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1. Introduction

Fix a positive integer N and a prime p � 6N . Let f =
∑∞

n=1 anq
n ∈ I�q� be a Hida 

family of tame level N , where I is a finite flat extension of the one-variable Iwasawa 
algebra OL�T � with coefficients in the ring of integers OL of a finite extension L of Qp. 
Let

ρf : GQ := Gal(Q/Q) −→ AutFI
(Vf ) � GL2(FI),

where FI denotes the fraction field of I, be the Galois representation associated to f
(which we take to be the contragradient of the Galois representation first constructed 
in [25]), and let ρ̄f : GQ → GL2(κI), where κI = I/mI is the residue field of I, be 
the associated semi-simple residual representation. By work of Mazur and Wiles [44,66], 
upon restriction to a decomposition group Dp ⊂ GQ at p we have

ρ̄f |Dp
∼

(
ε̄ ∗

δ̄

)
where the character δ̄ is unramified. We assume that

ρ̄f is absolutely irreducible, (irred)

and fix a GQ-stable lattice Tf ⊂ Vf which is free of rank two over I. Denote by F−Tf

the Ip-coinvariants of Tf , where Ip ⊂ Dp is the inertia subgroup, and set

Af := Tf ⊗I I
∨, F−Af := (F−Tf ) ⊗I I

∨,

where I∨ = Homcts(I, Qp/Zp) is the Pontryagin dual of I.
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Let K be an imaginary quadratic field of discriminant prime to Np, and let ΓK =
Gal(K∞/K) be the Galois group of the maximal Z2

p-extension of K unramified outside p. 
The Greenberg Selmer group of Af over K∞ is defined by

SelGr(K∞, Af ) := ker
{

H1(K∞, Af ) −→
∏
w�p

H1(Iw, Af )×
∏
w|p

H1(K∞,w,F
−Af )

}
, (1.1)

where w runs over the corresponding places of K∞. The Pontryagin dual

XGr(K∞, Af ) := Homcts(SelGr(K∞, Af ),Qp/Zp)

is well-known to be a finitely generated I�ΓK�-module.
Assume also that

ρ̄f is p-distinguished, i.e., ε̄ 	= δ̄. (dist)

Thanks to [67], it follows that F−Tf is I-free of rank one. Moreover, from the work 
of Hida [27] there exists a 3-variable p-adic L-function LHi

p (f/K) ∈ I�ΓK� uniquely 
characterized by the interpolation of the critical values for the Rankin–Selberg L-function 
L(fφ/K, χ, s) attached to the classical specializations fφ (base changed to K) of f
twisted by finite order characters χ : ΓK → μp∞ .

An instance of the Iwasawa–Greenberg main conjectures formulated in [23] then pre-
dicts the following. From now on in this Introduction and in our main results we shall 
assume that I is regular.

Iwasawa–Greenberg Main Conjecture. The module XGr(K∞, Af ) is I�ΓK�-torsion, and

CharI�ΓK�(XGr(K∞, Af )) = (LHi
p (f/K))

as ideals in I�ΓK�.

Many cases of this conjecture are known by the work of Skinner–Urban [57] and [38]. 
As we shall explain below, in this paper we place ourselves in a setting complementary 
to that in [57]. Write

N = N+N−

with N− being the largest factor of N divisible only by primes inert in K. The following 
is our main result towards the Iwasawa–Greenberg Main Conjecture.

Theorem A. In addition to (irred) and (dist), assume that:

• N is squarefree,
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• some specialization fφ is the p-stabilization of a newform f ∈ S2(Γ0(N)),
• N− is the product of a positive even number of primes,
• ρ̄f is ramified at every prime q|N−,
• p splits in K.

Then XGr(K∞, Af ) is I�ΓK�-torsion, and

CharI�ΓK�(XGr(K∞, Af )) = (LHi
p (f/K))

as ideals in I�ΓK� ⊗Zp
Qp.

As in [57], the fact that XGr(K∞, Af ) is I�ΓK�-torsion follows easily from Kato’s work 
[38], and the proof of Theorem A is reduced to establishing the divisibility “⊆” as ideals 
in I�ΓK� predicted by the main conjecture. For the proof of this divisibility, in [57]
the authors study congruences between p-adic families of cuspidal automorphic forms 
and Eisenstein series on GU(2, 2), and their method (in particular, their application of 
Vatsal’s nonvanishing results [61]) relies crucially on their hypothesis that N− is the 
squarefree product of an odd number of primes. In contrast, when N− is divisible by an 
even number of primes as in Theorem A, the central L-values studied in [61] all vanish 
for sign reasons, and another approach is needed.

Our main idea for the proof of Theorem A is to use Beilinson–Flach classes and 
their explicit reciprocity laws [41,40] to link the Iwasawa–Greenberg Main Conjecture 
for LHi

p (f/K) to the main conjecture for a different p-adic L-function Lp(f/K) studied 
by the second-named author [64] using Eisenstein congruences on GU(3, 1), and then 
exploit our assumption on N− to prove the latter main conjecture using Heegner points 
and their variation in p-adic families [35,19,12,13].

As a consequence of our approach, we also obtain an application to Greenberg’s con-
jecture (see [47, §0] and [22]) on the generic order of vanishing at the center of the p-adic 
L-functions attached to cusp form in Hida families. To state this, assume for simplicity 
that I is just OL�T �, and for each k ∈ Z�2 let fk be the p-stabilized newform on Γ0(Np)
obtained by setting T = (1 + p)k−2 − 1 in f . One can show that the p-adic L-functions 
LMTT
p (fk, s) of [43] satisfy a functional equation

LMTT
p (fk, s) = −wLMTT

p (fk, k − s)

with a sign w = ±1 independent of k ∈ Z>2 with k ≡ 2 (mod p − 1).

Greenberg’s nonvanishing conjecture. Let e ∈ {0, 1} be such that −w = (−1)e. Then

LMTT
p (fk, s)

(s− k/2)e

∣∣∣∣
s=k/2

	= 0,

for all but finitely many k ∈ Z�2 with k ≡ 2 (mod p − 1).
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In other words, for all but finitely many k as above, the order of vanishing of LMTT
p (fk, s)

at the center should be the least allowed by the sign in the functional equation.
To state our result in the direction of this conjecture, let

T †
f := Tf ⊗ Θ−1

be the self-dual twist of Tf . By work of Plater [51] (and more generally, Nekovář [46]) 
there is a cyclotomic I-adic height pairing

〈−,−〉cyc
K,I : SelGr(K, T †

f ) × SelGr(K, T †
f ) −→ FI (1.2)

interpolating the p-adic height pairings for the classical specialization of f as constructed 
by Perrin-Riou [49]. It is expected that 〈−, −〉cyc

K,I is non-degenerate, in the sense that its 
kernel on either side should reduce to I-torsion submodule of SelGr(K, T †

f ).

Theorem B. In addition to (irred) and (dist), assume that:

• N is squarefree,
• f2 is old at p,
• there are at least two primes �‖N at which ρ̄f is ramified.

If SelGr(Q, T †
f ) has I-rank one and 〈−, −〉cyc

K,I is non-degenerate, then

d

ds
LMTT
p (fk, s)

∣∣∣∣
s=k/2

	= 0,

for all but finitely many k ∈ Z�2 with k ≡ 2 (mod p − 1).

Remark 1.1. The counterpart to Theorem B in rank zero, i.e., the implication

rankI SelGr(Q, T †
f ) = 0 =⇒ LMTT

p (fk, k/2) 	= 0, (1.3)

for all but finitely many k as above, follows easily from [57] (see Theorem 5.10).

Remark 1.2. By the control theorem for SelGr(Q, T †
f ) (see e.g. [46, Prop. 12.7.13.4(i)]) 

and the p-parity conjecture for classical Selmer groups, the hypothesis that SelGr(Q, T †
f )

has I-rank e ∈ {0, 1} implies that −w = (−1)e. Conversely, it is expected that

rankI SelGr(Q, T †
f ) ?=

{
1 if w = 1,
0 if w = −1,

and this is known to follow from Howard’s “horizontal nonvanishing conjecture” (see [35, 
Cor. 3.4.3]).
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Remark 1.3. For certain Hida families f with CM (a case that is excluded by our hy-
potheses), the analogue of Theorem B is due to Agboola–Howard and Rubin [1, Thm. B]. 
(See also [59] and [10] for more general CM cases.) In this case, the analogue of the rank 
one and the non-degeneracy assumptions in Theorem B follow from Greenberg’s nonvan-
ishing results [21] and a transcendence result of Bertrand [4]. In rank zero, the analogue of
(1.3) in the CM case follows from [21] and Rubin’s proof of the Iwasawa main conjecture 
for imaginary quadratic fields [53].

We conclude this Introduction with some more details on the ingredients that go into 
the proofs of the above results.

Denote by Ẑur
p the completion of the ring of integers of the maximal unramified exten-

sion of Qp. The proof of Theorem A builds on the link that we establish in §3 between 
different instances of the Iwasawa–Greenberg main conjectures involving Selmer groups 
with different local conditions above p. In particular, letting p be the prime of K above p
determined by a fixed embedding Q ↪→ Qp, a central role is played by the Selmer group 
defined by

Sel∅,0(K∞, Af ) := ker
{

H1(K∞, Af ) −→
∏
w�p

H1(Iw, Af ) ×
∏
w|p

H1(K∞,w, Af )
}
.

The Pontryagin dual of Sel∅,0(K∞, Af ) is conjectured to be I�ΓK�-torsion, with charac-
teristic ideal generated by a p-adic L-function

Lp(f/K) ∈ Iur�ΓK�, where Iur := I⊗̂Zp
Ẑur

p ,

interpolating the critical values of the Rankin–Selberg L-function L(fφ/K, χ, s) with χ
running over characters of ΓK corresponding to theta series of weight higher than the 
weight of fφ. This second instance of the main conjecture can be related on the one hand 
to the Iwasawa–Greenberg Main Conjecture for LHi

p (f/K) by building on the explicit 
reciprocity laws for the Rankin–Eisenstein classes of Kings–Loeffler–Zerbes [40], and on 
the other hand (after anticyclotomic descent) its specialization in weight two is directly 
related to the main conjecture of the p-adic L-function of Bertolini–Darmon–Prasanna 
[2], allowing us to take the results of [64] and [12] towards the proof of those different main 
conjectures to bring to bear on the Iwasawa–Greenberg Main Conjecture for LHi

p (f/K).
On the other hand, a key ingredient in the proof of Theorem B is the Birch and 

Swinnerton-Dyer type formula for LHi
p (f/K) along the anticyclotomic Iwasawa algebra 

I�Γac
K � that we obtain in Theorem 5.8 by building on the earlier results of the paper, 

leading to a Gross–Zagier type formula for Howard’s system of big Heegner points Z∞
that we then apply for a suitably chosen imaginary quadratic field K.
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2. p-adic L-functions

2.1. Hida families

Let I be a local reduced normal extension of OL�T �, where OL is the ring of integers 
of a finite extension L of Qp, and denote by Xa(I) ⊂ Homcts(I, Qp) the set of continuous 
OL-algebra homomorphisms φ : I → Qp satisfying

φ(1 + T ) = ζ(1 + p)k−2

for some p-power root of unity ζ = ζφ and some integer k = kφ ∈ Z�2 called the weight of 
φ. We shall refer to the elements of Xa(I) as arithmetic primes of I, and let X o

a (I) denote 
the set consisting of arithmetic primes φ with ζφ = 1 and weight kφ ≡ 2 (mod p − 1).

Let N be a positive integer prime to p, let χ be an even Dirichlet character modulo 
Np taking values in L, and let f =

∑∞
n=1 anq

n ∈ I�q� be an ordinary I-adic cusp 
eigenform of tame level N and character χ, as defined in [57, §3.3.9]. In particular, for 
every φ ∈ Xa(I) of weight k we have

fφ :=
∞∑

n=1
φ(an)qn ∈ Sk(Γ0(ptN), χω2−kψζ),

where

• t � 1 is such that ζ is a primitive pt−1-st root of unity,
• ω is the Teichmüller character, and
• ψζ : (Z/ptZ)× → Q×

p is determined by ψζ(1 + p) = ζ.

Denote by Sord(N, χ; I) the space of such I-adic eigenforms f . If in addition fφ is N -new 
for all φ ∈ Xa(I), we say that f is a Hida family of tame level N and character χ.

We refer to fφ as the specialization of f at φ. More generally, if φ ∈ Homcts(I, Qp)
is such that fφ is a classical eigenform, we say that fφ is a classical specialization of 
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f ; this includes the specializations of f ∈ Sord(N, χ; I) at φ ∈ Xa(I), but possibly also 
specializations in weight 1, for example.

2.2. Congruence modules

We recall the notion of congruence modules following the treatment of [57, §12.2]
and [36, §3.3]. Let f be a Hida family of tame level N and character χ defined over I. 
Letting T (N, χ, I) be the Hecke algebra acting Sord(N, χ; I), the Hida family f defines 
an algebra homomorphism λf : T (N, χ, I) → I which factors through a local component 
of T (N, χ, I) denoted Tmf

. Then, since f is N -new, upon extension of scalars to the 
fraction field FI of I there is an algebra direct sum decomposition

λ : Tmf
⊗I FI � FI × T ′

with the projection onto the first factor given by λf . The congruence ideal C(f) ⊂ I is 
defined by

C(f) := λf

(
Tmf

∩ λ−1(FI × {0}
)
.

As in [40, §7.7], we shall also consider the fractional ideal Jf := C(f)−1 ⊂ FI. As noted 
in [40], it follows from [27, Thm. 4.2] that elements of Jf define meromorphic functions 
on Spec(I) which are regular at all arithmetic points.

2.3. Rankin–Selberg p-adic L-functions

Let Γ be the Galois group of the cyclotomic Z×
p -extension of Q, and set

ΛΓ = Zp�Γ�.

Note that if j ∈ Z and χ is a Dirichlet character of p-power conductor, there is a unique 
φ ∈ Homcts(ΛΓ, Q

×
p ) extending the character z �→ zjχ(z) on Z×

p .

Theorem 2.1. Let f1, f2 be Hida families of tame levels N1, N2, respectively, and let 
N = lcm(N1, N2). Then there is an element

Lp(f1,f2) ∈
(
Jf1⊗̂Zp

If2⊗̂Zp
ΛΓ

)
⊗Z Z[μN ]

uniquely characterized by the following interpolation property. Let f1, f2 be classical spe-
cializations of f1, f2 of weights k1, k2, respectively, with k1 > k2 � 1, let j be an integer 
in the range k2 � j � k1 − 1, and let χ be a Dirichlet character of p-power conductor. 
Suppose that the local component at p of the automorphic representation πf1 is a princi-
pal series representation π(η1, η′1) with η1 unramified and η1(p) a p-adic unit. Then the 
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value of Lp(f1, f2) at the corresponding specialization φ ∈ Spec(If1⊗̂Zp
If2⊗̂Zp

ΛΓ) is 
given by

φ(Lp(f1,f2)) = E(f1, f2, χ, j)
E(f1)E∗(f1)

· Γ(j)Γ(j − k2 + 1)
π2j+1−k2(−i)k1−k222j+k1−k2

〈
f1, f c

1 |k1

( −1
pt1N1

)〉
Γ0(pt1N1)

× L(f1, f2, χ
−1, j),

where

• αi and βi are the roots of the Hecke polynomial of fi at p, with αi a p-adic unit,
• denoting by pt the conductor of χ,

E(f1, f2, χ, j) =

⎧⎨⎩
(
1 − pj−1

α1α2

)(
1 − pj−1

α1β2

)(
1 − β1α2

pj )(1 − β1β2
pj

)
if t = 0,

G(χ)2 ·
(

p2j−2

α2
1α2β2

)t

if t � 1,

with G(χ) is the Gauss sum of χ,
• denoting by pt1 the p-part of the conductor of η′1, then

E(f1)E∗(f1) =

⎧⎨⎩
(
1 − β1

pα1

)(
1 − β1

α1

)
if t1 = 0,

G(χ1) · η′1η−1
1 (pt1)p−t1 if t1 � 1,

where χ1 is the nebentypus of f1.

Proof. This follows from [27, Thm. 5.1], which we have stated adopting the formulation 
in [40, Thm. 7.7.2] (slightly extended to include more general specializations of the 
dominant Hida family f1). �

We shall consider the p-adic L-functions Lp(f1, f2) of Theorem 2.1 in the cases where 
either f1 or f2 has CM. Thus we let f be a fixed Hida family of tame level N defined 
over I, which we assume contains all the N -th root of unity, and assume that ρ̄f satisfies 
hypotheses (irred) and (dist) from the Introduction. On the other hand, let K be an 
imaginary quadratic field of discriminant −DK < 0 prime to pN such that

p = pp splits in K,

with p the prime above p induced by our fixed embedding ıp : Q ↪→ Cp. Let K∞ be 
Z2

p-extension of K as in the Introduction, and denote by Γp � Zp the Galois group over 
K of the maximal subfield of K∞ unramified outside p. We then let



10 F. Castella, X. Wan / Advances in Mathematics 400 (2022) 108266
g =
∞∑

n=1
bnq

n ∈ Ig�q� (2.1)

be the canonical Hida family of CM forms constructed in [37, §5.2], where Ig = Zp�Γp�. 
Specifically, denoting by θp : A×

K → Γp the composition of the Artin reciprocity map 
recK : A×

K → Gab
K with the natural projection Gab

K � Γp, we have

bn =
∑

N(a)=n,(a,p)=1

θp(xa),

where the sum is over integral ideals a ⊂ OK, and xa ∈ A∞,×
K is any finite idèle of K

with ordw(xa,w) = ordw(a) for all finite places w of K.

2.4. Non-dominant CM: (f1, f2) = (f , g)

Since ρ̄f satisfies hypotheses (irred) and (dist), by [67], the local ring Tmf
introduced 

in §2.2 is known to be Gorenstein, and by Hida’s results [26] it follows that the congruence 
ideal C(f) is principal.

Denote by Γcyc the Galois group of the cyclotomic Zp-extension of Q.

Definition 2.2. Let cf ∈ C(f) be a generator, and set

LHi
p (f/K) := cf · e1Lp(f , g),

where e1Lp(f , g) ∈ Jf ⊗̂Zp
Ig�Γcyc� is the natural projection of Lp(f , g) via Γ � Γcyc.

We will often identify Γcyc with the Galois group Γcyc
K of the cyclotomic Zp-extension 

of K. Letting ΓK be the Galois group Gal(K∞/K), note that the canonical projections 
to Γp and Γcyc

K induce an isomorphism

ΓK � Γp × Γcyc
K .

Since Ig = Zp�Γp�, we may thus consider LHi
p (f/K) as an element in I�ΓK�.

On the other hand, the action of complex conjugation yields a decomposition

ΓK � Γac
K × Γcyc

K ,

where Γac
K denotes the Galois group of the anticyclotomic Zp-extension of K. We next 

study the projections of LHi
p (f/K) to I�Γac

K � and I�Γcyc
K �.

2.4.1. Anticyclotomic restriction of LHi
p (f/K)

Assume that f has trivial tame character, and following [35, Def. 2.1.3] define the 
critical character Θ : GQ → I× by
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Θ := [〈εcyc〉1/2], (2.2)

where εcyc : GQ → Z×
p is the cyclotomic character, 〈−〉 : Z×

p → 1 + pZp is the natural 
projection, and

[−] : 1 + pZp ↪−→ Zp�1 + pZp�
× � Zp�T �× −→ I×

is the composition of the obvious maps. This induces the I-linear twist map

twΘ−1 : I�ΓK� −→ I�ΓK� (2.3)

defined by γ �→ Θ−1(γ)γ for γ ∈ ΓK. (This map, which will appear repeatedly throughout 
the paper, will be used to restrict to the “central critical line” in the weight-cyclotomic 
space.)

Write N as the product

N = N+N−

with N+ (resp. N−) divisible only by primes which are split (resp. inert) in K, and 
consider the following generalized Heegner hypothesis:

N− is the squarefree product of an even number of primes. (gen-H)

Whenever we assume that K satisfies (gen-H), we fix an integral ideal N+ ⊂ OK with 
OK/N

+ � Z/N+Z.

Proposition 2.3. Let LHi
p (f †/K)ac be the image of twΘ−1(LHi

p (f/K)) under the natural 
projection I�ΓK� → I�Γac

K �. If K satisfies (gen-H), then LHi
p (f †/K)ac is identically zero.

Proof. Let φ ∈ Spec(If ⊗̂Zp
Ig⊗̂Zp

Zp�Γcyc�) = Spec(I�ΓK�) be a specialization in the 
range specified in Theorem 2.1, with f1 = fφ the p-stabilization of a newform f ∈
Sk(Γ0(N)) of weight k � 2 and f2 = gφ a classical weight 1 specialization. By the 
interpolation property, the value φ(LHi

p (f/K)) is a multiple of

L(f1, f2, χ
−1, j) = L(f/K, ψ, j),

with ψ a finite order character of ΓK and 1 � j � k−1, and so φ(twΘ−1(LHi
p (f/K))) is also 

a multiple of L(f/K, ψ′, k/2) for a finite order character ψ′ of ΓK. If ψ′ factors through 
the projection ΓK � Γac

K , then the L-function L(f/K, ψ′, s) is self-dual, with a functional 
equation relating its values at s and k−s, and if K satisfies the hypothesis (gen-H), then 
the sign in this functional equation is −1 (see e.g. [17, §1]). Thus L(f/K, ψ′, k/2) = 0, 
and letting φ vary, the result follows. �
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2.4.2. Cyclotomic restriction of LHi
p (f/K)

As above, we denote by Γcyc
K the Galois group of the cyclotomic Zp-extension of K, 

which we shall identify with Γcyc, and let γ ∈ Γcyc be a topological generator.
For f = fφ the specialization of f at some φ ∈ X o

a (I) of weight k � 2 defined over 
a finite extension L/Qp with ring of integers OL, and ε a primitive (in our application, 
quadratic) L-valued Dirichlet character of conductor C prime to p, we let LMTT

p (f ⊗ ε) ∈
OL�Γ� be the cyclotomic p-adic L-function attached to f⊗ε in [43]. This is characterized 
by the following interpolation property. If φ′ ∈ X o

a (OL�Γcyc�) is given by φ′(γ) = ζ(1 +
m)m with 0 � m � k − 2 and ζ a primitive pt−1-st root of unity, then

LMTT
p (f ⊗ ε)(φ′) = φ(ap)−t

(
1 −

ω−mψ−1
ζ ε(p)pk−2−m

φ(ap)

)(
1 − ωmψζ ε̄(p)pm

φ(ap)

)

× (pt′C)m+1 · Γ(m + 1)
(−2πi)m ·G(εω−mψ−1

ζ ) · Ω(−1)mε(−1)
f

· L(f ⊗ ε, ω−mψ−1
ζ ,m + 1),

(2.4)
where ω is the Teichmüller character, ψζ is as in §2.1, t′ = max{1, t}, and Ω±

f ∈ C× are 
Shimura’s periods, normalized up to a unit in O×

L as in [57, §3.3.3].

Theorem 2.4. Let LHi
p (f/K)cyc be the image of LHi

p (f/K) under the natural projection 
I�ΓK� → I�Γcyc

K �. Then for every φ ∈ X o
a (I), we have

φ(LHi
p (f/K)cyc) = LMTT

p (fφ) · LMTT
p (fφ ⊗ εK)

up to a unit, where εK is the quadratic character associated to K.

Proof. Since we assume that ρ̄f satisfies hypotheses (irred) and (dist) from the Intro-
duction, by [26, Thm. 0.1] (see also [57, Lem. 12.1]) for every φ ∈ X o

a (I) of weight k � 2
(hence of trivial nebentypus) we have the period relation

φ(cf ) = u · pk/2−1 ·
2−3(2i)k+1〈fφ,fφ〉Γ0(N)

Ω+
fφ

· Ω−
fφ

where u ∈ φ(I)×. Moreover, we have that Ω±
fφ

= Ω∓
fφ⊗εK

up to a unit (see [58, Lem. 9.6]
for example). In light of the factorization

L(fφ/K, ψ−1
ζ , 1) = L(fφ, ψ

−1
ζ , 1) · L(fφ ⊗ εK, ψ

−1
ζ , 1),

the result thus follows from a direct comparison of the interpolation properties in The-
orem 2.1 (with k1 = k and j = k2 = 1) and (2.4) with m = 0. �
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2.5. Dominant CM: (f1, f2) = (g, f)

As in §2.4, we let f ∈ I�q� be a fixed Hida family of tame level N and trivial tame 
character, and g be the CM Hida family in (2.1).

Let Ẑur
p be the completion of the ring of integers of the maximal unramified extension 

of Qp, and set

Iur := I⊗̂Zp
Ẑur

p .

By [39, §5.3.0] (see also [18, Thm. II.4.14]) there exists a p-adic L-function Lp(K) ∈
Ẑur

p �ΓK� such that if ψ is a character of ΓK corresponding to an algebraic Hecke character 
of K crystalline at the primes above p and infinity type (a, b) with 0 � −b < a, then

Lp(K)(ψ) =
(√

DK
2π

)b

· Γ(b) · (1 − ψ(p)) · (1 − p−1ψ−1(p)) ·
Ωb−a

p

Ωb−a
K

· L(ψ, 0), (2.5)

where ΩK ∈ C× and Ωp ∈ C×
p are certain CM periods (as defined in e.g. [14, §2.5]).

Definition 2.5. Let hK be the class number of K, and set

Lp(f/K) :=
(
hK · Lp(K)ac

)
· Lp(g,f), (2.6)

where Lp(K)ac is the anticyclotomic projection of Lp(K).

Remark 2.6. As in [32] here we view Lp(K)ac as an element in Ẑnr
p �ΓK� via the map 

sending γ ∈ Γac
K to γ̃c−1, where γ̃ ∈ ΓK is any lift of γ, and c denotes the action of 

complex conjugation.

Note that a priori Lp(f/K) is an element in Jg ⊗I Iur�ΓK�.

Proposition 2.7. The p-adic L-function in (2.6) is integral, i.e., Lp(f/K) ∈ Iur�ΓK�.

Proof. By construction, if H(g) ∈ Ig is a congruence power series for g (i.e., a generator 
of the principal ideal C(g) ⊂ Ig), then the product H(g) · Lp(g, f) is integral, so it 
suffices to show that hK · Lp(K)ac is divisible by H(g). By [32, Thm. 0.3] and Rubin’s 
proof [53] of the Iwasawa main conjecture for K, one has that such divisibility holds up 
to powers of the augmentation ideal (γp − 1) ⊂ Ig; since by [5, Thm. A(i)] one knows 
that H(g) is not divisible by γp − 1, the result follows. �

The later arguments in this paper will exploit the close link between Lp(f/K) and 
the 3-variable p-adic L-function constructed in [64] and that we now recall. Fix a finite 
set Σ of places K outside p and containing all the places dividing NDK. Then by the 
results in [64, §7.5] there exists an element
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LΣ
p (f/K) ∈ Iur�ΓK�

characterized by the following interpolation property. For a Zariski dense set of points 
φ ∈ Spec(I�ΓK�), corresponding to pairs (fφ, ψφ) with fφ of weight 2 and conductor 
ptN generating a unitary automorphic representation πfφ

whose component at p is 
isomorphic to π(χ1,p, χ2,p) with vp(χ1,p(p)) = −1

2 and vp(χ2,p(p)) = 1
2 , and ψφ a Hecke 

character of K of infinity type (−n, 0) for some n � 3 and conductor pt, we have

φ(LΣ
p (f/K)) = p(n−3)tψ2

φ,pχ
−1
1,pχ

−1
2,p(p−t)G(ψφ,pχ

−1
1,p)G(ψφ,pχ

−1
2,p)Γ(n)Γ(n− 1)Ω2n

p

×
LΣ(fφ, χ

−1
φ ψφ, 0)

(2πi)2n−1Ω2n
K

,

(2.7)
where χφ is the nebentypus of fφ and LΣ(fφ, χ

−1
φ ψφ, 0) is the Σ-imprimitive Rankin–

Selberg L-value.

Proposition 2.8. Let

Lp(f/K) := LΣ
p (f/K) ×

∏
w∈Σ

Pw(ΨK(Frobw))−1, (2.8)

where Pw is the Euler factor at w and ΨK : GK � ΓK is the natural projection. Then 
Lp(f/K) = Lp(f/K) up to a unit.

Proof. We begin by noting that Lp(f/K) satisfies the same interpolation property as in 
(2.7) but with LΣ(fφ, χ

−1
φ ψφ, 0) replaced by the primitive counterpart L(fφ, χ

−1
φ ψφ, 0). 

Now, any character ψφ as above can be written as the product ψ′
φ ·ψ′′

φ, with ψ′
φ cyclo-

tomic (i.e., factoring through ΓK � Γcyc
K ), and ψ′′

φ corresponding to a Hecke character 
unramified at p and of infinity type (−n, 0). We then have that χ−1

φ ψ′
φ (resp. the theta 

series of ψ′′
φ) corresponds to χ| · |j (resp. f1 = gφ) in the notation of Theorem 2.1, and

L(fφ, χ
−1
φ ψφ, 0) = L(f1, f2, χ

−1, j)

with f2 = fφ. Letting ptDK be the conductor of gφ, by [31, Thm. 7.1] a direct calculation 
shows that the product

E(gφ)E∗(gφ) ·
〈
gφ, gφ|2

(
−1

ptDK

)〉
Γ0(ptDK)

in Theorem 2.1 agrees, up to a p-adic unit independent of φ, with

Γ(n)G(ψ′′ −1
φ,p̄ )L(ψ′′

φ(ψ′′
φ)−c, 1)

n
· L(εK, 1)

, (2.9)
(−2πi) −2πi
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where εK is the quadratic character associated with K/Q. By the class number formula, 
the second factor in this product is given by hK up to a p-adic unit, while by the interpo-
lation property of the Katz p-adic L-function, the first factor multiplied by (Ωp/ΩK)2n
is interpolated by Lp(K)ac for varying φ. Comparing the interpolation formulas in The-
orem 2.1 and (2.7) therefore yields the result. �

We conclude this section by discussing the anticyclotomic restriction of Lp(f/K).

Theorem 2.9. Assume that K satisfies (gen-H), and if N− > 1 assume in addition that 
N is squarefree. Then there exists an element L BDP

p (f/K) ∈ Iur�Γac
K � such that for every 

φ ∈ X o
a (I) of weight k � 2, and every crystalline character ψ of Γac

K corresponding to a 
Hecke character of infinity type (n, −n) with n � 0, we have

φ(L BDP
p (f/K)2)(ψ) = Ep(fφ, ψ)2 · ψ(N+)−1 · 23 · ε(fφ) · w2

K
√

DK

· Γ(k + n)Γ(n + 1)Ω2k+4n
p ×

L(fφ/K, ψ, k/2) · α(fφ,f
B
φ )−1

(2π)k+2n+1 · (Im θ)k+2n · Ω2k+4n
K

,

where Ep(fφ, ψ) = (1 − φ(ap)ψp(p)p−k/2)(1 − φ(ap)−1ψp(p)pk/2−1), ε(fφ) is the global 
root number of fφ, wK := |O×

K |, Ωp ∈ C×
p and ΩK ∈ C× are CM periods attached to K

as [14, §2.5], θ ∈ K is as in (4.1) below, and

α(fφ,f
B
φ ) =

〈fφ,fφ〉
〈fB

φ ,f
B
φ 〉

is a ratio of Petersson norms of fφ and its transfer fB
φ to a quaternion algebra B, 

normalized as in [52, §2.2].

Proof. When N− = 1, this is [13, Thm. 2.11] (in which case α(fφ, f
B
φ ) = 1). In the 

following we sketch how to extend that result to include the more general Heegner 
hypothesis (gen-H). Some of the notations used here will be introduced later in §4.

Let OB be a maximal order of B, and let IgN+,N− be the Igusa scheme over Z(p)
classifying abelian surfaces with OB-multiplication and U∞-level structure (here U∞ is 
the open compact Ur ⊂ R̂×

r in §4.1 with r = ∞). For any valuation ring W finite flat over 
Zp, denote by Vp(W ) the module of formal functions on IgN+,N− (i.e., p-adic modular 
forms) defined over W , and set

Vp(I) := Vp(W0)⊗̂W0I,

where W0 = W (κI) is the ring of Witt vectors of the residue field of I. For every OK-
ideal a prime to N+p, the construction of ς(s) (for arbitrary s � 0) in §4.2 determines 
CM points x(a) ∈ IgN+,N− , and the argument in [28, Thm. 3.2.16] with the use of 
q-expansions and the q-expansion principle replaced by Serre–Tate-expansions and the 
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resulting t-expansion principle around any such x(a) (see e.g. [30, p. 107]) shows that 
every element fB ∈ Vp(I) defines a p-adic family (in fact, finite collections of such, since 
I is finite over W0�T �) of p-adic modular forms fB

z = fB(uz − 1) ∈ Vp(W0), where 
u = 1 + p, indexed by z ∈ Zp.

The Hida family f corresponds to minimal prime in the localized universal p-ordinary 
Hecke algebra T ord

∞,m, and by the integral Jacquet–Langlands correspondence (see the dis-
cussion in [42, §5.3] for example), there exists a p-adic family fB as above corresponding 
to f , which we normalize by requiring that some Serre–Tate expansion fB

z (t) does not 
vanish modulo p.

There are U - and V -operators acting on fB defined as in [6, §3.6], and we set

f �
B := fB |(V U − UV ).

With these, one can define Iur-valued measures μfB ,x(a) and μf�
B,a

on Zp (with the 

latter supported on Z×
p by [6, Prop. 4.17]) as in [13, §2.7], and an Iur-valued measure 

Lp,ξ(f/K) on Gal(Hp∞/K) by

Lp,ξ(f/K)(φ) =
∑

[a]∈Pic(OK)

ξχ−1(a)N(a)−1
∫
Z×

p

(φ|[a])(z)dμf�
B,a

(z)

for all φ : Gal(Hp∞/K) → O×
Cp

, where, if σa corresponds to a under the Artin reciprocity 
map, φ|[a] is the character on z ∈ Z×

p given by φ(σarecp(z)) for the local reciprocity 
map recp : K×

p → Gab
K → Γac

K , χ : K×\A×
K → I× is the character given by x �→

Θ(recQ(NK/Q(x))) for the reciprocity map recQ : Q×\A× → Gab
Q , and ξ is the auxiliary 

anticyclotomic I-adic character constructed in [13, Def. 2.8].
Still denoting by Lp,ξ(f/K) its image under the natural projection Iur�Gal(Hp∞/K)

� → Iur�Γac
K �, and setting

L BDP
p (f/K) = twξ−1(Lp,ξ(f/K)),

one then readily checks as in the proof of [13, Thm. 2.11] that for every φ ∈ X o
a (I), 

the specialization φ(Lp(f/K)) agrees with the measure constructed in [6, §8.4] (in a 
formulation germane to that in [9, §5.2]) for the newform associated with fφ, from 
where the stated interpolation property follows from [6, Prop. 8.9]. �
Corollary 2.10. With hypotheses as in Theorem 2.9, denote by Lp(f †/K)ac the image of 
twΘ−1(Lp(f/K)) under the natural projection Iur�ΓK� → Iur�Γac

K �. Then

Lp(f †/K)ac = L BDP
p (f/K)2 (2.10)

up to a unit in Iur�Γac
K �[1/p]×. In particular, Lp(f †/K)ac is nonzero.
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Proof. In light of Proposition 2.8, the claimed equality up to a unit follows from a direct 
comparison of the respective interpolation formulas (cf. [37, §3.3]). On the other hand, 
for every φ ∈ X o

a (I) the p-adic L-function L BDP
p (f/K) specializes at φ to the p-adic L-

functions constructed in [14, §3.3] (for N− = 1), and in [9, §5.2] and [6, §8] (for N− > 1); 
since the latter are nonzero by [14, Thm. 3.9] and [9, Thm. 5.7], the last claim in the 
theorem follows. �
3. Iwasawa theory

Throughout this section, we fix a positive integer N and a prime p � 6N , and let 
f =

∑∞
n=1 anq

n ∈ I�q� be a Hida family of tame level N and trivial tame character, 
and let K be an imaginary quadratic field of discriminant prime of Np in which p = pp

splits.

3.1. Selmer groups

Let Tf be the big Galois representation associated to f , for which we shall take the 
geometric realization denoted M(f)∗ in [40, Def. 7.2.5]. Thus Tf is a locally free I-
module of rank 2, and letting Dp ⊂ GQ be the decomposition group at p determined by 
our fixed embedding ιp : Q ↪→ Qp, it fits in an exact sequence of I�Dp�-modules

0 −→ F+Tf −→ Tf −→ F−Tf −→ 0 (3.1)

with F±Tf locally free of rank 1 over I, and with the Dp-action on the quotient F−Tf

given by the unramified character sending an arithmetic Frobenius to ap ∈ I×.
Let kI := I/mI be the residue field of I, and denote by ρ̄f : GQ → GL2(κI) the 

semi-simple residual representation associated with Tf , which by (3.1) is conjugate to 
an upper-triangular representation upon restriction to Dp:

ρ̄f |Dp
∼

(
ε̄ ∗

δ̄

)
.

Assume that ρ̄f is absolutely irreducible and that ε̄ 	= δ̄. Then by work of Wiles [66] (see 
also [40, Thm. 7.2.8]), Tf is free of rank 2 over I, and each F±Tf is free of rank 1.

Recall that ΓK denotes the Galois group of the Z2
p-extension K∞/K, and consider the 

I�ΓK�-module

T := Tf ⊗I I�ΓK�

equipped with the GK-action via ρf ⊗ ΨK, where ρf is the GQ-representation afforded 
by Tf , and ΨK is the tautological character GK � ΓK ↪→ I�ΓK�×. Replacing ΓK by Γac

K
(resp. Γcyc

K ), we define the GK-module Tac (resp. Tcyc) similarly.
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As in [35], we also define the critical twist

T †
f := Tf ⊗ Θ−1, (3.2)

where Θ : GQ → I× is the character (2.2), and define its deformations T†, T†,ac, and 
T†,cyc similarly as before.

In the definitions that follow, we let M denote either of the above Galois modules, for 
which we naturally define F±M using (3.1). We also let Σ be a finite set of places of Q
containing ∞ and the primes dividing Np, and for any number field F , let GF,Σ be the 
Galois group of the maximal extension of F unramified outside the places above Σ.

Consider the p-relaxed Selmer group defined by

Sel{p}(F,M) = ker
{

H1(GF,Σ,M) −→
∏

v∈Σ, v�p

H1(Fv,M)
H1

ur(Fv,M)

}
,

where H1
ur(Fv, M) = ker{H1(Fv, M) → H1(F ur

v , M)} is the unramified local condition.

Definition 3.1. For v|p and Lv ∈ {∅, Gr, 0}, set

H1
Lv

(Fv,M) :=

⎧⎪⎨⎪⎩
H1(Fv,M) if Lv = ∅,
ker{H1(Fv,M) −→ H1(F ur

v ,F−M)} if Lv = Gr,
{0} if Lv = 0,

and for L = {Lv}v|p, define

SelL (F,M) := ker
{

Sel{p}(F,M) −→
∏
v|p

H1(Fv,M)
H1

Lv
(Fv,M)

}
.

Thus, for example Sel0,∅(K, M) is the subspace of Sel{p}(K, M) consisting of classes 
which satisfy no condition (resp. are locally trivial) at p (resp. p). For the ease of notation, 
we let SelGr(F, M) denote the Selmer group SelL (F, M) given by Lv = Gr for all v|p.

We shall also need to consider Selmer groups for the discrete module

Af := Homcts(Tf , μp∞).

To define these, we note that by Shapiro’s lemma there is a canonical isomorphism

H1(K,T) � lim←−−
K⊂fF⊂K∞

H1(F, Tf ), (3.3)

where F runs over the finite extensions of K contained in K∞ and the limit is with respect 
to the corestriction maps. The isomorphism (3.3) is compatible with the local restriction 



F. Castella, X. Wan / Advances in Mathematics 400 (2022) 108266 19
maps (see e.g. [57, §3.1.2]), and therefore the Selmer groups SelL (K, T) are defined by 
local conditions H1

Lv
(Fv, Tf ) ⊂ H1(Fv, Tf ) for all primes v (with the unramified local 

condition for v � p). Thus we may let

SelL (K∞, Af ) ⊂ lim−−→
K⊂fF⊂K∞

H1(F,Af )

be the submodule cut out by the orthogonal complements of H1
Lv

(Fv, Tf ) under the 
perfect Tate duality

H1(Fv, Tf ) × H1(Fv, Af ) −→ Qp/Zp.

This also defines the Selmer groups SelL (F, Af ) ⊂ H1(F, Af ) for any number field F , 
and we shall also consider their variants for the twisted module

A†
f := HomZp

(T †
f , μp∞),

or their specializations. Finally, if W denotes any of the preceding discrete modules, we 
set

XL (F,W ) := HomZp
(SelL (F,W ),Qp/Zp),

which we simply denote by XGr(F, W ) when Lv = Gr for all v|p.
We now record a number of lemmas for our later use.

Lemma 3.2. Assume that ρ̄f |GF
is absolutely irreducible. Then SelGr(F, T †

f ) and
XGr(F, A†

f ) have the same I-rank.

Proof. For any height one prime P ⊂ I, let IP be the localization of I at P, and let 
FP = IP/P be the residue field. It suffices to show that for all but finitely many P ∈
Xa(I), the spaces SelGr(F, T †

f )P/P and XGr(F, A†
f )P/P have the same FP-dimension.

As noted in [46, §12.7.5] (see also [35, Lem. 2.1.6]), Hida’s results imply that the 
localization IP of I at any P ∈ Xa(I) is a discrete valuation ring. Let π ∈ IP be a 
uniformizer. From Nekovář’s theory (see [46, Prop. 12.7.13.4(i)]) and the identification 
[35, (21)], multiplication by π induces natural maps

SelGr(F, T †
f )P/π ↪−→ SelGr(F, T †

f ,P/π),

SelGr(F,A†
f ,P[π]) −� SelGr(F,A†

f )P[π]

which are isomorphisms for all but finitely many P ∈ Xa(I). Since by [33, Lem. 1.3.3] the 
spaces SelGr(F, T †

f ,P/π) and SelGr(F, A†
f ,P[π]) have the same FP-dimension, the result 

follows. �
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Lemma 3.3. Assume that ρ̄f |GK is absolutely irreducible. Then H1(GK,Σ, T†) and 
H1(GK,Σ, T†,ac) are torsion-free over I�ΓK� and I�Γac

K �, respectively.

Proof. This follows from [50, §1.3.3], since H0(K∞, ρ̄f ) = H0(Kac
∞, ρ̄f ) = {0} by the 

hypothesis. �
Lemma 3.4. We have rankI�Γac

K �(XGr,∅(Kac
∞, A†

f )) = 1 +rankI�Γac
K �(XGr,0(Kac

∞, A†
f )). More-

over, if I is regular then

CharI�Γac
K �(XGr,∅(Kac

∞, A†
f )tors) = CharI�Γac

K �(X0,Gr(Kac
∞, A†

f )tors),

where the subscript tors denotes the I�Γac
K �-torsion submodule.

Proof. The first claim follows from an argument similar to that in Lemma 3.2 using part 
(2) of [12, Lem. 2.3]. For the second, note that the regularity of I implies that of I�Γac

K �. 
Thus by [19, Lem. 6.18] the second claim follows from part (3) of [12, Lem. 2.3]. �

We conclude this section with the following useful commutative algebra lemma from 
[57], which will be used repeatedly in the proof of our main results.

Lemma 3.5. Let R be a local ring and a ⊂ R a proper ideal such that R/a is a domain. 
Let I ⊂ R be an ideal and L an element of R with I ⊂ (L). Denote by a ‘bar’ the image 
under the reduction map R → R/a. If L ∈ R/a is nonzero and L ∈ I, then I = (L).

Proof. This is a special case of [57, Lem. 3.2]. �
3.2. Explicit reciprocity laws

Let GQ act on the cyclotomic Iwasawa algebra ΛΓ introduced in §2.3 via the tautologi-
cal character GQ � Γ ↪→ Λ×

Γ . In [40], Kings–Loeffler–Zerbes constructed Beilinson–Flach 
elements

cBFf ,g
m ∈ H1(Q(μm), Tf ⊗̂Zp

Tg⊗̂Zp
ΛΓ)

attached to pairs of Hida families f , g, and related the image of cBFf ,g
1 under a Perrin-

Riou big logarithm map to the p-adic L-functions Lp(f , g) and Lp(g, f) of Theorem 2.1. 
In this section we describe the variant of their results that we shall need.

Since T† = T ⊗ Θ−1 by definition, the twist map twΘ−1 : I�ΓK� → I�ΓK� of (2.3)
induces a I-linear isomorphism

t̃wΘ−1 : H1(K,T) −→ H1(K,T†)

satisfying t̃wΘ−1(λx) = twΘ−1(λ)t̃wΘ−1(x) for all λ ∈ I�ΓK�.
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Theorem 3.6 (Kings–Loeffler–Zerbes). There exists a class BF† ∈ SelGr,∅(K, T†) and 
I�ΓK�-linear injections with pseudo-null cokernel

Col(1),† : H1(Kp,F
−T†) −→ Jf ⊗I I�ΓK�,

Col(2),† : H1(Kp,F
+T†) −→ Jg ⊗I I�ΓK�,

where g is the CM Hida family in (2.1), such that

Col(1),†(locp(BF†)) = twΘ−1(Lp(f , g))

Col(2),†(locp(BF†)) = twΘ−1(Lp(g,f)).

In particular, for every prime v of K above p, the class locv(BF†) ∈ H1(Kv, T†) is 
non-torsion over I�ΓK�.

Proof. This follows from the results of [40], as explained in [12, Thm. 2.4], to which one 
needs to add some of the analysis in [8] and [3].

Indeed, taking m = 1 in [40, Def. 8.1.1] (and using [41, Lem. 6.8.9] to dispense with 
an auxiliary c > 1 needed for the construction), one obtains a cohomology class

BFf ,g ∈ H1(Q, Tf ⊗̂Zp
Tg⊗̂Zp

ΛΓ)

attached to our fixed Hida family f and a second Hida family g. Denote by e1BFf ,g the 
image of BFf ,g under the natural map

e1 : H1(Q, Tf ⊗̂Zp
Tg⊗̂Zp

ΛΓ) → H1(Q, Tf ⊗̂Zp
Tg⊗̂Zp

Zp�Γcyc�)

induced by the projection Γ � Γcyc. Taking g to be the canonical CM Hida family in 
(2.1), by [8] (see also [3, Prop. 4.1]) we have a GQ-module isomorphism

Tg � IndQ
KZp�Γp�

where the GK-action on Zp�Γp� is given by the tautological character GK � Γp ↪→
Zp�Γp�

×. By Shapiro’s lemma, e1BFf ,g therefore defines a class BF ∈ H1(K, T) whose 
image under t̃wΘ−1 defines a class BF† with the desired properties.

More precisely, the inclusion BF† ∈ SelGr,∅(K, T†) follows from [40, Prop. 8.1.7], and 
by the explicit reciprocity law of [40, Thm. 10.2.2], the maps

Col(1) := 〈L(−), ηf ⊗ ωg〉, Col(2) := 〈L(−), ηg ⊗ ωf 〉

described in the proof of [12, Thm. 2.4] send the restriction at p and p of BFf ,g to the 
p-adic L-functions Lp(f , g) and Lp(g, f), respectively, and are injective with pseudo-null 
cokernel by [40, Thm. 8.2.3]. Thus letting Col(1),† and Col(2),† be the I�ΓK�-linear maps 
defined by the commutative diagrams
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H1(Kp,F
−T) Col(1)

t̃wΘ−1

Jf ⊗I I�ΓK�

twΘ−1

H1(Kp,F+T) Col(2)

t̃wΘ−1

Jg ⊗I I�ΓK�

twΘ−1

H1(Kp,F
−T†) Col(1),†

Jf ⊗I I�ΓK� H1(Kp,F
+T†) Col(2),†

Jg ⊗I I�ΓK�,

the result follows, with the last claim being an immediate consequence of the nonvan-
ishing of the p-adic L-functions Lp(f , g) and Lp(g, f) (see e.g. [12, Rem. 1.3]). �

We shall also need to consider anticyclotomic variants of the maps Col(i),† in Theo-
rem 3.6. Letting Icyc be the kernel of the natural projection I�ΓK� → I�Γac

K �, the map

Col(1),†ac : H1(Kp,F
−T†,ac) −→ Jf ⊗I I�Γac

K �

is defined by reducing Col(1),† modulo the ideal Icyc, using the fact that by the vanishing 
of H0(Kp, F−T†,ac) the restriction map induces a natural isomorphism

H1(Kp,F
−T†)/Icyc � H1(Kp,F

−T†,ac).

The map Col(2),†ac : H1(Kp, F+T†,ac) → Jg⊗̂Zp
I�Γac

K � is defined in the same manner.
Note that since the maps Col(i),† are injective with pseudo-null cokernel, the same is 

true for the maps Col(i),†ac .

Corollary 3.7. Let BF†,ac be the image of the class BF† under the natural map 
H1(K, T†) → H1(K, T†,ac), and assume that K satisfies (gen-H). Then we have the 
inclusion

locp(BF†,ac) ∈ ker{H1(Kp,T†,ac) −→ H1(Kp,F
−T†,ac)};

in particular, BF†,ac ∈ SelGr(K, T†,ac). Moreover, if we assume in addition that N is 
squarefree when N− > 1, then the class locp(BF†,ac) is non-torsion over I�Γac

K �.

Proof. The combination of Theorem 3.6 and Proposition 2.3 yields the vanishing of 
the image of locp(BF†,ac) under the map Col(1),†ac , so the first claim follows from its 
injectivity. The second claim follows from Theorem 3.6 together with the nonvanishing 
result of Corollary 2.10. �
3.3. Iwasawa main conjectures

We now use the explicit reciprocity laws of Theorem 3.6 to relate different variants of 
the Iwasawa Main Conjecture for Rankin–Selberg convolutions.

Theorem 3.8. Assume that ρ̄f |GK is irreducible. Then the following are equivalent:
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(i) XGr,0(K∞, A†
f ) is I�ΓK�-torsion, SelGr,∅(K, T†) has I�ΓK�-rank one, and

CharI�ΓK�(XGr,0(K∞, A†
f )) = CharI�ΓK�

(
SelGr,∅(K,T†)
I�ΓK� · BF†

)
up to powers of p.

(ii) Both X∅,0(K∞, A†
f ) and Sel0,∅(K, T†) are I�ΓK�-torsion, and

CharI�ΓK�(X∅,0(K∞, A†
f )) · Iur�ΓK� = (twΘ−1(Lp(f/K)))

up to powers of p.
(iii) Both XGr(K∞, A†

f ) and SelGr(K, T†) are I�ΓK�-torsion, and

CharI�ΓK�(XGr(K∞, A†
f )) = (twΘ−1(LHi

p (f/K))).

up to powers of p.

Moreover, if in addition K satisfies (gen-H), with N being squarefree when N− > 1, then 
the following are equivalent:

(i)’ XGr,0(Kac
∞, A†

f ) is I�Γac
K �-torsion, SelGr,∅(K, T†,ac) has I�Γac

K �-rank one, and

CharI�Γac
K �(XGr,0(Kac

∞, A†
f )) = CharI�Γac

K �

(
SelGr,∅(K,T†,ac)
I�Γac

K � · BF†,ac

)

up to powers of p.
(ii)’ Both X∅,0(Kac

∞, A†
f ) and Sel0,∅(K, T†,ac) are I�Γac

K �-torsion, and

CharI�Γac
K �(X∅,0(Kac

∞, A†
f )) · Iur�Γac

K � = (L BDP
p (f/K)2)

up to powers of p.

Proof. Consider the exact sequence coming form Poitou–Tate duality

0 −→ Sel0,∅(K,T†) −→ SelGr,∅(K,T†) locp−−→H1
Gr(Kp,T†)

−→ X∅,0(K∞, A†
f ) −→ XGr,0(K∞, A†

f ) −→ 0.

By Theorem 3.6, the cokernel of the map locp is I�ΓK�-torsion, and so the equivalence 
between the claimed ranks in (i) and (ii) follows. By Lemma 3.3, if Sel0,∅(K, T†) is 
I�ΓK�-torsion then it is trivial, and so the above yields
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0 −→ SelGr,∅(K,T†)
I�ΓK� · BF†

locp−−→ H1
Gr(Kp,T†)

I�ΓK� · locp(BF†)

−→ X∅,0(K∞, A†
f ) −→ XGr,0(K∞, A†

f ) −→ 0. (3.4)

As noted in the proof of Proposition 2.7, the congruence power series H(g) of the CM 
Hida family g in (2.1) is divisible by hK ·Lp(K)ac; together with [32, Thm. 0.2] it follows 
that the congruence ideal of g is generated by hK ·Lp(K)ac after inverting p. Therefore 
by Theorem 3.6 and definition (2.6), the map Col(2),† multiplied by this generator yields 
an injection

H1
Gr(Kp,T†) · Iur�ΓK�[1/p]

Iur�ΓK�[1/p] · locp(BF†))
↪−→ Iur�ΓK�[1/p]

(twΘ−1(Lp(f/K)))

with pseudo-null cokernel, which combined with (3.4) completes the proof of the equiv-
alence (i)⇐⇒(ii). The equivalence (i)’⇐⇒(ii)’ when K satisfies (gen-H) is shown in the 
same way, using the nonvanishing of locp(BF†,ac) from Corollary 3.7.

Now consider the exact sequence

0 −→ SelGr(K,T†) → SelGr,∅(K,T†)
locp−−→ H1(Kp,T†)

H1
Gr(Kp,T†) � H1(Kp,F

−T†)

−→ XGr(K∞, A†
f ) −→ XGr,0(K∞, A†

f ) −→ 0,

which similarly as before implies the equivalence between the claimed I�ΓK�-ranks in (ii) 
and (iii), and by Theorem 3.6 and Lemma 3.3 yields the exact sequence

0 −→ SelGr,∅(K,T†)
I�ΓK� · BF†

locp−−→ H1(Kp,F
−T†)

I�ΓK� · locp(BF†)

−→ XGr(K∞, A†
f ) −→ XGr,0(K∞, A†

f ) −→ 0.

Lastly, since by Theorem 3.6 and Definition 2.2 the map Col(1),† multiplied by a generator 
of the congruence ideal C(f) yields an injection H1(Kp, F−T†) → I�ΓK� with pseudo-
null cokernel sending locp(BF†) into twΘ−1(LHi

p (f/K)) up to a unit in I×, the equivalence 
(ii)⇐⇒(iii) follows. �
3.4. Rubin’s height formula

Recall the decomposition ΓK � Γcyc
K × Γac

K . Fix a topological generator γcyc ∈ Γcyc
K , 

and using the identification I�ΓK� � (I�Γac
K �)�Γcyc

K �, expand

twΘ−1(LHi
p (f/K)) = LHi

p,0(f
†/K)ac + LHi

p,1(f
†/K)ac · (γcyc − 1) + · · · (3.5)
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as a power series in γcyc−1. Note that the constant term LHi
p,0(f

†/K)ac in this expansion 
corresponds to the image of twΘ−1(LHi

p (f/K)) under the natural projection I�ΓK� →
I�Γac

K �.
By Shapiro’s lemma, we may consider the Beilinson–Flach class BF† ∈ SelGr,∅(K, T†)

of Theorem 3.6 as a norm-compatible system of classes BF†
F ∈ SelGr,∅(F, T †

f ) with F
running over the finite extensions of K contained in K∞. For any (possibly infinite) 
intermediate extension K ⊂ L ⊂ K∞, we then put

BF†(L) := lim←−−
F

BF†
F

with F running over the finite extensions of K contained in L, so in particular BF†(K∞)
is nothing but BF†.

Denote by Kac
n the subextension of Kac

∞ with [Kac
n : K] = pn, define Kcyc

k similarly, and 
set Ln,k = Kac

n Kcyc
k for all k � ∞.

Lemma 3.9. Assume that K satisfies (gen-H) and that ρ̄f |GK is irreducible. Then there 
is a unique

β†
n ∈ H1(Kac

n,p,F
−T†,cyc)

such that locp(BF†(Ln,∞)) = (γcyc−1)β†
n. Furthermore, for varying n the images β†

n(1)
of β†

n under the corestriction map H1(Kac
n,p, F

−T†,cyc) → H1(Kac
n,p, F

−T †
f ) are norm-

compatible, defining a class

lim←−−
n

β†
n(1) ∈ lim←−−

n

H1(Kac
n,p,F

−T †
f ) � H1(Kp,F

−T†,ac)

that is sent to the linear term LHi
p,1(f

†/K)ac in the expansion (3.5) under the map Col(1),†ac .

Proof. After Theorem 3.6, the first claim follows from the vanishing of LHi
p,0(f

†/K)ac
(see Proposition 2.3) and the injectivity of Col(1),†, with the uniqueness claim being an 
immediate consequence of Lemma 3.3. The other claims are a direct consequence of the 
definitions of β†

n and LHi
p,1(f

†/K)ac. �
Let Icyc = (γcyc − 1) be the augmentation ideal in I�Γcyc

K �, and put J cyc =
Icyc/(Icyc)2. By work of Plater [51] (cf. Nekovář [46, §11] more generally), for every 
n there is an I-adic height pairing

〈−,−〉cyc
Kac

n ,I : SelGr(Kac
n , T †

f ) × SelGr(Kac
n , T †

f ) −→ J cyc ⊗I FI. (3.6)

(Note that the local indecomposability hypothesis (H1) in [51, p. 107] is only used to 
ensure the existence of well-defined sub and quotients at the places above p, which for 
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T †
f is automatic, while hypotheses (H2) and (H3) in [51] follow from [35, Lem. 2.4.4] for 

T †
f .)
Indeed, keeping the notations introduced in §3.1, in light of [51, Lem. 5.8] Plater’s 

definition (which we shall briefly recall in the proof of Proposition 3.10 below) gives a 
J cyc ⊗I FI-valued height pairing on the modified Selmer group

S̃el(Kac
n , T †

f ) := ker
{

Sel{p}(Kac
n , T †

f ) −→
∏
v|p

H1(Kac
n , T †

f )
H1

Gr(Kac
n,v, T

†
f )sat

}
,

where H1
Gr(Kac

n,v, T
†
f )sat is the saturation of H1

Gr(Kac
n,v, T

†
f ) in H1(Kac

n,v, T
†
f ), taking J cyc-

values on the submodule Sel(Kac
n , T †

f ) of S̃el(Kac
n , T †

f ) consisting of classes x with

locv(x) ∈
⋂
k

corLn,k,v/Kac
n,v

(H1
Gr(Ln,k,v, T

†
f )sat)

for all primes v above p. Since by the same argument as in [51, Lem. 5.8] (using [45, 
Lem. 6.3]) the quotient S̃el(Kac

n , T †
f )/Sel(Kac

n , T †
f ) is I-torsion, killed by a nonzero ele-

ment of I independent of n, from the obvious inclusion SelGr(Kac
n , T †

f ) ⊂ S̃el(Kac
n , T †

f ) we 
get a pairing as in (3.6) with denominators bounded independently of n.

The next result generalizes the height formula of [54, Thm. 3.2(ii)] to our context.

Proposition 3.10. Assume that K satisfies (gen-H) and that ρ̄f |GK is irreducible. Then 
the classes BF†

Kac
n

land in SelGr(Kac
n , T †

f ), and for every x ∈ SelGr(Kac
n , T †

f ) we have

〈BF†
Kac

n
, x〉cyc

Kac
n ,I = (β†

n(1), locp(x))Kac
n,p

⊗ (γcyc − 1), (3.7)

where (−, −)Kac
n,p

is the local Tate pairing

H1(Kac
n,p, T

†
f )

H1
Gr(Kac

n,p, T
†
f )

× H1
Gr(Kac

n,p, T
†
f ) −→ I.

Proof. The first claim follows from the explicit reciprocity law of Theorem 3.6, the 
vanishing of LHi

p,0(f
†/K)ac, and the injectivity of Col(1),†. On the other hand, the proof 

of formula (3.7) could be deduced from the general result [46, (11.3.14)], but shall give a 
proof following the more direct generalization of Rubin’s formula contained in [60, §3].

We begin by recalling Plater’s definition of the I-adic height pairing (itself a gen-
eralization of Perrin-Riou’s [49, §1.2] in the p-adic setting). Let λ be the isomorphism 
Γcyc
K � J cyc sending γcyc to the class of γcyc − 1. Composing with the natural isomor-

phism Gal(Ln,∞/Kac
n ) � Γcyc the map λ defines a class in H1(Kac

n , J cyc), where we equip 
J cyc with the trivial Galois action, and so taking cup product we get
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ρv : H1(Kac
n,v, I(1)) ∪locv(λ)−−−−−→ H2(Kac

n,v,J cyc(1)) � J cyc

for every place v.
Denote by SelGr(Kac

n , T †
f )univ the submodule of SelGr(Kac

n , T †
f ) consisting of classes lying 

in H1
Gr(Kac

n,v, T
†
f )univ for all primes v above p, and let x, y ∈ SelGr(Kac

n , T †
f )univ. Then x

corresponds to an extension of Galois modules

0 −→ T †
f −→ X −→ I −→ 0.

The Kummer dual of this sequence induces maps on cohomology

H1(Kac
n , X∗(1)) −→ H1(Kac

n , T †
f ) δ−→ H2(Kac

n , I(1))

such that δ(y) = 0 (since H2(Kac
n , I(1)) injects into 

⊕
v H2(Kac

n,v, I(1)) and the v-th 
component of δ(y) is given by locv(y) ∪ locv(x) = 0 by the self-duality of Greenberg’s 
local conditions). Thus y is the image of some yglob ∈ H1(Kac

n , X∗(1)).
On the other hand, if v is any place of Kac

n , for every k we can write locv(y) =
corLn,k,v/Kac

n,v
(yk,v) for some yk,v ∈ H1

Gr(Ln,k,v, T
†
f )sat, and by a similar argument as 

above there exists a class ỹk,v ∈ H1(Ln,k,v, X∗(1)) lifting yk,v under the natural map πv

in the exact sequence

H1(Ln,k,v, X
∗(1)) πv−→ H1(Ln,k,v, T

†
f ) δv−→ H2(Ln,k,v, I(1)). (3.8)

The difference locv(yglob) − corLn,k,v/Kac
n,v

(ỹk,v) is then the image of some class wk,v ∈
H1(Kac

n,v, I(1)), and we define

〈y, x〉cyc
Kac

n ,I := lim
k→∞

∑
v

ρv(wk,v),

a limit which is easily checked to exist and be independent of all choices. If in addition 
y = y0 is the base class of a compatible system of classes

y∞ = lim←−−
k

yk ∈ H1(Kac
n ,T†,cyc) = lim←−−

k

H1(Ln,k, T
†
f ),

then one easily checks (see e.g. [1, Lem. 3.2.2]) that there are classes yglob
k ∈

H1(Ln,k, X∗(1)) lifting yk. Similarly as above, for every place v of Ln,k the corestriction 
of locv(yglob

k ) − ỹk,v to H1(Kac
n,v, X

∗(1)) is the image of a class w′
k,v ∈ H1(Kac

n,v, I(1)), 
and with these choices we see that the above expression for 〈y, x〉cyc

Kac
n ,I reduces to

〈y, x〉cyc
Kac

n ,I = lim
k→∞

∑
ρv(w′

k,v). (3.9)

v|p



28 F. Castella, X. Wan / Advances in Mathematics 400 (2022) 108266
As in [60, §3.8], division by γcyc − 1 defines a natural derivative map

Der : H1(Kac
n,v, T

†
f ⊗I Icyc) −→ H1(Kac

n,v, T
†
f )

whose composition with the natural projection H1(Kac
n,v, T

†
f ) → H1(Kac

n,v, F
−T †

f ) factors 
as

H1(Kac
n,v, T

†
f ⊗I Icyc)

Der

H1(Kac
n,v,F

−T †
f ⊗I Icyc)

Der−

H1(Kac
n,v, T

†
f ) H1(Kac

n,v,F
−T †

f ).

(3.10)

Letting pr1 be the natural projection H1(Kac
n,v, X

∗(1) ⊗I I�Γcyc�) → H1(Kac
n,v, X

∗(1)), 
the expression (3.9) for 〈y, x〉cyc

Kac
n ,I can be rewritten as

〈y, x〉cyc
Kac

n ,I =
∑
v|p

pr1(locv(yglob
∞ ) − ỹ∞,v),

where locv(yglob
∞ ) − ỹ∞,v ∈ H1(Kac

n,v, X
∗(1) ⊗I I�Γcyc�) is a lift of locv(y∞) − y∞,v ∈

H1(Kac
n,v, T

†
f ⊗ Icyc), and hence by [60, Prop. 3.10] we obtain

〈y, x〉cyc
Kac

n ,I =
∑
v|p

δv (Der(locv(y∞) − y∞,v)) ⊗ (γcyc − 1)

=
∑
v|p

(Der(locv(y∞) − y∞,v), locv(x))Kac
n,v

⊗ (γcyc − 1)

=
∑
v|p

(Der−(locv(y∞)), locv(x))Kac
n,v

⊗ (γcyc − 1),

(3.11)

where the last equality follows from the commutativity of (3.10) and the fact that y∞,v =
{yk,v}k has trivial image in H1(Kac

n,v, F
−T†,cyc).

Now taking y∞ = BF†(Ln,∞) in (3.11) we see that the contribution to 〈BF†
Kac

n
, x〉cyc

Kac
n ,I

from p is zero, since BF†(Ln,∞) ∈ SelGr,∅(Kac
n , T†,cyc) is finite at the places above p, while 

at p chasing through the definitions we see that

Der−(locp(BF†(Ln,∞)) = β†
n(1),

thus concluding the proof of the height formula (3.7). �
4. Big Heegner points

In this section, we explain the construction of big Heegner points and classes. The 
results in this section are essentially a reformulation (influenced by [16] and [15]) of work 
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of Longo–Vigni [42] and Fouquet [19], extending to Shimura curves Howard’s original 
construction for modular curves [35].

Fix a positive integer N and a prime p � 6N . Let K be an imaginary quadratic field 
with ring of integers OK and discriminant −DK < 0 prime to Np, and write

N = N+N−

with N+ (resp. N−) divisible only by primes which are split (resp. inert) in K. Through-
out, we assume the following generalized Heegner hypothesis:

N− is the squarefree product of an even number of primes, (gen-H)

and fix an integral ideal N+ of K with OK/N
+ � Z/N+Z.

4.1. Towers of Shimura curves

Let B/Q be an indefinite quaternion algebra of discriminant N−. We fix a Q-algebra 
embedding ιK : K ↪→ B, which we shall use to identify K with a subalgebra of B. Let 
z �→ z be the non-trivial automorphism of K, and choose a basis {1, j} of B over K such 
that:

• j2 = β ∈ Q× with β < 0 and jt = t̄j for all t ∈ K,
• β ∈ (Z×

q )2 for q | pN+, and β ∈ Z×
q for q | DK.

Fix a square-root δ =
√
−DK, and define θ ∈ K by

θ := D′
K + δ

2 , where D′
K :=

{
DK if 2 � DK,
DK/2 if 2 | DK,

(4.1)

so that OK = Z + θZ. For every prime q | pN+, define the isomorphism iq : Bq :=
B ⊗Q Qq � M2(Qq) by

iq(θ) =
(

Tr(θ) −Nm(θ)
1 0

)
, iq(j) =

√
β

(
−1 Tr(θ)
0 1

)
,

where Tr and Nm are the reduced trace and norm maps on B. For primes q � Np, we fix 
any isomorphism iq : Bq � M2(Qq) with iq(OK ⊗Z Zq) ⊂ M2(Zq).

Let Ẑ be the profinite completion of Z, and for any abelian group M set M̂ = M⊗Z Ẑ. 
For each r � 0, let Rr be the Eichler order of B of level N+pr with respect to the 
isomorphisms {iq : Bq � M2(Qq)}q�N− , and let Ur ⊂ R̂×

r be the compact open subgroup 
defined by



30 F. Castella, X. Wan / Advances in Mathematics 400 (2022) 108266
Ur :=
{

(xq)q ∈ R̂×
r : ip(xp) ≡

(
1 ∗
0 ∗

)
(mod pr)

}
.

Consider the double coset spaces

Xr = B×\
(
HomQ(K, B) × B̂×/Ur

)
, (4.2)

where b ∈ B× acts on (Ψ, g) ∈ HomQ(K, B) × B̂× by

b · (Ψ, g) = (bΨb−1, bg),

and Ur acts on B̂× by right multiplication. As is well-known (see e.g. [42, §§2.1-2]), 
Xr can be identified with a set of algebraic points on the Shimura curve with complex 
uniformization

Xr(C) = B×\
(
HomQ(C, B) × B̂×/Ur

)
.

Let recK : K×\K̂× → Gal(Kab/K) be the reciprocity map of class field theory. By 
Shimura’s reciprocity law, if P ∈ Xr is the class of a pair (Ψ, g), then σ ∈ Gal(Kab/K)
acts on P by

P σ := [(Ψ, Ψ̂(a)g)],

where a ∈ K×\K̂× is such that recK(a) = σ, and Ψ̂ : K̂ → B̂ is the adelization of Ψ. We 
extend this to an action of GK := Gal(Q/K) in the obvious manner.

The curves Xr are also equipped with natural actions of Hecke operators T� for � � Np, 
U� for �|Np, and diamond operators 〈d〉 for d ∈ (Z/prZ)×, as described in [42, §2.4] and 
[16, §2.1], for example.

4.2. Compatible systems of Heegner points

For each c � 1, let Oc = Z + cOK be the order of K of conductor c and denote by Hc

the ring class field of K of that conductor, so that Pic(Oc) � Gal(Hc/K) by class field 
theory. In particular, H1 is the Hilbert class field of K.

Definition 4.1. A point P ∈ Xr is a Heegner point of conductor c if it is the class of a 
pair (Ψ, g) with

Ψ(Oc) = Ψ(K) ∩ (B ∩ gR̂rg
−1)

and

Ψp

(
(Oc ⊗ Zp)× ∩ (1 + prOc ⊗ Zp)×

)
= Ψp

(
(Oc ⊗ Zp)×

)
∩ gpUr,pg

−1
p ,

where Ψp and Ur,p denote the p-components of Ψ and Ur, respectively.
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For each prime q 	= p define

• ςq = 1, if q � N+,

• ςq = δ−1
(
θ θ
1 1

)
∈ GL2(Kq) = GL2(Qq), if q = qq splits with q | N+,

and for each s � 0, let

• ς
(s)
p =

(
θ −1
1 0

)(
ps 0
0 1

)
∈ GL2(Kp) = GL2(Qp), if p = pp splits in K,

• ς
(s)
p =

(
0 1
−1 0

)(
ps 0
0 1

)
, if p is inert in K.

Remark 4.2. We shall ultimately assume that p splits in K, but it is worth-noting that, 
just as in [35,42], the constructions in this section also allow the case p inert in K.

Set ς(s) = ς
(s)
p

∏
q �=p ςq, which we view as an element in B̂× via the isomorphisms 

{iq : Bq � M2(Qq)}q�N− introduced in §4.1. With the Q-algebra embedding ιK : K ↪→ B

fixed there, one easily checks that for all s � r the points

Ps,r := [(ιK, ς(s))] ∈ Xr

are Heegner points of conductor ps in the sense of Definition 4.1 with the following 
properties:

• Field of definition: Ps,r ∈ H0(Hps(μpr), Xr).
• Galois equivariance: For all σ ∈ Gal(Hps(μpr)/Hps),

P σ
s,r = 〈ϑ(σ)〉 · Ps,r,

where ϑ : Gal(Hps(μpr )/Hps) → Z×
p /{±1} is such that ϑ2 = εcyc.

• Horizontal compatibility: If s � r > 1, then∑
σ∈Gal(Hps (μpr )/Hps−1 (μpr ))

αr(P σ
s,r) = Up · Ps,r−1,

where αr : Xr → Xr−1 is the map induced by the inclusion Ur ⊂ Ur−1.
• Vertical compatibility: If s � r � 1, then∑

σ∈Gal(Hps (μpr )/Hps−1 (μpr ))

P σ
s,r = Up · Ps−1,r.

(See [15, Thm. 1.2] and the references therein.)
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4.3. Big Heegner points

Let Br the Zp-algebra generated by the Hecke operators T�, U�, and 〈a〉 acting on 
the Shimura curve Xr from §4.1, let hr be the Zp-algebra generated by the usual Hecke 
operators T�, U�, and 〈a〉 acting on the space S2(Γ0,1(N, pr)) of classical modular form of 
level Γ0,1(N, pr) := Γ0(N) ∩ Γ1(pr), and let TN−

N,r be the quotient of hr acting faithfully 
on the subspace of S2(Γ0,1(N, pr)) consisting of N−-new forms.

The Jacquet–Langlands correspondence yields Zp-algebra isomorphisms

Br � TN−

N,r (4.3)

(see [29, §2.4]). In particular, letting eord = limn→∞ Un!
p be Hida’s ordinary projector, 

the Zp-module

Dord
r := eord(Div(Xr) ⊗Z Zp)

is naturally endowed with an action of T ord
r := eordTN−

N,r .
Denote by T †

r the free T ord
r -module of rank one equipped with the Galois action via 

the inverse of the critical character Θ, and set D†
r := Dord

r ⊗Tord
r

T †
r .

Let Ps,r ∈ Xr be the Heegner point of conductor ps (s � r) constructed in §4.2, and 
denote by Ps,r the image of eordPs,r in Dord

r . It follows from the Galois-equivariance 
property of Ps,r that

Pσ
s,r = Θ(σ) · Ps,r

for all σ ∈ Gal(Hps(μpr)/Hps) (see [42, §7.1]), and hence Ps,r defines an element

Ps,r ⊗ ζr ∈ H0(Hps ,D†
r). (4.4)

Let Pic(Xr) be the Picard variety of Xr, and set

Jord
r := eord(Pic(Xr) ⊗Z Zp), J†r := Jord

r ⊗Tord
r

T †
r .

Since the Up-operator has degree p, taking ordinary parts yields an isomorphism Dord
r �

Jord
r , and so we may also view (4.4) as Ps,r ⊗ ζr ∈ H0(Hps , J†r).
Let t � 0, and denote by GHpt

the Galois group of the maximal extension of Hpt

unramified outside the primes above pN . Consider the twisted Kummer map

Kumr : H0(Hpt , J†r) −→ H1(GHpt
,Tap(J†r))

as explicitly defined in [35, p. 101]. This map is equivariant for the Galois- and Up-actions, 
and hence by horizontal compatibility the classes

Xpt,r := Kumr(CorHpr+t/H
(Pr+t,r ⊗ ζr)) (4.5)
pt
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satisfy αr,∗(Xpt,r) = Up · Xpt,r−1 for all r > 1, where

αr,∗ : H1(GHpt
,Tap(J†r)) −→ H1(GHpt

,Tap(J†r−1))

is the map induced by the covering Xr → Xr−1 by Albanese functoriality.
Now let f ∈ I�q� be a Hida family of tame level N . In order to define big Heegner 

points attached to f from the system of Heegner classes (4.5) for varying r, we need to 
recall the following result realizing the big Galois representation Tf attached to f in the 
étale cohomology of the p-tower of Shimura curves

· · · −→ Xr −→ Xr−1 −→ · · ·

(rather than classical modular curves, as implicitly taken in §3.1).
Let κI = I/mI be the residue field of I, and denote by ρ̄f : GQ → GL2(κI) the 

associated semi-simple residual representation. Set

T ord
∞ := lim←−−

r

T ord
r .

By (4.3) (see also the discussion in [42, §5.3]), there is a maximal ideal m ⊂ T ord
∞

associated with ρ̄f , and f corresponds to a minimal prime in the localization T ord
∞,m.

Theorem 4.3. Assume that:

(i) ρ̄f is absolutely irreducible and p-distinguished,
(ii) ρ̄f is ramified at every prime �|N− with � ≡ ±1 (mod p),

and let m ⊂ T ord
∞ be the maximal ideal associated with ρ̄f . Then the module

Taord
m :=

(
lim←−−
r

Tap(Jord
r )

)
⊗Tord

∞
T ord
∞,m

is free of rank 2 over T ord
∞,m, and if f corresponds to the minimal prime a ⊂ T ord

∞,m, then 
there is an isomorphism

Tf � Taord
m ⊗Tord

∞,m
T ord
∞,m/a

as (T ord
∞,m/a)[GQ]-modules.

Proof. This is shown in [19, Thm. 3.1] assuming the “mod p multiplicity one” hypothesis 
in [19, Prop. 3.7]. Since by [24, Cor. 8.11] that hypothesis is ensured by our ramification 
condition on ρ̄f , the result follows. �
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Let m ⊂ T ord
∞ be a maximal ideal satisfying the hypotheses of Theorem 4.3, and sup-

pose that the Hida family f corresponds to a minimal prime of T ord
∞,m, so by Theorem 4.3

there is a quotient map Taord
m → Tf . Note also that immediately from the definitions 

there are natural maps Tap(J†r) → Taord
m ⊗ Θ−1 → T †

f .

Definition 4.4. The big Heegner point of conductor pt is the class

Xpt ∈ H1(Hpt , T †
f )

given by the image of lim←−−r
U−r
p · Xpt,r under the composite map

lim←−−
r

H1(GHpt
,Tap(J†r)) −→ H1(GHpt

,Taord
m ⊗ Θ−1) −→ H1(Hpt , T †

f ).

We conclude this section with the following result due to Howard, showing that the 
big Heegner points are Selmer classes under mild hypotheses.

Proposition 4.5. Assume that ρ̄f is ramified at every prime �|N−. Then the classes Xpt

lie in SelGr(Hpt , T †
f ).

Proof. The argument in [35, Prop. 2.4.5] (see also [42, Prop. 10.1]) shows that for ev-
ery prime w of Hpt the localization locw(Xpt) lies in the subspace H1

Gr(Hpt,w, T
†
f ) ⊂

H1(Hpt,w, T
†
f ) defining SelGr(Hpt , T †

f ), except when w|�|N−, in which case it is shown 
that

locw(Xpt) ∈ ker
{

H1(Hpt,w, T
†
f ) −→

H1(Hur
pt,w, T

†
f )

H1(Hur
pt,w, T

†
f )tors

}
,

where H1(Hur
pt,w, T

†
f )tors denotes the I-torsion submodule of H1(Hur

pt,w, T
†
f ). However, 

such primes � are inert in K, so Hpt,w = K�, and since our hypothesis on ρ̄f implies that 
H1(Kur

� , T †
f ) is I-torsion free (see e.g. [11, Lem. 3.12]), the result follows. �

Recall that Kac
∞ is the anticyclotomic Zp-extension of K, and Kac

n denotes the subex-
tension of Kac

∞ with [Kac
n : K] = pn. Similarly as in [35, §3.3] and [42, §10.3], we set

Zn := CorHpt/Kac
n

(U−t
p · Xpt) ∈ H1(Kac

n , T †
f ),

where t � 0 is chosen so that Kac
n ⊂ Hpt . By horizontal compatibility, the definition of 

Zn is independent of the choice of t, and for varying n they define a system

Z∞ := lim←−−
n

Zn ∈ lim←−−
n

H1(Kac
n , T †

f ) � H1(K,T†,ac).

By the work of Cornut–Vatsal [17] (see also [35, Cor. 3.1.2], which naturally extends to 
quaternionic setting considered here) the class Z∞ is not I�Γac

K �-torsion.
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5. Main results

In this section we conclude the proof of the main results of this paper. Fix a positive 
integer N and a prime p � 6N and let

f =
∞∑

n=1
anq

n ∈ I�q�

be a primitive Hida family of tame level N . Let K be an imaginary quadratic field of 
discriminant prime to Np satisfying the generalized Heegner hypothesis (gen-H) relative 
to N . Our results will require some of the technical hypotheses below, which we record 
here for our later reference.

(h0) I is regular,
(h1) some specialization fφ is the p-stabilization of a newform f ∈ S2(Γ0(N)),
(h2) ρ̄f is irreducible,
(h3) N is squarefree,
(h4) N− 	= 1,
(h5) ρ̄f is ramified at every prime �|N−,
(h6) p splits in K.

As usual, here N− denotes the largest factor of N divisible only by primes which are 
inert in K.

5.1. Proof of Theorem A

The following is Theorem A in the Introduction.

Theorem 5.1. Assume hypotheses (h0)–(h6). Then XGr(K∞, Af ) is I�ΓK�-torsion, and

CharI�ΓK�(XGr(K∞, Af )) = (LHi
p (f/K))

as ideals in I�ΓK� ⊗Zp
Qp.

Proof. It suffices to show that the twisted module XGr(K∞, A†
f ) is I�ΓK�-torsion, with 

characteristic ideal generated by twΘ−1(LHi
p (f/K)) after inverting p (see the twisting 

lemma [55, Lem. 6.1.2]). In light of Theorem 3.8, this will follow from showing that 
X∅,0(K∞, A†

f ) is I�ΓK�-torsion, with characteristic ideal generated by twΘ−1(Lp(f/K))
after extending scalars to Iur�ΓK�; this is what we shall prove below.

From [64, Thm. 1.1] (see also Remark 5.3 below) we obtain the divisibility

CharI�ΓK�(X∅,0(K∞, A†
f )) · Iur�ΓK� ⊂ (twΘ−1(Lp(f/K))) in Iur�ΓK�, (5.1)
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which by descent via ΓK � Γac
K , Corollary 2.10, and [9, Thm. B] yields the divisibility

CharI�Γac
K �(X∅,0(Kac

∞, A†
f )) · Iur�Γac

K � ⊂ (L BDP
p (f/K)2) in Iur�Γac

K �. (5.2)

Now let φ ∈ Xa(I) be such that fφ is the ordinary p-stabilization of a newform 
f ∈ S2(Γ0(N)) defined over OL, and put Our

L = Ẑ⊗̂Zp
OL. By the construction in 

Theorem 2.9, the p-adic L-function L BDP
p (f/K) specializes at φ to the p-adic L-function 

L BDP
p (f/K) ∈ Our

L �Γac
K � of [12, Thm. 1.5] (see also [7, §3.1]). Since by [12, Thm. 3.4] the 

module X∅,0(Kac
∞, Af ) is Our

L �Γac
K �-torsion, with

CharOur
L �Γac

K �(X∅,0(Kac
∞, Af )) ·Our

L �Γac
K � = (L BDP

p (f/K)2) in Our
L �Γac

K �, (5.3)

by Lemma 3.5 we deduce that X∅,0(Kac
∞, A†,ac

f ) is I�Γac
K �-torsion and that the divisibility 

(5.2) is an equality. With this equality at hand, another application of Lemma 3.5 yields 
equality in (5.1), concluding the proof of the theorem. �

For our later reference, we record the following results shown in the course of the 
proof of Theorem 5.1.

Theorem 5.2. Assume hypotheses (h0)–(h6). Then the modules X∅,0(K∞, Af ) and 
X∅,0(Kac

∞, A†
f ) are torsion over I�ΓK� and I�Γac

K �, respectively, and the following equali-
ties hold:

CharI�ΓK�(X∅,0(K∞, Af )) · Iur�ΓK� = (Lp(f/K)) in Iur�ΓK�,

CharI�Γac
K �(X∅,0(Kac

∞, A†
f )) · Iur�Γac

K � = (L BDP
p (f/K)2) in Iur�Γac

K �.

Remark 5.3. In the proof of Theorem 5.1 we used [64, Thm. 1.1], which assumes that 
the underlying CM form g is residually irreducible and p-distinguished. Without these 
hypotheses on g, the argument in the proof of [64, Thm. 1.1] establishes the divisibility

CharI�ΓK�(X∅,0(K∞, Af )) · Iur�ΓK� ⊂ (Lp(f/K)) (5.4)

in Iur�ΓK�, up to certain height one primes of Iur. However, that such ambiguity can be 
removed follows from the integrality of Lp(f/K) established in Proposition 2.7 together 
with the vanishing of the μ-invariant of its anticyclotomic restriction [9, Thm. 5.7] (see 
Corollary 2.10), and hence the divisibility (5.4) also holds for our underlying CM form 
g in (2.1).

Remark 5.4. A key ingredient in the proof of (5.3) is the Heegner point “explicit reci-
procity law” of [14] (see also [7, §4.2] for the additional arguments in the case N− 	= 1). 
Indeed, as explained in [12, Appendix], this allows one to relate the main conjecture for 
L BDP

p (f/K)2 to Perrin-Riou’s Heegner point main conjecture [48], whose “upper bound 
divisibility” was established by Howard [33,34] using the Euler system of Heegner points.
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5.2. Converse to Howard’s theorem

As shown in [35, §§2.3-4], for varying c prime to N the big Heegner points Xc ∈
H1(Hc, T

†
f ) form an anticyclotomic Euler system for T †

f . Setting

Z0 := CorH1/K(X1) ∈ H1(K, T †
f ),

Kolyvagin’s methods thus yield a proof of the implication

Z0 /∈ SelGr(K, T †
f )tors =⇒ rankI SelGr(K, T †

f ) = 1, (5.5)

where the subscript tors denotes the I-torsion submodule (see [35, Cor. 3.4.3]). In the 
spirit of Skinner’s converse to the theorem of Gross–Zagier and Kolyvagin, [56], in this 
section we prove a result in the converse direction. Similarly as in [65], our converse to 
(5.5) will be deduced from progress on the “big Heegner point main conjecture” (see [35, 
Conj. 3.3.1] and [42, Conj. 10.8]), as recorded in the next result.

Theorem 5.5. Assume hypotheses (h0)–(h6). Then both XGr(Kac
∞, A†

f ) and SelGr(K, T†,ac)
have I�Γac

K �-rank one, and

CharI�Γac
K �(XGr(Kac

∞, A†
f )tors) = CharI�Γac

K �

(
SelGr(K,T†,ac)
I�Γac

K � · Z∞

)2

,

where the subscript tors denotes the I�Γac
K �-torsion submodule.

Proof. Since Z∞ is not I�Γac
K �-torsion by Cornut–Vatsal, part (iii) of [19, Thm. B] implies 

that XGr(Kac
∞, A†

f ) and SelGr(K, T†,ac) have both I�Γac
K �-rank one, and that the divisibility

CharI�Γac
K �(XGr(Kac

∞, A†
f )tors) ⊃ CharI�Γac

K �

(
SelGr(K,T†,ac)
I�Γac

K � · Z∞

)2

(5.6)

holds in I�Γac
K �. Concerning the additional hypotheses in Fouquet’s result, we note that:

• Assumption 3.4, that ρ̄f is irreducible, is our (h2),
• Assumption 3.5, that ρ̄f is p-distinguished, follows from (h1) (see [40, Rem. 7.2.7]),
• Assumption 3.10, that the tame character of f admits a square-root, is satisfied by 

(h1),
• Assumption 5.10, that all primes �|N for which ρ̄f is not ramified have infinite 

decomposition group in Kac
∞/K, is a reformulation of (h5),

• Assumption 5.13, that ρ̄f |GK is irreducible, follows from (h2), (h4) and (h5) (see [56, 
Lem. 2.8.1]).
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Let φ ∈ Xa(I) be such that fφ is the ordinary p-stabilization of a newform f ∈
S2(Γ0(N)) as in hypothesis (h1). Letting X ⊃ Y stand for the divisibility (5.6), by [12, 
Thm. 3.4] (or [65, Thm. 1.2]) we have the equality

X = Y (mod ker(φ)I�Γac
K �)

(note that this is the source of the additional hypotheses (h3) and (h6)), from where the 
result follows by an application of Lemma 3.5. �
Theorem 5.6. Assume hypotheses (h0)–(h6). Then the following implication holds:

rankI SelGr(K, T †
f ) = 1 =⇒ Z0 /∈ SelGr(K, T †

f )tors

where the subscript tors denotes the I-torsion submodule.

Proof. Let γac ∈ Γac
K be a topological generator. The dual of the restriction map for the 

extension Kac
∞/K induces a surjective homomorphism

XGr(Kac
∞, A†

f )/(γac − 1)XGr(Kac
∞, A†

f ) −� XGr(K, A†
f )

with I-torsion kernel. Since XGr(K, A†
f ) and SelGr(K, T †

f ) have the same I-rank by 

Lemma 3.2, this shows that if SelGr(K, T †
f ) has I-rank one, then so do the Γac

K -coinvariants 
of XGr(Kac

∞, A†
f ), and hence by Theorem 5.5 we deduce that

(γac − 1) � CharI�Γac
K �

(
SelGr(K,T†,ac)
I�Γac

K � · Z∞

)
.

Thus the image of Z∞ in SelGr(K, T†,ac)/(γac − 1)SelGr(K, T†,ac) is not I-torsion, and 
since this image is sent to Z0 under the natural injection

SelGr(K,T†,ac)/(γac − 1)SelGr(K,T†,ac) ↪−→ SelGr(K, T †
f ),

the result follows. �
Remark 5.7. Replacing the appeal to [12, Thm. 3.4] (or [65, Thm. 1.2]) in the proof of 
Theorem 5.5 by an appeal to [7, Thm. 5.1] the same argument as above gives a proof of 
Theorems 5.5 and 5.6 with hypotheses (h3)–(h6) replaced by “Hypothesis ♥” from [68], 
i.e., letting Ram(ρ̄f ) be the set of primes �‖N such that ρ̄f is ramified at �:

• Ram(ρ̄f ) contains all primes �‖N+, and all primes �|N− such that � ≡ ±1 (mod p),
• If N is not squarefree, then Ram(ρ̄f ) contains either a prime �|N− or at least two 

primes �‖N+,
• If �2|N+, then H0(Q�, ρ̄f ) = {0},
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and the assumption that ρ̄f is surjective and ap 	≡ ±1 (mod p).

5.3. I-adic Gross–Zagier formula

In this section we prove a I-adic Gross–Zagier formula for the big Heegner point Z0
which will be a key ingredient in our application to Greenberg’s nonvanishing conjecture. 
More generally, we shall prove a Gross–Zagier type formula for the I�Γac

K �-adic family 
Z∞; the result for Z0 then follows by specialization at the trivial character.

Define the cyclotomic I�Γac
K �-adic height pairing

〈−,−〉cyc
Kac

∞,I : SelGr(K,T†,ac) ⊗I�Γac
K � SelGr(K,T†,ac)ι −→ J cyc ⊗I I�Γac

K � ⊗I FI (5.7)

by

〈a∞, b∞〉cyc
Kac

∞,I = lim←−−
n

∑
σ∈Gal(Kac

n /K)

〈an, bσn〉cyc
Kac

n ,I · σ,

and define the cyclotomic regulator Rcyc ⊂ I�Γac
K � ⊗I FI to be the characteristic ideal of 

the cokernel of (5.7) (after dividing by the image of (γcyc − 1) in J cyc).
Since we assume that K satisfies (gen-H), the constant term LHi

p,0(f
†/K)ac in the expan-

sion (3.5) vanishes (see Proposition 2.3). We next consider the linear term LHi
p,1(f

†/K)ac.

Theorem 5.8. Assume hypotheses (h0)–(h6), and denote by Xtors the characteristic ideal 
of XGr(Kac

∞, A†
f )tors. Then

Rcyc · Xtors = (LHi
p,1(f

†/K)ac)

as ideals in I�Γac
K � ⊗I FI.

Proof. Since SelGr(K, T†,ac) has I�Γac
K �-rank one by Theorem 5.5, the height formula of 

Theorem 3.10 and Lemma 3.9 immediately yield the equality

Rcyc · CharI�Γac
K �

(
SelGr(K,T†,ac)
I�Γac

K � · BF†,ac

)
= (LHi

p,1(f
†/K)ac) · ηι, (5.8)

where η ⊂ I�Γac
K � is the characteristic ideal of H1

Gr(Kp, T†,ac)/locp(SelGr(K, T†,ac)). We 
shall argue below that η 	= 0. Global duality yields the exact sequence

0 −→ H1
Gr(Kp,T†,ac)

locp(SelGr(K,T†,ac)) −→ X∅,Gr(Kac
∞, A†

f ) −→ XGr(Kac
∞, A†

f ) −→ 0. (5.9)

The left term in (5.9) is I�Γac
K �-torsion, since by Corollary 3.7 the image of the map 

locp : SelGr(K, T†,ac) → H1
Gr(Kp, T†,ac) is nonzero and the target has I�Γac

K �-rank one. 
On the other hand, by Theorem 5.5 the module XGr(Kac

∞, A†
f ) has I�Γac

K �-rank one. Hence 
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it follows that the middle term in (5.9) has I�Γac
K �-rank one, and by the action of complex 

conjugation the same is true for XGr,∅(Kac
∞, A†

f ). Thus the nonvanishing of η follows from 
the analogue of (5.9) for the prime p (see (5.12) below).

By Lemma 3.4 the above also shows that XGr,0(Kac
∞, A†

f ) is I�Γac
K �-torsion, and count-

ing ranks in the exact sequence

0 −→ SelGr(K,T†,ac) −→SelGr,∅(K,T†,ac) −→ H1(Kp,T†,ac)
H1

Gr(Kp,T†,ac)

−→ XGr(Kac
∞, A†

f ) −→ XGr,0(Kac
∞, A†

f ) −→ 0,
(5.10)

we see that the first two terms in (5.10) have I�Γac
K �-rank one. Since the quotient 

H1(Kp, T†,ac)/H1
Gr(Kp, T†,ac) has no I�Γac

K �-torsion, it follows that

SelGr(K,T†,ac) = SelGr,∅(K,T†,ac). (5.11)

Taking I�Γac
K �-torsion in the analogue of (5.9) for p, that is

0 −→ H1
Gr(Kp,T†,ac)

locp(SelGr(K,T†,ac)) −→ XGr,∅(Kac
∞, A†

f ) −→ XGr(Kac
∞, A†

f ) −→ 0, (5.12)

and applying Lemma 3.4 and the “functional equation” X ι
tors = Xtors of [33, p. 1464] we 

obtain

ηι · Xtors = CharI�Γac
K �(XGr,0(Kac

∞, A†
f )). (5.13)

On the other hand, by the equivalence (i)’⇐⇒(ii)’ in Theorem 3.8, the second part of 
Theorem 5.2 implies that

CharI�Γac
K �(XGr,0(Kac

∞, A†
f )) = CharI�Γac

K �

(
SelGr,∅(K,T†,ac)
I�Γac

K � · BF†,ac

)

as ideals in I�Γac
K � ⊗Zp

Qp, and so the result follows from the combination of (5.8), (5.11), 
and (5.13). �

The aforementioned I�Γac
K �-adic Gross–Zagier formula for Z∞ is the following.

Corollary 5.9. Assume hypotheses (h0)–(h6). Then we have the equality

(LHi
p,1(f

†/K)ac) = (〈Z∞,Z∞〉cyc
Kac

∞,I)

as ideals of I�Γac
K � ⊗I FI.
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Proof. Since SelGr(K, T†,ac) has I�Γac
K �-rank one by Theorem 5.5 and Z∞ is not I�ΓK�-

torsion, the regulator Rcyc of (5.7) satisfies

(〈Z∞,Z∞〉cyc
Kac

∞,I) = Rcyc · CharI�Γac
K �

(
SelGr(K,T†,ac)
I�Γac

K � · Z∞

)
· CharI�Γac

K �

(
SelGr(K,T†,ac)
I�Γac

K � · Z∞

)ι

.

By the “functional equation” of [33, p. 1464], the result thus follows from the combination 
of Theorem 5.8 and the equality of characteristic ideals in Theorem 5.5. �
5.4. Proof of Theorem B

As in the Introduction, let −w ∈ {±1} be the generic sign in the functional equation of 
the p-adic L-functions LMTT

p (fφ, s) for varying φ ∈ X o
a (I). For comparison, before giving 

the proof of our application to Greenberg’s nonvanishing conjecture in the case of rank 
one, we record a result in the rank zero case that follows immediately from [57].

Theorem 5.10 (Skinner–Urban). Assume that:

• ρ̄f is irreducible and p-distinguished,
• f has trivial tame character,
• there is a prime �‖N such that ρ̄f is ramified at �.

If SelGr(Q, T †
f ) is I-torsion, then L(fφ, kφ/2) 	= 0 for all but finitely many φ ∈ X o

a (I).

Proof. Since the I-modules SelGr(Q, T †
f ) and XGr(Q, A†

f ) have the same rank by 

Lemma 3.2, our hypothesis implies that XGr(Q, A†
f ) is I-torsion. Thus in particular 

SelGr(Q, Afφ
(1 − kφ/2)) is finite for all but finitely many φ ∈ X o

a (I), and so the result 
follows from [57, Thm. 3.6.13]. �

The following is Theorem B in the Introduction.

Theorem 5.11. Assume that:

(i) I is regular,
(ii) ρ̄f is irreducible,
(iii) some specialization fφ is the p-stabilization of a newform f ∈ S2(Γ0(N)),
(iv) N is squarefree,
(v) there are at least two primes �|N at which ρ̄f is ramified.

If SelGr(Q, T †
f ) has I-rank one and the I-adic height pairing 〈−, −〉cyc

Q,I is non-degenerate, 
then

d

ds
LMTT
p (fφ, s)

∣∣∣∣ 	= 0,

s=kφ/2
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for all but finitely many φ ∈ X o
a (I).

Proof. Let φ ∈ X o
a (I) be such that fφ is the ordinary p-stabilization of a newform 

f ∈ S2(Γ0(N)). Let �1 and �2 be two distinct primes as in hypothesis (v), and choose an 
imaginary quadratic field K such that the following hold:

• �1 and �2 are inert in K,
• every prime dividing N+ := N/�1�2 splits in K,
• p splits in K,
• L(f ⊗ εK, 1) 	= 0, where εK is the quadratic character corresponding to K.

Note that the existence of K is ensured by a result of [63] (see also [20, Thm. B.1]), 
and that, so chosen, K satisfies (gen-H) with N− = �1�2. Now, the action of a complex 
conjugation c combined with the restriction map induces an isomorphism

SelGr(K, T †
f ) � SelGr(Q, T †

f ) ⊕ SelGr(Q, T †
f ⊗ εK), (5.14)

where the first and second summands are identified with the + and − eigenspaces for 
the action of c, respectively (see [57, Lem. 3.1.5]). By Kato’s work [38], the nonva-
nishing of L(f ⊗ εK, 1) implies that Sel(Q, Tf ⊗ εK) is finite, and so by the control 
theorem for SelGr(Q, T †

f ⊗ εK) (see the exact sequence in [35, Cor. 3.4.3]) we conclude 

that SelGr(Q, T †
f ⊗ εK) is I-torsion, and so

rankI SelGr(K, T †
f ) = rankI SelGr(Q, T †

f ) = 1

by (5.14) and our assumption. In particular, since hypotheses (i)–(iv) imply hypotheses
(h0)–(h3) at the start of this section, and hypotheses (h4)–(h6) hold by our choice of K, 
Theorem 5.6 yields the non-triviality of the class Z0, and so the element 〈Z0, Z0〉cyc

K,I ∈ I

is non-zero by our hypothesis of non-degeneracy.
Let LHi

p (f †/K)cyc be the image of twΘ−1(LHi
p (f/K)) under the natural projection 

I�ΓK� � I�Γcyc
K �. By Theorem 2.4, for every φ ∈ X o

a (I) we have the factorization

φ(LHi
p (f †/K)cyc) = twΘ−1

φ
(LMTT

p (fφ)) · twΘ−1
φ

(LMTT
p (fφ ⊗ εK)) (5.15)

up to a unit in φ(I)�Γcyc�×. Expand

φ(LHi
p (f †/K)cyc) = LHi

p,0(f
†
φ/K) + LHi

p,1(f
†
φ/K) · (γcyc − 1) + · · · ,

twΘ−1
φ

(LMTT
p (fφ)) = LMTT

p,0(f †
φ) + LMTT

p,1 (f †
φ) · (γcyc − 1) + · · · ,

twΘ−1
φ

(LMTT
p (fφ ⊗ εK)) = LMTT

p,0(f †
φ ⊗ εK) + LMTT

p,1(f †
φ ⊗ εK) · (γcyc − 1) + · · · ,

as power series in γcyc − 1, and note that by the p-adic Mellin transform we have
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d

ds
LMTT
p (fφ, s)

∣∣∣∣
s=kφ/2

	= 0 ⇐⇒ LMTT
p,1 (f †

φ) 	= 0

(see [62, (24)]). The constant term LHi
p,0(f

†
φ/K) ∈ I vanishes by Proposition 2.3, and so 

the factorization (5.15) yields the following equality up to unit in O×
φ :

LHi
p,1(f

†
φ/K) = LMTT

p,1(f †
φ) · LMTT

p,0 (f †
φ ⊗ εK). (5.16)

Finally, since by definition LHi
p,1(f

†/K) ∈ I agrees with the image of the linear term 
LHi
p,1(f

†/K)ac in (3.5) under the augmentation map I�Γac
K � → I, from Corollary 5.9

specialized at the trivial character of Γac
K and (5.16) we see that

〈Z0,Z0〉cyc
K,I 	= 0 =⇒ LHi

p,1(f
†
φ/K) 	= 0, for almost all φ ∈ X o

a (I)

=⇒ LMTT
p,1(f †

φ) 	= 0, for almost all φ ∈ X o
a (I),

concluding the proof of Theorem 5.11. �
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