) as in
[1], [6] and [53]. We refer to [52, §5.9] for the notion of ordinarity over Q for GMA
representations (not treated in [1] and [6]). Since we have two conjugacy classes of p-
decomposition groups D, and Dy+, we modify the definition (see below) of ordinarity
depending on each factor p and p*. To define a GMA A-algebra we follow [1, §1.3]. Let A
be a commutative ring and E an A-algebra. We say that E is a generalized matrix algebra
(GMA) of type (d1, ..., d,) if R is equipped with

e afamily & = {ey,...,e,} of orthogonal idempotents with ), ¢; = 1,

e for each i, an A-algebra isomorphism ¥; : e; Ee; 5 M, (A), such that the trace map
T : R — A defined by T'(x) := Y, Tr(y; (eixe;)) satisfies T (xy) = T (yx) for all
x,y € E.Wecall & ={e; | ¥;,i = 1,...,r} the data of idempotents of E.

In this appendix, we assume that r = 2 and dy = d, = 1; so, we can forget about ¥; as
an A-algebra automorphism of A is unique. Once we have &, we identify e¢; Ee; = A and
put B =e;Ee; and C = e; Eey. Then a generalized matrix algebra over A is a pair of an
associative A-algebra E and &. It is isomorphic to A @ B & C @ A as an A-module; so,
we write instead (E, &) = ( é ﬁ ), which we call a GMA structure. There is an A-linear
map B ®4 C — A such that multiplication in E is given by 2-by-2 matrix product. In this
case, A is called the scalar subring of (E, &) and (E, &) is called an A-GMA. A Cayley—

Hamilton representation with coefficients in A and residual representation (1(/; WOC ) (with
¥ at the top) is ahomomorphism p : H — E* such that (E, &) is an A-GMA and such that

. . . .. pfl (o) pf:z(o) . —_
in matrix coordinates, p is given by o +— (pg () of (0)) with (p11(0) mod my) = ¥ (o),
21 22

(p22(0) mod my) = WC (0), and p12(0)p21(0) = 0 mod my. For a given p, if we change
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the set & of idempotents, the matrix expression changes; so, we added the superscript &
to the matrix entries pigj to indicate their dependence on &. If &€ is clear from the context,
we omit the superscript.

In H, we have two conjugacy classes of p-decomposition groups depending on prime
factors of p in K. Fix a decomposition subgroup D, C H for p and put Dy+ for p*. We
define p to be p-ordinary (resp. p*-ordinary) if there is & (resp. &*) such that pfz (o) =
for all 0 € Dy, and pfz(lp) =1 (resp. pfl* (0) =0forall 0 € Dy« and pfl* (Ipx) = 1).
We say p is ordinary if it is p- and p*-ordinary at the same time. This definition does not
depend on the choice of Dy, and Dy+. For example, if we replace D;, by 0D,0 ™1, then
(E, p(0)€p(c)~") satisfies the required conditions.

If (E, &) can be embedded into the matrix algebra M, (A) for a complete local W -
algebra A with residue field F containing A, the Cayley—Hamilton representatlon p:
H — E* can be regarded as a representation into GL, (A) Since p = Ind ¥ is irre-
ducible over G, we may have an extension p of the GMA representation p to G. If an
extension p exists, the extension is a usual representation into GL, (zzf). As usual, we
call p p-ordinary if plg, = (5 }‘) with unramified § = ¥ mod m 7. The ordering of the
residual representation (‘g WOC ) (with ¥ at the top) is fixed; so, plainly, to have compati-
bility of ordinarity of p over H and Q-ordinarity of p (and to preserve residual order of
the characters ¥ and Ec) we need to define p*-ordinarity to have a set &* of idempotents
so that p€” | py is in the lower triangular form. Indeed, if 5(c) = (9 §), o is »- ordmary
for & if and only if p is p*-ordinary for the same & by choosing D+ = chc . As we
describe in the following proposition, this phenomenon occurs if we take p := pr|g for
A =T, and A = T. Details of the deformation theory of p in the category of represen-
tations over G and in the category of Cayley—Hamilton representations over H will be
discussed in a forthcoming paper [33].

Proposition A.3.1. The Galois representation p = pr |y associated to T restricted to H
is an ordinary Cayley—Hamilton representation with values in the T -GMA
T+ B Ty T— .
(E,S:S*):(CITI) (T+T ) with B+®T+C+ET_®T+T_—)T+
given by ®b ® Oc > Obc for 0 = @2 (the product in T).

Proof. Recall T_ := {x € T | 6(x) = —x}. Then T_ = OT,, and ® € T"M under
the inclusion T <> TM @ T"M. g5 © is a zero-divisor in T but is not a zero-divisor
in T"M. Similarly 6§ € T?“™. Extend the character  to a function on G just by 0 out-
side H, and decompose G = H U cH. Then we have the following standard realization
of the induced representation:

N _( T@ o)
PO = (Gl getr)):

Then if y(r) = —1 (& t € H), we have

PO 0@ =y, W) = P!
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for j 1= (§ 9).If x(r) = 1 (& © & Gk), p(7) is diagonal commuting with J; so,

@ ® @) =5(1) = jp(); "
Thus we conclude p® y = jp;j~'.
The deformation functor represented by T is given by

D(A) :={p: G — GL,(A) | pis p-ordinary and (p mod my) = p}/~,

where “a” is strict equivalence (i.e., conjugation by 1 4+ M;(14)). Thus we have we can

let y acton D by

prje® i~ =0
Since j (" b )] = (_“C _db) and (ot |z mod (®)) = ® @ P° is diagonal, we find that
uj(pr ® )()(uj)f1 = pp withu € 1 + OM,(T). Write U = uj. Applying o, we get
U?(pT ® x)U™° = pr; so, we have

UptU™' =U(pr @ YU @ y =pF @ x = U prU°.

Thus we have ju?ju =U°U =z € Z:=1+ OT. Since 1 + O©M>(T) is p-profinite,
letting o act on 1 + O@M,(T) by x +— X = jx%j, we can thus write u = =
(1 4+ OM,(T))/Z for v € 1 + @ M,(0®). Thus replacing pr |z by p := viljijv|H,
we find jpj~! = p?. In other words, p has values in E = (%TFJF % ), as desired

Since ¥ ~|p, # 1 by (HO), we can choose first 7 € A with 1//(1') # ¥°(7) so that

pr(t) = ('/’(()’) wco(r) ) and we can define the set & of idempotents of E having the GMA

form as above by
_pr(@)—¥() _ (@) —v(@)
=————— and ep=—-—"—"-—"".
Y (t) —ye(a) ve(r) =y (o)
Writing E =Ty @ B® C @ T4 with B = C = T_, we note that B (resp. C) is
the eigenspace under the conjugation action of pr(t) with eigenvalue ¥~ () (resp.
¥~ (v)™Y). Thus our expression of pr|g is associated to (E, eq, e5). By ordinarity of
pr on G, (inducing Dy), we see pr|g is p-ordinary. Plainly ¢ € G interchanges e;
and ey, i.e., pr(c)e1pr(c) = es. Thus over Dy« = cDyc, we conclude that pr |z with
0
o)
(with ¥ at the top), the choice of (e, e1) is impossible because it violates the residual
order of the characters (the definition of p*-ordinarity requires the lower triangular form
on Dy« to preserve this residual order). Therefore we need to choose & = (e;, e3) for
p*-ordinary. (]

6)-

values in (I, &) is also p*-ordinary. Since the residual representation is exactly (

Under the normalization as above, we may and do assume that pt(c) = ((1’

A.4. Local Iwasawa theory

Let k/Q, (inside @p) be a Galois extension with p { [k : Qp]. Write F/k for the
cyclotomic Z,-extension inside @p. Let T' := Gal(F/k) = y%» and put T, = I'?".
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Set F, := F'» with p-adic integer ring o,. Let L (resp. L,) be the maximal abelian
p-extension of F (resp. Fy). Write X, := Gal(L,/k,) and X := Gal(L/F). We have
Gal(F/Qp) = Gal(F/Qp) x X. The exact sequence

1> X —>Ga(L/k)->T—1

is split just by lifting y to an element ¥ € Gal(L/ k) taking splitting image %7 . Therefore
the commutator subgroup of Gal(L/k,) is given by (y?" — 1) X, and we have the corre-
sponding exact sequence at each level n: 1 — X /(y?" —1)X — Gal(L,F/F) — T, — 1.

Let koo/ k be the unramified Z,-extension inside @p with its n-th layer k,, and put
Fn = Fky. Let £ (resp. £,,) be the maximal abelian p-extension of o, (resp. F,). Set
X = Gal(£/F). Pick a lift ¢ € Gal(£/k) of the Frobenius element [p, Qp]f (for the
residual degree f of k/Q),) generating Gal(koo F'/ k) and a lift ¥ € Gal(£/ k) of the gen-
erator y of Gal(kQ, «/ ko) = I'. The commutator 7 := [¢, ¥] acts on X by conjugation,
and (t — 1)x := [z, x] = txt~'x~! for x € X is uniquely determined independent of the
choice of y and ¢. Define L’ C £ and L), C &£, to be the fixed fields of (v — 1) X (i.e., the
fixed fields of 7), which are independent of the choice of J and ¢. Let X’ = Gal(L'/ Foo)
and X, = Gal(L, /F,).

Proposition A.4.1. Let the notation and the assumptions be as above.
(1) We have a canonical decomposition
— 1 — 1 " _
X-l(lnX,,—Lng/(y HX
n n
_ [2Zs[Gal(F /)] if p (k) = {1},
ZpGal(F/Qp)] & Zp(1)  if pp(k) = pp(Qp)

as Zp[Gal(F/Qp)]-modules. Thus for each finite-dimensional Q,-irreducible
abelian representation 1 of Gal(k/Qp) with values in GLgim(y)(Zp) of order prime
to p, writing X [n] for the maximal n-isotypical quotient of X, we have

Xyl = {WOIT] in#o,
B Z,,[[F]]EBZP(I) fn=w

as Gal(F'/Qp)-modules. Here k is the residue field of the subalgebra of Mgim)(Zp)
generated by the values of n over Z,, w is the Teichmiiller character and o €
Gal(F/Qy) acts on W (k) via n regarded as having values in W(k)*>.

(2) The restriction map X' — X induces an isomorphism of X'/(¢ — 1)X’ onto the
augmentation ideal of Z,[Gal(F/Q)] C X.

(3) For the character 1 : Gal(k/Qp) — W(k) in (1), the factor X'[n] is a cyclic
W (k)T x Y]-module (i.e., it is topologically generated over W(k)[T' x Y] by one
element).

Note that the subalgebra of Mgim(;)(Z,) generated by the values of 1 over Z, is
isomorphic to the Witt vector ring W (k) with coefficients in its residue field «.
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Proof of Proposition A.4.1. We first prove the assertion (1). The statement of [38,
Thm. 25] asserts X = Z,[[']*: @1 or Z,[T]* Q) @ 7, (1) as Z, [T']-modules. Write ¥
for the maximal Z,[I']-free quotient of X. Since Gal(k/Q,) has order prime to p,
Gal(K/Qp) = Gal(k/Qp) x I', and its action on Y is determined by its action on
Yo =Y/(y —1)Y. We need to show Yy = Z,[Gal(k/Qp)] as Gal(k/Qp)-modules
(which implies Y = Yo[I'] = Z,[Gal(K/Q,]). Let Qp o0 C Qplupoo] be the cyclo-
tomic Z,-extension. Writing M= Llnn M/ p™M for a module M, by class field theory,
Gal(L K/ K) fits into the following commutative diagram with exact rows and surjective
vertical maps:

— N, —
Gal(LoK/K) —— k% 2 Q=

I l Artin l al

Gal(LoK/K) —— Gal(Lo/k) —— Gal(Qp,0/Qp)

where the composite @ o Ni/q,, for the norm map Ni/q, has image Gal(Qp,00/Qp) =
1+ pZp, =T.

First suppose that p,(k) = {1}. Then k* is torsion-free. The isomorphism class
of a torsion-free Z,[Gal(k/Qp)]-module M of finite rank over Z, is determined by
the Q,[Gal(k/Qp)]-module M ®z, Q,. Since Q,[Gal(k/Q,)] is semisimple, we con-

clude kX = Z,[Gal(k/Qp)] @ T' with Gal(k/Qp) acting on I' trivially. Thus Yy =~
Zp|Gal(k/Qp)] in which the n-isotypical component has rank dim(n) = rankz, W(k)
over Zp.

Now assume that /,Lp(k) is non-trivial. Since rt [k 1 Qp], we have ppoo (k) = up(k);

s0, the torsion part of kX is cyclic of order p. Let kx be the maximal torsion-free quotient
of k. Then by the same argument as in the case where (k) = {1}, we find k}‘ ~
Z [Gal(k/Qp)] ® I' as Z,[Gal(k /Qp)]-modules. By Iwasawa’s expression, X /(y — 1) X

~ Z @] @ pup(k) in which pp(k) is identified with Z,(1)/(y — 1)Z,(1). Again we
have (X/(y —DX)/pup(k) = Z,[Gal(k/Qp)] as Z,[Gal(k/Qp)]-modules. We have a
commutative diagram with exact rows

Zy()/(y = )Zp(1) —— X/(y =X —— Y/(y—1Y

| 1) |

1p (k) — X/(y = DX —— Z,[Gal(k/Qp)]

of Zp[Gal(k/Qp)]-modules. This shows that Yo = Y/(y — 1)Y = Z,[Gal(k/Qp)] as
Z,|Gal(k/Qp)]-modules, and hence Y =~ Z,[Gal(F/Q,)]. Therefore the surjective
Z,[Gal(F/Qp)]-morphism X — Y splits, and hence X = Z,(1) & Z,[Gal(K/Q,)]
as desired.
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Now we prove (2). Let koo/ ky/ ko be the intermediate n-th layer of the unramified
Zp-extension of kg (so, Gal(k,/ko) = Z/p"Z)). Recall the integer ring o, of k,. Let
X, = Gal(£,/F,). Then we have an exact sequence of Z,[Gal(k, /Q)]-modules

= s =% >
Oy ? kn ? ZP
v

| | |

where the map v is induced from the valuation ord, of k normalized so that ord, (p) = 1.
Writing o for a prime element in o,, we have v(w) = e~ !. Then this exact sequence
is split by v(p%r) = Zp=e'Z, = v(w?r); so, lgf = Xn @ Zp as Zp[Gal(k, /Qp)]-
modules. By this diagram and L), D ko, we still have Gal(L},/ k) = X, & Gal(koo/ kn)
with Gal(keo/ kn) = Z,p.

By the same argument as in proving (1), if pu,(k) = up(@p), we have X, =
Yo ® Zp(1) as Z,[Gal(kpQp,00/Qp)]-modules for a unique direct summand ¥,. On
Zp(1), ¢ acts trivially (as v, ([p, Qp]) = 1 for the p-adic cyclotomic character v,);
s0, [V, @] acts trivially on the factor Z,(1). Hence we still have the decomposition
X, =Y, ®Z,(1). The restriction map X,, — X, for m > n induces on Z,(1) mul-
tiplication by p™™" as ¢ = [p, Ql,]f acts trivially on pipo0 (@p). Thus passing to the
limit, the factor Z,(1) disappears. Therefore, by Kummer theory, coker(X’ X x ) is
Zp ® Zp(1) if pplk) = up(@p) and otherwise Z,; so, by definition, the restriction
map Y, — Y, is onto, and its image after passing to the limit is the augmentation
ideal of Z,[Gal(F/Qp)] (as we lose the augmentation quotient Z, which corresponds
to the factor Z, in Gal(L),/ k,)). Since ker(X’ — X) is plainly (¢ — 1)X’, we find that
X'/(¢ — 1) X’ is isomorphic to the augmentation ideal of Z,[Gal(F/Q,)] by (1).

The same argument works well when p,, (k) = {1}. In this case, the argument is easier
as the factor Z, (1) does not show up.

We prove (3). Note that Z,[Gal(F/Qp)] = D, W(ky)[I'] for x running over all
characters of Gal(k/Q), where «, is the finite field generated by the values of y mod p
over IF,. Then its augmentation ideal is given by (y — 1)Z,[I'] @ €D,2; W(ky)[I']. Thus
X'[n)/(¢ — D) X'[n] = W(ky)[T'] as W(ky,)[T']-modules by Proposition A.4.1(2). This is
clear if 7 is non-trivial. If = 1, we note that (y — 1)Z,[I'] = Z,[I'] as Z,[I']|-modules.
So X'[n]/(¢ — 1) X’[n] is cyclic over W(x)[']. By Nakayama’s lemma, we get the desired
cyclicity of X'[n] over W(x)[I" x Y]. [

A.5. Proof of Theorem A.1.2 and Corollary A.1.3

Recall the T{-GMA E = (%f 7151) given in Proposition A.3.1. Set E"M = E T,
T_“FCM and EM = E T, T_EM, and write p : W[H] — E, p"M : W[H] — E"M and
o™ W[H] — E™ for the associated Cayley—Hamilton representations. Pick a prime g
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of K(p) above p. Let Tp (resp. 7,3*, Ep) be the p-inertia (resp. p*-inertia, p-decomposi-
tion) subgroup of Gal(K(p)/K(p)) corresponding to g and pc Regard [p, Qp]f € Dy
for the residual degree f of 8 = p N K(p), and recall ¢’ := p([p, Qp]f) = (“ 4 u*f )

with u/ € Ty. Put Ag := Z,[T] C Ay := Wi[T,a] C T fora = u>/ — 1, and recall
t =14 T. We restate Theorem A.1.2 of the introduction in the following way:

Theorem A.5.1. Let the notation be as above. Assume (HO)—(H4). Then we can choose

conjugacy classes of Tp and Tp* in G and a generator ® of the o-different 1 =
T (o — 1)T with ®° = —0 so that

p(Ty)={(4%)|aett, be®A} CE”

and

p"MTy) ={(4%) | aet?r, be®N ) C EM

and p(Iy+) = Jp(I)J 7Y, where J = ((1) (1))f0r p = pr and ppwcm. Here t27 C A is
embedded in E and E™M by the structure homomorphism.

We can conjugate p by (g (1’) for any a € T, and by doing this, ® will be replaced
by a®; so, actually, we can always assume that for any choice of the generator ® with
©% = —0O of the ideal (®), we can arrange p(/ ) (and p(/ p+)) as in the corollary.

Proof of Theorem A.5.1. Write simply I = p(Tp) and D = p(ﬁp). From the definition
of the A-algebra structure of T and p-ordinarity (e.g., [31, (Gal), p. 604]), we know
I Cc M(T)NE and p(Iy+) C JM(T)J ™! NE for the mirabolic subgroup M(T) :=

{(g b) | aeT* be 'JT}. Since Gal(ng/Qp) =[p, QP],Z\ x Z, for the maximal abelian
extension Q%? /Q and the local Artin symbol [p, Q,], we find

Ic{(at)|act?,becOTs) and D=¢™ x1

by the shape of E, and det(p(I)) = T := tZ» C A¥. Thus we have an extension 1 —
U — I - T — 1with U = ker(det(p) : I — A™).

By [31, Lem. 1.4], this extension is split by the action of A for U being an eigenspace
on which A acts by ¥ ~; so, we may assume to have a section s : 7 < [ identifying T
with {( ) | aed } Replacing ¢’ by an element ¢ € ¢'U, we may assume that ¢ =
(”:)‘/ uf’,) commutes with (IZ” 0) = Gal(Qp,0cK(p)/K(p)). Take ¢ € Dy such that
p(p) =¢pandy € Dy with p(y) = ( ) For the commutator [¢, }/], we have p([¢,¥]) = 1
(i.e. it acts on K (p)s,p trivially; the requirement for the validity of Proposition A.4.1(3)).
The module U is a A 1-module by the adjoint action of 7 - 9%~ . Since p“|; has kernel U,
we see that [ = p(Tp) ~ nCM(TP) so, we only need to prove the assertion for p. If
TiM. U ¢ T- = OT4 = OTIM, we have UT!™ C Om™TIM = m™T_ for
the maximal ideal m‘fM of T“CM

Write | p for the prime factor in K( ™) corresponding to /,,. We apply Proposi-
tion A.4.1 to the P-adic completion k of K(¥ ™), its cyclotomic Z,-extension F and
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the composite Fo, of F and the unramified Z,-extension of k. Thus U is made up of
unipotent matrices, and writing

Li={tel,|tlr=1}={tel,|t|s, =1},

we have U = p(1). Therefore we may write p(t) = (1)) for t € Iy. Let u :=
u mod m‘fMT_ with values in T_/m‘fMT_ ~F.Let H(®7) :=ker(®™ : H — AX) for
the universal character ®. Since T_/0T_ =Y (¥ ™) ®z,[y—] W by Corollary A.2.5 and
0T is the ideal of reducibility in T of p in the sense of [1, §1.5], this homomorphism
extends to a non-zero homomorphism % : H(®~) — F with u(tht™!) = &~ (v)u(h)
unramified outside p over K(®~) = K(p)K,. Since H(®™) := Gal(K(p)?)/K(d7))
only ramifies at p, u is unramified at ¢’c’°. Since Tp* is lower triangular contained
in JM(T)J ™!, % is unramified everywhere. Let Noo C K(p)® be the fixed field by
ker(u : Gal(K(p)P)/K (7)) — T_/m"™T_) and put X := Gal(Neo/K(®7)). Then
Noo/K(®P7) is an everywhere unramified p-abelian extension. Since K(®7)/K(¥ ™) is
a fully p-ramified Z,-extension generated by an element y, we find that X /(y — 1) X is
the Galois group of an everywhere unramified p-abelian extension of K(i~), which is
non-trivial by our assumption. Since p { hg(y—), this is a contradiction. Thus the T -
span of u (/) is I; so, the T4 -span of u(/;) is equal to T_ by Nakayama’s lemma. Thus
Tyu(ly) # 0 mod m'fMT_; so, we may assume that ® € u(/y).

Regard ¢~ as an abelian irreducible Z,-representation acting on W regarded as a
Zp-module. By Proposition A.4.1(3), under the notation there, the Galois group X'[y ]
is cyclic over Wi [I" x Y] (I' = t%») and surjects onto U. Since the action of W; [I" x Y]
factors through A1, by Proposition A.4.1 (3), U is cyclic over Ay; so, we have U = A;.
Thus we conclude that p(11) = U = {($ 9) | a € ©®A1} inside p(H ) (for a suitable choice

of ®). This shows the desired expression for p(1,). By the same argument applied to p*,
we see that p(H ) contains J UJ ~1, 7 and J 7 J !, and we obtain the form of p(Ip+). m

Proof of Corollary A.1.3. By Theorem A.5.1, we have
pp |1, is indecomposable <= (U mod P) # 1 <= P {(0).

By Corollary A.2.5, T"M/(0) Qw T =~ Asgg/(£, (¥7)), we conclude that P { (0) <
P} (£, (¥7)). As coker(T @ W — TM @y W x T"M @y W) = Agg/ (£, (V).
we see that

Pt (£,(¥7)) < P ¢Spec(T"™) N Spec(T™M)

as desired. [
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