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Introduction

0.1 Statement of the main results

Let E/Q be an elliptic curve, and let p be an odd prime of good reduction
for E. We say that p is an Eisenstein prime (for E) if E[p] is reducible as a
Gg-module, where Gg = Gal(@/ Q) is the absolute Galois group of Q and
E[p] denotes the p-torsion of E. Equivalently, p is an Eisenstein prime if E
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admits a rational p-isogeny. By a result of Fontaine (see [17] for an account),
Eisenstein primes are primes of ordinary reduction for E, and by Mazur’s
results [38] in fact p € {3, 5,7, 13, 37}.

Let p > 2 be an Eisenstein prime for £, and let K be an imaginary quadratic
field such that

p = vu splits in K, (spl)

where v denotes the prime of K above p induced by a fixed embedding Q—
Q- Denoting by N the conductor of E, assume also that K satisfies the
following Heegner hypothesis:

every prime £|N splits in K. (Heeg)

Under these hypotheses, the anticyclotomic Iwasawa main conjecture for £
considered in this paper can be formulated in two different guises. We begin
by recalling these, since both formulations will play an important role in the
proof of our main results. (Note that for the formulation p can be any odd
prime of good ordinary reduction for E.) Let I' = Gal(K,/K) be the Galois
group of the anticyclotomic Z ,-extension of K, and for each n denote by K,
the subfield of K~ with [K,, : K] = p". Set

A= Zp[[F]L Aae := A ®Z,, Qp, A" = A®Z[)Zur,

where Z!;" is the completion of the ring of integers of the maximal unramified
extension of QQ,. Following the work of Bertolini-Darmon—Prasanna [3], there
is a p-adic L-function Lg € A" interpolating the central critical values of the
L-function of f/K, where f € S>(I'g(V)) is the newform associated with E,
twisted by certain characters of I' of infinite order. For any subfield L C Q,
let Sel,m (E /L) be the Selmer group fitting into the descent exact sequence

0— E(L)®zZ/p"Z — Selym(E/L) — NI(E/L)[p™] — 0.
We put Sel ) (E/Koo) = h_n)1m Sel,m(E/K ), and let
X = HomZp (G, Qp/Zp)
be the Pontryagin dual of the modified Selmer group &g obtained from

Sel,~(E/Kx) by relaxing (resp. imposing triviality) at the places above v

(resp. v).
The following formulation of the anticyclotomic Iwasawa main conjectures
for E can be seen as a special case of Greenberg’s main conjectures [22].
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Conjecture A Let E/Q be an elliptic curve and p > 2 a prime of good
ordinary reduction for E, and let K be an imaginary quadratic field satisfying
(Heeg) and (spl). Then Xg is A-torsion, and

charA (%E)Aur = (['E)
as ideals in A™.

A second formulation, originally due to Perrin-Riou [43], is in terms of
Heegner points. Although a more general formulation is possible (cf. [8, §2.3]),
here as in [43] we assume that

the discriminant Dk of K is odd and Dg # —3, (disc)
and do not require hypothesis (spl). Fix a modular parametrization
7w Xo(N)— E.

Via mr, the Kummer images of Heegner points on Xo(N) over ring class fields
of K of p-power conductor give rise to a class Kflg € S, where

S = (l(ir_nl(ir_nSelpm(E/Kn)> ® Q,.

n m

The group S is naturally a A,.-module, and the class Kng is known to be non-
Ayc-torsion by results of Cornut and Vatsal [16,50]. Denote by H C S the

Ayc-submodule generated by KFg, and put
X = HomZ,, (Selpoo (E/Ko), Qp/Zp) & Qp-

Conjecture B Let E/Q be an elliptic curve and p > 2 a prime of good
ordinary reduction for E, and let K be an imaginary quadratic field satisfying
(Heeg) and (disc). Then S and X both have A ,.-rank one, and

char a, (Xiors) = charp,. (S/ H)z,

where Xiors denotes the Ayc-torsion submodule of X.

Remark One can naturally formulate an integral version of Conjecture B, but
the results of [43] and [30] show that the terms appearing in the corresponding
equality of A-module characteristic ideals are in general not invariant under-
noalign isogenies. (With p inverted, i.e., as ideals in A4, the terms are invariant

@ Springer



On the anticyclotomic Iwasawa theory of rational elliptic... 521

under isogenies.) On the other hand, it is clear that the principal ideals in A"
appearing in the equality of Conjecture A depend only on the isogeny class of
E.

When p is non-Eisenstein for £, Conjectures A and B have been studied by
several authors [2,4,10,28,29,52], but the residually reducible case remained
largely unexplored; in particular, unless £ has CM by K (a case thatis excluded
by our hypothesis (Heeg), but see [8] for this case), there seems to be no
previous results towards these conjectures when p is an Eisenstein prime for
E.

To state our main results on the anticyclotomic Iwasawa theory of E at
Eisenstein primes p, write

E[p]* = Fp(¢) 2] Fp(‘p),

where ¢,V : Gg — F; are characters. Note that it follows from the Weil

pairing that ¥ = w¢ !, where w is the Teichmiiller character. Let G » CGo
be a decomposition group at p.

Our most complete results towards Conjectures A and B are proved under
the additional hypothesis that

the Z-corank of Sel o (E/K) is 1. (Sel)

Theorem C Let E/Q be an elliptic curve, p > 2 an Eisenstein prime for E,
and K an imaginary quadratic field satisfying (Heeg), (spl), (disc), and (Sel).
Assume also that ¢|G, # 1, . Then Conjecture A holds.

As we explain in more detail in the next section, a key step towards Theo-
rem C is the proof of a divisibility in Conjecture B that we establish without the
need to assume (spl) (see Theorem 4.1.2). On the other hand, as first observed
in [9] and [52], when p splits in K, Conjectures A and B are essentially equiv-
alent (see Proposition 4.2.1). Thus from Theorem 4.1.2 we deduce one of the
divisibilities in Conjecture A, which by the analysis of Iwasawa invariants
carried out in Sects. 1, 2 then yields the equality of ideals in A" predicted
by Conjecture A. As a result, our analysis together with the aforementioned
equivalence also yields the following.

Corollary D Let E/Q be an elliptic curve, p > 2 an Eisenstein prime for
E, and K an imaginary quadratic field satisfying (Heeg), (disc), and (Sel). If
E(K)[p]l =0, then S and X both have A ,.-rank one, and

char ., (Xiors) D chara, (S/H)’.
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Moreover, if in addition K satisfies (spl) and ¢|g, # 1, o, then

charp, (Xiors) = charp,, (8/7‘[)2,

and hence Conjecture B holds.

Note that in both Theorem C and Corollary D, the elliptic curve E is allowed
to have complex multiplication (necessarily by an imaginary quadratic field
different from K).

With a judicious choice of K, Theorem C also has applications to the arith-
metic over Q of rational elliptic curves. Specifically, for Eisenstein primes p,
we obtain a p-converse to the celebrated theorem

ords—1 L(E,s) =r € {0,1} = rankzE(Q) = r and #11I(E/Q) < oo,
(0.1)

of Gross—Zagier and Kolyvagin. (The case of Eisenstein primes eluded the
methods of [46] and [53], which require E[p] to be absolutely irreducible as
a Gg-module.)

Theorem E Let E/Q be an elliptic curve and p > 2 an Eisenstein prime
for E, so that E[p]** = F,(¢) @ F,(¥) as Gg-modules, and assume that
#lg, # L, w. Let r € {0, 1}. Then the following implication holds:

corankZpSelpoc(E/(@) =r — ords—|L(E,s) =,

and so rankz E(Q) = r and #11I(E /Q) < oc.

Note thatifrankz £(Q) = r and #111(E /Q)[ p>] < oo then corankz,,Sel o
(E/Q) = r, whence the p-converse to (0.1). We also note that for p = 3,
Theorem E together with the recent work of Bhargava—Klagsbrun—Lemke
Oliver—Shnidman [5] on the average 3-Selmer rank for abelian varieties in
quadratic twist families, provides additional evidence towards Goldfeld’s
conjecture [19] for elliptic curves E/Q admitting a rational 3-isogeny (see
Corollary 5.2.3 and Remark 5.2.4, and see also [35] for earlier results along
these lines).

Another application of Theorem C is the following.

Theorem F Under the hypotheses of Theorem E, assume in addition that ¢ is
either ramified at p and odd, or unramified at p and even. Ifords— L(E, s) =
1, then

rdp( L/(E, 1)

W) ~ o (#m<E/@> [1 ce(E/@)),

Yoo
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where

e Reg(E/Q) is the regulator of E(Q),

e Qp =/ E®) |wE| is the Néron period associated to the Néron differential
wg, and

e ¢/ (E/Q) is the Tamagawa number of E at the prime £.

In other words, the p-part of the Birch—-Swinnerton-Dyler formula for E holds.

0.2 Method of proof and outline of the paper

Let us explain some of the ideas that go into the proof of our main results,
beginning with the proof of Theorem C. As in [24], our starting point is Green-
berg’s old observation [20] that a “main conjecture” should be equivalent to an
imprimitive one. More precisely, in the context of Theorem C, for ¥ any finite
set of non-archimedean primes of K not containing any of the primes above p,
this translates into the expectation that the Z-imprimitive Selmer group X%,
obtained by relaxing the local condition defining (the Pontryagin dual of) Xg
at the primes w € X, is A-torsion with

charp (X3)A" = (£F) 0.2)

as ideals in A", where EE = L - [[pex Pw(E) for certain elements in
Pw(E) € A interpolating, for varying characters x of I', the w-local Euler
factor of L(E/K, x, s) evaluated s = 1.

A key advantage of the imprimitive main conjecture (0.2) is that (unlike
the original conjecture), for suitable choices of X, its associated Iwasawa
invariants are well-behaved with respect to congruences mod p. Identifying A
with the power series ring Z, [T] by setting T = y — 1 for a fixed topological
generator y € I, recall that by the Weierstrass preparation theorem, every
nonzero g € A can be uniquely written in the form

g=u-p'- 0,

withu € A™, u = u(g) € Zxo, and Q(T) € Z,[T] a distinguished polyno-
mial of degree A(g). The constants A and u are the so-called Iwasawa invariants
of g. For a torsion A-module X we let A(X) and ©(X) be the Iwasawa invari-
ants of a characteristic power series for X, and for a nonzero £ € A" we let
A(L) and (L) be the Iwasawa invariants of any element of A generating the
same A"-ideal as L.

As a first step towards Theorem C, we deduce from the Gg-module iso-
morphism E[p]** = F,(¢) ® IF,(¢) that, taking X to consist of primes that
are splitin K and containing all the primes of bad reduction for E, the module
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X% is A-torsion with
u(Xp) =0 and A(Xgp) = A(X))+Ar(X)). (0.3)

where X> and %5 are anticyclotomic Selmer groups (closely related to the
Pontryagin dual of certain class groups) for the Teichmiiller lifts of ¢ and v,
respectively. The proof of (0.3), which is taken up in Sect. 1, uses Rubin’s work
[45] on the Iwasawa main conjecture for imaginary quadratic fields and Hida’s
work [27] on the vanishing of the p-invariant of p-adic Hecke L-functions.

On the other hand, in Sect. 2 we deduce from the main result of [37] that
for such X one also has

u(LF) =0 and A(CF) =A(L) +A(L]), (0.4)

where £ and [,1/2/ are X-imprimitive anticyclotomic Katz p-adic L-functions
attached to ¢ and v, respectively.

With equalities (0.3) and (0.4) in hand, it follows easily that to prove the
equality of characteristic ideals in Conjecture A it suffices to prove one of the
predicted divisibilities in A"[1]. In Sect. 3, by combining Howard’s approach
to proving Iwasawa-theoretic (ivisibilities [28] with a Kolyvagin system argu-
ment along the lines of Nekovai’s [42] (but adapted for twists by infinite
order characters and for obtaining a bound on the length of Tate—Shafarevich
group and not just an annihilator), we prove the main result towards one of
the divisibilities in Conjecture B: chary, (Xiors) divides charp,, (S /7-[)2 in
Aac[%], and even in A, assuming (Sel). As already noted, hypotheses (spl)
and¢|g, # 1, w are notneeded at this point. This yields a corresponding divis-
ibility in (0.2), from which the proof of Theorem C follows easily. The details
of the final argument, and the deduction of Corollary D, are given in Sect. 4.
The additional hypothesis (Sel) is required to circumvent the growth of the
‘error term’ in our Kolyvagin system arguments in the cases of twists by anti-
cyclotomic characters p-adically close to the trivial character. The arguments
in Sect. 3 apply equally well to both the residually reducible and residually
irreducible cases.

Finally, the proofs of Theorems E and F are given in Sect. 5, and they are
both obtained as an application of Theorem C for a suitably chosen K. In
particular, the proof of Theorem F requires knowing the p-part of the Birch—
Swinnerton-Dyler formula in analytic rank O for the quadratic twist EX; this
is deduced in Theorem 5.1.4 from the results of Greenberg—Vatsal [24], and
this is responsible for the additional hypotheses on ¢ placed in Theorem F.

@ Springer



On the anticyclotomic Iwasawa theory of rational elliptic... 525

0.3 Examples

To illustrate Theorem F, take p = 5 and consider the elliptic curve
J:y2+y=x3—|—x2—10x+10.

The curve J has conductor 123 and analytic rank 1, and satisfies J[5]*® =
ZL/5Z ® 11 as Go-modules (J has a rational 5-torsion point). If ¥ is an even
quadratic character such that ¥ (5) = —1, corresponding to a real quadratic
field Q(4/c) in which 5 is inert, then the twist E = J. of J by v satisfies
the hypotheses of Theorem E with p = 5. Since the root number of J is —1
(being of analytic rank one), by [18, Thm. B.2] we can find infinitely many
Y as above for which the associated twist £ = J,. also has analytic rank one,
and therefore for which Theorem F applies.

One can proceed similarly for p = 3 (resp. p = 7), taking real quadratic
twists of, for example, the elliptic curve y>+y = x3+x2—7x+5 of conductor
91 (resp. y> 4+ xy +y = x> — x> — 19353x + 958713 of conductor 574). For
p = 13 (resp. p = 37), one can do the same, possibly choosing the quadratic
character to be odd and/or imposing conditions at some bad primes depending
on the character describing the kernel of the isogeny (which is not trivial in
these cases) in order to apply [18, Thm. B.2]. One could consider, for example,
twists of the elliptic curve y> 4+ y = x> — 21x + 40 of conductor 441 (resp.
y2 4+ xy+y = x> + x2 — 8x + 6 of conductor 1225).

We also note that, for each of the four primes primes above, p = 3,5, 7, 13,
there are infinitely many distinct j-invariants to which Theorem F applies, as
Xo(p) has genus 0 in these cases.

0.4 Relation to previous works

Results in the same vein as (0.3) and (0.4) were first obtained by Greenberg—
Vatsal [24] in the cyclotomic setting; combined with Kato’s Euler system
divisibility [34], these results led to their proof of the cyclotomic Iwasawa
main conjecture for rational elliptic curves at Eisenstein primes p (under some
hypotheses on the kernel of the associated rational p-isogeny). This paper
might be seen as an extension of the Greenberg—Vatsal method for Eisenstein
primes to the anticyclotomic setting. However, for the anticyclotomic Selmer
groups and L-functions considered in this paper we are able to avoid the
possible variation within an isogeny class of elliptic curves of the u-invariants
and periods, which must be dealt with in [24]. In large part this is because
the periods in the corresponding p-adic families are the CM periods of Hecke
characters and not the periods of the elliptic curve. Consequently, the methods
are slightly more robust and the resulting applications somewhat more general.
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The p-invariants of anticyclotomic Selmer groups and p-adic L-functions
were also studied in [44], but for different Selmer conditions and hypotheses
on K (in fact, under the hypothesis (Heeg) the p-adic L-function in [44]
vanishes identically and the Selmer group is not A-cotorsion).

The ensuing applications of Theorems C and Corollary D to the p-converse
of the Gross—Zagier—Kolyvagin theorem (Theorem E) and the p-part of
the Birch—Swinnerton-Dyer formula in analytic rank 1 (Theorem F) covers
primes p that were either left untouched by the recent works in these direc-
tions [1,6,11,32,46,48,51,53] (where p is assumed to be non-Eisenstein), or
extending previous works [12,15,49] (p = 2), [35] (p = 3), [8] (CM cases).
Many of these results (especially [46] and [32]) also rely on progress toward
Conjecture A in the residually irreducible case. Such progress has generally
come via Eisenstein congruences on higher rank unitary groups and has explic-
itly excluded the Eisenstein cases considered in this paper.

0.5 Weight two newforms

The methods and results of this paper should easily extend to cuspidal new-
forms of weight two and trivial character that are congruent to Eisenstein series
ataprime above p. We have focused on the case of elliptic curves in the interest
of not obscuring the main features of our argument with cumbersome notation.
The general case will be addressed in later work that will also consider higher
weight forms as well as Hilbert modular forms.

1 Algebraic side

In this section we prove Theorem 1.5.1 below, relating the anticyclotomic
Iwasawa invariants of an elliptic curve E/Q at a prime p with E[p]*® =
F,(¢) @ F(¢) to the anticyclotomic Iwasawa invariants of the characters ¢
and .

Throughout, we fix a prime p > 2 and an embedding ¢, : @ — @p, and
let K C Q be an imaginary quadratic field in which p = v splits, with v the
prime of K above p induced by ¢,. We also fix an embedding ¢ : Q< C.

Let Gy = Gal(@/l() C Gg = Gal(@/@), and for each place w of K
let I, C Gy C Gg be corresponding inertia and decomposition groups. Let
Frob,, € G, /I, be the arithmetic Frobenius. For the prime v | p we assume
G, is chosen so that it is identified with Gal(@p /Qp) viap.

Let I' = Gal(Kx/K) be the Galois group of the anticyclotomic Z,-
extension Ko, of K, and let A = Z,[I'] be the anticyclotomic Iwasawa
algebra. We shall often identify A with the power series ring Z, [T ] by setting
T = y — 1 for a fixed topological generator y € I'.
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1.1 Local cohomology groups of characters

Letf : Gk — F; be a character with conductor divisible only by primes that
are split in K. Via the Teichmiiller lift IF; s Z;, we shall also view 6 as
taking values in Z ;. Set

My =Z,(0) ®z, A,

where (—)" = Home(—, Q,/Z,) for topological Z ,-modules. The module
Mg is equipped with a G g-action via # @ W~!, where W : Gx — A X is the
character arising from the projection Gg — I'.

In this section, we study the local cohomology of My at various primes w
of K.

1.1.1 w{psplitin K

Let w be a prime of K lying over a prime £ # p splitin K, and let ", C I" be
the corresponding decomposition group. Let y,, € I'y, be the image of Frob,,,
and set

Puw(©) = Pyt~ 'yy) € A, (1.1)

where P, = det(l — Frob,,X|Q,(#),) is the Euler factor at w of the L-
function of 6.

Lemma 1.1.1 The module H (K,,, Mg)" is A-torsion with
charp (H' (K, Mg)") = (P (6)).

In particular, H' (K., My)Y has u-invariant zero.

Proof Since ¢ splits in K, it follows from class field theory that the index
[[" : T'y]is finite (i.e., w is finitely decomposed in K,/ K ). Thus the argument
proving [24, Prop. 2.4] can be immediately adapted to yield this result. O

1.1.2 w|p

Recall that we assume that p = vv splits in K. We begin by recording the
following commutative algebra lemma, which shall also be used later in the

paper.

Lemma 1.1.2 Let X be a finitely generated A-module satisfying the following
two properties:
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e X[T]=0,
e X/TX is afree Zy,-module of rank r.

Then X is a free A-module of rank r.

Proof From Nakayama’s lemma we obtain a surjection & : A" — X which
becomes an isomorphism 7 after reduction modulo 7. Letting K = ker (),
from the snake lemma we deduce the exact sequence

0 K/TK — (AJTA) 5 X/TX — 0.
Thus K/TK = 0, and so K = 0 by another application of Nakayama’s
lemma. |

Letw : Gg — F; be the mod p cyclotomic character. Let w be a prime of
K above p.

Proposition 1.1.3 Assume that 0|, # 1, w. Then:

(1) The restriction map
ru - H' (Ky, Mg) — H' (I, Mp)v/"

is an isomorphism.
(i) H' (K, M) is A-cofree of rank 1.

Proof The map ry, is clearly surjective, so it suffices to show injectivity. Since
Gy /1y is pro-cyclic,

ker(ry) =~ M," /(Frob, — 1)M,",

where Frob,, is a Frobenius element at w. Taking Pontryagin duals to the exact
sequence

Frob,,—1
_

0— MZ" — M M," — Mj" /(Frob,, — HM," — 0

and using the vanishing of MQG ¥ (which follows from 0|g, # 1) we deduce
a A-module surjection

(M), - (M), (1.2)

hence an isomorphism (by the Noetherian property of A). Since the kernel of
(1.2) is isomorphic to ker(ry,) ", (i) follows. For (ii), in light of Lemma 1.1.2,
letting

X :=H'(Ky, My)",
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it suffices to show that X[7'] = 0 and the quotient X/T X is Z,-free of rank

1. Taking cohomology for the exact sequence 0 — Q,/Z,(0) — My LN
My — 0 we obtain

K M) _ 41k, @,/2,0) ~ H (Ku MpIT]. (13)
TH' Ky, Mg) v o

using that H2(K,, My) = 0 (which follows from 0lg, # w) for the first
isomorphism and HO(K,, My) = 0 for the second. The first isomorphism
shows that X[7T'] = 0. On the other hand, taking cohomology for the exact

sequence 0 — F,(0) — Q,/Z,(0) S Qp/Zy(B) — 0 and using that
0|G, # w we obtain

H' (K, Qp/Z,(0))
pH (K, Qp/Z, ()

~ H*(K,, F,(6)) =0,

which together with the second isomorphism in (1.3) shows that X/T X =~
H'(K,, Qp/Z,(9))Y is Z,-free of rank 1 (the value of the rank following
from the local Euler characteristic formula), concluding the proof. O

1.2 Selmer groups of characters

As in the preceding section, let& : Gg — F; be a character whose conductor
is divisible only by primes splitin K (that is, which are unramified over QQ and
have degree one).

Let X be a finite set of places of K containing co and the primes dividing
p or the conductor of 6 and such that every finite place in X is split in K, and
denote by K * the maximal extension of K unramified outside .

Definition 1.2.1 The Selmer group of 0 is

Hi, (K, My) := ker{H%KE/K, Mg) — 1 H'(Kw, Mp) x H' (K5, Me)},
weX, wip

and letting S = X\ {v, v, oo}, we define the S-imprimitive Selmer group of 6

by

Hlfé (K, Mp) := ker{Hl(KE/K, Mp) — H' (K5, Mg)}.
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Replacing My by My p]in the above definitions, we obtain the residual Selmer
group Hy_ (K, Mp[p]) and its S-imprimitive variant H; s (K, My[p)).
Gr

It is well-known that the above groups are cofinitely generated over the
corresponding Iwasawa algebra (A and A/p), and that the Selmer group and
residual Selmer groups are independent of the choice of the set X as above.

The following result, combining work of Rubin and Hida, will play a key
role in our proofs.

Theorem 1.2.2 (Rubin, Hida) Assume that6|c, # 1, . Then H;Gr(K , My)Y
is a torsion A-module with p-invariant zero.

Proof Let Ky C Q be the fixed field of ker(0), and set Ay = Gal(Kg/K).
The restriction map

H'(KZ/K, Mg) — HY(KZ/Kg, Mg)™

is an isomorphism (since p 1 |Agl), which combined with Shapiro’s lemma
gives rise to an identification

H'(K*/Kg, Mp) ~ Homys((X2)?, Q,/Z,), (1.4)

where XOEO = Gal(/\/lgO /K Kp) is the Galois group of the maximal abelian
pro-p extension of KKy unramified outside ¥, and (XZ)? is the 6-
isotypic component of XZ for the action of A, identified as a subgroup
of Gal(K~, Ky /K) via the decomposition Gal(KscKg/K) ~ T x Ag.

Now, by [44, Rem. 3.2] (since the primes w { p in X are finitely decomposed
in K~/ K) and Proposition 1.1.3(i), the Selmer group Hlfc;r (K, Mp) is the same
as the one defined by the unramified local conditions, i.e., as

ker{Hl(KE/K, Moy~ [] Hl(lw,Mva/’vleug,Mg)Gﬁ/’ﬂ},
weX, wip

and so under the identification (1.4) we obtain
Hir, (K, Mp) ~ Home (XS, Qp/Zp)

where Xoo = Gal(Mo/ Koo Kp) is the Galois group of the maximal abelian
pro- p extension of K, Ky unramified outside v. Thus from the works of Rubin
[45], which identifies char p (H}Gr(K , My)Y) with the ideal generated by an
anticyclotomic projection of a Katz p-adic L-function, and Hida [27], proving
the vanishing of the p-invariant of such anticyclotomic p-adic L-functions,
we obtain the theorem. |
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Remark 1.2.3 Following the notations introduced in the proof of Theo-
rem 1.2.2, and letting XY = Gal(MPL /Ky Ky) be the Galois group of
the maximal abelian pro-p extension of Ko, Ky unramified outside v and
in which the primes above v split completely, Proposition 1.1.3(i) shows
(X2 = (X’

The next two results will allow us to determine A(%O) in terms of the resid-
ual Selmer group H! 7S (K, My[p]). In brief, the fact that 3€S has no nonzero
G

pseudo-null A-submodules (shown in Proposition 1.2.5 below) yields the
equality K(f{e) = dlm]Fp (Hlfs (K, M@)[p]), which combined with the next
Gr

lemma yields the desired result.

Lemma 1.2.4 Assume that 6|, # 1. Then
HLs (K, Mglp]) = HL (K, Mp)[p].
Gr Gr

Proof The hypothesis on 6 implies in particular that HO(K, F p(0)) =0, and
so HY(K, My) = 0. Thus the natural map

HY(KZ/K, Mg[p]) — HY(KZ/K, Mp)[p]

induced by multiplication by p on My is an isomorphism. To conclude it
suffices to check that the natural map r; : H! (K35, Mp[p]) — H! (K3, M) p]
is an injection, but since HO(Kj, F,(0)) = 0 by the hypothesis, the same
argument as above shows that r; is an isomorphism. O

Let
Xj =Hys (K, My)" and X :=Hx, (K, Mp)",
Gr

and recall the element P,,(0) € A introduced in (1.1).

Proposition 1.2.5 Assume that |G, # 1, w. Then %g is a torsion A-module
with u-invariant zevo and its h-invariant satisfies

MED) =A(Xe)+ DY A(Pu®).

weX,wip

Moreover, H (K My p]) is finite and
dimp, (Hlfé (K, Mp[pD) = A(X)).
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Proof Since Xg is A-torsion by Theorem 1.2.2 and the Cartier dual
Hom(Q/Z,(8), p p) hasnonon-trivial G g _-invariants, from [44, Prop. A.2]
we obtain that the restriction map in the definition of H;Gr (K, My) is surjec-
tive, and so the sequence

0 — Hp (K, M) —> H'(K*/K, Mp)

- [] H'(Kw.Ms) x H' (K5, Mg) — 0 (1.5)
wex, wip

is exact. From the definitions, this readily yields the exact sequence

0 — Hi, (K, Mg) — His (K, Mp) —> [ | H'(Ku, Mg) — 0, (1.6)
Gr

wesS

which combined with Theorem 1.2.2 and Lemma 1.1.1 gives the first part of
the proposition.

For the second part, note that H2(K* /K, Mp) = 0. (Indeed, by the
Euler characteristic formula, the A-cotorsionness of H}_-Gr(K , Mp) implies
that H2(K ® /K, Mg) is A-cotorsion; being A-cofree, as follows immedi-
ately from the fact that Gal(K>/K) has cohomological dimension 2, it
must vanish.) Thus from the long exact sequence in cohomology induced

by 0 — Qp/Z,(0) — My BN My — 0 we obtain the isomorphism

HY (K> /K, My)

TH RS K 1) = H*(K> /K, Q,/Zy(0)).

Since H(K * /K, Qp/Zy(9))is Zp-cofree (because Gal(K * /K has coho-
mological dimension 2), it follows that H! (K> /K, My)¥ has no nonzero
pseudo-null A-submodules (cf. [21, Prop. 5]), and since (1.5) and (1.6) readily
imply that

s _ H'(K¥/K, Mp)"
7 HUKy, Mp)Y

as A-modules, by Proposition 1.1.3(iii) and [24, Lem. 2.6] we conclude
that also %g has no nonzero pseudo-null A-submodules. Finally, since
%g is A-torsion with p-invariant zero by Theorem 1.2.2, the finiteness of
Hlfér(K’ Mpy)[ p] (and therefore of Hlfér(K’ Mp[p]) by Lemma 1.2.4) follows
from the structure theorem. It also follows that Hlfér(K , Mp) is divisible. In
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particular,
Hys (K, Mo) = (Q,/Zp)",
where A = k(%g ), which together with Lemma 1.2.4 gives the final formula
for the A-invariant. O
The following corollary will be used crucially in the next section.

Corollary 1.2.6 Assume that 0|, # 1, ®. Then H*(K* /K, Mg[p]) = 0
and the sequence

0 — Hiy (K, MolpD) — H'(K*/K, My[p]) — H'(Ks, Mylp]) — 0

is exact.

Proof In the course of the proof of Proposition 1.2.5 we showed that
H%(K*/K, My) = 0, and so the cohomology long exact sequence induced by
multiplication by p on My yields an isomorphism

HY(K* /K, M)
pHU(K¥ /K, My)

~ H*(K* /K, My[p)). (1.7)

On the other hand, from the exactness of (1.5) we deduce the exact sequence

0— Hlfg (K, Mg) — HY(KZ/K, Mg) — H' (K5, Mg) — 0. (1.8)

Since we also showed in that proof that H;S (K, My) 1is divisible, and
Gr

H' (K3, My) is A-cofree by Proposition 1.1.3(ii), it follows from (1.8) that
H!(K*/K, Mg)" has no p-torsion, and so

H*(K*/K, My[p]) =0

by (1.7), giving the first claim in the statement.
For the second claim, consider the commutative diagram

0 — H! (K, My) — HY(K*/K, My) — H' (K3, My) — 0

“ | |

0 — Hys (K, Mg) —> H'(K*/K, Mg) — H' (K3, Mg) — 0,
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where the vertical maps are the natural ones induced by multiplication by p on
My. Since Hlf s (K, Mp) is divisible, the snake lemma applied to this diagram

Gr
yields the exact sequence

0 — Hiy (K, Mg)[p] — H'(K*/K, Mg)[p] — H'(Kz, Mo)[p] = 0,

which by Lemma 1.2.4 (and the natural isomorphisms shown in its proof) is
identified with the exact sequence in the statement. O

1.3 Local cohomology groups of E

Now we let E/Q be an elliptic curve of conductor N with good reduction
at p and admitting a rational p-isogeny. The Gg-module E[p] is therefore
reducible, fitting into an exact sequence

0—F,(¢) — E[p] - F,(¥) — 0, (1.9)

where ¢, : Gg — IF; are characters such that ¢y = w by the Weil pairing.
We assume that every prime £|N splits in K and continue to assume that
p = vv splits in K, so the results of the preceding sections can be applied to
the restrictions of ¢ and ¥ to Gg.

Let T = T,E be the p-adic Tate module of E, and denote by Mg the
G g -module

Mg =T ®z, A,

where the tensor product is endowed with the diagonal G g -action (and the
action on AV is via W1, as before).

Lemma 1.3.1 Let w be aprime of K above p, and assume that E(K ,)[p] = 0.
Then HY(K,,, MEg) is A-cofree of rank 2.

Proof The proof is virtually the same as the proof of Proposition 1.1.3(ii).
Letting X := H'(K,,, Mg)", by Lemma 1.1.2 it suffices to show that X[T'] =
Oand X/ T X is Z,-free of rank 2. The hypotheses imply that E(K,,)[ p>] = 0,
and so H2(K,, E[p™]) = 0 by local duality. Taking cohomology for the exact
sequence

0 E[p®] — Mg =L Mg — 0
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it follows that

H' (K, M) o
m—}l (Kw, E[p”°]) =0,
H' (K, E[p™]) ~ HY (K, Mp)[T]. (1.10)

The first isomorphism shows that X[7T'] = 0. On the other hand, taking

cohomology for the exact sequence 0 — E[p] — E[p*°] LA E[p*®] — 0
we obtain

H' (K, E[p™])
pH(K, E[p™])

~ H%(K,, E[p]) =0,

which together with the second isomorphism in (1.10) shows that X/T X ~
HY (K, E[ peY is Zp-free. That its rank is 2 follows from the local Euler
characteristic formula. O

1.4 Selmer groups of E
Fix a finite set X of places of K containing co and the primes above Np, and

such that the finite places in X are all splitin K.
Similarly as in Sect. 1.2, we define a Selmer group for E by

Hy, (K, M)

:=ker{H1<KE/K,MEH I1 H1<Kw,ME>xH1(Kl—,,ME>},
wex, wip

and an S-imprimitive Selmer group, where S = ¥ \ {v, v, oo}, by
H;é (K, Mg) := ker{Hl(KE/K, Mg) — H' (K3, ME)}.

The residual Selmer groups H}G (K, Mg[p]) and HI}_S (K, Mg[p]) are
T Gr

defined in the same manner.
Viewing the characters ¢ and i appearing in the exact sequence (1.9) as
taking values in Z; via the Teichmiiller lift, we obtain an exact sequence
0 — Mylpl = Mg[p]l — Mylpl — 0 (1.11)
of Gal(K ¥ /K)-modules. Let G p C Gq be a decomposition group at p.
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Proposition 1.4.1 Assume that ¢|g , = 1o Then (1.11) induces a natural
exact sequence

0— Hls (K, Mylp]) - His (K, Mg[p]) — H s (K, My[p]) — 0.
Gr Gr Gr
In particular, H}__(S} (K, Mg[p]) is finite, and

dimp, (H;é (K. Mg[p])) = A(X)) + A(X3).

Proof Taking cohomology for the exact sequence (1.11) we obtain the com-
mutative diagram

0 — H'(K*®/K, My[p)) — H'(K® /K, Mg[p]) — HY(K® /K, My[p]) — 0

l | l

0 — H'(Ky, Mylp)) — H (K5, Mg[p]) —— H' (Ky, My [p]) — O,

where the exactness of the rows follows immediately from Corollary 1.2.6
and the hypothesis on ¢ (which implies that Y|, # 1,  as well), and the
vertical maps are given by restriction. Since the left vertical arrow is surjective
by Corollary 1.2.6, the snake lemma applied to this diagram yields the exact
sequence in the statement. The last claim now follows from the last claim of
Proposition 1.2.5. |

Now we can relate the imprimitive residual and p°°-Selmer groups. Set
Xy = Hlfgr(K, Mg)Y, Xg:=Hpg, (K, Mg)".
Proposition 1.4.2 Assume that ¢|G, # 1, . Then

Hys (K, Mglp]) ~ His (K, Me)lp]

Moreover, the modules %% and X are both A-torsion with u = 0.

Proof Since ¢ = wd~!, our assumption on ¢ implies that E(K3)[p] = 0,
and therefore H(K3, Mg) = 0. Thus the same argument as in the proof
of Lemma 1.2.4 yields the isomorphism in the statement. It follows from
Proposition 1.4.1 that H;g (K, MEg)[p] is finite, and so %f; is A-cotorsion

with . = 0. Since X is a quotient of X5., this completes the proof. m|

Now we can deduce the following analogue of Proposition 1.2.5 for Mg.
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Corollary 1.4.3 Assume that ¢|G, # 1, . Then %% has no non-trivial finite
A-submodules, and

A(x%) = dim, (Hlfgr(l(, MEglp))).

Proof Since My, = Hom(ME, j1p~) has no non-trivial G g-invariants and
.’f% is A-torsion by Proposition 1.4.2, from [44, Prop. A.2] we deduce that the
sequence

0 — Hj, (K, Mg) > H' (K”/K, ME)

- ] H'Kw.Mp)xH'(Kg, Mg) > 0 (1.12)
weX,wip

is exact. Proceeding as in the proof of Proposition 1.2.5, we see that
the A-torsionness of Xg implies that HZ(K*® /K, Mg) = 0 and that
H'(K*/K, ME)" has no nonzero pseudo-null A-submodules. The exactness
of (1.12) readily implies a A-module isomorphism

HY(K*/K, Mg)Y

x5 ~
E= HY(Ky, ME)V

Since H' (K3, M) is A-cofree by Lemma 1.3.1, we thus conclude from
[24, Lem. 2.6] that .'{S has no nonzero finite A-submodules. Together with the
isomorphism H! 7S (K MEg(p]) =~ H! 75 (K, MEg)[ p] of Proposition 1.4.2, the

last claim in the statement of the corollary follows from this. O
Finally, we note that as in Lemma 1.1.1, one can show that for primes w 1 p

split in K, the module H'(K,,, M) is A-torsion with characteristic ideal
generated by the element

Pu(E) = P,(t™'yy) € A,

where P, = det(1 — Frob,, X|V},),for V =T ® Q,, is the Euler factor at w
of the L-function of E.

1.5 Comparison I: Algebraic Iwasawa invariants

We now arrive at the main result of this section. Recall that every prime w €
2\ {oo}is splitin K, and we set S = X \ {v, v, oo}.
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Theorem 1.5.1 Assume that ¢|G, # 1, . Then the module X is A-torsion
with wW(Xg) = 0 and

MXE) = M(Xg) + 2(Xy) + Y (A (Pu(@) + M(Pu@)) — A(Pu(E))}

wes

Proof That X is A-torsion with p-invariant zero is part of Proposition 1.4.2.
For the A-invariant, combining Corollary 1.4.3 and the last claim of Proposi-
tion 1.4.1 we obtain

S S S
MEE) =2 (3x3) + 1 (X)) (1.13)
On the other hand, from (1.12) we deduce the exact sequence

1 1 1
0 — Hi,, (K, M) > Hys (K, M) — [[H (K. ME) - 0,

weSs

and therefore the relation A(X%) = A(Xg) + >, cs A(Pw(E)). This, com-
bined with the second part of Proposition 1.2.5 shows that (1.13) reduces to
the equality of A-invariants in the statement of the theorem. O

2 Analytic side

Let E/Qbe an elliptic curve of conductor N, p 1 2N a prime of good reduction
for E, and K an imaginary quadratic field satisfying hypotheses (Heeg), (spl),
and (disc) from the introduction; in particular, p = vv splits in K.

In this section, assuming E[p]** = F,(¢) ® F,(¥) as Gg-modules, we
prove an analogue of Theorem 1.5.1 on the analytic side, relating the Iwa-
sawa invariants of an anticyclotomic p-adic L-function of E to the Iwasawa
invariants of anticyclotomic Katz p-adic L-functions attached to ¢ and .

2.1 p-Adic L-functions

Recall that A = Z,[I'] denotes the anticyclotomic Iwasawa algebra, and set
A" = A®z » Ly , for Zi; the completion of the ring of integers of the maximal
unramified extension of Q.

We shall say that an algebraic Hecke character ¥ : K*\A¥ — C* has
infinity type (m, n) if the component v, of ¥ at oo satisfies Yoo (z) = 277"
forall z € (K ® R)* >~ C*, where the last identification is made via to.
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2.1.1 The Bertolini-Darmon—Prasanna p-adic L-functions
Fix an integral ideal 91 C Ok with

Ok /N ~Z/NZ. (2.1)
Let f € S2(I'o(N)) be the newform associated with E. Following [3], one has

the following result.

Theorem 2.1.1 There exists an element Lg € A" characterized by the fol-
lowing interpolation property: For every character & of I" crystalline at both
v and v and corresponding to a Hecke character of K of infinity type (n, —n)
withn € Z-oandn =0 (mod p — 1), we have

Q4n -1
e - & TODG+ DEOTY

Qgg 427 )2n+1 /DKZ”_1
L(f/K’ g’ 1),

where 2, and Qo are CM periods attached to K as in [14, §2.5].

(1—ape@p +£@?*p7")

Proof This was originally constructed in [3] as a continuous function of &,
and later explicitly constructed as a measure in [14] (following the approach
in [7]). Since this refined construction will be important for our purposes in
this section, we recall some of the details.

Let Ig(N) be the Igusa scheme over Z ) parametrizing elliptic curves with
' (Np™)-level structure as in [14, §2.1]; its complex points admit a uni-
formization

[, 1: 9 x GL2(Q) — Ig(N)(C). 2.2)

Let ¢ be a positive integer prime to Np. Then ¢ := (Dg 4+ +/—Dk)/2 and the
element &, := g(oo) ve € GL2(Q) constructed in [14, p. 577] define a point

xe = [(0,§0)] € Ig(N)(C)

rational over K [c](v®®), the compositum of the ring class field K of conductor
¢ and the ray class field of K of conductor v®°. For every O-ideal a prime to
Nuv, leta € K€P)* be such that a = aO, N K and set

oa 1= recg (@ DIk € Gal(K[c](v™)/K),
where recg : K* \12 X — G?P is the reciprocity map (geometrically normal-

ized). Then by Shimura’s reciprocity law, the point x4 := x¢° is defined by
the pair (9, a~'&.) under (2.2).
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Let V,,(N; R) be the space of p-adic modular forms of tame level N defined
over a p-adic ring R (as recalled in [14, §2.2]), and let S; — Ig(N)/Z;r be the

local deformation space ofxa®Fp € Ig(N)(Fp), sowehave Og, =~ Z‘;,r [ta—1]
by Serre-Tate theory. Viewing f as a p-adic modular form, the Serre-Tate
expansion

fta) = fls, € Zy[ta—1]

defines a Z‘I‘f—valued measure du 7, on Z, characterized (by Mahler’s theorem,
see e.g. [26, §3.3, Thm. 1]) by

0
/ (")duf,a=< )f(xa) 2.3)
Zp m n

forallm > 0, where 6 : V,,(N; Z,) — V,(N; Zp) is the Atkin—-Serre opera-
tor, acting as gd /dq on g-expansions. Similarly, the p-depletion

fb = Zanqn

pin

defines a Z -valued measure du s> , on Z), (supported on Z7) with p-adic
Mellin transform f °(t4), and we let d P be the measure on Z; corresponding

-1 /= —1
to £t @ VTPK Ty (see [14, Prop. 3.3]).
Letting 1 be an auxiliary anticyclotomic Hecke character of K of infinity
type (1, —1) and conductor c, define .Z, ;, € A" by

L= Y a@N@” [ nelad, 04

[a]ePic(O,) P
where 7, denotes the v-component of 1, and ¢|[a] : Z; — (’)éﬁ is defined

by (¢[[a])(x) = ¢(recy(x)oy 1) for the local reciprocity map rec, : K —
G‘}? — I'. Then by [14, Prop. 3.8] the element Lr € A" defined by

Le@) = Loy '§)’
has the stated interpolation property. O
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2.1.2 Katz p-adic L-functions

Let6 : Gg — Z; be a Dirichlet character of conductor C. As it will suffice
for our purposes, we assume that C|N (so p 1 C), and let €| be such that
Ok/C=17Z/CZL.

The next result follows from the work of Katz [33], as extended by Hida—
Tilouine [31].

Theorem 2.1.2 There exists an element Ly € A™ characterized by the fol-
lowing interpolation property: For every character & of I" crystalline at both
v and v and corresponding to a Hecke character of K of infinity type (n, —n)
withn € Z=oandn =0 (mod p — 1), we have

Q' Qmiy"!

Lo) = o5 4T+ 1) - o (1—0"" (&~ )
00 K

x (1 -0(p)E@p™hH)
< [ [ = 0@&w)e") - L(OkENK . 0),

¢c

where 2, and Qo are as in Theorem 2.1.1, and for each £|C we take the
prime w|f with w|¢.

Proof The character 6 (viewed as a character of K) defines a projection
Ty Z‘;,r[[Gal(K(ﬁpoo)/K)ﬂ — A",

where K (€p°°) is the ray class field of K of conductor € p (this projection
is just g — 0(g)[g] for g € Gal(K(€p*>°)/K and [g] the image of g in T).
The element Ly is then obtained by applying g to the Katz p-adic L-function
described in [37, Thm. 27], setting x ! = Ox&Ng. O

2.2 Comparison II: Analytic Iwasawa invariants

The following theorem follows from the main result of [37]. Following the
notations in op. cit, we let No be the square-full part of N (so the quotient
N /Ny is square-free), and fix an integral ideal 91 C Ok as in (2.1).

Let also f = ZZO:I a,q" € S2(T'g(N)) be the newform associated with
E, and denote by A' the image of A € A under the involution of A given by
y >y lfory el.

Theorem 2.2.1 Assume that E[p]** ~F,(¢) ® F,({) as Gg-modules, with
the characters ¢,V labeled so that p 1 cond(¢), and suppose ¢ # 1. Then
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there is a factorization N/Ng = N+ N_ with

ag=¢{) (mod p) if€|Ny,
ag=vy () (mod p) ifeIN_,
ag =0 (mod p) if €| No,

such that the following congruence holds
Lg= ()" (Ly)® (mod pA™),

where

Eow=[] Pu@® [] Pu¥).

£{NoN— LINoN+
and for each £|N we take the prime w|¢ with w|.

Proof By Theorem 34 and Remark 32 in [37], our hypothesis on E[p] implies
that there is a congruence

f=G (mod p), (2.5)

-1
where G is a certain weight two Eisenstein series (denoted E‘zﬁ 4

loc. cit.). Viewed as a p-adic modular form, G defines Z‘;}—valued measures
UG,a On Zy by the rule (2.3). With the notations introduced in the proof of
Theorem 2.1.1, set

LGty = Y a@N@ [ @l dig. @6

[a]ePic(O,) P

where the cusp form f in (2.3) has been replaced by G, and let L; € A" be
the element defined by

LG(E) =Ly (7 'E).

Then for £ an arbitrary character of I" crystalline at both v and v and corre-
sponding to a Hecke character of K of infinity type (n, —n) for somen € Z-
withn =0 (mod p— 1), the calculation in [37, Prop. 37] (taking x ~! = &N,
Y1 = ¢, and Y = ¢_1 = wa)_l in the notations of loc.cit., so in particular
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j = n — 1) shows that

2n

Lo(E) = L. I'(n+ Do~ (—/Dx)EM1 . Qmi)y"!
Q% a(®) D!
.E%._INEI (¢v 1//a)_1’ N+, N_, NO) . L(¢K§NK, O), (27)

where ¢g denotes the base change of ¢ to K, and

EE*[NE1(¢7 lﬁw_l, N+7 N_, No)
= [Ja-¢"e@y- [T —-ge@e™

£|N4 ¢IN_
< [T —o e — pg)e™).
£|No

Comparing with the interpolation property of L, in Theorem 2.2.1, and noting
that

Epy (™) = By (@ Yo~ No No. No)
for all £ as above, the equality (2.7) implies that
Lg = Sé,’w L. (2.8)

On the other hand, the congruence (2.5) implies the congruences

0 0
( )f (Xa) E( )G(xu) (mod pZ}))
m m

for all m > 0, which in turn yield the congruence
Lr=(Lg)?> (mod pA™). (2.9)

The combination of (2.8) and (2.9) now yields the theorem. |

Theorem 2.2.2 Assume that E[p]** =F,(¢) ® F,({) as Gg-modules, with
the characters ¢, W labeled so that p 1 cond(¢), and suppose ¢ # 1. Then
w(Lg) =0and

MLE) = AM(Lg) + A (Ly) + Z{A(Pw«p)) + 2(Pu(¥) = APy (E)}.

wes
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Proof Since K satisfies (Heeg) and (spl), the conductors of both ¢ and  are
only divisible by primes split in K, and hence the vanishing of w(Lg) follows
immediately from the congruence of Theorem 2.2.1 and Hida’s result [27]
(note that the factors P, (¢) and Py, () also have vanishing p-invariant, since
again the primes w are split in K).

As for the equality between A-invariants, note that the involution of A given
by y — y~! for y e I preserves A-invariants, and so

M(Pw(0)?) = A(Pw(9)) + A(Pi(6)),

using that complex conjugation acts as inversion on I". For the term &y y in
Theorem 2.2.1 we thus have

MEy ) =MEp ) = Y APu@)+ Y APy

w|NoN_ w|NoN4

where w runs over all divisors, not just the ones dividing 1. Using the congru-
ence relations in Theorem 2.2.1 (in particular, that ¢ = 0 (mod p) for £| Ny)
this can be rewritten as

MEy ) = Y AMPw@) + 1(Pu) — A(Pw(E)}.  (2.10)

weS

On the other hand, since ¢ = ¢_1a), the functional equation for the Katz
p-adic L-function (see e.g. [37, Thm. 27]) yields

AMLy) = M(Ly). 2.11)

The result now follows from Theorem 2.2.1 combined with (2.10) and (2.11).
O

Together with the main result of Sect. 1, we arrive at the following.

Theorem 2.2.3 Assume that E[p]* = F,(¢) @ Fp(¥) with ¢lc, # 1, ».
Then u(Lg) = w(Xg) = 0and

MLE) = MXE).

Proof The vanishing of u(Xg) (resp. u(Lg)) has been shown in Proposi-
tion 1.4.2 (resp. Theorem 2.2.2). On the other hand, Iwasawa’s main conjecture
for K (a theorem of Rubin [45]) yields in particular the equalities A(Ly) =
AMXy) and A(Ly) = A(Xy). The combination of Theorem 1.5.1 and Theo-
rem 2.2.2 therefore yields the result. O
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3 A Kolyvagin system argument

The goal of this section is to prove Theorem 3.4.1 below, extending [28,
Thm. 2.2.10] to the residually reducible setting. This result, which assumes
the existence of a non-trivial Kolyvagin system, will be applied in Sect. 4 to a
Kolyvagin system derived from Heegner points to prove one of the divisibilities
towards Conjecture B.

3.1 Selmer structures and Kolyvagin systems

Let K be an imaginary quadratic field, let (R, m) be a complete Noetherian
local ring with finite residue field of characteristic p, and let M be a topological
R[G g ]-module such that the G g-action is unramified outside a finite set of
primes. We define a Selmer structure F on M to be a finite set ¥ = X (F)
of places of K containing oo, the primes above p, and the primes where M
is ramified, together with a choice of R-submodules (called local conditions)
H}(Kw, M) c H'(K,,, M) for every w € X. The associated Selmer group is
then defined by

HL(K, M) = ker{Hl(KE/K, M - []

H' (K, M) }
WEX

H(Ky, M)

where K> is the maximal extension of K unramified outside X.
Below we shall use the following local conditions. First, the unramified
local condition is

Hy (Kw, M) := ker{H'(K\y, M) — H' (K2, M)}.

If w | pis a finite prime where M is unramified, we set Hf1 (Ky, M) =
HLIlr (Ky, M), which is sometimes called the finite local condition. The singular
quotient H; (K, M) is defined by the exactness of the sequence

0 — Hl (K, M) - H' (K,,, M) — H)(K,,, M) — 0.

Denote by £ = % (M) the set of rational primes £ # p such that

e {isinertin K,
e M is unramified at £.

Letting K[£] be the ring class field of K of conductor ¢, define the transverse
local condition at A|[¢ € % by

Hy (K3, T) = ker{H'(K;, T) - H'(K[€],/, T)},
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where K [£]y is the completion of K[£] at any prime A" above A.

Asin [28], we call a Selmer triple (M, F, £) the data of a Selmer structure
F on M and a subset . C % with £ N X(F) = (. Given a Selmer
triple (M, F, %) and pairwise coprime integers a, b, ¢ divisible only by
primes in .7}, the modified Selmer group Hlfg (c)(K , M) is the one defined

by X(F} (c)) = Z(F) U {wlabc} and the local conditions

HY(K,,T)  if Ala,
0 if A|b,
HL(K,,T) ifAlc,
HL(K,, T)  if A tabe.

1
H]‘—Z(())(K)‘" T) =

Let T be a compact R-module equipped with a continuous linear G g -action
that is unramified outside a finitely set of primes. Foreach A|¢ € % = 4 (T),
let I, be the smallest ideal containing £ 4 1 for which the Frobenius element
Frob, € G, acts trivially on T/1,T. By class field theory, the prime A splits
completely in the Hilbert class field of K, and the p-Sylow subgroups of
Gy := Gal(K[€]/K[1]) and k,* /F are identified via the Artin symbol, where
k;. is the residue field of . Hence by [41, Lem. 1.2.1] there is a finite-singular
comparison isomorphism

¢S HY(K;, T/1,T) = T/I,T ~H\(K;, T/I,T) ® Gy. 3.1)

Given a subset .Z C %, we let /= A (L) be the set of square-free
products of primes ¢ € .Z, and for each n € .4 define

L=Y I, CR, G,=@Q)Gu.

A Lin
with the convention that 1 € 4", [1 =0, and G| = Z.

Definition 3.1.1 A Kolyvagin system for a Selmer triple (T, F, %) is a col-
lection of classes

k= {in € Hy ) (K, T/I,T) ® Gulner

such that (¢* ® 1)(locy (kn)) = locy, (k) for allnt € A

We denote by KS(7', F,.Z) the R-module of Kolyvagin systems for
(T,F7,2).
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3.2 Bounding Selmer groups

Here we state our main result on bounding Selmer groups of anticyclotomic
twists of Tate modules of elliptic curves, whose proof is given in the next
section. The reader mostly interested in the Iwasawa-theoretic consequences
of this result might wish to proceed to Sect. 3.4 after reading the statement of
Theorem 3.2.1.

Let E/Q be an elliptic curve of conductor N, let p { 2N be a prime of
good ordinary reduction for E, and let K be an imaginary quadratic field of
discriminant Dg prime to Np. We assume

E(K)[p] =0. (h1)

As before, let I' = Gal(K /K) be the Galois group of the anticyclotomic
Zp-extension of K. Leta : I' — R be a character with values in the ring of
integers R of a finite extension ®/Q,,. Let

r= rankZpR.

Letpg : Gg — Auth (T, E) give the action of G on the p-adic Tate module
of E and consider the G g-modules

T, = TyE @z, R(@), Vo:=Ts®r®, Aqi=Ty®r ®/R = Vy/T,

where R(«) is the free R-module of rank one on which G g acts the projection
Gk — I' composed with «, and the G g-action on Ty, is via py, = pg ® «.

Let m C R be the maximal ideal, with uniformizer w € m, and let T :=
T, ® R/m be the residual representation associated to 7. Note that

T~ E[p]® R/m (3.2)

as G g-modules, since = 1 (mod m). In particular, (h1) implies that TGOk =
0.
For w|p a prime of K above p, set

Fil}(T,E) := ker{T,E — T,E},
where E is the reduction of E at w, and put
Fil}(T,) := Fil;} (T, E) ®z, R(e), Fil} (V,) := Fil} (Ty) ®r ®.
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Following [13], define the ordinary Selmer structure Foq on V, by taking
2 (Ford) = {w | pN} and

im{H! (K, Fil}, (V) - H'{(Ky, Vo)}  if w|p,

HL (K, Vy) =
Fors K Va) {H}H(Kw,\/a) else.

Let Fora also denote the Selmer structure on 7, and A,, obtained by propagating
ford (Kw, Vi) under the maps induced by the exact sequence 0 — T, —
Vo = Ay — 0.
Let y € I be a topological generator, and let

c. o {vp(a(y) —a”'y) et 53

0 a=a1,
where v, is the p-adic valuation normalized so that v, (p) = 1. Finally, let
L = e LH(T,E) : ag=L+1=0 (mod p)},

where ay = £ + 1 — |E(Fy)|, and A = N (L).

Theorem 3.2.1 Suppose o # 1 and there is a Kolyvagin system k, =
{Kantner € KS(Ty, Ford, LE) with k1 # 0. Then Hy. (K, Ty) has rank
one, and there is a finite R-module My such that

Hy, (K, Aw) = (B/R) ® My ® My
with
length (M) < lengthg (Hy, (K, To)/R - ka,1) + Ea

for some constant E, € Z>( depending only on Cy, T, E, and ranky, p(R).

When pelgy : Gk — Endzp (TpE) is surjective, Theorem 3.2.1 (with
E, = 0) can be deduced from [28, Thm. 1.6.1], but the proof of Theo-
rem 3.2.1 assuming only (h1) requires new ideas, some of which were inspired
by Nekovat’s work [42].

3.3 Proof of Theorem 3.2.1

To ease notation, let (T, F, .£) denote the Selmer triple (T, Ford, -ZE), and
let p = py. For any k > 0, let

RW = R/m*R, TW =T/mfT, 2® =(0e.2: 1, c p'z,),
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and let 4 ® be the set of square-free products of primes £ € Z®.
We begin by recalling two preliminary results from [41] and [28].

Lemma 3.3.1 For everyn € N K and 0 < i < k there are natural isomor-
phisms

Hy (K, T®/miT®) S HE (K, T®Om']) S HE(, (K, TO)[m']

. k—i .
induced by the maps T® /miT® I ,7h [mi] — 7®.

Proof The proof of [41, Lem. 3.5.4] carries over, since it only requires the
vanishing of 70X O

Proposition 3.3.2 For everyn € A ® there is an R®-module M™ (n) and
an integer € such that

Hip (K, T®) = (RO @ MO () © MO ().
Moreover, € can be taken to be € € {0, 1} and is independent of k and n.

Proof This is shown in [28, Prop. 1.5.5], whose proof makes use of hypothesis
(h1) and hypotheses (H.3) and (H.4) in op. cit., the latter two being satisfied in
our setting by [41, Lem. 3.7.1] and [41, Lem. 2.2.1], respectively. We note that
the independence of € follows from the fact that, by Lemma 3.3.1, we have

€ = dimg/mH}(, (K, T) (mod 2),

and the right dimension is independent of k£ and n by the “parity lemma” of
[28, Lem. 1.5.3], whose proof is also given under just the aforementioned
hypotheses. |

3.3.1 The Cebotarev argument
For any finitely-generated torsion R-module M and x € M, write
ord(x) :==min{m > 0: 7" - x = 0}

When pg has large image, a standard application of the Cebotarev den-
sity theorem can be used to show that, given R-linearly independent classes
c1,...,cs € HY(K, T0), there exist infinitely many primes £ € .Z such that
ord(locg(c;)) = ord(c;), i = 1,...,s (see [39, Cor. 3.2]). Assuming only

hypothesis (h1), one can obtain a similar result with “error terms”. Our ver-
sion of this is Proposition 3.3.6 below, which provides the key technical input
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for our proof of Theorem 3.2.1. Before proving this proposition we define the
error terms that appear in its statement.

For any field F C Q let F(E[p>]) be the fixed field of the kernel of
PElG. Since (Dg, Np) = 1, and therefore E does not have CM by K,
and p is odd by hypothesis, Q(E[p™]) N Kso = Q, as any subfield of K,
that is Galois over Q is either QQ or contains K. Hence the natural projection
Gal(Koo(E[p™])/Kso) — Gal(Q(E[p*°])/Q) is an isomorphism and so
PE(Gk,) = pe(GQ).

The first error term comes from the following.

Lemma 3.3.3 The intersection U = Z; Nim(pglGg,, ) is an open subgroup
on; such that U C Im(p) C Autg(T) for all characters o.

Proof By [42, Prop. (6.1.1)(4)], U = ZIX, Nim(pg) C Autg, (TpE) =~
GL2(Z)) is an open subgroup of Z;. Since im(pelG, ) = im(pg), U
Z; N im(pelGg, )- As « is trivial on Gk, the claim for all characters
follows.

O R

For U = Z; Nim(pg) as in Lemma 3.3.3, let
Ci :=min{v,(u — 1): u € U}.

Since U is an open subgroup of Z;, 0<C| <o0.

To define the second error term, note that Endy, ,(TpE) /PE(Zp[Gl) is a
torsion Zp,-module, as pg is irreducible. Hence there exists m € Zx( such that
p" (Endz, (T, E)/pk(Zy[Gg) = 0. Then

Cy :=min{m > 0: p" Endz, (T,E) C pp(Z,[Gql)}
is such that 0 < Cy < oo.

Lemma 3.3.4 For any «, pc2 annihilates Endg(T)/p(R[G k. ])-

Proof Since p(Gk,) = pe(Gk,) = pe(Gg) (using that E does not have
CM by K), it follows that

Endg(T)/p(R[G k1) = Endr(T)/pe(R[Gql)
= (Endz, (T, E)/pE(Z,y[Gg)) ®z, R
is annihilated by p©2. O

Remark 3.3.5 1If pg is surjective, then clearly C; = 0. Similarly, if E[p] is
irreducible, then C = 0. In particular, if pg is surjective, then C;1 = 0 = C5.

The third error term is given by the quantity C, defined before.
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Proposition 3.3.6 Suppose a # 1. Let ¢i, ¢z, c3 € H(K, T®). Suppose
Rc1 + Rey contains a submodule isomorphic to m%' R© @ m® R® for some
di, d> > 0. Then there exist infinitely many primes £ € L% such that

ord(locg(c3)) = ord(c3) — r(Cy + C2 + Cy),

and R locy(c1)+ R locg(c2) € HY (K, T®) contains a submodule isomorphic
to

mé+d+2r (C1+Cor+Co) (R(k) D R(k)).

Proof Let m; = max{0, ord(c;) — r(Cy + C> 4+ Cy)}. Note that since Rc| +
Rc; contains a submodule isomorphic to m? R® @ mdR® it must be that
max{ord(cy), ord(c2)} > k — dy,k — dp and hence if m| = my = m3 = 0,
then the lemma is trivially true. So we suppose max{m, my, m3z} > 0.

Let Ky C Koo be such that |G, =1 mod mk. Let L = Ka(E[pk]) be
the fixed field of the kernel of the action of Gg, on E| pk] (so in particular,
G acts trivially on 7). Then p induces an injection

p: Gal(L/K) <= Aut(T®).

Letu € Z; Nim(pg|Gk,, ) such that ord,(u — 1) = Cy. Then u = p(g)

for some g € Gal(L/K). Let Ték) =T,E ®z, R/m* 1t follows from Sah’s

lemma that g — 1 annihilates H'(Gal(L /K), 7®), and therefore the kernel of
the restriction map

H' (K, T®) - H'(L, T®) = H' (L, T)@ = Hom(G ., T)@

is annihilated by p©! and hence by 77" €1 (cf. [42, Prop. (6.1.2)]). Here and in the
following we denote by ( —)@ the submodule on which Gal(L /K) acts via the
character «. The restriction of the ¢; to G, therefore yields homomorphisms

fi € Hom(G, T¥)® such that
ord(f;) = ord(c;) —rCy, i=1,2,3,

and Rfi + Rf, € Hom(Gp, Ték))(“) contains a submodule isomorphic to
md1+rC1 RK) gy md2+rCi RK)

Note that the complex conjugation 7 acts naturally on Hom(G, Tg()),
and that this action maps an element f € Hom(Gp, Tg{) )@ to an ele-
ment T - f € Hom(Gp, Ték))(“_l). The intersection Hom(Gp, Tg{))(“) N
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Hom(G, Tgk))“"_l) is annihilated by y — a*!'(y) and so by a(y) —a~(y),
for all y € Gal(L/K). Since

{a(y) —a"'(y) mod m* : y € Gal(L/K)}
={a(y) —a ' (y) mod m* : y €T}

and since @ # o~ ! (as o # 1 and p is odd), it follows from the definition
of C, that Hom(G, Tgk))(“) N Hom(Gp, Tjék))(‘f1> is annihilated by 7" Ce.
This implies that £~ = (1 £ 7) - f; satisfies

ord(fl.i) Zord(f;) —rCy =z ord(c;) —r(C1 +Cy), i =1,2,3,

and that Rf li +R fzﬂE = (1x71)-(Rf1+ Rf>) contains a submodule isomorphic
to mé1+7(C1+Ce) RK) gyda+r(C1+Ce) RK) Note that since max{m 1, ma, mz} >
0, it follows that for some j both f j+ and f ; are non-zero.

The R-module spanned by the image of fii contains R[Gk_] - fl.i(G L)-
By Lemma 3.3.4, the latter contains pc2 (Endzp (T,E) ®z, R) - fii(GL) C
Tgk). Since fl.jE has order at least ord(f;) — rCyq, fl.i(G 1) contains an ele-
ment of order at least ord( f;) — rC, and hence nk_ord(ﬁ)“(CﬁC“)Ték) C
p€2(Endz, ,(TpE)®z, R) - fl.i(G ). In particular, the R-module spanned by
the image of fl.jE contains mk =" Ték).

Let H C G/, be the intersection of the kernels of the fl.i. Since some fllL
is non-zero, H # G and Z = G /H is a non-zero torsion Z,-module.
The subgroup H is stable under the action of complex conjugation and hence
this action descends to Z, which then decomposes as Z = ZT @ Z~ with
respect to this action. Each fl.i can be viewed as an element of Hom(Z, Ték)).
Let gl.ﬂE be the composition of fl.i with the projection of Ték) to (Ték))i. Fix
an R®-basis u4 of (Ték))i. Since the R-span of the image of fii contains
mk—mi Ték) , the R-span of the image of gii contains m*~" R®y . Moreover,
since £ € Hom(Z, TIV)*, ¢5(Z7) = 0 and so ¢5(Z) = g5 (z1). Since
max{mi, mr, m3z} > 0, it follows that Z™ is nontrivial.

Let W= = Y3 RfE C Hom(G,, T))F and let W = W @ W~ C
Hom (G, T lgk)). Each f € W can be viewed as a homomorphism from Z to
Ték), and evaluation at z € Z yields an injection

Z < Homg(W, T ).
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Furthermore, this injection is equivariant with respect to the action of complex
conjugation, so the restriction to Z™ is an injection

Z* < Homg(W, T) " = Homg (W, (T) ) @ Homg(W ™, (T))7).

Let XT C Homg(W, Tlék))Jr be the R-span of the image of Z*. It follows
from [42, Cor. (6.3.4)] and Lemma 3.3.4 that

P2 Homg(W, T c x+. (3.4)
Given (¢, ™) € Homg(W+, (T)") @ Homg(W—, (TF)™), define

o BT (i) ﬂ((b‘(ff)))
907, ¢7) = det (ﬁ(¢+<f2+)> B (1))

k

$= (=) = Bt (—)ux € RPuy = (T{)*.
The restriction of ¢ to Xt defines an R® -valued quadratic form on X that
we denote by ¢(x). Since W contains R f1+ + R f2+, which in turn con-
tains a submodule isomorphic to m?1+7(€C1+Ce) RK) gy d2+7(C1+Ce) RK) there
exists ¥+ € Homg(W*, (T{")*) and j € {1, 2} such that By (f}) €
gmaxdi,dyt+r(Ci+Ca) (RO X Similarly, there exists ~ € Homg(W ™, (Tgk))_)
such that B(y~(f_ ) € ™ -&+r(CiHCey(RW) X and By~ (f;)) = 0.
For such a pair (¥, ¥ ),

Q(W+, v) e nd1+d2+2r(C1+Ca)(R(k))><.
From (3.4) it follows that p©2(y+, ¥ ~) = xy, for some x,, € X, and

q(x!/f) = p2C2q(¢,+’ Yo e nd1+d2+2V(C1+C2+Ca)(R(k))x‘

It then follows from [42, Lem. (6.6.1)(ii)] that

g(Z7) ¢ mh+d+2r(CrHC+Ca+l g (3.5

If m3 > 0, let Z3 C Z* be the submodule such that g; (Z3) =
mk=m3+1 Ry, Otherwise, let Z3 = 0. Then Z3 is a proper Z p-submodule
of Z*. It then follows from [42, Lem. (6.6.1)(iii)] and (3.5) that

there exists z€ Z 1 such that z ¢ Z3 and g(z) ¢ m@+@+2(C1+C+CO+1 p()
(3.6)
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Let M be the fixed field of the subgroup H C G, so Gal(M/L) = Z. Let
g = 1tz € Gal(M/Q), and let £ { pN Dk be any prime such that each ¢; is
unramified at £ and Frob, = g in Gal(M/Q) (there are infinitely many such
¢: this is the application of the Cebotarev Density Theorem). Since G fixes
E[ pk] and K, Froby acts as T on K and E [pk]. This means that £ is inert in
K and that ay(E) =€+ 1=0 mod p*. Thatis, £ € Z®.

Since £ is inert in K, the Frobenius element for K, is Frob%. Consider the
restriction of ¢; to K. Since ¢; is unramified at £, locy(c;) € Hlllr(K 0, T®.
Evaluation at Frob% is an isomorphism

HL (Ko, T®) S 7® /Frob? —HT® = 7® = 7,

where the last equality is because Frob% acts as 2 = 1 on T™® by the choice
of £. This means that locy(c;) is completely determined by c; (Frob%). Further-
more, since Frob% =g?> =72 e Gal(M/L), ¢; (Frob%) = fi(z%). Hence

ci(Froby) = fi(z}) = 2£i(2) = f;7 (@) + 7 (@)
=@ @6 @ eT =TT e, 3
since the projection of fl.jE to (Tg())jF vanishes on Z .

From (3.7) we see that ord(locg(c3)) = ord(cs (Frob%) = ord(f3(z%)) >
ord(g7 (z)). Since z ¢ Z3 by (3.6),

ord(locg(c3)) = ms3,

which shows that £ satisfies the first condition of the theorem.
From (3.7) we also see that

Rloce(cr) + Rloce(c2) = R(gi (2), &7 () + R(gF (2), g5 (2)) € TP
= (1" @ (1)

Write gii(z) = ,Bii(z)ui. Then

Bl (@) ﬂf(z)> .

q(2) = det (ﬁ;m 8, (2)

Since ¢(z) ¢ mé1Ta+2(C1+C+Cl+1 RK) By (3.6), it follows from the above
expression for ¢ (z) that the module R(gf’(z), g @)+ R(g;r (2), g, (z)) con-
tains a submodule isomorphic to mé1+@+2r(C1+Ca+Ca) (RK) gy RK)) which
shows that £ also satisfies the second condition of the theorem. O
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Corollary 3.3.7 Suppose « # 1. Let ¢1, co € HY(K, T®). Suppose Rcy +
Rcy contains a submodule isomorphic to mé RO pmb pK) forsomed;,d>» >
0. Then there exist infinitely many primes £ € £ &) such that ord(locg(cy)) >
ord(cy) — r(Cy + C» + Cy) and Rlocy(cy) + Rloce(cz) € H' (K, TW)
contains a submodule isomorphic to

mk—orde)+r(C1+Co+Co) pk) @ md1+da+2r(C1+C+Co) pk)-

Proof We apply Proposition 3.3.6 with ¢c3 = c¢1. Then Rloci(c1) =
R loc(c3) contains a submodule isomophic to mk—0rd(€3)+r(Ci1+Co+Ca) pK) —
mk—ord(c)+r(C1+C2+Ca) R "and R locy(cq) + R locy(c2) contains a submod-
ule isomorphic to m?@1++2r (C1+C2+Ca) (RK) gy RK)) whence the conclusion
of the corollary. m|

With Proposition 3.3.6—and especially Corollary 3.3.7—in hand, we next
prove the following theorem, which implies the first statement of Theo-
rem 3.2.1 and will be used in the next section to prove the bound on the
length of M.

Theorem 3.3.8 Suppose a # 1. If ko1 € H'(K, T) is non-zero, then € = 1
and for k > 0, every element in M® (1) has order strictly less than k. In
particular, H}_-(K, T) ~ R.

Proof Suppose k| = K41 # 0. The assumption T9¥ = 0 implies that
H;(K, T) is torsion-free, so € > 1.

Ifk > 0,thenthe image of k1 in H}(K ,T® ), still denoted by | by abuse of
notation, is non-zero and ind(x1, H}(K, T)) = ind(«xq, H}(K, T®)), where
by the index ind(c, M) for M a finitely generated R-module and ¢ € M we
mean the smallest integer m > 0 such that ¢ has non-zero image in M /m”+! M
(equivalently, ¢ € m"™M). Let s = ind(x1, H}E(K, T)).Lete=r(C1+Cr +
Cy). Suppose k also satisfies

k > s + 3e. (3.8)

By the definition of s, there exist ¢; € Hlf(K , T such that the image of ¢
in H}(K, T(k))/mHJIT(K, 7T®) is non-zero and k| = 7¢;. The assumption
TO% = 0 implies that H-(K, T) is torsion-free, so Re; >~ R®. Suppose
c) € Hlf(K, T®) is such that ¢c» ¢ Rci. We will show that 7513¢¢, € Re.
By (3.8) this implies that HIF(K , T®)/Rcy is annihilated by 7¥~! and hence
that € < 1. It then follows that e = 1 and every element in M ®)(1) has order
strictly less than k. This in turn implies H}(K ,T) ~ R, since H}(K ,T)is
torsion-free.
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Let d be the order of the image of ¢; in Hlf(K, T(k))/Rcl. Then Rc| + Res
contains a submodule isomorphic to R® @ m*=4R®) By Corollary 3.3.7,
there exists £ € 2% such that ord(locg(c;)) > k — e and

Rlocy(c1) + Rlocy(cy) contains a submodule isomorphic to
m¢R® @ mk—d+2¢ Rk, (3.9)

We now make use of the assumption that k| belongs to a Kolyvagin system.
The finite-singular relation of the definition of a Kolyvagin system implies that
the image of k¢ := kg ¢ in Hlf(K, 7®)), which we also denote by kg, satisfies

ord(locg s(k¢)) = ord(locy (k1)) = ord(loce(¥cy)) = k — s — e, (3.10)
where by locy s we mean the composition of loc, with the projection to
H! (K., T®).

By global duality, the images of

locy lOCZ,S

k k
HE(K, T0) =5 HY(Ke, TP) and HL, (K, TY) —5 HI(K,, )

]f)l), we

are mutual annihilators under local duality. Since 7 - kp € Hlﬂ (K, Tof
easily conclude from (3.8), (3.9), and (3.10) that

k—s—e<k—d+2e.
That is, d < s + 3e, as claimed. O
3.3.2 Some simple algebra
Our adaptation of Kolyvagin’s arguments relies on the following simple results
about finitely-generated torsion R-modules. For a finitely-generated torsion
R-module M we write
exp(M) := min{n > 0 : 7" M = 0} = max{ord(m) : m € M}.
Lemma 3.3.9 Let N C M be finitely-generated torsion R-modules. Suppose
N ~ &/_ R/m%™N) d(N) > -+ > d.(N), and M =~ @&:_ R/m%™M),
dM) > --->di(M). Thenr < s and
di(N)<diM), i=1,...,r.

Proof We have r = dimg/n N[m] < dimg/m M[r] = s, which proves the
first claim.
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We prove the second claim by induction on r. Let d = d,(N). Since
N[n4] = N N M[n“], the inclusion N C M induces an inclusion

N' = N/N[z‘ c M/M[n%]1 =M.

Clearly, N ~ EB{,:IR JmdN)=d \where r’ is the smallest integer such that
di(N) = d for r' +1 < i < r. Similarly, M’ =~ @&_, R/m% )~ _Since
r’ < r,the induction hypothesis implies thatd; (M) > d;(N) fori =1, ...,r".
To complete the induction step we just need to show that at least r of the
d;i(M)’s are > d. But this is clear from the injection N[nd]/N[nd_l] —
M[z4] /M [79~1], from which it follows that

r = dimg/m N[z91/N[7?™1] < dimgjm M9/ M[7971]. O

Next we consider two short exact sequences of finitely-generated torsion
R-modules

0> X—>RmeoMS R/m e R/m’ -0 (3.11)
and
0— X > R/m e M 5 R/m? @ R/mt? =0 (3.12)
satisfying:
k > exp(M)+2a and d' <a. (3.13)

We further assume that both M and M’ are the direct sum of two iso-
morphic R-modules. Let 25 := dimg/m M[7],2s" := dimg;m M'[x] and
di(M), ...,drs(M) be the lengths of the R-summands in a decomposition of
M as a direct sum of cyclic R-modules, ordered so that

di(M) = do(M) 2 d3(M) = ds(M) = --- 2 dos—1(M) = dos(M).
Note that d1 (M) = exp(M). Fix a decomposition
M =@ M;, M;~R/m%M,
Letd(M'), ..., dry(M') be similarly defined for M’.

Lemma 3.3.10 The following hold:

i s—1<s<s+1,
(i) b < exp(M),
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>iii) exp(X) < exp(M) + a.

Proof Let r(—) denote the minimal number of R-generators of (—). Then
from (3.11) it follows that r (M) — 1 < r(X) < r(M) + 1 (see Lemma 3.3.9).
Similarly, it follows from (3.12) that r(M’') — 1 < r(X) < r(M’) + 1. From
this we conclude that r (M) —1 < r(M)+1andr(M')—1 < r(M)+1. Since
r(M) = 2s and r(M') = 2s’, this implies 2s < 2s" + 2 and 25" < 25 + 2.
Thatis, s — 1 < s’ <s + 1, as claimed in part (i).

For part (ii) we note that since k — a > exp(M) by (3.13), the image
under « of the summand R/m¥ in the middle of (3.11) must be isomorphic
to R/mmaxtk—a.b} (else exp(im(a)) < max{k — a, b} — 1). It follows that «
induces a surjection M — (R/m*~* @& R/m’)/a(R/mK) ~ R/mmintk—a.b},
In particular, min{k — a, b} < exp(M). As k —a > exp(M), this implies part
(ii). For part (iii) we note that (3.11) induces an inclusion

X/(X N R/m*) — (R/m* & M)/(R/m) ~ M.
It follows that exp(X) < exp(M) +exp(X N R /mk). As noted in the proof of
part (i), « (R/mK) ~ R/mf=¢ so X N R/m* ~ R/m. Part (iii) follows. O
Proposition 3.3.11 The following hold:

(1) There exists 1 < ig < 2s such that there is an inclusion 691.2;1 i;éioMi —
X.

(ii) There exists an inclusion X < M’ & R /m

(iii) di(M") > djo(M), fori =1,...,2s — 2.

exp(X)

Proof As explained in the proof of Lemma 3.3.10(ii), the image under « of
the R/m* summand in the middle of (3.11) has exponent k — a. In particular,
we may assume that the R/m*~¢ summand on the right in (3.11) is the image
under « of the R/m*-summand in the middle.

Let I < ip < 2s be such that im(a) = R/mF~% + a(M;,). It follows from
(3.11) that there is a surjection

X — (R/m* & M)/(R/m* ® M;)) ~ ®F, ;i M;.

Taking duals we deduce the existence of an inclusion EB%;U 7,él.OM,- — X,
proving (i). (Here and in the following we are using that the (Pontryagin) dual
of a torsion R-module is isomorphic to itself as an R-module.)

For (ii), we first claim that (R /m*) ~ R/mk_b’. Suppose that B(R /m¥) ~
R/m*=?" for some »” > b'. This would imply that there exists m’ € M
such that B(1 ® m') € R/m“, ®0 C R/m", &) R/mk_b/. In particular, we
would have 79 (1 @ m’) € X. But since ord(x% (1 ® m’)) = k — a’ this
would mean that X contains a submodule isomorphic to R /mk_“,. But since
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k—ad > exp(M)+a > exp(X) by (3.13) and Lemma 3.3.10(iii), we reach a
contradiction. Thus we may assume that the R/ m*~?" summand on the right
in (3.12) is the image under B of the R /m*-summand in the middle.

Let M C M’ be the submodule such that 8(M") C R/mk_b,. Then (3.12)
implies that there is an exact sequence

0> X —> R/m*®M'" - B(R/m*) — 0.
From this it follows that there is an exact sequence
O—>XﬂR/mk—>X—>M”—>O.

Taking duals we conclude that there exists a short exact sequence

0> M - XL XNnR/m - 0.

Note that X N R/m* is a cyclic R-module. Let R/m? C X be an R-summand
that surjects onto X N R /m* via y. Then there is a surjection M"@® R /m? — X.
Taking duals we deduce the existence of inclusions

X M' &R/m? > M @ R/m>PX),
This proves (ii).

Let di(X) = d2(X) > --- > d¢(X) be the lengths of the summands in a
decomposition of X as a direct sum of cyclic R-modules. Note that d1(X) =
exp(X). From part (i) we see that r > 2s — 1. From part (i) and Lemma 3.3.9
we also easily conclude that d;(X) > d;4+1(M). Similarly, from part (ii) we
conclude that d;(M’) > d;11(X). Combining these yields (iii). |
3.3.3 Finishing the proof of Theorem 3.2.1
We now have all the pieces needed to prove Theorem 3.2.1.

Since the character « is fixed, for the rest of the proof we denote k,, := «q
for all n € 4. In particular, our assumption is that x; # 0. Let

ind(x1) = max{m : «; € mM"H-(K, T)}.

We can write H-(K, A) = (®/R)" & M, forn > 0 and M a finite R-module.
Since H(K, A) = lim, HE-(K, T®), it follows from Lemma 3.3.1 that

HL(K, A)mf] ~ HE- (K, T®),
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Recall that by Theorem 3.3.8 (and its proof), H}(K , T) has R-rank one and
fork >0

(R/m)" & M[m*] =~ R/m* & M© (1) @ M© (1),
with exp(M(k)(l)) < k and hence
HL-(K,A) ~ ®/ROM, M= My My,
for some finitely-generated torsion R-module My such that My ~ M® (1) for
k> 0.
Let r(M) be the minimal number of R-generators of M and let

e = (Cy + C2 + Cy)rankz,, (R).

We will show that
. 3
ind(k1) + Er(M)e > length p (Mp). (3.14)

Since by Lemma 3.3.1 and (3.2) we have

r(M)+1
= dimgm H(K, T%)[m]
= dimgm Hy(K, T) = dimp, H (K, E[p]).
it follows that (3.14) yields the inequality in Theorem 3.2.1 with an error term
Ey = r(M)e that depends only on Cy, T), E, and rankzp (R).
Lets = r(M)/2 and fix an integer k£ > O such that
k/2 > lengthp(Mp) + ind(k1) + (r(M) + D)e (3.15)
and Mo ~ M%©(1). Our proof of (3.14) relies on making a good choice of
integers in .#"®), which in turn relies on a good choice of primes in .Z®).
Letn € .#®_ By Proposition 3.3.2 and Theorem 3.3.8, there exists a finite
R®_module M (n)o such that
HL (K, T®) = RO @ M(n), Mn) = Mn)o @ M(n),.
Let r(M (n)) be the minimal number of R-generators of M (n) and let

di(n) =dy(n) > d3(n) =ds(n) = - = drmmny)—1(n) = dr(pn)) (1)
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be the lengths of the cyclic R-modules appearing in an expression for M (n)
as a direct sum of such modules. Let s(n) = »(M(n))/2. In particular, s(1) =
r(M)/2 = s. In what follows we write, in an abuse of notation, «;, to mean its
image in H' (K, T®).

Suppose we have a sequence of integers 1 = ng,ny,na,...,ns € A &)
satisfying

@ s(nj) = smj-1) — 1,

(b) di(nj) > dio(nj_1),t =1,...,s(nj_1) — 1,

(c) lengthp (M (nj)o) < lengthgr(M(nj—1)o) —di(nj—1) + 3e,
(d) ord(ky;) = ord(kn; ) — e, and

(e) ord(kp; ;) < ord(kp;) —di(nj—1) + 3e,

forall 1 < j < s. Since H}_-(K, T) is torsion free, ind (k1) = k — ord(x1), and
so repeated combination of (b) and (e) yields

ind(k1) = k — ord(ky,) = di(ng) + d3(ng) + - - - + das—1(ng)
— 3se + (k — ord(ky,))
> lengthp (M (no)o) — 3se.

Since M(ng)g = M(1)g ~ M®(1)g ~ My by the choice of k and 3se =
%r(M )e, this means (3.14) holds. So to complete the proof of the theorem it
suffices to find such a sequence of n;’s. In the following we will define such a
sequence by making repeated use of Corollary 3.3.7 to choose suitable primes
in Z® _Note that if s = 0 then there is nothing to prove, so we assume s > 0.

Suppose 1 = ng, ny,...,n; € A ® | < s, are such that (a)—(e) hold for
all 1 < j < i (note that if i = 0, then this is vacuously true). We will explain
how to choose a prime £ € 2% such that no, . . ., n;, ni+1 = n;{ satisfy (a)-

(e) for all 1 < j < i+ 1. Repeating this process yields the desired sequence
no, ..., ;.
From (a), s(n;) > s —i > 0,50 d1(n;) > 0. Letcy, ¢2 € Hy, (K, T®)

be such that ¢; generates an R®)-summand complementary to M (n;) and
Rey ~ R/m@1 () = mk=di(n) R i 3 direct summand of M (n;) = M (n;)o®
M (n;)o. Then Rci+Recy C HJIT( n,-)(K , T(k)) contains a submodule isomorphic

to R® @ mF—1)RW et ¢ ¢ % be a prime as in Corollary 3.3.7 that
does not divide n1 - - - n;. In particular,

ord(loce(cy)) 2 k —e
and

Rlocy(c1) + Rloce(cy) contains a submodule isomorphic to
me R g mk—di(m)+2e k)
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It follows that there is a short exact sequence

0 — Hp(,, (K, T®) > HE, (K, T®)
loCe R/m mk—? @ R/m — 0, e=>a, b>di(n;) —2e. (3.16)

Global duality then implies that there is another exact sequence

0= Hy,,, (K, T®) > Hy, (K, TY)

locy

— R/m*“ EBR/m —>0, e>a>=d, b >b. (3.17)

Here we have used that the arithmetic dual of T®) = T(k) is T(k)l and
that the complex conjugation  induces an isomorphism H} F (K> T(k),) ~

(k)
Combining (c) for 1 < j < i yields

length p (M (n;)o) < lengthyr (M (ng)o) + 3ie.

From this, together with r(M) = 2s,i < s, and the assumption (3.15), we
find

k > 2lengthz (M (no)o) + 2r(M)e > 2lengthp (M (n;)o) + 2r(M)e — 3ie
> length, (M (n;)) + 2e.

It follows that (3.16) and (3.17) satisfy the hypotheses (3.13) for (3.11) and
(3.12) with

X =Hp ), (K.T®), M=M®wn), M =Mn).
Let nj41 = n;€. Then (a) for j = i + 1 follows from Lemma 3.3.10(i)
while (b) for j = i + 1 follows from Proposition 3.3.11(iii). To see that (c)
holds we observe that by (3.16) and (3.17)

length g (M (n;11)) = lengthg (M (n;)) — (b + b') + (a + )
< lengthgz (M (n;)) — 2d1(n;) + 6Ge.

To verify (d) for j = i + 1 we first observe that by the Kolyvagin system
relations under the finite singular map

ord(kp,,,) = ord(ky;¢) = ord(locg(kp;¢)) = ord(loce(ky,)).
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So (d) holds for j = i +1 if we can show that ord(loc¢(x,,,)) > ord(x,,)—e. To
check that this last inequality holds, we first note that ord(k,,) > ord(k,,) —ie
by (d) for I < j < i. Butord(k,,) = ord(k1) = k — ind(x1) by the choice of
k (and the fact that Hlf(l( , T) is torsion-free), and so by (3.15) and repeated
application of (¢) for 1 < j < i we have

ord(ky;) = k —ind(x1) —ie > 4 - lengthr (M (no)o) + (4s —i + 2)e
> 3 - lengthp (M (ng)o) + lengthz (M (n;)o)
+ (4s — 4i 4+ 2)e
> lengthp (M (n;)o) + 2e.

Write k,;, = xc1 +m with x € R® and m € M(n;). Since ord(ky;) >
exp(M (n;)o), it follows that x = 7'u for t = k — ord(xy,) and some u € R*.
Let n = exp(M (n;)). It follows that

n—+t

7" locy(kn;) = " ulocy(cy).

By the choice of ¢, ord(locg(c1)) > k —e. Since n +t = k — ord(ky,) +
exp(M(n;)g) < k — 2e, it then follows that

ord(locg(ky,;)) = ord(loce(c1)) —t 2 k —e —t = ord(ky,) — e.

It remains to verify (e) for j =i+ 1. Letc € H;(HM)(K, T®) be a gener-
ator of an R®-summand complementary to M (n;). Write Kn, = umsci+m
and k,,,, = vrhe + m', where u,v € R*, m € M(n;) and m’ € M(niy1).
Arguing as in the proof that (d) holds shows that ord(K,,j) > exp(M(nj))+2e
for1 < j <i+1,hence g =k — ord(ky,;) and h = k — ord(ky,, ). Arguing
further as in the proof that (d) holds also yields

ord(locg(kp;)) = ord(locg(c1)) — g and ord(locg(kp,,,)) = ord(locg(c)) — h.

From the Kolyvagin system relations under the finite singular map it then
follows that

h — g = ord(locg(c)) — ord(loce(cy)).

We refer again to the exact sequences (3.16) and (3.17). By the choice of ¢,
ord(locg(cy)) = k — e > exp(M(n;)g) > b, the last inequality by Lemma
3.3.10(ii). Hence we must have ord(loc¢(c1)) = k — a. As shown in the proof
of Proposition 3.3.11 (ii), we also must have ord(locy(c)) = k — b’. Hence we
find

h—gz(k—b/)—(k—a):a—b/<3e—d1(nj_1).
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Since h — g = ord(ky,) — ord(ky,.,), this proves (¢) holds for j =i + 1 and
so concludes the proof of Theorem 3.2.1.

3.4 Iwasawa theory

Let E, p, and K be as in Sect. 3.2. Let A = Z,[I'] be the anticyclotomic
Iwasawa algebra, and consider the A-modules

Mg := (TyE) ®z, AV, T:=Mj(1) ~ (TpE) ®z, A,

where the G g-action on A" is given by the inverse W~! of the tautological
character ¥ : Gg —» I' — A*.
For w a prime of K above p, put

Fil)(Mg) := Rl (T,E) ®z, A", Fil,T :=Fil (T,E) ®z, A.
Define the ordinary Selmer structure 5 on Mg and T by

im{H" (K, Fil};(Mp)) — H'(Kuw, Mp)}  if wlp,

HL (K, Mg) =
72 (Kw, M) {O else,

and

im{H' (K, Fil};(T)) - H'(K,,, T)}  if w|p,

HL (K, T) :=
7 Ko D) {Hl(Kw,T) else.

Denote by
X =Hp, (K, Mg)" = Homes(HY, (K, ME), Q) /Z))

the Pontryagin dual of the associated Selmer group H}_-A (K, MEg), and let
Lr C % beasin Sect. 3.2.

Recall that y € I' is a topological generator. Then P :=(y —1) C Aisa
height one prime independent of the choice of y.

Theorem 3.4.1 Suppose there is a Kolyvagin system k € KS(T, Fa, ZLE)
withk1 # 0. Then H }A (K, T) has A-rank one, and there is a finitely generated
torsion A-module M such that

HX~AeMoM,

(ii) chara (M) divides char (H;A(K, T)/Ax1) in A[1/p,1/(y — D].
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Proof This follows by applying Theorem 3.2.1 for the specializations of T at
height one primes of A, similarly as in the proof of [28, Thm. 2.2.10]. We
only explain how to deduce the divisibility in part (ii), since part (i) is shown
exactly as in [28, Thm. 2.2.10].

For any height one prime B # pA of A, let Sy be the integral closure of
A /B and consider the G g-module

Tgp =T ®a Ss;p,

where Gk actson Sy viaag : I' — A™ — S . Note that Ty isa G g-module
of the type considered in Sect. 3.2. In particular, Sg is the ring of integers of a
finite extension of Q, and Tty = T) E ®z, Sy (cvsp), where aup = W~ mod .

Fix 3 as above, write 8 = (g), and set Q := (g + p™) for some integer m.
For m >> 0, 9 is also a height one prime of A. As explained in [28, p. 1463],
there is a specialization map

KS(Ta ‘7:/\5 D%E) — KS(Tﬂv fordagE)-

Writing @ for the image of x under this map, the hypothesis x| 7% 0 implies
that k I(D) generates an infinite Sq-submodule of H}_-Ord (K, Tq) form > 0. By
Theorem 3.2.1, it follows that X and H}A (K, T) have both A-rank one, and

letting fA be a characteristic power series for HlfA (K, T)/Aky we see as in
[28, p. 1463] that the equalities

lengthy, (Hk, (K. Tq)/Sak{™) = md ordy(fa)
and
2 lengtth (Mgy) = md ordy (charA (Xtors))

hold up to O(1) as m varies, where d = rankyz, » (A/B) and Xors denotes the
A-torsion submodule of X.
On the other hand, Theorem 3.2.1 yields the inequality

lengthy, (Myy) < lengthy (HY, (K, Ta) /Sak' V) + Eqy.

If ‘B # Po, then the error term E,, is bounded independently of m, since
rankzp (Sq) = rankz;p (Sp) and the term Cy,, in (3.3) satisfies Cyy, = Ca;p

for m > 0. Letting m — oo we thus deduce

ordsg (char (Xiors)) < 2 ordg(fa),

for P # (p), Po, yielding the divisibility in part (ii). O
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Corollary 3.4.2 Let the hypotheses be as in Theorem 3.4.1. Assume also that
H}E(K, E[p™°]) has Zp-corank one (equivalently, Hlf(K, T, E) has Z,-rank
one). Then char y (M) divides char s (HY, (K, T)/Axy) in A[1/p].

Proof The assumption that H }(K , E[p®°]) has Z,-corank one implies that
Xtors/PoXtors 18 a torsion Z ,-module and hence that ordgg,, (char A (Xtors)) = 0.
O

4 Proof of Theorem C and Corollary D
4.1 Preliminaries

Let E, p, and K be as in Sect. 3.2, and assume in addition that hypotheses
(Heeg) and (disc) hold. Fix an integral ideal 9t C Og with Og /N =Z/NZ.
For each positive integer m prime to N, let K[m] be the ring class field of K
of conductor m, and set

G[m] = Gal(K[m]/K[1]), Glm] = Gal(K[m]/K).

Let also O,, = Z + mOg be the order of K of conductor m.
By the theory of complex multiplication, the cyclic N-isogeny between
complex CM elliptic curves

C/Ox — C/MMNO,)~!

defines a point x,, € Xo(N)(K[m]), and fixing a modular parameterization
7w : Xo(N) — E we define the Heegner point of conductor m by

P[m] :=n(x,) € E(K[m]).

Building on this construction, one can prove the following result.

Theorem 4.1.1 Assume E(K)[p] = 0. Then there exists a Kolyvagin system
kMe € KS(T, Fp, L) such that «}'® € HY, (K, T) is nonzero.

Proof Under the additional hypotheses that p { hg, the class number of K,
and the representation Gy — Auty » (T) is surjective, this is [28, Thm. 2.3.1].
In the following paragraphs, we explain how to adapt Howard’s arguments to
our situation.

We begin by briefly recalling the construction of «12 in [28, §2.3]. Let K
be the subfield of Ko, with [K: K] = pk. Foreachn € ./ set

Py[n] := NOme[npd(k)]/Kk[n](P[npd(k)]) € E(K[n]),
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where d(k) = min{d € Zxo: Kx C K[p?®]}, and Ky[n] denotes the
compositum of Ky and K[n]. Letting Hi[n] C E(Ki[n]) ® Z, be the
Zp,|Gal(Kg[n]/K)]-submodule generated by P[n] and Pj[n] for j < k, it
follows from the Heegner point norm relations [43, §3.1] that one can form
the G(n)-module

H[n] := lim Hi[n].

By [28, Lem. 2.3.3], there is a family

{QIn] = l(llt_n Qkln] € Hinl}ner

such that
Qo[n] = ®P[n] 4.1)
where

®— { (p —apop + G[%)(p - aPJ;‘ + 0;2) if p splits in K, 42)

(p+ 12— af) if p is inert in K,

with o), and cr;,“ the Frobenius elements at the primes above p in the split case,
and

Normg (ne]/ Koo [n) Q[1€] = a¢ Q[n]

for all n¢ € 4. Letting D, € Z,[G(n)] be Kolyvagin’s derivative oper-
ators, and choosing a set S of representatives for G(n)/G(n), the class
Kk, € H! (K, T/I,T) is defined as the natural image of

fn =Y sD,Q[n] € Hln] (4.3)

seS

under the composite map

(H[n)/L,H[n]) 7 22 B (K [n], T/, T)9 Z H'(K,T/1,T),

where §(n) is induced by the limit of Kummer maps 6 (n) : E(Ki[n]) ®Z, —
H'(K[n], T), and the second arrow is given by restriction. (In our case, that
the latter is an isomorphism follows from the fact that the extensions K [n] and
Q(E[p]) are linearly disjoint, and E(Ks)[p] = 0.)
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The proof that the classes «, land in H}FA (K, T) and can be modified to a

system xH& = {K:I &1,.cv satisfying the Kolyvagin system relations is the same

asin [28, Lem. 2.3.4] et seq., noting that the arguments proving Lemma 2.3.4
(in the case v|p) apply almost verbatim in the case when p divides the class

number of K. Finally, that KFg is nonzero follows from the works of Cornut
and Vatsal [16,50]. O

Applying Theorem 3.4.1 and Corollary 3.4.2 to the Kolyvagin system « 12
of Theorem 4.1.1, we thus obtain the following.

Theorem 4.1.2 Assume E(K)[p] = 0. Then the module Héf,\ (K, T) has A-
rank one, and there is a finitely generated torsion A-module M such that
HX~ABMOM,

(ii) charp (M) divides chars (H, (K, T)/Ax{*g) in A[1/p,1/(y — D].

Moreover, if Hlf(K, E[p®]) has Zp-corank one, then chary(M) divides
char s (HY, (K, T)/Axi"®) in A[1/p].

Remark 4.1.3 For our later use, we compare the class KFg eH }A (K, T) from
Theorem 4.1.1 with the A-adic class constructed in [14, §5.2] (taking for f
the newform associated with E).

Denote by o the p-adic unit root of x> — apx + p. With the notations
introduced in the proof of Theorem 4.1.1, define the «-stabilized Heegner

point P[p*l, € E(K[p*]) ® Z), by

PIp* — o~ PpFT] ifk > 1,
P[pFle = u}l(l - oflap)(l - ofla;,“)P[l] ifk =0and p splitsin K, (4.4)
up! (1 —a=2)P[1] if k = 0and p is inert in K.

Using the Heegner point norm relations, a straightforward calculation shows
that the points a kp[ pk ]o are norm-compatible. Letting § : E(Ky) ® Z), —
H!(Ky, T, E) be the Kummer map, we may therefore set

koo :=1im 8 () € imH' (Ky, T, E) ~ H' (K, T),
k k

where k; = ofd(k)NormK[pd(k)]/Kk (P[pd(k)]a). The inclusion «o €
HlfA (K, T) follows immediately from the construction. For the comparison
with K{_Ig, note that by (4.3) the projection prg (K{-Ig) of Kflg to H' (K, T,E)is
given by the Kummer image of Normg 1}k (Qo[1]), while kg is the Kummer
image of Normg(1)/x (P[1]y). Thus comparing (4.1) and (4.4) we see that

2 2 . . .
H uga“(B—1) -k if psplitsin K,
pr ey = {“<% 7 oopTe (4.5)
uga (B —1)-kg if pisinertin K,
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where g = pa~!. In particular, ko, and K{_Ig generate the same A-submodule
of Hy, (K, T).

4.2 Proof of the Iwasawa main conjectures

Letkso € H},_-A (K, T) be the A-adic Heegner class introduced in Remark 4.1.3,
and put Ay = A ®z, Q,. Let Hy_ (K, T) be defined just as Hy_ (K, M)
but with T replacing Mg and the conditions on v and v switched.

Proposition 4.2.1 Assume that p = vv splits in K and that E(K)[p] = 0.
Then the following statements are equivalent:

(i) Both HIFA (K, TYand X = HlfA (K, MEg)Y have A-rank one, and the divis-
ibility
charp (Xors) D charp (HlfA (K, T)/A/coo)2
holds in A .
(i1) Both H}_-Gr(K, T) and Xg = H}_-Gr(K, Mg)Y are A-torsion, and the divis-
ibility
charp (%E)Aur D (LEg)
holds in A" @z, Qp.
Moreover, the same result holds for the opposite divisibilities.
Proof See [2, Thm. 5.2], whose proof still applies after inverting p. |

We can now conclude the proof of Theorem C in the introduction.

Theorem 4.2.2 Suppose K satisfies hypotheses (Heeg), (spl), (disc), and (Sel),
and that E[p]** = F,(¢) @ F),(¥) as Go-modules, with ¢|G, # 1, w. Then
X g is A-torsion, and

charp (Xg)A™ = (LE)

as ideals in A".

Proof By Theorem 4.1.2, the modules HlfA (K, T) and H}EA (K, Mg)Y have
both A-rank one, with

Hg\2
chary (Hj, (K, Mg)yy) D chars (Hj, (K, T)/Ak;®)
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as ideals in Ay = A[l/p]. Since by Remark 4.1.3 the classes Kng and Koo
generate the same A-submodule of H }A (K, T), by Proposition 4.2.1 it follows
that X g is A-torsion, with

charp (%E)Aur D (LEg)

asidealsin A acé%pZ;r. This divisibility, together with the equalities w(Xg) =
W(LE) =0and AM(Xg) = AM(LEg) in Theorem 2.2.3, yields the result. O

As a consequence, we can also deduce the first cases of Perrin-Riou’s Heeg-
ner point main conjecture [43] in the residually reducible case. More precisely,
together with Theorem 4.1.2, the following yields Corollary D in the introduc-
tion.

Corollary 4.2.3 Suppose K satisfies hypotheses (Heeg), (spl), (disc), and
(Sel), and that E[p]** =F,(¢) @ F,(¥) as Gg-modules, with ¢|g, # 1, w.
Then both H},_-A (K, T) and H},_-A (K, MEg)Y have A-rank one, and

chary (HY, (K, M) \) = chara (Hk, (K, T)/Ako)”

as ideals in A .

Proof In light of Remark 4.1.3, this is the combination of Theorem 4.2.2 and
Proposition 4.2.1. m|

Remark 4.2.4 1f the Heeger point Px = Normg1j/x (P[1]) € E(K) is non-
torsion, then (Sel) holds by the main results of [36]. In particular, this is so

if the image prg (K{{g) of Kflg (equivalently, the class kg) in H}(K , Tp(E)) is
non-zero (as Hlf(K , T, (E)) is non-torsion since E(K)[p] = 0).

5 Proof of Theorem E and Theorem F
5.1 Preliminaries

Here we collect the auxiliary results we shall use in the next sections to deduce
Theorems E and F in the introduction from our main result, Theorem 4.2.2.
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5.1.1 Anticyclotomic control theorem

Assume that p = vv splits in K, and as in [32, §2.2.3], define the anticyclo-
tomic Selmer group of W = E[p®>°] by

Hy (K, W)
H'(Ky, W)

—ker{H'(KZ /K, W HY(Ky, Wyx ———2 7
er{ (K*/K, W)= | ] B K, W x e

wex

le(Kl-,,W)},

where H! (Ky, W)giv C H' (K, W) denotes the maximal divisible submodule
and ¥ = {w : w|N}.

The following result is a special case of the “anticyclotomic control theo-
rem” of [32, §3].

Theorem 5.1.1 Assume that

e E(Qplpl =0,
e rankz E(K) =1,
o #III(E/K)[p™] < oo.

Then Xfg is a torsion A-module, and letting Fr € A be a generator of
charp (Xg), we have

#7.,/ FE(0)
#(Zp/(FLEL) log,, P)
[E(K):Z- P],

2
= #11(E/K)[p™] ( ) Ty cw(E/K)p,

where

P € E(K) is any point of infinite order,

logwE . E(Ky) jtors —> Zyp is the formal group logarithm associated to a
Néron differential wg,

[E(K) : Z - P], denotes the p-part of the index [E(K) : Z - P],

¢, (E/K) is the p-part of the Tamagawa number of E [/ K,,.

Proof This follows from the combination of Theorem 3.3.1 and equation
(3.5.d) in [32, (3.5.d)], noting that the arguments in the proof of those results
apply without change with the G g-irreducibility of E[p] assumed in loc. cit.
replaced by the weaker hypothesis that £ (K)[p] = 0, which is implied by the
hypothesis E(Q,)[p] = 0 since p splits in K. O
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5.1.2 Gross—Zagier formulae

Let E/Q be an elliptic curve of conductor N, and fix a parametrization
7 : Xo(N) > E.

Let K be an imaginary quadratic field satisfying the Heegner hypothesis
relative to N, and fix an integral ideal 91 C Og with Ok /91 = Z/NZ. Let
x1 = [C/Ox — C/M™] € Xo(N) be the Heegner point of conductor 1 on
Xo(N), which is defined over the Hilbert class field H = K[1] of K, and set

Py = Z 7(x1)° € E(K).

oeGal(H/K)

Let f € S2(I'g(V)) be the newform associated with E, so that L(f, s) =
L(E, s), and consider the differential w s := 27if (t)dt on Xo(N). Let also
wpg be a Néron differential on E, and let cg € Z be the associated Manin
constant, so that *(wg) = cg - wy.

Theorem 5.1.2 Under the above hypotheses, L(E/K, 1) = 0 and

o _ -1 A
L'(E/K. 1) =ug’cy” /IDk| - lwel? - h(Pk).

where ug = #(OIX(/:EI), fz(PK) is the canonical height of Pk, and logll? =
ffE((C) log A WE|.
Proof This is [25, Thm. V.2.1]. O

Theorem 5.1.3 Under the above hypotheses, let p > 2 be a prime of good
reduction for E such that p = vv splits in K. Then

_ — —1\2
Le©) =cz”-(L—app™' +p') - log,, (Px)™.

where log,, : E(Ky) — Ky is the formal group logarithm associated to wg.

Proof Let Jo(N) be the Picard variety of Xo(N), and set A; = (x1) — (00) €
Jo(N)(H). By [3, Thm. 5.13] specialized to the case k = 2, r = j = 0, and
X = Nf{], we have
) 2
Lp©) = (1—app+p71) ( 3 logwfm?)) ,
oeGal(H/K)
where log,, p Jo(N)(Hy) — H, is the formal group logarithm associated to
wy. Since logwf (A) = cgl -log,, . ((A1)), this yields the result. O
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5.1.3 A result of Greenberg—Vatsal

Theorem 5.1.4 Let A/Q be an elliptic curve, and let p > 2 be a prime of
good ordinary reduction for A. Assume that A admits a cyclic p-isogeny with
kernel ® 5, with the Gg-action on ® 4 given by a character which is either
ramified at p and even, or unramified at p and odd. If L(A, 1) # O then

d L(A, 1)\ d #III(A/Q) - Tam(A/Q)
o A B b #(A(@)tors)2 '

where Tam(A/Q) = [], ce(A/Q) is the product over the bad primes £ of A
of the Tamagawa numbers of A/Q;.

Proof By [36], if L(A, 1) # 0 then rankzA(Q) = 0 and #1I1(A/Q) < oo;
in particular, #Sel,~(A/Q) = #II(A/Q)[p™] < oo. Letting Acye =
Z,[Gal(Qo0/Q)] be the cyclotomic Iwasawa algebra, by [23, Thm. 4.1] we
therefore have

#(Zp/(1 — ap(A) + p)? - #111(A/Q) - Tam(A/Q))
#(Zp/(AQ)rors)?)

#7,/Fa(0) = (5.1

where F4 € Acyc is a generator of the characteristic ideal of the dual Selmer
group Selg  (TpA, T; A)Y in the notations of [47, §3.6.1]. Under the given
assumptions, the cyclotomic main conjecture for A, i.e., the equality

(Fa) = (La) C Acyc (5.2)

where L4 is the p-adic L-function of Mazur—Swinnerton-Dyer, follows from
the combination of [34, Thm. 12.5] and [24, Thm. 1.3]. By the interpolation
property of L4,

> LA, 1)

LA0) = (1—a},") o

) (5.3)

where o), € Z; is the unit root of x2 — ap(A)x + p. Noting that ord, (1 —

ap(A) + p) = ord,(1 — a;l), the result thus follows from the combination
of (5.1), (5.2), and (5.3). O

5.2 Proof of the p-converse
The next result is Theorem E in the introduction. Note that a result for r = 0

can be obtained from the cyclotomic main conjecture proved by combining
[24, Thm. 1.3] and Kato’s divisibility in [34]. However, our assumptions are
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less restrictive, since in [24] the character ¢ is assumed to be ramified at p and
even or unramified at p and odd.

Theorem 5.2.1 Assume that E[p]* = F,(¢) & F,(y) with ¢|g, # 1, w.
Letr € {0, 1}. Then

corankz,Sel,~(E/Q) =r = ords=1L(E,s) =r,

and so rankz E(Q) = r and #111(E /Q) < oc.

Proof The proof of this result is a consequence of Corollary 4.2.3 for suitable
choices of a quadratic imaginary field K depending on r € {0, 1}.

First we suppose corankz, Sel ;o (E/Q) = 1. It follows from [40, Theorem
1.5] that the root number w(E /QQ) = —1. Choose an imaginary quadratic field
K of discriminant Dg such that

(a) Dg < —41isodd,

(b) every prime ¢ dividing N splits in K,
(c) psplitsin K, say p = vv,

(d) L(EX, 1) #0.

The existence of such K (in fact, of an infinitude of them) is ensured by [18,
Thm. B.1], since (a), (b), and (c) impose only a finite number of congruence
conditions on Dk, and any K satisfying (b) is such that £ /K has root number
w(E/K) = w(E/Qw(EX/Q) = —1, and therefore w(EX /Q) = +1. By
work of Kolyvagin [36] (or alternatively, Kato [34]), the non-vanishing of
L(EX, 1) implies that Sel ,o (EX /Q) is finite and therefore

corankz,,Sel o (E/K) = 1,

and hence E satisfies (Sel). In particular, all the hypotheses of Corol-
lary 4.2.3 hold. As in the proof of Corollary 3.4.2, the condition that
corankzp Sel,~(E/K) = 1 easily implies that ords,(Xors) = 0, and so it
then follows from Corollary 4.2.3 that the image of «; in H/(K, T, E) is
non-zero. This implies that the Heegner point Py € E(K) is non-torsion
and hence, by the Gross—Zagier formula that ord;—; L(E/K,s) = 1. Since
L(E/K,s) = L(E,s)L(EX s) and ordg—; L(EX,s) = 0 by the choice of
K, it follows that ord,—; L(E, s) = 1.

We now assume corankz,Sel o (E/Q) = 0. The result of Monsky used
above implies in this case that w(E/Q) = +1. We now choose an imagi-
nary quadratic field K satisfying the same conditions (a), (b), (c) as above, in
addition to the condition

(d) ordg—; L(EX, 1) = 1.
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The existence of infinitely many such K follows from [18, Thm. B.2], since any
K satisfying (b) is such that w(EX /Q) = —1. The Gross—Zagier—Kolyvagin
theorem implies that coranky, » Sel 0 (E K /Q) = 1 and therefore

corankz,Selp=(E/K) = 1.

Thus, as above, E satisfies (Sel), and we can apply Corollary 4.2.3 and the
Gross—Zagier formula to obtain ord;—1 L(E /K, s) = 1, which implies by our
choice of K that L(E, 1) # 0. O

Since the hypotheses of Theorem 5.2.1 imply E(Q)[p] = 0, we see that
Sel o (E/Q)[p] = Sel,(E/Q), whence the following mod p version of the
theorem.

Corollary 5.2.2 Suppose E is as in Theorem 5.2.1 and r € {0, 1}. Then
dimg, Sel,(E/Q) =r = ords=1L(E,s) =,

and so rankz E(Q) = r and #11I(E /Q) < oc.

For p = 3, Corollary 5.2.2 together with the work of Bhargava—Klagsbrun—
Lemke Oliver—Shnidman [5] on the average 3-Selmer rank in quadratic twist
families, leads to the following result in the direction of Goldfeld’s conjecture
[19].

Corollary 5.2.3 Let E be an elliptic curve over Q with a rational 3-isogeny.
Then a positive proportion of quadratic twists of E have algebraic and ana-
Iytic rank equal to 1 and a positive proportion of quadratic twists of E have
algebraic and analytic rank equal to 0.

Proof Denote by ¢ : Gg — F3 = u, the character giving the Galois action
on the kernel of a rational 3-isogeny of E. As the condition ¢|g, # 1,  can
be arranged by a quadratic twist, combining [5, Thm. 2.6] and Corollary 5.2.2,
the result follows. O

Remark 5.2.4 The qualitative result of Corollary 5.2.3 was first obtained by
Kriz—Li (see [35, Thm. 1.5]), but thanks to [5] (see esp. [op. cit., p. 2957]) our
result can lead to better lower bounds on the proportion of rank 1 twists. In
particular the proportions provided by [5, Thm. 2.5] are the largest when the
parity of the logarithmic Selmer ratios is equidistributed in quadratic families.
The elliptic curve of smallest conductor over Q for which this happens is
the elliptic curve having Cremona label 1943 given by the affine equation
y2 +y= x3 4+ x2 + x. The explicit bounds of [5] and our result give that at
least 41.6% of its quadratic twists have analytic and algebraic rank equal to 1
and at least 25% have analytic and algebraic rank equal to 0.
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5.3 Proof of the p-part of BSD formula

The following is Theorem F in the introduction.

Theorem 5.3.1 Let E/Q be an elliptic curve, and let p > 2 be a prime of
good ordinary reduction for E. Assume that E admits a cyclic p-isogeny with
kernel C =¥, (¢), with ¢ : Gg — IF; such that

. dlg, # Lo,
e ¢ is either ramified at p and odd, or unramified at p and even.

Ifords— 1 L(E,s) =1, then

LD\ _
Ordp (m) = Ordp (#H_[(E/@) }T_OIOCE(E/Q)>

In other words, the p-part of the Birch—Swinnerton-Dyer formula for E holds.

Proof Suppose ords—1L(E,s) = 1 and choose, as in the proof of Theo-
rem 5.2.1, an imaginary quadratic field K of discriminant Dg such that

(a) Dg < —41isodd,

(b) every prime ¢ dividing N splits in K,

(c) psplitsin K, say p = vv,

(d) L(EX, 1) #0.

Thenord,— L(E/K,s) = 1,whichby Theorem 5.1.2 implies that the Heegner
point Py € E(K) has infinite order, and therefore rankz E(K) = 1 and
#II(E/K) < oo by [36]. In particular, (Sel) holds, and so all the hypotheses
of Theorem 4.2.2 are satisfied. Thus there is a p-adic unit u € (Z‘;f)X for
which

Fe©) =u-LE(0), (5.4)

where Fg € A is a generator of char (Xg). The hypotheses on ¢ imply that
E(K)[p] =0, and so Theorem 5.1.1 applies with P = Pk, which combined
with Theorem 5.1.3 and the relations (4.5) and (5.4) yields the equality

ord,(#1I(E/K)) = 2 ord(c;'uy' - [E(K) : Z.Pk])
— Y " ord(cw(E/K)), (5.5)

wes

On the other hand, the Gross—Zagier formula of Theorem 5.1.2 can be
rewritten (see [25, p. 312]) as

L'(E/K, 1) =2'c;%uy” - h(Px) - QF - Qpx,
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where the power of 2 is given by the number of connected components [ E (R) :
E(R)?]. This, together with the relations L(E/K,s) = L(E,s) - L(EK, )
and

h(Pg) = [E(K) : Z- Pg)* -Reg(E/K) = [E(K) : Z- Pg]* - Reg(E/Q),
using that rankz £ K(Q) = 0 for the last equality, amounts to the formula

L'(E,1) . L(EX, 1)
Reg(E/Q) - QF Qgk

=2c?u? [E(K):Z- Pkl (5.6)

Note that ug = 1, since Dg < —4. Since III(E /K)[p™°] ~ OI(E/Q)[p*]1 &
m(EX /Q)[p*>] as p is odd, and

" ordy (cw(E/K)) = ord,(ce(E/Q)) + ord p (ce (EX /Q))

wll

for any prime £ (see [48, Cor. 9.2]), combining (5.5) and (5.6) we arrive at

ordp( LAE D ) — ord,, (#ITI(E/Q)
Reg(E/Q) - Q - [[, ce(E/Q)

B L(EX 1) X
= ordp<QEK I, Cg(EK/Q)) — ord, (#IL(E" /Q)).

(5.7)

Finally, by our hypotheses on ¢ the curve EX satisfies the hypotheses of
Theorem 5.1.4, and hence the right-hand side of (5.7) vanishes, concluding
the proof of Theorem 5.3.1. m|
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