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1. Introduction

Fix a positive integer N and a prime p t 6N. Let f = > | a,q™ € I[q] be a Hida
family of tame level N, where I is a finite flat extension of the one-variable Iwasawa
algebra O, [T] with coefficients in the ring of integers Oy, of a finite extension L of Q,,.
Let

Pf: GQ = Gal(Q/Q) — AutFH (Vf) ~ GLQ(F][),

where Fp denotes the fraction field of I, be the Galois representation associated to f
(which we take to be the contragradient of the Galois representation first constructed
in [25]), and let py : Gq — GLa(kr1), where k; = I/my is the residue field of I, be
the associated semi-simple residual representation. By work of Mazur and Wiles [44,66],
upon restriction to a decomposition group D, C Gq at p we have

_ € *
p.f|Dp ~ 5

where the character ¢ is unramified. We assume that
pf is absolutely irreducible, (irred)

and fix a Gq-stable lattice Ty C V¢ which is free of rank two over I. Denote by 7% T
the Ip-coinvariants of T, where I, C D, is the inertia subgroup, and set

Af = Tf X1 Hv, 97Af = (yin) X1 ]IV,

where IV = Homes(I, Q,/Z,) is the Pontryagin dual of I.
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Let K be an imaginary quadratic field of discriminant prime to Np, and let I'x =
Gal(K/K) be the Galois group of the maximal Zz—extension of K unramified outside p.
The Greenberg Selmer group of Ay over K, is defined by

Seler (Koo, Af) == ker{Hl(lCoo, Ag) — [[H (T, Ay) x HHI(/cww,yAf)}, (1.1)
wip wlp
where w runs over the corresponding places of K. The Pontryagin dual

XGr(’COO7 Af) = HomctS(SelGr(’Cooa Af)v Qp/zp)

is well-known to be a finitely generated I[I'x]-module.
Assume also that

py is p-distinguished, i.e., & # 0. (dist)

Thanks to [67], it follows that .# Ty is I-free of rank one. Moreover, from the work
of Hida [27] there exists a 3-variable p-adic L-function Li*(f/K) € I[I'c] uniquely
characterized by the interpolation of the critical values for the Rankin—Selberg L-function
L(fs/K, x,s) attached to the classical specializations f, (base changed to K) of f
twisted by finite order characters x : I'ic — fpee.

An instance of the Iwasawa—Greenberg main conjectures formulated in [23] then pre-
dicts the following. From now on in this Introduction and in our main results we shall
assume that I is regular.

Iwasawa—Greenberg Main Conjecture. The module X¢: (Koo, Ag) is I[T'xc]-torsion, and
Charyr.)(Xer (Koo, Af)) = (L, (£/K))
as ideals in I[T'k].

Many cases of this conjecture are known by the work of Skinner—Urban [57] and [38].
As we shall explain below, in this paper we place ourselves in a setting complementary
to that in [57]. Write

N=N"N~

with N~ being the largest factor of N divisible only by primes inert in K. The following
is our main result towards the Iwasawa—Greenberg Main Conjecture.

Theorem A. In addition to (irred) and (dist), assume that:

e N is squarefree,
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o some specialization f, is the p-stabilization of a newform f € S3(I'o(N)),
e N7 is the product of a positive even number of primes,

o py is ramified at every prime q|N—,

o p splits in IC.

Then Xe¢r (Koo, Ag) is I[I'xc]]-torsion, and

Charyr.)(Xe:r (Koo, Af)) = (L, (£/K))
as ideals in 1[T'c] ®z, Qp.

As in [57], the fact that X¢r (Koo, Ay) is I[I'kc]-torsion follows easily from Kato’s work
[38], and the proof of Theorem A is reduced to establishing the divisibility “C” as ideals
in I[T'k] predicted by the main conjecture. For the proof of this divisibility, in [57]
the authors study congruences between p-adic families of cuspidal automorphic forms
and Eisenstein series on GU(2,2), and their method (in particular, their application of
Vatsal’s nonvanishing results [61]) relies crucially on their hypothesis that N~ is the
squarefree product of an odd number of primes. In contrast, when N~ is divisible by an
even number of primes as in Theorem A, the central L-values studied in [61] all vanish
for sign reasons, and another approach is needed.

Our main idea for the proof of Theorem A is to use Beilinson—Flach classes and
their explicit reciprocity laws [41,40] to link the Iwasawa—Greenberg Main Conjecture
for L (f/K) to the main conjecture for a different p-adic L-function .%,(f/K) studied
by the second-named author [64] using Eisenstein congruences on GU(3,1), and then
exploit our assumption on N~ to prove the latter main conjecture using Heegner points
and their variation in p-adic families [35,19,12,13].

As a consequence of our approach, we also obtain an application to Greenberg’s con-
jecture (see [47, §0] and [22]) on the generic order of vanishing at the center of the p-adic
L-functions attached to cusp form in Hida families. To state this, assume for simplicity
that I is just O [T], and for each k € Zx let f;, be the p-stabilized newform on I'y(Np)
obtained by setting 7' = (1 + p)*~2 — 1 in f. One can show that the p-adic L-functions
LY (£, s) of [43] satisfy a functional equation

LgTT(fk, s) = —ngTT(fk, k—s)
with a sign w = +1 independent of k € Z<5 with k =2 (mod p —1).
Greenberg’s nonvanishing conjecture. Let e € {0,1} be such that —w = (=1)¢. Then

Ly (fr: )

ey R

for all but finitely many k € Zso with k =2 (mod p —1).
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In other words, for all but finitely many & as above, the order of vanishing of Ly (£, s)
at the center should be the least allowed by the sign in the functional equation.
To state our result in the direction of this conjecture, let

T} =Tree™!

be the self-dual twist of T¢. By work of Plater [51] (and more generally, Nekovar [46])
there is a cyclotomic I-adic height pairing

(= =] : Selae (K, T}) x Sele (K, T}) — Fy (1.2)

interpolating the p-adic height pairings for the classical specialization of f as constructed
by Perrin-Riou [49]. It is expected that (—, —)}¥] is non-degenerate, in the sense that its

kernel on either side should reduce to I-torsion submodule of Selg, (1C, T})
Theorem B. In addition to (irred) and (dist), assume that:

e N is squarefree,
o f5 is old at p,
o there are at least two primes L||N at which pg is ramified.

If SelGr(Q,T}) has T-rank one and (—, —),Cg,‘ﬁ is non-degenerate, then

d
—— Ly, (£1-5) #0,
ds " s=k/2

for all but finitely many k € Z>o with k =2 (mod p —1).
Remark 1.1. The counterpart to Theorem B in rank zero, i.e., the implication

ranky Sele:(Q, 7)) =0 = LI(f}.k/2) #0, (1.3)
for all but finitely many k as above, follows easily from [57] (see Theorem 5.10).

Remark 1.2. By the control theorem for SelGT(Q,T}L) (see e.g. [46, Prop. 12.7.13.4(i)])
and the p-parity conjecture for classical Selmer groups, the hypothesis that Selg, (Q, T;)
has I-rank e € {0, 1} implies that —w = (—1)¢. Conversely, it is expected that

b 1 =1,
ranky Seler (Q, T¢) = 0 ifwe 1

and this is known to follow from Howard’s “horizontal nonvanishing conjecture” (see [35,
Cor. 3.4.3]).
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Remark 1.3. For certain Hida families f with CM (a case that is excluded by our hy-
potheses), the analogue of Theorem B is due to Agboola—Howard and Rubin [1, Thm. BJ.
(See also [59] and [10] for more general CM cases.) In this case, the analogue of the rank
one and the non-degeneracy assumptions in Theorem B follow from Greenberg’s nonvan-
ishing results [21] and a transcendence result of Bertrand [4]. In rank zero, the analogue of
(1.3) in the CM case follows from [21] and Rubin’s proof of the Iwasawa main conjecture
for imaginary quadratic fields [53].

We conclude this Introduction with some more details on the ingredients that go into
the proofs of the above results.

Denote by Z;r the completion of the ring of integers of the maximal unramified exten-
sion of Q,. The proof of Theorem A builds on the link that we establish in §3 between
different instances of the Iwasawa—Greenberg main conjectures involving Selmer groups
with different local conditions above p. In particular, letting p be the prime of IC above p
determined by a fixed embedding Q — Qp, a central role is played by the Selmer group
defined by

Sely o(Koo, Ag) := ker{Hl(lCoo,Af) — [TH (7w, Ag) < [] H (Koo, Af)}.

wip wlp

The Pontryagin dual of Selp (K, Ag) is conjectured to be I[I'x]-torsion, with charac-
teristic ideal generated by a p-adic L-function

Zo(f/K) € I™[Dk],  where I" = 1&g, 22",

interpolating the critical values of the Rankin-Selberg L-function L(f,/K,x,s) with x
running over characters of I'x corresponding to theta series of weight higher than the
weight of f . This second instance of the main conjecture can be related on the one hand
to the Iwasawa—Greenberg Main Conjecture for Lgi( f/K) by building on the explicit
reciprocity laws for the Rankin—Eisenstein classes of Kings—Loeffler—Zerbes [40], and on
the other hand (after anticyclotomic descent) its specialization in weight two is directly
related to the main conjecture of the p-adic L-function of Bertolini-Darmon—Prasanna
[2], allowing us to take the results of [64] and [12] towards the proof of those different main
conjectures to bring to bear on the Iwasawa—Greenberg Main Conjecture for Lgi( 1/K).

On the other hand, a key ingredient in the proof of Theorem B is the Birch and
Swinnerton-Dyer type formula for Lj*(f/K) along the anticyclotomic Iwasawa algebra
I[T'%] that we obtain in Theorem 5.8 by building on the earlier results of the paper,
leading to a Gross—Zagier type formula for Howard’s system of big Heegner points 3.,
that we then apply for a suitably chosen imaginary quadratic field K.
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2. p-adic L-functions
2.1. Hida families

Let T be a local reduced normal extension of O [T], where Oy, is the ring of integers
of a finite extension L of Q,, and denote by X, (I) C Homes (I, Qp) the set of continuous
) r-algebra homomorphisms ¢ : I — Qp satisfying

p(1+T)=((1+p)?

for some p-power root of unity ¢ = (4 and some integer k = kg € Z>, called the weight of
¢. We shall refer to the elements of X, (I) as arithmetic primes of I, and let X2(I) denote
the set consisting of arithmetic primes ¢ with (4 = 1 and weight ky =2 (mod p — 1).

Let N be a positive integer prime to p, let x be an even Dirichlet character modulo
Np taking values in L, and let f = >.>°  a,q" € I[q] be an ordinary I-adic cusp
eigenform of tame level N and character x, as defined in [57, §3.3.9]. In particular, for
every ¢ € X,(I) of weight k we have

for=>_ d(an)q" € Se(To(p'N), xw’ *¢e),

n=1

where

e t > 1 is such that ¢ is a primitive p*~!-st root of unity,
e w is the Teichmiiller character, and
o Y¢: (Z/p'Z)* — 6: is determined by ¢ (1 + p) = C.

Denote by S°™4(N, x; 1) the space of such I-adic eigenforms f. If in addition Jy is N-new
for all ¢ € X,(I), we say that f is a Hida family of tame level N and character .

We refer to f, as the specialization of f at ¢. More generally, if ¢ € Homcts(]l,ﬁp)
is such that f, is a classical eigenform, we say that f, is a classical specialization of
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f; this includes the specializations of f € S™4(N, x;1) at ¢ € X,(I), but possibly also
specializations in weight 1, for example.

2.2. Congruence modules

We recall the notion of congruence modules following the treatment of [57, §12.2]
and [36, §3.3]. Let f be a Hida family of tame level N and character x defined over I.
Letting T (N, x, 1) be the Hecke algebra acting S°*(N, x;I), the Hida family f defines
an algebra homomorphism Ay : T (N, x,I) — I which factors through a local component
of T(N,x,I) denoted Ty,,. Then, since f is N-new, upon extension of scalars to the
fraction field Fy of I there is an algebra direct sum decomposition

)\ZTmf@)]IF]IZFHXTI

with the projection onto the first factor given by Ag. The congruence ideal C(f) C I is
defined by

C(f) == Ag (T, N A" (Fp x {0}) .

As in [40, §7.7], we shall also consider the fractional ideal J; := C(f)~! C Fy. As noted
in [40], it follows from [27, Thm. 4.2] that elements of J¢ define meromorphic functions
on Spec(Il) which are regular at all arithmetic points.

2.8. Rankin—Selberg p-adic L-functions
Let T' be the Galois group of the cyclotomic Z;-extension of Q, and set
Ar =Z,[I7.

Note that if j € Z and y is a Dirichlet character of p-power conductor, there is a unique
o€ Homcts(Ap,Q;) extending the character z — 27x(z) on Z.

Theorem 2.1. Let f, fo be Hida families of tame levels N1, Na, respectively, and let
N =lem(Ny, Ny). Then there is an element

Ly(f1, f2) € (J§,®z,15,8z,Ar) ®z Z[un]

uniquely characterized by the following interpolation property. Let f1, fo be classical spe-
cializations of f1, fo of weights ki, ka, respectively, with kv > ko > 1, let j be an integer
in the range ko < j < k1 — 1, and let x be a Dirichlet character of p-power conductor.
Suppose that the local component at p of the automorphic representation ¢, is a princi-
pal series representation m(ny,ny) with m unramified and n1(p) a p-adic unit. Then the
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value of L,(fq, f2) at the corresponding specialization ¢ € SpeC(Hf1®Zp]If2®szF) is
given by

g(flaf?aXaj)

O(Lp(f1, f2)) = E(fE(F)

LT — k2 +1)

Rtk (i) ka2t (il (o, )

X L(flaf?ax_17j)7

To(p*1 N1)

where

e «y; and B; are the roots of the Hecke polynomial of f; at p, with «; a p-adic unit,
o denoting by p* the conductor of x,

(1-22) (1-25) (1- 2520 - 22) fe=o,
S(f17f27X7j) = 9 p2j72 t )
G(x)*- (m) ift>1,

with G(x) is the Gauss sum of x,
o denoting by p'* the p-part of the conductor of 1y, then

E(FIE(F) = (=) (1-2)  #n=o

Gxa) - mng HpM)p™" ift > 1,
where x1 is the nebentypus of fi.

Proof. This follows from [27, Thm. 5.1], which we have stated adopting the formulation
in [40, Thm. 7.7.2] (slightly extended to include more general specializations of the
dominant Hida family f,). O

We shall consider the p-adic L-functions L,(f,, f5) of Theorem 2.1 in the cases where
either f, or f, has CM. Thus we let f be a fixed Hida family of tame level N defined
over I, which we assume contains all the N-th root of unity, and assume that ps satisfies
hypotheses (irred) and (dist) from the Introduction. On the other hand, let I be an
imaginary quadratic field of discriminant —Dy < 0 prime to pN such that

p = pp splits in K,
with p the prime above p induced by our fixed embedding ¢, : Q — C,. Let K be

Z2-extension of K as in the Introduction, and denote by T'y ~ Z, the Galois group over
K of the maximal subfield of K, unramified outside p. We then let
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g="> bug" €lyq (2.1)

be the canonical Hida family of CM forms constructed in [37, §5.2], where I = Z,[I',].
Specifically, denoting by 6, : Ag — T’y the composition of the Artin reciprocity map
recg : A — Ga,cb with the natural projection Ga,cb — I'y, we have

bn = Z ap(l'a),
N(a)=n,(a,p)=1

X

where the sum is over integral ideals a C O, and z, € AZ"™ is any finite ideéle of K

with ordy (2q,,) = ord,(a) for all finite places w of K.
2.4. Non-dominant CM: (fq, f2) = (f,9)

Since py satisfies hypotheses (irred) and (dist), by [67], the local ring Ty, introduced
in §2.2 is known to be Gorenstein, and by Hida’s results [26] it follows that the congruence
ideal C(f) is principal.

Denote by I'Y¢ the Galois group of the cyclotomic Z,-extension of Q.

Definition 2.2. Let ¢y € C(f) be a generator, and set
Lﬁl(f/IC) =Cf ele(fag)a
where e1L,(f,g) € Jy&z, I4[T¥] is the natural projection of L,(f,g) via I' — ¥,

We will often identify I'¥¢ with the Galois group I'J of the cyclotomic Z,-extension
of K. Letting ' be the Galois group Gal(K,/K), note that the canonical projections
to I'y and I'Y® induce an isomorphism

[ ~ T, x T¥C.

Since Iy = Z,[T',], we may thus consider Li'(f/K) as an element in I[I'c].
On the other hand, the action of complex conjugation yields a decomposition

~ cyc
T~ T3¢ x T,

where I'{¢ denotes the Galois group of the anticyclotomic Z,-extension of K. We next
study the projections of Ly*(f/KC) to I[T%] and T[T'¥“].

2.4.1. Anticyclotomic restriction of Ly*(f/K)
Assume that f has trivial tame character, and following [35, Def. 2.1.3] define the
critical character © : Gq — 1* by



F. Castella, X. Wan / Advances in Mathematics 400 (2022) 108266 11

0 := [{ecye) 2] (2.2)

where ecye : Gq — Z, is the cyclotomic character, (—) : Z; — 1+ pZ, is the natural
projection, and

(=] :14pZ, — Zy[1 + pZ,)]* = Z,[T]* — I*
is the composition of the obvious maps. This induces the [-linear twist map
twg-1 : H[[chﬂ — ]I[[F;c]] (23)

defined by v — ©~1(y)y for v € T'k. (This map, which will appear repeatedly throughout
the paper, will be used to restrict to the “central critical line” in the weight-cyclotomic
space.)

Write IV as the product

N=NtN"

with N* (resp. N7) divisible only by primes which are split (resp. inert) in K, and
consider the following generalized Heegner hypothesis:

N~ is the squarefree product of an even number of primes. (gen-H)

Whenever we assume that K satisfies (gen-H), we fix an integral ideal Mt C Ok with
Ox /Nt ~Z/NVZ.

Proposition 2.3. Let LI (f1/K)ac be the image of twg-1(L¥(f/K)) under the natural
projection I[T'xc] — I[T%]. If K satisfies (gen-H), then Lgi(fT/lC)aC is identically zero.

Proof. Let ¢ € Spec(l§®z,Ig®z,Z,[T]) = Spec(I[I'x]) be a specialization in the
range specified in Theorem 2.1, with f; = f, the p-stabilization of a newform f €
Sk(To(N)) of weight k > 2 and f» = g4 a classical weight 1 specialization. By the
interpolation property, the value ¢(L3*(f/K)) is a multiple of

L(flaf27xil’j) = L(f/lc7w7.7)v

with ¢ a finite order character of I'c and 1 < j < k—1, and so ¢(twe-1 (L' (f/K))) is also
a multiple of L(f/IKC,¢’, k/2) for a finite order character ¢’ of I'. If ¢’ factors through
the projection I'x — I'4¢, then the L-function L(f/IC, v, s) is self-dual, with a functional
equation relating its values at s and k — s, and if K satisfies the hypothesis (gen-H), then
the sign in this functional equation is —1 (see e.g. [17, §1]). Thus L(f/KC,¢', k/2) = 0,
and letting ¢ vary, the result follows. O
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2.4.2. Cyclotomic restriction of Li*(f/K)

As above, we denote by I'Y° the Galois group of the cyclotomic Z,-extension of K,
which we shall identify with I'Y¢, and let v € I'Y¢ be a topological generator.

For f = f, the specialization of f at some ¢ € X;7(I) of weight & > 2 defined over
a finite extension L/Q, with ring of integers Oy, and € a primitive (in our application,
quadratic) L-valued Dirichlet character of conductor C' prime to p, we let L™ (f @ ¢€) €
O[] be the cyclotomic p-adic L-function attached to f ®e in [43]. This is characterized
by the following interpolation property. If ¢’ € X2(O[[Y]) is given by ¢'(v) = (1 +
m)™ with 0 < m < k — 2 and ¢ a primitive p’~!-st root of unity, then

olay) p(ap)
(" C)™+! - T(m + 1) .
(=2mi)m - Glew=myZt) - Q4D

w—m —16 k—2—m — WwMrE m
(] © €)(8) = dlay) <1_ ve v )(1 L)

L(f ® e, ™ m+ 1),

(2.4)
where w is the Teichmiiller character, ¢¢ is as in §2.1, ' = max{1,t}, and Qf € C* are
Shimura’s periods, normalized up to a unit in OF as in [57, §3.3.3].

Theorem 2.4. Let L3 (f/K)eye be the image of LE'(f/K) under the natural projection
[[Cx] — I[TX]. Then for every ¢ € X2(I), we have

‘b(Lgi(.f/]C)cyc) = LgTT(.ﬁﬁ) : L;’[)TT(f¢ ® 6)C)
up to a unit, where ex is the quadratic character associated to K.
Proof. Since we assume that py satisfies hypotheses (irred) and (dist) from the Intro-

duction, by [26, Thm. 0.1] (see also [57, Lem. 12.1]) for every ¢ € X2(I) of weight k > 2
(hence of trivial nebentypus) we have the period relation

k/2—1 273(2i)k+1<f¢a f¢>F0(N)
+ -
Qf¢ -Qf¢

p(cg)=u-p

where u € ¢(I)*. Moreover, we have that Qi = Q}F¢®€K up to a unit (see [58, Lem. 9.6]
for example). In light of the factorization

L(f¢/lcaql}4_171) = L(f(baq/jc_l?]‘) ’ L(-fqb ®€K71/)C_171)a

the result thus follows from a direct comparison of the interpolation properties in The-
orem 2.1 (with ky =k and j = ko = 1) and (2.4) with m =0. O
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2.5. Dominant CM: (f,f2) = (g, f)

As in §2.4, we let f € I[¢] be a fixed Hida family of tame level N and trivial tame
character, and g be the CM Hida family in (2.1).

Let Z;r be the completion of the ring of integers of the maximal unramified extension
of Q,, and set

I = 1&gz, 2.

By [39, §5.3.0] (see also [18, Thm. I1.4.14]) there exists a p-adic L-function .Z,(K) €
Z;r [Tk] such that if ¢ is a character of I'x corresponding to an algebraic Hecke character
of K crystalline at the primes above p and infinity type (a,b) with 0 < —b < a, then

VD
2

b—a
p

b—a
QIC

$p</c><w>=< )-F(b>~(1—w(p))~(1—p‘1w‘1(ﬁ))- LO0),  (25)

where Qx € C* and Q, € C are certain CM periods (as defined in e.g. [14, §2.5]).

Definition 2.5. Let hx be the class number of K, and set

L(£/K) = (hic - Z5(K)ac) - Ly(g, ), (2.6)
where %}, (K)ac is the anticyclotomic projection of %, (K).

Remark 2.6. As in [32] here we view %, (K)a.c as an element in Z;‘r[[I’;C]] via the map
sc—1

sending v € I'{ to 4°7°, where ¥ € I'c is any lift of v, and ¢ denotes the action of

complex conjugation.
Note that a priori £, (f/K) is an element in Jg ®p I""[I'x].
Proposition 2.7. The p-adic L-function in (2.6) is integral, i.e., Z,(f/K) € I™[I'k].

Proof. By construction, if H(g) € I, is a congruence power series for g (i.e., a generator
of the principal ideal C'(g) C Ig), then the product H(g) - L,(g, f) is integral, so it
suffices to show that hx - %, (K)ac is divisible by H(g). By [32, Thm. 0.3] and Rubin’s
proof [53] of the Iwasawa main conjecture for &, one has that such divisibility holds up
to powers of the augmentation ideal (v, — 1) C Ig; since by [5, Thm. A(i)] one knows
that H(g) is not divisible by 7, — 1, the result follows. O

The later arguments in this paper will exploit the close link between Z,(f/K) and
the 3-variable p-adic L-function constructed in [64] and that we now recall. Fix a finite
set X of places IC outside p and containing all the places dividing N Dx. Then by the
results in [64, §7.5] there exists an element
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£2(/K) € 1™ [Ik]

characterized by the following interpolation property. For a Zariski dense set of points
¢ € Spec(I[I'k]), corresponding to pairs (f,,,) with f, of weight 2 and conductor
p! N generating a unitary automorphic representation Tf, whose component at p is
isomorphic to m(x1,p, X2,p) With v,(x1,,(p)) = —% and v,(x2,(p)) = %, and ¥, a Hecke
character of K of infinity type (—n,0) for some n > 3 and conductor p*, we have

(LY (£/K)) = "D T Xas (PTG (W pXT )G (¥ Xo )T ()T (0 — 1)Q2"

-1
x LE(f¢aX¢ 1/’;570)
(2mi)2n—102n

(2.7)
where x4 is the nebentypus of f, and L*(f . X;1¢¢, 0) is the X-imprimitive Rankin—
Selberg L-value.

Proposition 2.8. Let

Lo(F/K) = £ (F/K) x [] Pu(¥x(Froby,)) ™, (2.8)

weY

where P, is the Euler factor at w and Vi : G — I'c is the natural projection. Then
Lo(f/K) =2, (f/K) up to a unit.

Proof. We begin by noting that £,(f/K) satisfies the same interpolation property as in
(2.7) but with Lz(f¢, X;lﬂ%a 0) replaced by the primitive counterpart L(f, X;11,ZJ¢, 0).
Now, any character 1, as above can be written as the product 1,b’¢ . wg, with 1,b'¢ cyclo-
tomic (i.e., factoring through I'c — I'Y°), and 1/);/, corresponding to a Hecke character
unramified at p and of infinity type (—n,0). We then have that X?z/:;) (resp. the theta
series of ¢;) corresponds to x| - |7 (resp. f1 = g4) in the notation of Theorem 2.1, and

L(quvX;liﬂqg,O) = L(f17f27X_17j)

with fo = f4. Letting p? Dx be the conductor of g4, by [31, Thm. 7.1] a direct calculation
shows that the product

E(94)E(g4) - <g¢,g¢|2 (ptch _1)>

To(p*Dx)

in Theorem 2.1 agrees, up to a p-adic unit independent of ¢, with

T(n)G (5 L5575 1) Lex, 1)
E*Qwi)" T omi (2.9)
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where ex is the quadratic character associated with X/Q. By the class number formula,
the second factor in this product is given by hx up to a p-adic unit, while by the interpo-
lation property of the Katz p-adic L-function, the first factor multiplied by (£2,/c)?"
is interpolated by .2}, (K)ac for varying ¢. Comparing the interpolation formulas in The-
orem 2.1 and (2.7) therefore yields the result. O

We conclude this section by discussing the anticyclotomic restriction of %, (f/K).

Theorem 2.9. Assume that K satisfies (gen-H), and if N~ > 1 assume in addition that
N is squarefree. Then there exists an element L% (f /KC) € ™[] such that for every
¢ € X2(I) of weight k > 2, and every crystalline character ¢ of T3S corresponding to a
Hecke character of infinity type (n, —n) with n > 0, we have

¢($§Dp(f/lc)2)(1//) = 5p(f¢,¢)2 : 1/)(‘51*)*1 .93 g(f¢) . wl%\/D_)C
L(£o/K. 9. k/2) - o(f 4, £5)

n n k+4n’
(2m)kt2ntl . (Im @)k+2n . QI

-T(k+n)T'(n+ 1)912,]”'4” X

where E,(f 4, ¢) = (1 - d)(ap)z/)ﬁ(p)p’kﬂ)(l - qb(ap)*lz/)ﬁ(p)pk/%l), e(f,) is the global
root number of f,, wi = |Og], Qp € C, and Qx € C* are CM periods attached to K
as [14, §2.5], 8 € K is as in (4.1) below, and

(For fo)
a(fs F5) = ﬁ

is a ratio of Petersson norms of f, and its transfer ff to a quaternion algebra B,
normalized as in [52, §2.2].

Proof. When N~ = 1, this is [13, Thm. 2.11] (in which case a(f¢7ff) = 1). In the
following we sketch how to extend that result to include the more general Heegner
hypothesis (gen-H). Some of the notations used here will be introduced later in §4.

Let Op be a maximal order of B, and let Igy+ - be the Igusa scheme over Z,)
classifying abelian surfaces with Op-multiplication and Us-level structure (here Uy, is
the open compact U, C ETX in §4.1 with r = 00). For any valuation ring W finite flat over
Z,, denote by V(W) the module of formal functions on Igy+ y- (i-e., p-adic modular
forms) defined over W, and set

Vo(I) = Vo (Wo)@ws, I,

where Wy = W (kg) is the ring of Witt vectors of the residue field of I. For every Ox-
ideal a prime to 9t*p, the construction of ¢(*) (for arbitrary s > 0) in §4.2 determines
CM points z(a) € Igy+ n-, and the argument in [28, Thm. 3.2.16] with the use of
g-expansions and the g-expansion principle replaced by Serre-Tate-expansions and the
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resulting t-expansion principle around any such z(a) (see e.g. [30, p. 107]) shows that
every element fB € Vp(I) defines a p-adic family (in fact, finite collections of such, since
I is finite over Wo[TT) of p-adic modular forms fZ = fP(w* — 1) € V, (W), where
u =1+ p, indexed by z € Z,,.

The Hida family f corresponds to minimal prime in the localized universal p-ordinary
Hecke algebra T;)orjim, and by the integral Jacquet-Langlands correspondence (see the dis-
cussion in [42, §5.3] for example), there exists a p-adic family f 5 as above corresponding
to f, which we normalize by requiring that some Serre-Tate expansion fZB (t) does not
vanish modulo p.

There are U- and V-operators acting on f 5 defined as in [6, §3.6], and we set

£5 = Fpl(VU - UV).

With these, one can define I""-valued measures piy  .(a) and [igs —on Z, (with the

latter supported on Z) by [6, Prop. 4.17]) as in [13, §2.7], and an I""-valued measure
%, ¢(£/K) on Gal(Hy /K) by

e f/0@ = > e @N@ T [l ey, ()

[a]€Pic(Ok) 7
for all ¢ : Gal(Hpe /K) — Oép, where, if 0, corresponds to a under the Artin reciprocity
map, ¢|[a] is the character on z € Z; given by ¢(carecy(z)) for the local reciprocity
map rec, : Ky — G — T, x : KX\AS — I* is the character given by z +—
O(recq(Nx/q())) for the reciprocity map recq : Q*\A* — G, and £ is the auxiliary
anticyclotomic I-adic character constructed in [13, Def. 2.8].

Still denoting by %, ¢(f/K) its image under the natural projection I"*[Gal(Hp~ /K)
| = I" %], and setting

L (FIK) = twe-1(L e (£/K)),

one then readily checks as in the proof of [13, Thm. 2.11] that for every ¢ € X2(I),
the specialization ¢(.%,(f/K)) agrees with the measure constructed in [6, §8.4] (in a
formulation germane to that in [9, §5.2]) for the newform associated with f oy, from
where the stated interpolation property follows from [6, Prop. 8.9]. O

Corollary 2.10. With hypotheses as in Theorem 2.9, denote by fp(fT//C)aC the image of
two-1(Z(F/K)) under the natural projection 1" [I'x]] — I [I'4°]. Then

Lo(FT/K)ac = L2 (F/K)? (2.10)

up to a unit in T [T3][1/p]*. In particular, Zo(f1/K)ac is nonzero.
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Proof. In light of Proposition 2.8, the claimed equality up to a unit follows from a direct
comparison of the respective interpolation formulas (¢f. [37, §3.3]). On the other hand,
for every ¢ € X2(Il) the p-adic L-function £7°"(f/K) specializes at ¢ to the p-adic L-
functions constructed in [14, §3.3] (for N~ = 1), and in [9, §5.2] and [6, §8] (for N~ > 1);
since the latter are nonzero by [14, Thm. 3.9] and [9, Thm. 5.7], the last claim in the
theorem follows. 0O

3. Iwasawa theory

Throughout this section, we fix a positive integer N and a prime p { 6N, and let
F=>.",a,q" € I[q] be a Hida family of tame level N and trivial tame character,
and let K be an imaginary quadratic field of discriminant prime of Np in which p = pp
splits.

3.1. Selmer groups

Let Tt be the big Galois representation associated to f, for which we shall take the
geometric realization denoted M (f)* in [40, Def. 7.2.5]. Thus Ty is a locally free I-
module of rank 2, and letting D, C Gq be the decomposition group at p determined by
our fixed embedding ¢, : Q— Qp, it fits in an exact sequence of I[D,]-modules

0— FTTy —Tp — F T —0 (3.1)

with Z*Ty locally free of rank 1 over I, and with the D,-action on the quotient .# ~ T
given by the unramified character sending an arithmetic Frobenius to a, € I*.

Let kp := I/my be the residue field of I, and denote by py : Gq — GLa(kp) the
semi-simple residual representation associated with T, which by (3.1) is conjugate to
an upper-triangular representation upon restriction to Dp:

_ € *

prlo, ~ (5 )
Assume that py is absolutely irreducible and that & # §. Then by work of Wiles [66] (see
also [40, Thm. 7.2.8]), T} is free of rank 2 over I, and each .#*T¥ is free of rank 1.

Recall that I'x denotes the Galois group of the Zf,—extension Koo /K, and consider the
[Tk ]-module

T =T @1 [[Tk]
equipped with the G-action via pg ® Ui, where py is the Gq-representation afforded

by T¢, and ¥ is the tautological character Gx — I'x — I[T'x]]*. Replacing I'x by I'3¢
(resp. I'Y), we define the Gx-module T?¢ (resp. T°) similarly.
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As in [35], we also define the critical twist
T)=Tr@0™", (3.2)

where © : Gq — I is the character (2.2), and define its deformations TT, TT# and
TT¥¢ similarly as before.

In the definitions that follow, we let M denote either of the above Galois modules, for
which we naturally define .#*M using (3.1). We also let ¥ be a finite set of places of Q
containing oo and the primes dividing Np, and for any number field F, let &5 be the
Galois group of the maximal extension of F' unramified outside the places above X.

Consider the p-relaxed Selmer group defined by

HY(F,, M)
Selt?} (F, M) ker{H (Sps, M) — eg[* H}n(Fv,M)}’
v » VP

where HL (F,, M) = ker{H(F,, M) — HY(FY, M)} is the unramified local condition.

Definition 3.1. For v|p and .%, € {0, Gr,0}, set

H'(F,, M) if £, =0,
Hy (Fy, M) = ker{H'(F,, M) — HYF¥, F~M)} if.%, =G,
{0} if £, =0,

and for £ = {Z,},p, define

HY(F,, M)
- {p} Sl Rkl
Sel o (F, M) := ker{Sel P M) — ] L (o M) [
v|p v
Thus, for example Selg ¢(/C, M) is the subspace of SeltP} (K, M) consisting of classes
which satisfy no condition (resp. are locally trivial) at p (resp. p). For the ease of notation,
we let Selg, (F, M) denote the Selmer group Sel ¢ (F, M) given by .%, = Gr for all v|p.
We shall also need to consider Selmer groups for the discrete module

Ag = Home (T, prpee ).
To define these, we note that by Shapiro’s lemma there is a canonical isomorphism

HY(K,T)~ lim H'(FTy), (3.3)
KCiFCKoo

where F runs over the finite extensions of K contained in X, and the limit is with respect
to the corestriction maps. The isomorphism (3.3) is compatible with the local restriction



F. Castella, X. Wan / Advances in Mathematics 400 (2022) 108266 19

maps (see e.g. [57, §3.1.2]), and therefore the Selmer groups Sel# (K, T) are defined by
local conditions HY, (F,,Tf) C H'(F,,Ty) for all primes v (with the unramified local
condition for v { p). Thus we may let

Sely (Koo, Af) C  lim  H'(F, Af)
KCtFCK

be the submodule cut out by the orthogonal complements of H}% (Fy,Ty) under the
perfect Tate duality

H'(F,,Ty) x H'(F,, Ay) — Qp/Zy.

This also defines the Selmer groups Selg (F, Af) C H!(F, Af) for any number field F,
and we shall also consider their variants for the twisted module

A} := Homg,, (T}, Lope),

or their specializations. Finally, if W denotes any of the preceding discrete modules, we
set

Xo(F, W) :=Homgz, (Sel¢(F,W),Q,/Z,),

which we simply denote by Xe.(F, W) when %, = Gr for all v|p.
We now record a number of lemmas for our later use.

Lemma 3.2. Assume that pflg,. is absolutely irreducible. Then SelGr(F,T}) and
X (F, ATf) have the same I-rank.

Proof. For any height one prime 8 C I, let Iz be the localization of I at B3, and let
Fyp = Iz /B be the residue field. It suffices to show that for all but finitely many P €
Xo(I), the spaces Selg,(F, T;)qg/’ﬁ and Xey (F, A})m/&]’} have the same Fip-dimension.

As noted in [46, §12.7.5] (see also [35, Lem. 2.1.6]), Hida’s results imply that the
localization Iy of I at any P € A, (I) is a discrete valuation ring. Let 7 € Iy be a
uniformizer. From Nekovai’s theory (see [46, Prop. 12.7.13.4(i)]) and the identification
[35, (21)], multiplication by 7 induces natural maps

Sele (F, T})q/m — Selez (F, T} g3/70),
Selg: (F, Al g3[]) —> Selee (F, Al ) [m]
which are isomorphisms for all but finitely many 8 € X, (I). Since by [33, Lem. 1.3.3] the

spaces Selg, (F), T;ﬁ)513 /m) and Selg, (F, ATﬁq3 [7]) have the same Fy-dimension, the result
follows. O
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Lemma 3.3. Assume that pglc. is absolutely irreducible. Then H'(&x s, TT) and
HY(&x 5, TT2) are torsion-free over 1[T'x] and 1[T%], respectively.

Proof. This follows from [50, §1.3.3], since H*(Kw,ps) = HO(K2, p5) = {0} by the
hypothesis. O

Lemma 3.4. We have rankyrse; (Xor,0 (K2, A})) = 1+rankyjrae (Xer 0(K35, A})). More-
over, if 1 is reqular then

Charyraey (Xer,p (Koc, ATf)tors) = Chary[rse) (Xo,er (Ko, A:rf)tors)v
where the subscript tors denotes the L[I'4°]-torsion submodule.

Proof. The first claim follows from an argument similar to that in Lemma 3.2 using part
(2) of [12, Lem. 2.3]. For the second, note that the regularity of I implies that of T[I'4¢].
Thus by [19, Lem. 6.18] the second claim follows from part (3) of [12, Lem. 2.3]. O

We conclude this section with the following useful commutative algebra lemma from
[57], which will be used repeatedly in the proof of our main results.

Lemma 3.5. Let R be a local ring and a C R a proper ideal such that R/a is a domain.
Let I C R be an ideal and L an element of R with I C (L). Denote by a ‘bar’ the image
under the reduction map R — R/a. If L € R/a is nonzero and L € 1, then I = (L).

Proof. This is a special case of [57, Lem. 3.2]. O
3.2. Explicit reciprocity laws

Let Gq act on the cyclotomic Iwasawa algebra Ar introduced in §2.3 via the tautologi-
cal character Gq — I' < A[. In [40], Kings—Loeffler—Zerbes constructed Beilinson-Flach

elements
BFLI € HHQ(um), T5z, Ty®z, Ar)

attached to pairs of Hida families f, g, and related the image of .BF { 9 under a Perrin-
Riou big logarithm map to the p-adic L-functions L,(f,g) and L,(g, f) of Theorem 2.1.
In this section we describe the variant of their results that we shall need.

Since TT = T ® ©~! by definition, the twist map twg-1 : [[[x] — I[Tx] of (2.3)
induces a [-linear isomorphism

twe-1 : H'(K, T) — HY(K, TT)

satisfying two—1(Az) = twg-1 (A)twe—1 () for all X € I[Tx].
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Theorem 3.6 (Kings-Loeffler—Zerbes). There exists a class BF' € Selgr o (K, TT) and
I[T ] -linear injections with pseudo-null cokernel

COl(l)’Jr : (’Cﬁ,y TT) — Jf Q1 I[[[F](:]L
Col® 1. HY(K,, Z+T) — J, o1 [[Tk],

where g is the CM Hida family in (2.1), such that

Col Mt (locg(BFY)) = twe 1 (L, (£, 9))
Col® (locy (BFY)) = twe-1(L,(g, f)).

In particular, for every prime v of K above p, the class locv(B}'T) € HY(K,,T") is
non-torsion over 1[T'x].

Proof. This follows from the results of [40], as explained in [12, Thm. 2.4], to which one
needs to add some of the analysis in [8] and [3].

Indeed, taking m = 1 in [40, Def. 8.1.1] (and using [41, Lem. 6.8.9] to dispense with
an auxiliary ¢ > 1 needed for the construction), one obtains a cohomology class

BF9 e HY(Q,Ty&z, Ty&z, Ar)

attached to our fixed Hida family f and a second Hida family g. Denote by e; BFT9 the
image of BF¥*9 under the natural map

HY(Q, T§®z,Ty®z,Ar) = H(Q, TRz, Ty®z, Z,[IV])

induced by the projection I' — I'¥¢. Taking g to be the canonical CM Hida family in
(2.1), by [8] (see also [3, Prop. 4.1]) we have a Gg-module isomorphism

Ty =~ Ind2Z,[T,]

where the Gy-action on Z,[I'y] is given by the tautological character Gx — I'y —
Z,[T,]*. By Shaplro s lemma, e; BFT9 therefore defines a class BF € H'(K, T) whose
image under tW@ 1 defines a class BF" with the desired properties.
More precisely, the inclusion BF' e Selgy o (K, TT) follows from [40, Prop. 8.1.7], and
by the explicit reciprocity law of [40, Thm. 10.2.2], the maps

ColV := (L(=),ns ®wg), Col® = (L(=),ng @ wy)

described in the proof of [12, Thm. 2.4] send the restriction at p and p of BF¥9 to the
p-adic L-functions L,(f,g) and L,(g, f), respectively, and are injective with pseudo-null
cokernel by [40, Thm. 8.2.3]. Thus letting Col™ ' and Col®"! be the I[I'x]-linear maps
defined by the commutative diagrams
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w
H! (K, #~T) ~= J; @1 I[Ix] H' (K, 74T) > J, @y 1[T]
la’:’(—)—l \Ltwel \Lgvol ltwel
1 —rpty Col T 4ty Col®
H (ICF,J T )H—Jj‘ X1 I[[[F;Cﬂ (’Cp,ﬂ T )H—J ®1 ]I[[Flc]]

the result follows, with the last claim being an immediate consequence of the nonvan-
ishing of the p-adic L-functions L,(f,g) and L,(g, f) (see e.g. [12, Rem. 1.3]). O

We shall also need to consider anticyclotomic variants of the maps Col®" in Theo-
rem 3.6. Letting Z.. be the kernel of the natural projection I[I'x] — I[I'4¢], the map

ColVT - HY (K, Z~TH2) — Jp @ T[T%]

is defined by reducing Col™ ' modulo the ideal Zcye, using the fact that by the vanishing
of H(Ks, # ~T12¢) the restriction map induces a natural isomorphism

H' (Kg, F T /Toye ~ B (K5, F~TT2).

The map Col(2 T tHY (K, FTTT) — Jgg, 1[1%¢] is defined in the same manner.
Note that since the maps Col®™ T are injective with pseudo-null cokernel, the same is
true for the maps Col()T,

Corollary 3.7. Let BF"™ be the image of the class BF' under the natural map
HY (K, TT) — HY(K,TH), and assume that K satisfies (gen-H). Then we have the
inclusion

locy (BFT¢) € ker{H' (I, TT*¢) — H' (IG5, F ~TT)};

in particular, BF1?¢ Selg, (K, T12¢). Moreover, if we assume in addition that N is
squarefree when N~ > 1, then the class loc,(BF ) is non-torsion over 1[T%].

Proof. The combination of Theorem 3.6 and Proposition 2.3 yields the vanishing of
the image of IOCF(B.FT’EC) under the map Col,, 1) T so the first claim follows from its
injectivity. The second claim follows from Theorem 3.6 together with the nonvanishing
result of Corollary 2.10. O

3.3. Twasawa main conjectures

We now use the explicit reciprocity laws of Theorem 3.6 to relate different variants of
the Iwasawa Main Conjecture for Rankin—Selberg convolutions.

Theorem 3.8. Assume that psla, is irreducible. Then the following are equivalent:
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(i) XGr,O(ICOO,ATf) is I[Txc]-torsion, Selg, ¢(K, TT) has I[I'x]-rank one, and

SelGr,(Z) (’Ca TT) )

Ch Xez.0(Koo, A)) = Ch
arppr ] (Xer,of 7)) ar“““( I[lk] - BF

up to powers of p.
ii) Both Xp g ICOO,AT and Sely (K, TY) are 1[T'x]-torsion, and
. f ;

Charyr, [ (Xo,0(Koo, A})) - T[T = (two-1 (L (£/K)))

up to powers of p.
(iii) Both XGI(ICOO,ATf) and Selg; (IC, TT) are I[T'x]-torsion, and

Charyyr, j(Xer (Koo, A})) = (twe -1 (L5 (£/K))).
up to powers of p.

Moreover, if in addition K satisfies (gen-H), with N being squarefree when N~ > 1, then
the following are equivalent:

iy XGr,O(Ing,ATf) is 1[T3¢]-torsion, Selg, ¢ (K, TT2) has I1[T'%]-rank one, and

Seler o (K, TTvaC))

Charpprae) (Xee,0 (K2, AL)) = Char ac(
]I[[F;cﬂ( G 70( f)) I[T%] ]I[[Falccﬂ . BFhac

up to powers of p.
(ii)> Both X@70(IC§§,A}) and Sely o (K, TT2°) are 1[I'%]-torsion, and

Charggrey (Xp o (K3, A})) - T [T5] = (L™ (£/K)°)
up to powers of p.

Proof. Consider the exact sequence coming form Poitou—Tate duality

0 — Selg y(K, TT) —> Selge (K0, TH) Z25HL (K, TT)
— Xp,0(Koos A}) — Xer (Koo, Al) — 0.
By Theorem 3.6, the cokernel of the map loc, is I[I'x]-torsion, and so the equivalence

between the claimed ranks in (i) and (ii) follows. By Lemma 3.3, if Sely (K, TT) is
I[T'x]-torsion then it is trivial, and so the above yields
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SelGr,@(’Ca TT) locy H(llr(K:F'a TT)
I[Tx] - BFT I[Tx] - locy, (BFT)

— X@,O(’Coov A}) — XGr,O(ICoo, ATf) — 0. (34)

As noted in the proof of Proposition 2.7, the congruence power series H(g) of the CM
Hida family g in (2.1) is divisible by hx - % (K)ac; together with [32, Thm. 0.2] it follows
that the congruence ideal of g is generated by hy - 2, (K)ac after inverting p. Therefore
by Theorem 3.6 and definition (2.6), the map Col®"T multiplied by this generator yields
an injection

He, (Kp, 1) - I™[Ce](1/p) T [Cic][1/p)
Twr [xc][1/p] - loc, (BFT)) (two-1 (L (f/K)))

with pseudo-null cokernel, which combined with (3.4) completes the proof of the equiv-
alence (i)<=(ii). The equivalence (i)’<=>(ii)’ when K satisfies (gen-H) is shown in the
same way, using the nonvanishing of loc, (BF :2¢) from Corollary 3.7.

Now consider the exact sequence

locy I‘I1 (’Cﬁ, TT)
H(l;r (’C37 TT)

0 — Selg: (K, TT) — Selg, ¢ (K, TT) ~ H' (K5, #TT)

— Xer (Koo, A}) — Xer0(Koo, Al) — 0,

which similarly as before implies the equivalence between the claimed I[I"c]-ranks in (ii)
and (iii), and by Theorem 3.6 and Lemma 3.3 yields the exact sequence

SelGr)@(IC,TT) IOCE Hl(lcﬁ“g\fTT)
I[Tx] - BFT I[0x] - loc, (BFY)

— XGI<IC007ATf) — XGr,O(ICOO’ A}) — 0.

Lastly, since by Theorem 3.6 and Definition 2.2 the map ColWf multiplied by a generator
of the congruence ideal C(f) yields an injection H*(Kg,.# ~TT) — I[I'x] with pseudo-
null cokernel sending loc, (BF ') into twe -1 (LEY(f/K)) up to a unit in T, the equivalence
(ii)«<=(iii) follows. O

3.4. Rubin’s height formula

Recall the decomposition T'x =~ T'Y° x I'%¢. Fix a topological generator yeyc € 'Y,

and using the identification I['c] ~ (I[%]) [T ], expand

twe-1 (LI (f/K)) = LA (T /KC)ae + LEY (F/K)ac - (eye — 1) + -+ (3.5)
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as a power series in 7yc — 1. Note that the constant term szo( _]"'Jr /K)ac in this expansion
corresponds to the image of tweg-1(L5'(f/K)) under the natural projection T['x] —
I[I%s].

By Shapiro’s lemma, we may consider the Beilinson—Flach class BF T e Seler o (K, TT)
of Theorem 3.6 as a norm-compatible system of classes B]:TF € Selgy g(F, T}) with F
running over the finite extensions of I contained in K. For any (possibly infinite)
intermediate extension KX C L C K, we then put

BFf(L) = li?mB}'}

with F' running over the finite extensions of K contained in L, so in particular BF T(ICOO)
is nothing but BFT.

Denote by K2¢ the subextension of K2 with [K2¢ : K] = p™, define K} similarly, and
set Ly, = K2ICY¢ for all k < .

Lemma 3.9. Assume that IC satisfies (gen-H) and that pg|a, is irreducible. Then there
18 a unique
Bl € HY(Ka%, 7~ T1Ho°)

such that 100§(B.7-"T(Ln,oo)) = (Yeye — 1) 1. Furthermore, for varying n the images 3,(1)
FTheve) — HY(Kae

of B under the corestriction map H* (K2 n’ﬁ,ﬂfoT) are norm-

n,p’
compatible, defining a class

n,p?

lim B} (1) € lim H' (K3%, #~T}) ~ H' (Ky, # - T
n n

that is sent to the linear term Lg,il(fT//C)ac in the expansion (3.5) under the map Col(}"T.

Proof. After Theorem 3.6, the first claim follows from the vanishing of L;I,’io(fT/lC)ac
(see Proposition 2.3) and the injectivity of Col(l)’T, with the uniqueness claim being an

immediate consequence of Lemma 3.3. The other claims are a direct consequence of the
definitions of 3} and Lg?l(fT/lC)ac. O

Let Z%¢ = (yeyc — 1) be the augmentation ideal in I[I'¢°], and put J&°¢ =

¢ /(Z9¢)2. By work of Plater [51] (cf. Nekovai [46, §11] more generally), for every
n there is an [-adic height pairing

(= =) 1 ¢ Selar (K3, T) x Selae (K3, T}) — T @1 Fi. (3.6)

(Note that the local indecomposability hypothesis (H1) in [51, p. 107] is only used to
ensure the existence of well-defined sub and quotients at the places above p, which for
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T} is automatic, while hypotheses (H2) and (H3) in [51] follow from [35, Lem. 2.4.4] for
7}.)

Indeed, keeping the notations introduced in §3.1, in light of [51, Lem. 5.8] Plater’s
definition (which we shall briefly recall in the proof of Proposition 3.10 below) gives a
JY° @1 Fy-valued height pairing on the modified Selmer group

_ H (2, T
Sel(k2°, T}) = ker{ SelP} (ke 7)) — [ (—{) ,
Hér(]Cac Tf)sat

'u|p n,v?

n,v’ n,v’ n,v’

values on the submodule Gel(K2, T;ﬂ) of /Gg/e[(ICZC, T}) consisting of classes x with

where H¢, (K2 T;L)Sat is the saturation of H, (K2 T}) in H(KCaC T}), taking JY°-

locy () € ﬂ COTL,, ,0/K22, (Hér(Ln,k,v» TfT)Sat)
k

for all primes v above p. Since by the same argument as in [51, Lem. 5.8] (using [45,
Lem. 6.3]) the quotient Ge[(IC?IC,TfT)/GeI(ICaC T}) is I-torsion, killed by a nonzero ele-

n
ment of I independent of n, from the obvious inclusion Selg, (K2°, T}) C é?[(IC%C7 T}) we
get a pairing as in (3.6) with denominators bounded independently of n.
The next result generalizes the height formula of [54, Thm. 3.2(ii)] to our context.

Proposition 3.10. Assume that K satisfies (gen-H) and that pgl|g. is irreducible. Then
the classes B]—';rCac land in Selgr (K2°, T}), and for every x € SelGr(lC?LC,T}) we have

(BF e, @) 1 = (Bl (1), locy(@))kae, ® (Yeye — 1), (3.7)

where (—, —)xac_ is the local Tate pairing

H (K25, T})
HE, (K2, T)

n,p’

x He, (Ka%, Th) — 1.

n,p’

Proof. The first claim follows from the explicit reciprocity law of Theorem 3.6, the
vanishing of Lgfo(fT/lC)aC, and the injectivity of Col™"T. On the other hand, the proof
of formula (3.7) could be deduced from the general result [46, (11.3.14)], but shall give a
proof following the more direct generalization of Rubin’s formula contained in [60, §3].

We begin by recalling Plater’s definition of the I-adic height pairing (itself a gen-
eralization of Perrin-Riou’s [49, §1.2] in the p-adic setting). Let A be the isomorphism
Y ~ J9° sending 7eye to the class of veyc — 1. Composing with the natural isomor-
phism Gal(L,, o /K2) ~ I'V¢ the map A defines a class in H (K2¢, 7¥¢), where we equip
J ¢ with the trivial Galois action, and so taking cup product we get
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po t HE(KES, T(1)) 222, gy

, (KaC ’jCyC( )) ~ jCyC
for every place v.

Denote by Selg, (K£2°, T})“niv the submodule of Selg, (KC2°, T}) consisting of classes lying
in Hg, (Kac TT)urliv for all primes v above p, and let z,y € Selcr(lC%C,T;)““iV. Then z

n,v’

corresponds to an extension of Galois modules

0—>T}—>X—>]I—>O.

The Kummer dual of this sequence induces maps on cohomology
H(IC3, X7 (1)) — H (K3, Tf) = (K3, 1(1)

such that §(y) = 0 (since H*(K2°,1(1)) injects into €, H*(K2%,,1(1)) and the v-th
component of §(y) is given by loc,(y) Uloc,(z) = 0 by the self-duality of Greenberg’s
local conditions). Thus y is the image of some y#°" € H!(K2¢, X*(1)).

On the other hand, if v is any place of K2°, for every k we can write loc,(y) =
COrpL, ., /Kac, (Yk,v) for some yi, € H (L, ;,“,,TT)S‘“7 and by a similar argument as

above there exists a class i, € H'(Ly, k.0, X*(1)) lifting yx , under the natural map ,
in the exact sequence

* 71'1, [
H (L s X7 (1) =% HY (L g, Th) =2 H2 (L g0, 1(1)). (3.8)

The difference loc, (y8'°") — cory,, ., /xae. (Jk,w) is then the image of some class wy,, €
H'(K2¢,,1(1)), and we define

n,v
cyc 2 :
<y7 x>lC';‘f,]I hm pv Wk, 'u

a limit which is easily checked to exist and be independent of all choices. If in addition
y = Yo is the base class of a compatible system of classes

Yoo = l‘jkglyk S H1<K:ZC, TT’CyC) = Engl(Lmk’T;)’

then one easily checks (see e.g. [1, Lem. 3.2.2]) that there are classes yf lob ¢

H (L, x, X*(1)) lifting yj. Similarly as above, for every place v of L,, x the corestriction
of 10¢, (¥2'°") — T to H'(K3C,, X*(1)) is the image of a class wy, ,, € H' (K3, 1(1)),

and with these choices we see that the above expression for (y, z)y%.. | reduces to

<ya )Cac I[ hm va wk »U (39)

k—o0
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As in [60, §3.8], division by 7cyc — 1 defines a natural derivative map

Dev : HY(K2,, Th @1 I9°) — HY (K2, T})
whose composition with the natural projection H' (K2, TT) — HY(Ka¢,,. 7~ }) factors
as

(’Cac TT ®1 ICyC) Hl (Kac 7T} ®1 Icyc)

n,v’ n,v’
’Detl \L@et (310)
H' (K2, T}) H (K¢, F~T}).

Letting pry be the natural projection H'(Ka¢,, X*(1) @ [[T*°]) — H' (K2, X*(1)),
the expression (3.9) for (y,z).. | can be rewritten as

nydC“ I— Zprﬂ IOCW glob) Zjoo,v)7
v|p
where locy (y8°°) — Joo,w € HY (K2, X*(1) @1 I[TY]) is a lift of 1ocy(Yoo) — Yoo €
H' (K2 TT ® Z9¢), and hence by [60, Prop. 3.10] we obtain

n,v’

()% 1 =D 6y (Der(10cy (Yoo) = Yoo,w)) ® (Y = 1)
v|p

= (Der(locy (yoo) — Yoo,w): 106 (7)) e @ (77 = 1) (3.11)

vlp

= Z (Der_(locy (Yoo ))s 10%(@)’%?” ® (¥ — 1),

vlp

where the last equality follows from the commutativity of (3.10) and the fact that yoo , =

{Yk,v}r has trivial image in H (K2, Z ~THove),
Now taking Yoo = BF(Ln,o0) in (3.11) we see that the contribution to <B.7-';rcac, ) 1

from p is zero, since BF' (L, o0) € Selge (K2, TT¥¢) is finite at the places above p, while
at p chasing through the definitions we see that

Dev_ (locg(BF(Ln,e0)) = BL(1),
thus concluding the proof of the height formula (3.7). O
4. Big Heegner points

In this section, we explain the construction of big Heegner points and classes. The
results in this section are essentially a reformulation (influenced by [16] and [15]) of work
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of Longo—Vigni [42] and Fouquet [19], extending to Shimura curves Howard’s original
construction for modular curves [35].

Fix a positive integer N and a prime p { 6N. Let K be an imaginary quadratic field
with ring of integers Ok and discriminant — Dy < 0 prime to Np, and write

N=N'tN"

with NT (resp. N7) divisible only by primes which are split (resp. inert) in K. Through-
out, we assume the following generalized Heegner hypothesis:

N~ is the squarefree product of an even number of primes, (gen-H)
and fix an integral ideal Mt of K with Ox /Nt ~ Z/N+Z.
4.1. Towers of Shimura curves

Let B/Q be an indefinite quaternion algebra of discriminant N~. We fix a Q-algebra
embedding (¢ : K — B, which we shall use to identify K with a subalgebra of B. Let
z + Z be the non-trivial automorphism of K, and choose a basis {1, j} of B over K such
that:

e j2=BcQ* withB<0and jt=¢jforalltek,
e Be(Z)) for q|pNT, and g € Z) for q | Dx.

Fix a square-root § = v/— Dy, and define 8 € K by

D if 21D
,  where Dj := * if 24 Dr, (4.1)
Dx/2 if2] Dy,

_ Dy +0
2

0:

so that Ox = Z + 0Z. For every prime ¢ | pN*, define the isomorphism i, : B, :=
B®q Qq > MQ(Qq) by

z@(@—(“f") -Ng@), i) = /B (‘01 Tri”)>,

where Tr and Nm are the reduced trace and norm maps on B. For primes ¢t Np, we fix
any isomorphism i, : By >~ M (Qq) with i,(Ox ®z Zq) C Ma(Z,).

Let Z be the profinite completion of Z, and for any abelian group M set M= M®z7Z.
For each 7 > 0, let R, be the Eichler order of B of level NTp" with respect to the
isomorphisms {i, : By ~ M2(Qq)}gn-, and let U, C RTX be the compact open subgroup
defined by
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Ur = {(xq>q € RY ¢ ip(xy) = <(1) I) (mod pT)} :

Consider the double coset spaces
X, = B*\(Homq(K, B) x B*/U,), (4.2)
where b € B> acts on (¥, g) € Homgq(K, B) x BX by
b- (¥, g9) = (bUb ', bg),

and U, acts on B* by right multiplication. As is well-known (see e.g. [42, §§2.1-2)),
X, can be identified with a set of algebraic points on the Shimura curve with complex
uniformization

X,(C) = B*\(Homq(C, B) x B*/U,.).

Let reck : ICX\I@X — Gal(K?"/K) be the reciprocity map of class field theory. By
Shimura’s reciprocity law, if P € X, is the class of a pair (¥, g), then o € Gal(K*"/K)
acts on P by

P7 = (¥, ¥(a)g)],

where a € KX\K* is such that recc(a) = o, and ¥ : K — B is the adelization of ¥. We
extend this to an action of Gx := Gal(Q/K) in the obvious manner.

The curves X, are also equipped with natural actions of Hecke operators Ty for £1 Np,
Uy for £|Np, and diamond operators (d) for d € (Z/p"Z)*, as described in [42, §2.4] and
[16, §2.1], for example.

4.2. Compatible systems of Heegner points

For each ¢ > 1, let O, = Z + cOx be the order of K of conductor ¢ and denote by H,.
the ring class field of K of that conductor, so that Pic(O.) ~ Gal(H./K) by class field
theory. In particular, H; is the Hilbert class field of K.

Definition 4.1. A point P € X,. is a Heegner point of conductor ¢ if it is the class of a
pair (¥, g) with

U(0.) =¥ (K)N(BNgR.g™")
and
Uy (0 ®Zp)  N(1+p 0 ®Zy)*) =V, (0 ®Zy) ™) N gpUrpg,

where ¥, and U, , denote the p-components of ¥ and U,., respectively.
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For each prime ¢ # p define

s =1 iqufNJra
¢« =061 (? ?) € GLa(Kq) = GL2(Qy), if ¢ = qq splits with q | 9T,

and for each s > 0, let

s 6 -1 0 . o
s = <1 0 > (% 1) € GL2(Ky) = GL2(Qp), if p = pp splits in K,
. §1(JS) = (_01 é) (%S (1)>, if p is inert in KC.

Remark 4.2. We shall ultimately assume that p splits in K, but it is worth-noting that,
just as in [35,42], the constructions in this section also allow the case p inert in K.

Set ¢(8) = gzgs) [1,4p Sq» Which we view as an element in B* via the isomorphisms
{ig : By ~M32(Qq)}gn— introduced in §4.1. With the Q-algebra embedding ik : K — B
fixed there, one easily checks that for all s > r the points

Ps,r = [(L/Cvg(s))] € X,

are Heegner points of conductor p° in the sense of Definition 4.1 with the following
properties:

e Field of definition: Py, € H*(Hps (ppr), Xr).
o Galois equivariance: For all o € Gal(Hps (ptpr)/Hps),

Pso,r = <ﬁ(0)> ' PS,T7

where ¥ : Gal(Hps (ppr ) /Hpe ) — Z /{=£1} is such that 9% = ecyc.
e Horizontal compatibility: If s > r > 1, then

ar(P;r) = Up ' ps,r—h
c€Gal(Hys (,U«pT)/Hps—l(H;ﬂ‘))

where a,. : X,, — X, _1 is the map induced by the inclusion U, C U,_1.
e Vertical compatibility: If s > r > 1, then

Z Pg,r = Up ’ Ps—l,r-

o€Gal(Hys (P«pr)/Hpsfl (1pr))

(See [15, Thm. 1.2] and the references therein.)
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4.3. Big Heegner points

Let B, the Z,-algebra generated by the Hecke operators T;, U, and (a) acting on
the Shimura curve X, from §4.1, let b, be the Z,-algebra generated by the usual Hecke
operators Ty, Uy, and (a) acting on the space S2(T'o 1 (NN, p")) of classical modular form of
level To 1 (N, p") :=To(N)NTy(p"), and let Ty, be the quotient of b, acting faithfully
on the subspace of S2(I'g1(V,p")) consisting of N~ -new forms.

The Jacquet-Langlands correspondence yields Z,-algebra isomorphisms

B, ~ TR, (4.3)

(see [29, §2.4]). In particular, letting eorq = limy, oo U;“ be Hida’s ordinary projector,
the Z,-module

D = era(Div(X,) @z Zy)

is naturally endowed with an action of Tfrd = €eorq T ]]VV ;

Denote by T/ the free T° 4-module of rank one equipped with the Galois action via
the inverse of the critical character ©, and set D} := Dord ®rora T}

Let P, , € X, be the Heegner point of conductor p® (s > r) constructed in §4.2, and
denote by Ps, the image of eqq P, in ©$rd. It follows from the Galois-equivariance
property of P, that

PS,.=0(0) Psy
for all o € Gal(Hps (ppr)/Hps) (see [42, §7.1]), and hence P, defines an element
Par @ G € HO(Hpe, D). (4.4)
Let Pic(X,) be the Picard variety of X,, and set
I = eora(Pic(X,) @7 Z,), Jf =g QTera T.

Since the Uy,-operator has degree p, taking ordinary parts yields an isomorphism D94 ~
39rdand so we may also view (4.4) as P, @ (- € HO(Hps, J1).

Let ¢ > 0, and denote by & H, the Galois group of the maximal extension of H,:
unramified outside the primes above p/N. Consider the twisted Kummer map

Kum, : HO(H,, 3) — H' (&5, , Ta,(3}))

as explicitly defined in [35, p. 101]. This map is equivariant for the Galois- and U,-actions,
and hence by horizontal compatibility the classes

Xpt = Kumr(CoerTH/H . (Prstr @) (4.5)
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satisfy aq . (Xpt ) = Up - Xpt 1 for all r > 1, where
s t H (G, Tay(3])) — H' (G4, Tay (3] )

is the map induced by the covering X,, — X,_1 by Albanese functoriality.

Now let f € I[¢] be a Hida family of tame level N. In order to define big Heegner
points attached to f from the system of Heegner classes (4.5) for varying r, we need to
recall the following result realizing the big Galois representation 7' attached to f in the
étale cohomology of the p-tower of Shimura curves

"'_>Xr_>Xr71_>"'

(rather than classical modular curves, as implicitly taken in §3.1).
Let k1 = I/myp be the residue field of I, and denote by py : Gq — GLa(kp) the
associated semi-simple residual representation. Set

ord ,__ 71: ord
TS :=lm T .
r

By (4.3) (see also the discussion in [42, §5.3]), there is a maximal ideal m C T4

ord

associated with pg, and f corresponds to a minimal prime in the localization TS, .

Theorem 4.3. Assume that:

(1) py is absolutely irreducible and p-distinguished,
(i) pg is ramified at every prime (N~ with £ = £1 (mod p),

and let m C T4 be the mazimal ideal associated with pg. Then the module
Tagt = (1 Ty (03)) mas T2

is free of rank 2 over ng:im, and if f corresponds to the minimal prime a C ngfim, then

there is an isomorphism
Ty ~ Ta%d Orord, T /o
as (T2, /a)[Gql-modules.
Proof. This is shown in [19, Thm. 3.1] assuming the “mod p multiplicity one” hypothesis

in [19, Prop. 3.7]. Since by [24, Cor. 8.11] that hypothesis is ensured by our ramification
condition on pg, the result follows. O
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Let m C T2 be a maximal ideal satisfying the hypotheses of Theorem 4.3, and sup-
pose that the Hida family f corresponds to a minimal prime of Tg’gﬂ“, so by Theorem 4.3
there is a quotient map Tagfd — T¢. Note also that immediately from the definitions

d -
there are natural maps Ta,(J}) — Tal® @ O71 — T}.
Definition 4.4. The big Heegner point of conductor p? is the class
%, € W (Hy, 7))
given by the image of lim U,™ - Xp¢ - under the composite map

lim H (&4 ,, Ta,(3})) — H (G4 ,, Tag’ © ©71) — H'(H,, T}).
We conclude this section with the following result due to Howard, showing that the
big Heegner points are Selmer classes under mild hypotheses.

Proposition 4.5. Assume that pg is ramified at every prime {|N~. Then the classes Xt
lie in Selg:(Hye, T}).

Proof. The argument in [35, Prop. 2.4.5] (see also [12, Prop. 10.1]) shows that for ev-
ery prime w of H,: the localization loc, (X,:) lies in the subspace Hér(Hpt’w,T}) C
H! (Hptw,TfT) defining Selcr(Hpt,T}), except when w|¢|N~, in which case it is shown
that

ptw’

HY(HYE T ors

pt,w?

T
loc,, (X,t) € ker{H (Hpt o, Tg) — },

where Hl(H;l{w,T})tors denotes the I-torsion submodule of Hl(HZ‘;f’w,T;). However,
such primes £ are inert in X, so Hy: ,, = K¢, and since our hypothesis on py implies that

HY (K}, T}) is I-torsion free (see e.g. [11, Lem. 3.12]), the result follows. O

Recall that K22 is the anticyclotomic Z,-extension of K, and K¢ denotes the subex-
tension of K2¢ with [K2¢ : K] = p™. Similarly as in [35, §3.3] and [42, §10.3], we set

3p 1= Cory , e (U," - Xpe) € HY (K, T}),

p

where ¢ > 0 is chosen so that K¢ C Hp:. By horizontal compatibility, the definition of
3, is independent of the choice of ¢, and for varying n they define a system
300 o= lim 3, € lim H' (K3°, T) ~ H'(K, Tt#).

— —
n n

By the work of Cornut—Vatsal [17] (see also [35, Cor. 3.1.2], which naturally extends to
quaternionic setting considered here) the class 3 is not I[T'4¢]-torsion.
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5. Main results

In this section we conclude the proof of the main results of this paper. Fix a positive
integer N and a prime p{ 6N and let

f= Zanqn € H[[Qﬂ
n=1

be a primitive Hida family of tame level N. Let K be an imaginary quadratic field of
discriminant prime to Np satisfying the generalized Heegner hypothesis (gen-H) relative
to N. Our results will require some of the technical hypotheses below, which we record
here for our later reference.

h0) T is regular,

h1) some specialization f, is the p-stabilization of a newform f € Sy(T'o(NV)),
h2) py is irreducible,

N—#1,

h5) py is ramified at every prime £|N—,

(ho)

(h1)

(h2)

(h3) N is squarefree,
(h4)

(h5)

(h6) p splits in K.

As usual, here N~ denotes the largest factor of N divisible only by primes which are
inert in .

5.1. Proof of Theorem A

The following is Theorem A in the Introduction.

Theorem 5.1. Assume hypotheses (h0)—(h6). Then X¢r (Koo, Af) is L[I'xc]|-torsion, and

Charyr.) (Xer (Koo, Af)) = (L, (£/K))
as ideals in 1[T'x] ®z, Qp.

Proof. It suffices to show that the twisted module XGr(ICOO,ATf) is I[T"k]-torsion, with
characteristic ideal generated by twe-1(Ly'(f/K)) after inverting p (see the twisting
lemma [55, Lem. 6.1.2]). In light of Theorem 3.8, this will follow from showing that
Xp.0(Koo, A}) is T[Tk ]-torsion, with characteristic ideal generated by twg-1 (%, (f/K))
after extending scalars to [""[[']; this is what we shall prove below.

From [64, Thm. 1.1] (see also Remark 5.3 below) we obtain the divisibility

Charygr, ) (Xo,0(Koos A}) - 1" [k] C (two 1 ((£/K)) inI™[Tel,  (5.0)
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which by descent via I'xc — I'4¢, Corollary 2.10, and [9, Thm. B] yields the divisibility
Chay gy (Xo o (K25, A}) - TU[T] © (ZPP(F/K)) mIM[TE]. (5.2)

Now let ¢ € A,(I) be such that f, is the ordinary p-stabilization of a newform
f € S2(I'g(N)) defined over O, and put OF = Z@zpDL. By the construction in
Theorem 2.9, the p-adic L-function Z7°"(f/K) specializes at ¢ to the p-adic L-function
L (f/K) € OF T3] of [12, Thm. 1.5] (see also [7, §3.1]). Since by [12, Thm. 3.4] the
module Xy o(K3, Ay) is O [I%¢]-torsion, with

Charpy re (Xo,0 (K3, Ay)) - OFITR] = (L™ (f/K)?)  in OFTK, (5.3)

by Lemma 3.5 we deduce that X o(K2C, ATf’aC) is I[T%¢]-torsion and that the divisibility
(5.2) is an equality. With this equality at hand, another application of Lemma 3.5 yields
equality in (5.1), concluding the proof of the theorem. 0O

For our later reference, we record the following results shown in the course of the
proof of Theorem 5.1.

Theorem 5.2. Assume hypotheses (h0)—(h6). Then the modules Xy o(Kso, Af) and
X@)O(Kgg,A;) are torsion over I['x] and L[T%], respectively, and the following equali-
ties hold:

Charypr,}(Xo.0(Koo, Af)) - 1"[Cx] = (L (£/K))  in 1" [T],
Charyprae (X0 (K, A})) - I [T5] = (LEP(F/K)?) in 1™ [T3e].

Remark 5.3. In the proof of Theorem 5.1 we used [64, Thm. 1.1], which assumes that
the underlying CM form g is residually irreducible and p-distinguished. Without these
hypotheses on g, the argument in the proof of [64, Thm. 1.1] establishes the divisibility

Charyr, 1 (Xp,0(Koo, Af)) - 1" [Tk] € (L (£/K)) (5:4)

in I""[T'x], up to certain height one primes of I"**. However, that such ambiguity can be
removed follows from the integrality of %, (f/K) established in Proposition 2.7 together
with the vanishing of the p-invariant of its anticyclotomic restriction [9, Thm. 5.7] (see
Corollary 2.10), and hence the divisibility (5.4) also holds for our underlying CM form

g in (2.1).

Remark 5.4. A key ingredient in the proof of (5.3) is the Heegner point “explicit reci-
procity law” of [14] (see also [7, §4.2] for the additional arguments in the case N~ # 1).
Indeed, as explained in [12, Appendix], this allows one to relate the main conjecture for
ZLIE(f/ K)? to Perrin-Riou’s Heegner point main conjecture [48], whose “upper bound
divisibility” was established by Howard [33,34] using the Euler system of Heegner points.
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5.2. Converse to Howard’s theorem

As shown in [35, §§2.3-4], for varying ¢ prime to N the big Heegner points X. €
H'(H,, T}) form an anticyclotomic Euler system for T}. Setting

3o := Corg, /xc(X1) € Hl(’C7T;)7
Kolyvagin’s methods thus yield a proof of the implication
30 ¢ Selee (K, T)iors = rankg Sele; (K, T}) =1, (5.5)

where the subscript tors denotes the I-torsion submodule (see [35, Cor. 3.4.3]). In the
spirit of Skinner’s converse to the theorem of Gross—Zagier and Kolyvagin, [56], in this
section we prove a result in the converse direction. Similarly as in [65], our converse to
(5.5) will be deduced from progress on the “big Heegner point main conjecture” (see [35,
Conj. 3.3.1] and [42, Conj. 10.8]), as recorded in the next result.

Theorem 5.5. Assume hypotheses (h0)—(h6). Then both Xer(K2S, AJ}) and Selg, (IC, TT:2¢)
have I[T%]-rank one, and

ac Selg: (K, THa<)\ *
Char]l[[l“%]] (XGI(ICCXN ATf)tors) = Chal"]l[[ra,g]] <W )
where the subscript tors denotes the 1[I'%]-torsion submodule.

Proof. Since 3 is not I[I'4°]-torsion by Cornut—Vatsal, part (iii) of [19, Thm. B] implies
that Xe, (K3, ATf) and Selg, (IC, TT2) have both I[I'4]-rank one, and that the divisibility

Selg, (I, TTac) ) 2

Charyraep (Xer (K6, A})tors) D Charypaey ( T 5

(5.6)

holds in I[I'%]. Concerning the additional hypotheses in Fouquet’s result, we note that:

« Assumption 3.4, that py is irreducible, is our (h2),

» Assumption 3.5, that p¢ is p-distinguished, follows from (h1) (see [40, Rem. 7.2.7]),

e Assumption 3.10, that the tame character of f admits a square-root, is satisfied by
(h1),

o Assumption 5.10, that all primes ¢|N for which py is not ramified have infinite
decomposition group in K2/K, is a reformulation of (h5),

o Assumption 5.13, that ps|q, is irreducible, follows from (h2), (h4) and (h5) (see [56,
Lem. 2.8.1]).
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Let ¢ € A,(I) be such that f, is the ordinary p-stabilization of a newform f €
S2(Tp(NN)) as in hypothesis (h1). Letting X D Y stand for the divisibility (5.6), by [12,
Thm. 3.4] (or [65, Thm. 1.2]) we have the equality

X =Y (mod ker(¢)I[T%])

(note that this is the source of the additional hypotheses (h3) and (h6)), from where the
result follows by an application of Lemma 3.5. O

Theorem 5.6. Assume hypotheses (h0)—(h6). Then the following implication holds:
ranky Selcr(lC,T}) =1 = 30¢ SelGr(lC,T})torS
where the subscript tors denotes the 1-torsion submodule.

Proof. Let .. € I'{S be a topological generator. The dual of the restriction map for the
extension K2¢/K induces a surjective homomorphism

Xor (K2, AL) /(Yae — 1) Xer (K28, Al) — Xee(K, AL)

with I-torsion kernel. Since Xg (K, ATf) and Selg, (I, T}) have the same I-rank by
Lemma 3.2, this shows that if Selg, (IC, T}) has I-rank one, then so do the I'{*-coinvariants
of Xer (KZS, AJ}), and hence by Theorem 5.5 we deduce that

Sel(;r (IC, TT’aC) >

(Yac — 1) 1 Charyprye < T[] 3

Thus the image of 3. in Selg (K, TT2¢)/(vac — 1)Sele, (K, TT2¢) is not I-torsion, and
since this image is sent to 3¢ under the natural injection

Selgr (K, TH) /(Yae — 1)Selee (K, TT) < Selg: (K, T}),
the result follows. O

Remark 5.7. Replacing the appeal to [12, Thm. 3.4] (or [65, Thm. 1.2]) in the proof of
Theorem 5.5 by an appeal to [7, Thm. 5.1] the same argument as above gives a proof of
Theorems 5.5 and 5.6 with hypotheses (h3)—(h6) replaced by “Hypothesis ©” from [68],
i.e., letting Ram(pys) be the set of primes ¢||N such that pg is ramified at ¢:

« Ram(py) contains all primes ¢||[N*, and all primes ¢| N~ such that £ = £1 (mod p),

o If N is not squarefree, then Ram(py) contains either a prime ¢|N~ or at least two
primes /|NT,

o If 62|N+, then HO(Qg,ﬁf) = {0},
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and the assumption that py is surjective and a, # +1 (mod p).
5.3. I-adic Gross—Zagier formula

In this section we prove a [-adic Gross—Zagier formula for the big Heegner point 3q
which will be a key ingredient in our application to Greenberg’s nonvanishing conjecture.
More generally, we shall prove a Gross—Zagier type formula for the I[I'4¢]-adic family
300; the result for 3g then follows by specialization at the trivial character.

Define the cyclotomic I[I'4¢]-adic height pairing

(= =)iae 1 = Selor (K, TT) @rprgeg Seler (K, TH)" — T @p [T @1 Fi - (5.7)

by

cyc . o\CycC
<a007 boo>}(:gg)]1 - ll_nil Z <an7 bn>)(:31’cy]1 -0,
" geGal(Kac/K)

and define the cyclotomic regulator Reye C I[I4] @ F1 to be the characteristic ideal of
the cokernel of (5.7) (after dividing by the image of (yeye — 1) in J¥°).

Since we assume that K satisfies (gen-H), the constant term L3, (f T/K)ae in the expan-
sion (3.5) vanishes (see Proposition 2.3). We next consider the linear term L (f T/K)ae.

Theorem 5.8. Assume hypotheses (h0)—(h6), and denote by X, ., the characteristic ideal

Of XGr<K:ggaA}')tors- Then

ors

Rcyc - Xors = (Lg,il(fT/’C)aC)
as ideals in 1[T%¢] @1 Fy.

Proof. Since Selg, (KC, TT#°) has I[I'4¢]-rank one by Theorem 5.5, the height formula of
Theorem 3.10 and Lemma 3.9 immediately yield the equality

Selg, (K, THae)

Rcyc . Char]l [Ta<] (H[[Fac]] . B}-T,ac
K

) - (Lg,il(fT/’C)aC) ', (5-8)
where n C I[I%] is the characteristic ideal of H¢, (Kg, TT2¢) /locg(Sele (K, TT2¢)). We

shall argue below that n # 0. Global duality yields the exact sequence

H(l}r (ICP ) TT’aC)
locy, (Selg, (K, TTac))

— Xpae (K2, AL) — Xeo (K25, AL) — 0. (5.9)

The left term in (5.9) is I[I'4°]-torsion, since by Corollary 3.7 the image of the map
locy : Selg (K, TT¢) — HE, (Kp, TT¢) is nonzero and the target has I[I'%¢]-rank one.
On the other hand, by Theorem 5.5 the module X¢, (K22, ATf) has I[I'4¢]-rank one. Hence
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it follows that the middle term in (5.9) has I[I'4¢]-rank one, and by the action of complex
conjugation the same is true for X, (K2, A}) Thus the nonvanishing of 7 follows from
the analogue of (5.9) for the prime p (see (5.12) below).

By Lemma 3.4 the above also shows that X¢, o(K2S, A}) is I[I"%¢]-torsion, and count-
ing ranks in the exact sequence

H! (K, THac)
He, (K, T2¢) (5.10)
— Xex (K25, A) — Xoro(K2, A) — 0,

0 — Selg, (K, TT¢) —Selg, o (I, TT) —

we see that the first two terms in (5.10) have I[I'4¢]-rank one. Since the quotient
H! (K, TT2¢) /HE, (K, TT2¢) has no I[I']-torsion, it follows that

Selg, (K, TT2¢) = Selg, (K, TT°). (5.11)
Taking I[I'4°]-torsion in the analogue of (5.9) for p, that is

Htlir (ICF» TT’aC)
locg(Sele, (K, THac))

— XGr,@(’CZ:;A.Tf) — XGI(K:ngATf) — 07 (512)

and applying Lemma 3.4 and the “functional equation” X = Xiors of [33, p. 1464] we

tors
obtain

N" Xiors = Charyprye) (Xar,0 (K, A%)). (5.13)

On the other hand, by the equivalence (i)’<=>-(ii)’ in Theorem 3.8, the second part of
Theorem 5.2 implies that

Selgr o (K, T*vac))

ac ATy —
Charﬂ[[p%cﬂ (XGr,O (]Coo’ Af)) = Charﬂ[[p?cc]] ( ]I[[Falcc]] . B]_‘Taac

as ideals in 1[I} ®z, Q,, and so the result follows from the combination of (5.8), (5.11),
and (5.13). O

The aforementioned I[I%¢]-adic Gross—Zagier formula for 3 is the following.
Corollary 5.9. Assume hypotheses (h0)—(h6). Then we have the equality
(LB (FT/)ac) = (3o, 3oo)iae 1)

as ideals of I[T%] @1 Fr.
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Proof. Since Selg, (K, T72¢) has I[I'%]-rank one by Theorem 5.5 and 3 is not I[T'x]-
torsion, the regulator Ry of (5.7) satisfies

Selgr (IC, TH2) Selgr (C, TH2¢) \
(Boes ool 1) = Reye Char”m( Il 3. ) O\ Ty 5.

By the “functional equation” of [33, p. 1464], the result thus follows from the combination
of Theorem 5.8 and the equality of characteristic ideals in Theorem 5.5. O

5.4. Proof of Theorem B

As in the Introduction, let —w € {41} be the generic sign in the functional equation of
the p-adic L-functions Ly (f,,s) for varying ¢ € X2 (I). For comparison, before giving
the proof of our application to Greenberg’s nonvanishing conjecture in the case of rank
one, we record a result in the rank zero case that follows immediately from [57].

Theorem 5.10 (Skinner—Urban). Assume that:

o py is irreducible and p-distinguished,
e f has trivial tame character,
o there is a prime L||N such that py is ramified at L.

If SelGr(Q,T}) is I-torsion, then L(f,,kg/2) # 0 for all but finitely many ¢ € X7(I).

Proof. Since the I-modules Selcr(Q,T}) and XGr(Q7ATf) have the same rank by
Lemma 3.2, our hypothesis implies that XGr(Q,A}) is I-torsion. Thus in particular
Sele:r (Q, A, (1 — ky/2)) is finite for all but finitely many ¢ € X7(I), and so the result
follows from [57, Thm. 3.6.13]. O

The following is Theorem B in the Introduction.

Theorem 5.11. Assume that:

(i) T is regular,
(i) pg is irreducible,
(iii) some specialization f is the p-stabilization of a newform f € Sa(I'o(N)),
(iv) N is squarefree,
(v) there are at least two primes {|N at which pg is ramified.

If Sele, (Q, T}) has I-rank one and the I-adic height pairing (—, —)gc]l is non-degenerate,
then

d
— Ly (£ 8) # 0,
ds 7 0 s=ky/2
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for all but finitely many ¢ € X2(1).

Proof. Let ¢ € X7(I) be such that f, is the ordinary p-stabilization of a newform
f € S2(To(N)). Let £1 and ¢3 be two distinct primes as in hypothesis (v), and choose an
imaginary quadratic field IC such that the following hold:

e /1 and {5 are inert in /C,
 every prime dividing N := N /{145 splits in K,
e p splits in K,

L(f ® exc, 1) # 0, where e is the quadratic character corresponding to K.

Note that the existence of K is ensured by a result of [63] (see also [20, Thm. B.1}),
and that, so chosen, I satisfies (gen-H) with N~ = ¢1{5. Now, the action of a complex
conjugation ¢ combined with the restriction map induces an isomorphism

SelGr(lC,T ) ~ Sele, (Q, T ) @ Selcr(Q,T ® €xc), (5.14)

where the first and second summands are identified with the + and — eigenspaces for
the action of ¢, respectively (see [57, Lem. 3.1.5]). By Kato’s work [38], the nonva-
nishing of L(f ® €x,1) implies that Sel(Q,T; ® ex) is finite, and so by the control
theorem for Selcr(Q,T} ® ex) (see the exact sequence in [35, Cor. 3.4.3]) we conclude
that Selg, (Q, T} ® €x) is I-torsion, and so

ranky Selcr(lC,T}) = rankj SelGr(QaT}) =1

by (5.14) and our assumption. In particular, since hypotheses (i)—(iv) imply hypotheses
(h0)—(h3) at the start of this section, and hypotheses (h4)—(h6) hold by our choice of IC,

Theorem 5.6 yields the non-triviality of the class 3, and so the element (3o, 30>Cyc el

is non-zero by our hypothesis of non-degeneracy.
Let LE(f/K)eye be the image of twg-1 (L (f/K)) under the natural projection
I[Tk] — I[I°]. By Theorem 2.4, for every ¢ € X2(I) we have the factorization

O(Ly (1K) eye) = twe -1 (LT (£,)) - twe -1 (LT (£ ® ex)) (5.15)
up to a unit in ¢(I)[I'¥°]*. Expand

O (F1/K)eye) = Llo (FL/K) + L1 (FL/K) - (eye = D) -+,
twe-i (L7 (£4) = LyB (FL) + LT (F) - (eye =) 4+,

w1 (Ly (£ @ ex) = Lo (F§ @ ex) + LT (FL @ exc) - (eye = 1) 4+,

as power series in 7ycyc — 1, and note that by the p-adic Mellin transform we have
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d
Ly (£49) #£0 = LT(fh)#0
S:k¢/2

(see [62, (24)]). The constant term L% ( fl /K) € 1 vanishes by Proposition 2.3, and so
the factorization (5.15) yields the following equality up to unit in (’);:

L (F1/60) = LI (FL) - LA (#] © ex).- (5.16)

Finally, since by definition LJ* ( fT/K) € T agrees with the image of the linear term
L3 ( FT/K)ac in (3.5) under the augmentation map I[T%] — I, from Corollary 5.9
specialized at the trivial character of I'4¢ and (5.16) we see that

(30,3007 #0 = LI (fL/K)#0, for almost all ¢ € X2(I)

= IF(F) 40, for almost all g € X(T),

concluding the proof of Theorem 5.11. O
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