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Abstract Let E/Q be an elliptic curve and p an odd prime where E has good
reduction, and assume that E admits a rational p-isogeny. In this paper we
study the anticyclotomic Iwasawa theory of E over an imaginary quadratic
field in which p splits, which we relate to the anticyclotomic Iwasawa theory
of characters by a variation of the method of Greenberg–Vatsal. As a result
of our study we obtain proofs (under relatively mild hypotheses) of Perrin-
Riou’s Heegner point main conjecture, a p-converse to the theorem of Gross–
Zagier and Kolyvagin, and the p-part of the Birch–Swinnerton-Dyer formula
in analytic rank 1, for Eisenstein primes p.
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Introduction

0.1 Statement of the main results

Let E/Q be an elliptic curve, and let p be an odd prime of good reduction
for E . We say that p is an Eisenstein prime (for E) if E[p] is reducible as a
GQ-module, where GQ = Gal(Q/Q) is the absolute Galois group of Q and
E[p] denotes the p-torsion of E . Equivalently, p is an Eisenstein prime if E

123



On the anticyclotomic Iwasawa theory of rational elliptic… 519

admits a rational p-isogeny. By a result of Fontaine (see [17] for an account),
Eisenstein primes are primes of ordinary reduction for E , and by Mazur’s
results [38] in fact p ∈ {3, 5, 7, 13, 37}.

Let p > 2 be an Eisenstein prime for E , and let K be an imaginary quadratic
field such that

p = vv̄ splits in K , (spl)

where v denotes the prime of K above p induced by a fixed embedding Q ↪→
Qp. Denoting by N the conductor of E , assume also that K satisfies the
following Heegner hypothesis:

every prime �|N splits in K . (Heeg)

Under these hypotheses, the anticyclotomic Iwasawa main conjecture for E
considered in this paper can be formulated in two different guises. We begin
by recalling these, since both formulations will play an important role in the
proof of our main results. (Note that for the formulation p can be any odd
prime of good ordinary reduction for E .) Let � = Gal(K∞/K ) be the Galois
group of the anticyclotomic Zp-extension of K , and for each n denote by Kn
the subfield of K∞ with [Kn : K ] = pn . Set

� := Zp���, �ac := �⊗Zp Qp, �ur := �⊗̂ZpZ
ur
p ,

where Zur
p is the completion of the ring of integers of the maximal unramified

extension ofQp. Following thework of Bertolini–Darmon–Prasanna [3], there
is a p-adic L-functionLE ∈ �ur interpolating the central critical values of the
L-function of f/K , where f ∈ S2(�0(N )) is the newform associated with E ,
twisted by certain characters of � of infinite order. For any subfield L ⊂ Q,
let Selpm (E/L) be the Selmer group fitting into the descent exact sequence

0→ E(L)⊗Z Z/pmZ → Selpm (E/L)→W(E/L)[pm] → 0.

We put Selp∞(E/K∞) = lim−→m
Selpm (E/K∞), and let

XE = HomZp(SE ,Qp/Zp)

be the Pontryagin dual of the modified Selmer group SE obtained from
Selp∞(E/K∞) by relaxing (resp. imposing triviality) at the places above v
(resp. v̄).

The following formulation of the anticyclotomic Iwasawa main conjectures
for E can be seen as a special case of Greenberg’s main conjectures [22].
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Conjecture A Let E/Q be an elliptic curve and p > 2 a prime of good
ordinary reduction for E, and let K be an imaginary quadratic field satisfying
(Heeg) and (spl). Then XE is �-torsion, and

char�
(
XE

)
�ur = (LE

)

as ideals in �ur.

A second formulation, originally due to Perrin-Riou [43], is in terms of
Heegner points. Although amore general formulation is possible (cf. [8, §2.3]),
here as in [43] we assume that

the discriminant DK of K is odd and DK �= −3, (disc)

and do not require hypothesis (spl). Fix a modular parametrization

π : X0(N )→ E .

Via π , the Kummer images of Heegner points on X0(N ) over ring class fields
of K of p-power conductor give rise to a class κHg1 ∈ S, where

S =
(
lim←−
n

lim←−
m

Selpm (E/Kn)

)
⊗ Qp.

The group S is naturally a�ac-module, and the class κHg1 is known to be non-
�ac-torsion by results of Cornut and Vatsal [16,50]. Denote by H ⊂ S the
�ac-submodule generated by κHg1 , and put

X = HomZp(Selp∞(E/K∞),Qp/Zp)⊗Qp.

Conjecture B Let E/Q be an elliptic curve and p > 2 a prime of good
ordinary reduction for E, and let K be an imaginary quadratic field satisfying
(Heeg) and (disc). Then S and X both have �ac-rank one, and

char�ac(Xtors) = char�ac

(S/H)2
,

where Xtors denotes the �ac-torsion submodule of X.

Remark One can naturally formulate an integral version of Conjecture B, but
the results of [43] and [30] show that the terms appearing in the corresponding
equality of �-module characteristic ideals are in general not invariant under-
noalign isogenies. (With p inverted, i.e., as ideals in�ac, the terms are invariant
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under isogenies.) On the other hand, it is clear that the principal ideals in �ur

appearing in the equality of Conjecture A depend only on the isogeny class of
E .

When p is non-Eisenstein for E , Conjectures A and B have been studied by
several authors [2,4,10,28,29,52], but the residually reducible case remained
largely unexplored; in particular, unless E hasCMby K (a case that is excluded
by our hypothesis (Heeg), but see [8] for this case), there seems to be no
previous results towards these conjectures when p is an Eisenstein prime for
E .
To state our main results on the anticyclotomic Iwasawa theory of E at

Eisenstein primes p, write

E[p]ss = Fp(φ)⊕ Fp(ψ),

where φ,ψ : GQ → F×p are characters. Note that it follows from the Weil
pairing that ψ = ωφ−1, where ω is the Teichmüller character. Let Gp ⊂ GQ

be a decomposition group at p.
Our most complete results towards Conjectures A and B are proved under

the additional hypothesis that

the Zp-corank of Selp∞(E/K ) is 1. (Sel)

Theorem C Let E/Q be an elliptic curve, p > 2 an Eisenstein prime for E,
and K an imaginary quadratic field satisfying (Heeg), (spl), (disc), and (Sel).
Assume also that φ|Gp �= 1, ω. Then Conjecture A holds.

As we explain in more detail in the next section, a key step towards Theo-
remC is the proof of a divisibility in Conjecture B that we establish without the
need to assume (spl) (see Theorem 4.1.2). On the other hand, as first observed
in [9] and [52], when p splits in K , Conjectures A and B are essentially equiv-
alent (see Proposition 4.2.1). Thus from Theorem 4.1.2 we deduce one of the
divisibilities in Conjecture A, which by the analysis of Iwasawa invariants
carried out in Sects. 1, 2 then yields the equality of ideals in �ur predicted
by Conjecture A. As a result, our analysis together with the aforementioned
equivalence also yields the following.

Corollary D Let E/Q be an elliptic curve, p > 2 an Eisenstein prime for
E, and K an imaginary quadratic field satisfying (Heeg), (disc), and (Sel). If
E(K )[p] = 0, then S and X both have �ac-rank one, and

char�ac(Xtors) ⊃ char�ac

(S/H)2
.
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Moreover, if in addition K satisfies (spl) and φ|Gp �= 1, ω, then

char�ac(Xtors) = char�ac

(S/H)2
,

and hence Conjecture B holds.

Note that in both TheoremC andCorollary D, the elliptic curve E is allowed
to have complex multiplication (necessarily by an imaginary quadratic field
different from K ).

With a judicious choice of K , Theorem C also has applications to the arith-
metic over Q of rational elliptic curves. Specifically, for Eisenstein primes p,
we obtain a p-converse to the celebrated theorem

ords=1 L(E, s) = r ∈ {0, 1} �⇒ rankZE(Q) = r and #W(E/Q) <∞,

(0.1)

of Gross–Zagier and Kolyvagin. (The case of Eisenstein primes eluded the
methods of [46] and [53], which require E[p] to be absolutely irreducible as
a GQ-module.)

Theorem E Let E/Q be an elliptic curve and p > 2 an Eisenstein prime
for E, so that E[p]ss = Fp(φ) ⊕ Fp(ψ) as GQ-modules, and assume that
φ|Gp �= 1, ω. Let r ∈ {0, 1}. Then the following implication holds:

corankZpSelp∞(E/Q) = r �⇒ ords=1L(E, s) = r,

and so rankZE(Q) = r and #W(E/Q) <∞.

Note that if rankZE(Q) = r and #W(E/Q)[p∞] <∞ then corankZpSelp∞
(E/Q) = r , whence the p-converse to (0.1). We also note that for p = 3,
Theorem E together with the recent work of Bhargava–Klagsbrun–Lemke
Oliver–Shnidman [5] on the average 3-Selmer rank for abelian varieties in
quadratic twist families, provides additional evidence towards Goldfeld’s
conjecture [19] for elliptic curves E/Q admitting a rational 3-isogeny (see
Corollary 5.2.3 and Remark 5.2.4, and see also [35] for earlier results along
these lines).

Another application of Theorem C is the following.

Theorem F Under the hypotheses of Theorem E, assume in addition that φ is
either ramified at p and odd, or unramified at p and even. If ords=1L(E, s) =
1, then

ordp

(
L ′(E, 1)

Reg(E/Q) ·�E

)
= ordp

(
#W(E/Q)

∏

��∞
c�(E/Q)

)
,
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where

• Reg(E/Q) is the regulator of E(Q),
• �E =

∫
E(R) |ωE | is the Néron period associated to the Néron differential

ωE , and
• c�(E/Q) is the Tamagawa number of E at the prime �.

In other words, the p-part of the Birch–Swinnerton-Dyler formula for E holds.

0.2 Method of proof and outline of the paper

Let us explain some of the ideas that go into the proof of our main results,
beginning with the proof of TheoremC. As in [24], our starting point is Green-
berg’s old observation [20] that a “main conjecture” should be equivalent to an
imprimitive one. More precisely, in the context of Theorem C, for� any finite
set of non-archimedean primes of K not containing any of the primes above p,
this translates into the expectation that the �-imprimitive Selmer group X�

E ,
obtained by relaxing the local condition defining (the Pontryagin dual of) XE
at the primes w ∈ �, is �-torsion with

char�
(
X�

E

)
�ur ?= (L�

E

)
(0.2)

as ideals in �ur, where L�
E := LE · ∏w∈� Pw(E) for certain elements in

Pw(E) ∈ � interpolating, for varying characters χ of �, the w-local Euler
factor of L(E/K , χ, s) evaluated s = 1.

A key advantage of the imprimitive main conjecture (0.2) is that (unlike
the original conjecture), for suitable choices of �, its associated Iwasawa
invariants are well-behaved with respect to congruences mod p. Identifying�
with the power series ring Zp�T � by setting T = γ − 1 for a fixed topological
generator γ ∈ �, recall that by the Weierstrass preparation theorem, every
nonzero g ∈ � can be uniquely written in the form

g = u · pμ · Q(T ),
with u ∈ �×, μ = μ(g) ∈ Z�0, and Q(T ) ∈ Zp[T ] a distinguished polyno-
mial of degreeλ(g). The constantsλ andμ are the so-called Iwasawa invariants
of g. For a torsion �-module X we let λ(X) and μ(X) be the Iwasawa invari-
ants of a characteristic power series for X, and for a nonzero L ∈ �ur we let
λ(L) and μ(L) be the Iwasawa invariants of any element of � generating the
same �ur-ideal as L.

As a first step towards Theorem C, we deduce from the GQ-module iso-
morphism E[p]ss = Fp(φ)⊕ Fp(ψ) that, taking � to consist of primes that
are split in K and containing all the primes of bad reduction for E , the module
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X�
E is �-torsion with

μ
(
X�

E

) = 0 and λ
(
X�

E

) = λ
(
X�
φ

)+ λ
(
X�
ψ

)
, (0.3)

where X�
φ and X�

ψ are anticyclotomic Selmer groups (closely related to the
Pontryagin dual of certain class groups) for the Teichmüller lifts of φ and ψ ,
respectively. The proof of (0.3), which is taken up in Sect. 1, uses Rubin’s work
[45] on the Iwasawamain conjecture for imaginary quadratic fields and Hida’s
work [27] on the vanishing of the μ-invariant of p-adic Hecke L-functions.

On the other hand, in Sect. 2 we deduce from the main result of [37] that
for such � one also has

μ
(L�

E

) = 0 and λ
(L�

E

) = λ
(L�

φ

)+ λ
(L�

ψ

)
, (0.4)

where L�
φ and L�

ψ are�-imprimitive anticyclotomic Katz p-adic L-functions
attached to φ and ψ , respectively.

With equalities (0.3) and (0.4) in hand, it follows easily that to prove the
equality of characteristic ideals in Conjecture A it suffices to prove one of the
predicted divisibilities in�ur[ 1p ]. In Sect. 3, by combining Howard’s approach
to proving Iwasawa-theoretic divisibilities [28] with a Kolyvagin system argu-
ment along the lines of Nekovář’s [42] (but adapted for twists by infinite
order characters and for obtaining a bound on the length of Tate–Shafarevich
group and not just an annihilator), we prove the main result towards one of
the divisibilities in Conjecture B: char�ac(Xtors) divides char�ac

(S/H)2 in
�ac[ 1T ], and even in �ac assuming (Sel). As already noted, hypotheses (spl)
andφ|Gp �= 1, ω are not needed at this point. This yields a corresponding divis-
ibility in (0.2), from which the proof of Theorem C follows easily. The details
of the final argument, and the deduction of Corollary D, are given in Sect. 4.
The additional hypothesis (Sel) is required to circumvent the growth of the
‘error term’ in our Kolyvagin system arguments in the cases of twists by anti-
cyclotomic characters p-adically close to the trivial character. The arguments
in Sect. 3 apply equally well to both the residually reducible and residually
irreducible cases.

Finally, the proofs of Theorems E and F are given in Sect. 5, and they are
both obtained as an application of Theorem C for a suitably chosen K . In
particular, the proof of Theorem F requires knowing the p-part of the Birch–
Swinnerton-Dyler formula in analytic rank 0 for the quadratic twist EK ; this
is deduced in Theorem 5.1.4 from the results of Greenberg–Vatsal [24], and
this is responsible for the additional hypotheses on φ placed in Theorem F.
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0.3 Examples

To illustrate Theorem F, take p = 5 and consider the elliptic curve

J : y2 + y = x3 + x2 − 10x + 10.

The curve J has conductor 123 and analytic rank 1, and satisfies J [5]ss =
Z/5Z⊕μp as GQ-modules (J has a rational 5-torsion point). If ψ is an even
quadratic character such that ψ(5) = −1, corresponding to a real quadratic
field Q(

√
c) in which 5 is inert, then the twist E = Jc of J by ψ satisfies

the hypotheses of Theorem E with p = 5. Since the root number of J is −1
(being of analytic rank one), by [18, Thm. B.2] we can find infinitely many
ψ as above for which the associated twist E = Jc also has analytic rank one,
and therefore for which Theorem F applies.

One can proceed similarly for p = 3 (resp. p = 7), taking real quadratic
twists of, for example, the elliptic curve y2+y = x3+x2−7x+5 of conductor
91 (resp. y2 + xy + y = x3 − x2 − 19353x + 958713 of conductor 574). For
p = 13 (resp. p = 37), one can do the same, possibly choosing the quadratic
character to be odd and/or imposing conditions at some bad primes depending
on the character describing the kernel of the isogeny (which is not trivial in
these cases) in order to apply [18, Thm. B.2]. One could consider, for example,
twists of the elliptic curve y2 + y = x3 − 21x + 40 of conductor 441 (resp.
y2 + xy + y = x3 + x2 − 8x + 6 of conductor 1225).
We also note that, for each of the four primes primes above, p = 3, 5, 7, 13,

there are infinitely many distinct j-invariants to which Theorem F applies, as
X0(p) has genus 0 in these cases.

0.4 Relation to previous works

Results in the same vein as (0.3) and (0.4) were first obtained by Greenberg–
Vatsal [24] in the cyclotomic setting; combined with Kato’s Euler system
divisibility [34], these results led to their proof of the cyclotomic Iwasawa
main conjecture for rational elliptic curves at Eisenstein primes p (under some
hypotheses on the kernel of the associated rational p-isogeny). This paper
might be seen as an extension of the Greenberg–Vatsal method for Eisenstein
primes to the anticyclotomic setting. However, for the anticyclotomic Selmer
groups and L-functions considered in this paper we are able to avoid the
possible variation within an isogeny class of elliptic curves of the μ-invariants
and periods, which must be dealt with in [24]. In large part this is because
the periods in the corresponding p-adic families are the CM periods of Hecke
characters and not the periods of the elliptic curve. Consequently, the methods
are slightlymore robust and the resulting applications somewhatmore general.
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The μ-invariants of anticyclotomic Selmer groups and p-adic L-functions
were also studied in [44], but for different Selmer conditions and hypotheses
on K (in fact, under the hypothesis (Heeg) the p-adic L-function in [44]
vanishes identically and the Selmer group is not �-cotorsion).

The ensuing applications of Theorems C and Corollary D to the p-converse
of the Gross–Zagier–Kolyvagin theorem (Theorem E) and the p-part of
the Birch–Swinnerton-Dyer formula in analytic rank 1 (Theorem F) covers
primes p that were either left untouched by the recent works in these direc-
tions [1,6,11,32,46,48,51,53] (where p is assumed to be non-Eisenstein), or
extending previous works [12,15,49] (p = 2), [35] (p = 3), [8] (CM cases).
Many of these results (especially [46] and [32]) also rely on progress toward
Conjecture A in the residually irreducible case. Such progress has generally
come via Eisenstein congruences on higher rank unitary groups and has explic-
itly excluded the Eisenstein cases considered in this paper.

0.5 Weight two newforms

The methods and results of this paper should easily extend to cuspidal new-
forms of weight two and trivial character that are congruent to Eisenstein series
at a prime above p.We have focused on the case of elliptic curves in the interest
of not obscuring themain features of our argument with cumbersome notation.
The general case will be addressed in later work that will also consider higher
weight forms as well as Hilbert modular forms.

1 Algebraic side

In this section we prove Theorem 1.5.1 below, relating the anticyclotomic
Iwasawa invariants of an elliptic curve E/Q at a prime p with E[p]ss =
Fp(φ) ⊕ F(ψ) to the anticyclotomic Iwasawa invariants of the characters φ
and ψ .

Throughout, we fix a prime p > 2 and an embedding ιp : Q ↪→ Qp, and
let K ⊂ Q be an imaginary quadratic field in which p = vv̄ splits, with v the
prime of K above p induced by ιp. We also fix an embedding ι∞ : Q ↪→ C.

Let GK = Gal(Q/K ) ⊂ GQ = Gal(Q/Q), and for each place w of K
let Iw ⊂ Gw ⊂ GK be corresponding inertia and decomposition groups. Let
Frobw ∈ Gw/Iw be the arithmetic Frobenius. For the prime v | p we assume
Gv is chosen so that it is identified with Gal(Qp/Qp) via ιp.

Let � = Gal(K∞/K ) be the Galois group of the anticyclotomic Zp-
extension K∞ of K , and let � = Zp��� be the anticyclotomic Iwasawa
algebra. We shall often identify�with the power series ring Zp�T � by setting
T = γ − 1 for a fixed topological generator γ ∈ �.
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1.1 Local cohomology groups of characters

Let θ : GK → F×p be a character with conductor divisible only by primes that
are split in K . Via the Teichmüller lift F×p ↪→ Z×p , we shall also view θ as
taking values in Z×p . Set

Mθ = Zp(θ)⊗Zp �
∨,

where (−)∨ = Homcts(−,Qp/Zp) for topological Zp-modules. The module
Mθ is equipped with a GK -action via θ ⊗�−1, where � : GK → �× is the
character arising from the projection GK � �.

In this section, we study the local cohomology of Mθ at various primes w
of K .

1.1.1 w � p split in K

Letw be a prime of K lying over a prime � �= p split in K , and let �w ⊂ � be
the corresponding decomposition group. Let γw ∈ �w be the image of Frobw,
and set

Pw(θ) = Pw(�
−1γw) ∈ �, (1.1)

where Pw = det(1 − FrobwX |Qp(θ)Iw) is the Euler factor at w of the L-
function of θ .

Lemma 1.1.1 The module H1(Kw,Mθ )
∨ is �-torsion with

char�(H
1(Kw,Mθ )

∨) = (Pw(θ)).

In particular, H1(Kw,Mθ )
∨ has μ-invariant zero.

Proof Since � splits in K , it follows from class field theory that the index
[� : �w] is finite (i.e.,w is finitely decomposed in K∞/K ). Thus the argument
proving [24, Prop. 2.4] can be immediately adapted to yield this result. ��

1.1.2 w | p

Recall that we assume that p = vv̄ splits in K . We begin by recording the
following commutative algebra lemma, which shall also be used later in the
paper.

Lemma 1.1.2 Let X be a finitely generated�-module satisfying the following
two properties:
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• X [T ] = 0,
• X/T X is a free Zp-module of rank r .

Then X is a free �-module of rank r .

Proof From Nakayama’s lemma we obtain a surjection π : �r � X which
becomes an isomorphism π̄ after reduction modulo T . Letting K = ker(π),
from the snake lemma we deduce the exact sequence

0→ K/T K → (�/T�)r
π̄−→ X/T X → 0.

Thus K/T K = 0, and so K = 0 by another application of Nakayama’s
lemma. ��

Let ω : GQ → F×p be the mod p cyclotomic character. Let w be a prime of
K above p.

Proposition 1.1.3 Assume that θ |Gw �= 1, ω. Then:

(i) The restriction map

rw : H1(Kw,Mθ )→ H1(Iw,Mθ )
Gw/Iw

is an isomorphism.
(ii) H1(Kw,Mθ ) is �-cofree of rank 1.

Proof The map rw is clearly surjective, so it suffices to show injectivity. Since
Gw/Iw is pro-cyclic,

ker(rw) � MIw
θ /(Frobw − 1)MIw

θ ,

where Frobw is a Frobenius element atw. Taking Pontryagin duals to the exact
sequence

0→ MGw

θ → MIw
θ

Frobw−1−−−−−→ MIw
θ → MIw

θ /(Frobw − 1)MIw
θ → 0

and using the vanishing of MGw

θ (which follows from θ |Gw �= 1) we deduce
a �-module surjection

(M∨
θ )Iw � (M∨

θ )Iw, (1.2)

hence an isomorphism (by the Noetherian property of �). Since the kernel of
(1.2) is isomorphic to ker(rw)∨, (i) follows. For (ii), in light of Lemma 1.1.2,
letting

X := H1(Kw,Mθ )
∨,
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it suffices to show that X [T ] = 0 and the quotient X/T X is Zp-free of rank

1. Taking cohomology for the exact sequence 0 → Qp/Zp(θ) → Mθ
×T−−→

Mθ → 0 we obtain

H1(Kw,Mθ )

TH1(Kw,Mθ )
= 0, H1(Kw,Qp/Zp(θ)) � H1(Kw,Mθ )[T ], (1.3)

using that H2(Kw,Mθ ) = 0 (which follows from θ |Gw �= ω) for the first
isomorphism and H0(Kw,Mθ ) = 0 for the second. The first isomorphism
shows that X [T ] = 0. On the other hand, taking cohomology for the exact

sequence 0 → Fp(θ) → Qp/Zp(θ)
p−→ Qp/Zp(θ) → 0 and using that

θ |Gw �= ω we obtain

H1(Kw,Qp/Zp(θ))

pH1(Kw,Qp/Zp(θ))
� H2(Kw,Fp(θ)) = 0,

which together with the second isomorphism in (1.3) shows that X/T X �
H1(Kw,Qp/Zp(θ))

∨ is Zp-free of rank 1 (the value of the rank following
from the local Euler characteristic formula), concluding the proof. ��

1.2 Selmer groups of characters

As in the preceding section, let θ : GK → F×p be a character whose conductor
is divisible only by primes split in K (that is, which are unramified over Q and
have degree one).

Let � be a finite set of places of K containing∞ and the primes dividing
p or the conductor of θ and such that every finite place in � is split in K , and
denote by K� the maximal extension of K unramified outside �.

Definition 1.2.1 The Selmer group of θ is

H1
FGr

(K ,Mθ ) := ker

{
H1(K�/K ,Mθ )→ ∏

w∈�,w�p
H1(Kw,Mθ )× H1(K v̄ ,Mθ )

}
,

and letting S = � \ {v, v̄,∞}, we define the S-imprimitive Selmer group of θ
by

H1
F S
Gr
(K ,Mθ ) := ker

{
H1(K�/K ,Mθ )→ H1(K v̄,Mθ )

}
.
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ReplacingMθ byMθ [p] in the above definitions, we obtain the residual Selmer
group H1

FGr
(K ,Mθ [p]) and its S-imprimitive variant H1

F S
Gr
(K ,Mθ [p]).

It is well-known that the above groups are cofinitely generated over the
corresponding Iwasawa algebra (� and �/p), and that the Selmer group and
residual Selmer groups are independent of the choice of the set � as above.

The following result, combining work of Rubin and Hida, will play a key
role in our proofs.

Theorem 1.2.2 (Rubin, Hida)Assume that θ |G v̄
�= 1, ω. ThenH1

FGr
(K ,Mθ )

∨
is a torsion �-module with μ-invariant zero.

Proof Let Kθ ⊂ Q be the fixed field of ker(θ), and set �θ = Gal(Kθ /K ).
The restriction map

H1(K�/K ,Mθ )→ H1(K�/Kθ ,Mθ )
�θ

is an isomorphism (since p � |�θ |), which combined with Shapiro’s lemma
gives rise to an identification

H1(K�/Kθ ,Mθ ) � Homcts((X�∞)θ ,Qp/Zp), (1.4)

where X�∞ = Gal(M�∞/K∞Kθ ) is the Galois group of the maximal abelian
pro-p extension of K∞Kθ unramified outside �, and (X�∞)θ is the θ -
isotypic component of X�∞ for the action of �θ , identified as a subgroup
of Gal(K∞Kθ /K ) via the decomposition Gal(K∞Kθ/K ) � � ×�θ .

Now, by [44, Rem. 3.2] (since the primesw � p in� are finitely decomposed
in K∞/K ) andProposition 1.1.3(i), the Selmer groupH1

FGr
(K ,Mθ ) is the same

as the one defined by the unramified local conditions, i.e., as

ker

{
H1(K�/K ,Mθ )→

∏

w∈�,w�p

H1(Iw,Mθ )
Gv/Iv × H1(Iv̄,Mθ )

G v̄/Iv̄

}
,

and so under the identification (1.4) we obtain

H1
FGr

(K ,Mθ ) � Homcts(X θ∞,Qp/Zp)

where X∞ = Gal(M∞/K∞Kθ ) is the Galois group of the maximal abelian
pro-p extension of K∞Kθ unramified outside v. Thus from theworks of Rubin
[45], which identifies char�(H1

FGr
(K ,Mθ )

∨) with the ideal generated by an
anticyclotomic projection of a Katz p-adic L-function, and Hida [27], proving
the vanishing of the μ-invariant of such anticyclotomic p-adic L-functions,
we obtain the theorem. ��
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Remark 1.2.3 Following the notations introduced in the proof of Theo-
rem 1.2.2, and letting X sp∞ = Gal(Msp∞/K∞Kθ ) be the Galois group of
the maximal abelian pro-p extension of K∞Kθ unramified outside v and
in which the primes above v̄ split completely, Proposition 1.1.3(i) shows
(X�∞)θ = (X sp∞ )θ .

The next two results will allow us to determine λ(XS
θ ) in terms of the resid-

ual Selmer group H1
F S
Gr
(K ,Mθ [p]). In brief, the fact that XS

θ has no nonzero

pseudo-null �-submodules (shown in Proposition 1.2.5 below) yields the
equality λ(XS

θ ) = dimFp

(
H1
F S
Gr
(K ,Mθ )[p]

)
, which combined with the next

lemma yields the desired result.

Lemma 1.2.4 Assume that θ |G v̄
�= 1. Then

H1
F S
Gr
(K ,Mθ [p]) � H1

F S
Gr
(K ,Mθ )[p].

Proof The hypothesis on θ implies in particular that H0(K ,Fp(θ)) = 0, and
so H0(K ,Mθ ) = 0. Thus the natural map

H1(K�/K ,Mθ [p])→ H1(K�/K ,Mθ )[p]

induced by multiplication by p on Mθ is an isomorphism. To conclude it
suffices to check that the natural map rv̄ : H1(K v̄,Mθ [p])→ H1(K v̄,Mθ )[p]
is an injection, but since H0(K v̄,Fp(θ)) = 0 by the hypothesis, the same
argument as above shows that rv̄ is an isomorphism. ��

Let

XS
θ := H1

F S
Gr
(K ,Mθ )

∨ and Xθ := H1
FGr

(K ,Mθ )
∨,

and recall the element Pw(θ) ∈ � introduced in (1.1).

Proposition 1.2.5 Assume that θ |G v̄
�= 1, ω. Then XS

θ is a torsion �-module
with μ-invariant zero and its λ-invariant satisfies

λ
(
XS
θ

) = λ
(
Xθ

)+
∑

w∈�,w�p

λ
(Pw(θ)

)
.

Moreover, H1
F S
Gr
(K ,Mθ [p]) is finite and

dimFp

(
H1
F S
Gr
(K ,Mθ [p])

) = λ
(
XS
θ

)
.
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Proof Since Xθ is �-torsion by Theorem 1.2.2 and the Cartier dual
Hom(Qp/Zp(θ), μp∞)has nonon-trivialGK∞-invariants, from[44, Prop.A.2]
we obtain that the restriction map in the definition of H1

FGr
(K ,Mθ ) is surjec-

tive, and so the sequence

0→ H1
FGr

(K ,Mθ )→ H1(K�/K ,Mθ )

→
∏

w∈�,w�p

H1(Kw,Mθ )× H1(K v̄,Mθ )→ 0 (1.5)

is exact. From the definitions, this readily yields the exact sequence

0→ H1
FGr

(K ,Mθ )→ H1
F S
Gr
(K ,Mθ )→

∏

w∈S
H1(Kw,Mθ )→ 0, (1.6)

which combined with Theorem 1.2.2 and Lemma 1.1.1 gives the first part of
the proposition.

For the second part, note that H2(K�/K ,Mθ ) = 0. (Indeed, by the
Euler characteristic formula, the �-cotorsionness of H1

FGr
(K ,Mθ ) implies

that H2(K�/K ,Mθ ) is �-cotorsion; being �-cofree, as follows immedi-
ately from the fact that Gal(K�/K ) has cohomological dimension 2, it
must vanish.) Thus from the long exact sequence in cohomology induced

by 0→ Qp/Zp(θ)→ Mθ
×T−−→ Mθ → 0 we obtain the isomorphism

H1(K�/K ,Mθ )

TH1(K�/K ,Mθ )
� H2(K�/K ,Qp/Zp(θ)).

SinceH2(K�/K ,Qp/Zp(θ)) isZp-cofree (becauseGal(K�/K ) has coho-
mological dimension 2), it follows that H1(K�/K ,Mθ )

∨ has no nonzero
pseudo-null�-submodules (cf. [21, Prop. 5]), and since (1.5) and (1.6) readily
imply that

XS
θ �

H1(K�/K ,Mθ )
∨

H1(K v̄,Mθ )∨

as �-modules, by Proposition 1.1.3(iii) and [24, Lem. 2.6] we conclude
that also XS

θ has no nonzero pseudo-null �-submodules. Finally, since
XS
θ is �-torsion with μ-invariant zero by Theorem 1.2.2, the finiteness of

H1
F S
Gr
(K ,Mθ )[p] (and therefore of H1

F S
Gr
(K ,Mθ [p]) by Lemma 1.2.4) follows

from the structure theorem. It also follows that H1
F S
Gr
(K ,Mθ ) is divisible. In
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particular,

H1
F S
Gr
(K ,Mθ ) � (Qp/Zp)

λ,

where λ = λ(XS
θ ), which together with Lemma 1.2.4 gives the final formula

for the λ-invariant. ��
The following corollary will be used crucially in the next section.

Corollary 1.2.6 Assume that θ |G v̄
�= 1, ω. Then H2(K�/K ,Mθ [p]) = 0

and the sequence

0→ H1
F S
Gr
(K ,Mθ [p])→ H1(K�/K ,Mθ [p])→ H1(K v̄,Mθ [p])→ 0

is exact.

Proof In the course of the proof of Proposition 1.2.5 we showed that
H2(K�/K ,Mθ ) = 0, and so the cohomology long exact sequence induced by
multiplication by p on Mθ yields an isomorphism

H1(K�/K ,Mθ )

pH1(K�/K ,Mθ )
� H2(K�/K ,Mθ [p]). (1.7)

On the other hand, from the exactness of (1.5) we deduce the exact sequence

0→ H1
F S
Gr
(K ,Mθ )→ H1(K�/K ,Mθ )→ H1(K v̄,Mθ )→ 0. (1.8)

Since we also showed in that proof that H1
F S
Gr
(K ,Mθ ) is divisible, and

H1(K v̄,Mθ ) is �-cofree by Proposition 1.1.3(ii), it follows from (1.8) that
H1(K�/K ,Mθ )

∨ has no p-torsion, and so

H2(K�/K ,Mθ [p]) = 0

by (1.7), giving the first claim in the statement.
For the second claim, consider the commutative diagram

0 H1
F S
Gr
(K ,Mθ ) H1(K�/K ,Mθ ) H1(K v̄,Mθ ) 0

0 H1
F S
Gr
(K ,Mθ ) H1(K�/K ,Mθ ) H1(K v̄,Mθ ) 0,

p p p
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where the vertical maps are the natural ones induced by multiplication by p on
Mθ . Since H1

F S
Gr
(K ,Mθ ) is divisible, the snake lemma applied to this diagram

yields the exact sequence

0→ H1
F S
Gr
(K ,Mθ )[p] → H1(K�/K ,Mθ )[p] → H1(K v̄,Mθ )[p] → 0,

which by Lemma 1.2.4 (and the natural isomorphisms shown in its proof) is
identified with the exact sequence in the statement. ��

1.3 Local cohomology groups of E

Now we let E/Q be an elliptic curve of conductor N with good reduction
at p and admitting a rational p-isogeny. The GQ-module E[p] is therefore
reducible, fitting into an exact sequence

0→ Fp(φ)→ E[p] → Fp(ψ)→ 0, (1.9)

where φ,ψ : GQ → F×p are characters such that φψ = ω by theWeil pairing.
We assume that every prime �|N splits in K and continue to assume that
p = vv̄ splits in K , so the results of the preceding sections can be applied to
the restrictions of φ and ψ to GK .

Let T = TpE be the p-adic Tate module of E , and denote by ME the
GK -module

ME := T ⊗Zp �
∨,

where the tensor product is endowed with the diagonal GK -action (and the
action on �∨ is via �−1, as before).

Lemma 1.3.1 Letw beaprimeof K above p, andassume that E(Kw)[p] = 0.
Then H1(Kw,ME ) is �-cofree of rank 2.

Proof The proof is virtually the same as the proof of Proposition 1.1.3(ii).
Letting X := H1(Kw,ME )

∨, by Lemma 1.1.2 it suffices to show that X [T ] =
0 and X/T X isZp-free of rank 2. The hypotheses imply that E(Kw)[p∞] = 0,
and soH2(Kw, E[p∞]) = 0 by local duality. Taking cohomology for the exact
sequence

0→ E[p∞] → ME
×T−−→ ME → 0
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it follows that

H1(Kw,ME )

TH1(Kw,ME )
� H2(Kw, E[p∞]) = 0,

H1(Kw, E[p∞]) � H1(Kw,ME )[T ]. (1.10)

The first isomorphism shows that X [T ] = 0. On the other hand, taking

cohomology for the exact sequence 0 → E[p] → E[p∞] p−→ E[p∞] → 0
we obtain

H1(Kw, E[p∞])
pH1(Kw, E[p∞]) � H2(Kw, E[p]) = 0,

which together with the second isomorphism in (1.10) shows that X/T X �
H1(Kw, E[p∞])∨ is Zp-free. That its rank is 2 follows from the local Euler
characteristic formula. ��

1.4 Selmer groups of E

Fix a finite set � of places of K containing∞ and the primes above Np, and
such that the finite places in � are all split in K .

Similarly as in Sect. 1.2, we define a Selmer group for E by

H1
FGr

(K ,ME )

:= ker

{
H1(K�/K ,ME )→

∏

w∈�,w�p

H1(Kw,ME )× H1(K v̄,ME )

}
,

and an S-imprimitive Selmer group, where S = � \ {v, v̄,∞}, by

H1
F S
Gr
(K ,ME ) := ker

{
H1(K�/K ,ME )→ H1(K v̄,ME )

}
.

The residual Selmer groups H1
FGr

(K ,ME [p]) and H1
F S
Gr
(K ,ME [p]) are

defined in the same manner.
Viewing the characters φ and ψ appearing in the exact sequence (1.9) as

taking values in Z×p via the Teichmüller lift, we obtain an exact sequence

0→ Mφ[p] → ME [p] → Mψ [p] → 0 (1.11)

of Gal(K�/K )-modules. Let Gp ⊂ GQ be a decomposition group at p.
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Proposition 1.4.1 Assume that φ|Gp �= 1, ω. Then (1.11) induces a natural
exact sequence

0→ H1
F S
Gr
(K ,Mφ[p])→ H1

F S
Gr
(K ,ME [p])→ H1

F S
Gr
(K ,Mψ [p])→ 0.

In particular, H1
F S
Gr
(K ,ME [p]) is finite, and

dimFp

(
H1
F S
Gr
(K ,ME [p])

) = λ(XS
φ)+ λ(XS

ψ).

Proof Taking cohomology for the exact sequence (1.11) we obtain the com-
mutative diagram

0 H1(K�/K ,Mφ[p]) H1(K�/K ,ME [p]) H1(K�/K ,Mψ [p]) 0

0 H1(Kv̄ ,Mφ[p]) H1(Kv̄ ,ME [p]) H1(Kv̄ ,Mψ [p]) 0,

where the exactness of the rows follows immediately from Corollary 1.2.6
and the hypothesis on φ (which implies that ψ |Gp �= 1, ω as well), and the
vertical maps are given by restriction. Since the left vertical arrow is surjective
by Corollary 1.2.6, the snake lemma applied to this diagram yields the exact
sequence in the statement. The last claim now follows from the last claim of
Proposition 1.2.5. ��

Now we can relate the imprimitive residual and p∞-Selmer groups. Set

XS
E := H1

F S
Gr
(K ,ME )

∨, XE := H1
FGr

(K ,ME )
∨.

Proposition 1.4.2 Assume that φ|Gp �= 1, ω. Then

H1
F S
Gr
(K ,ME [p]) � H1

F S
Gr
(K ,ME )[p].

Moreover, the modules XS
E and XE are both �-torsion with μ = 0.

Proof Since ψ = ωφ−1, our assumption on φ implies that E(K v̄)[p] = 0,
and therefore H0(K v̄,ME ) = 0. Thus the same argument as in the proof
of Lemma 1.2.4 yields the isomorphism in the statement. It follows from
Proposition 1.4.1 that H1

F S
Gr
(K ,ME )[p] is finite, and so XS

E is �-cotorsion

with μ = 0. Since XE is a quotient of XS
E , this completes the proof. ��

Now we can deduce the following analogue of Proposition 1.2.5 for ME .

123



On the anticyclotomic Iwasawa theory of rational elliptic… 537

Corollary 1.4.3 Assume that φ|Gp �= 1, ω. Then XS
E has no non-trivial finite

�-submodules, and

λ
(
XS

E

) = dimFp

(
H1
F S
Gr
(K ,ME [p])

)
.

Proof Since M∗
E = Hom(ME , μp∞) has no non-trivial GK -invariants and

XS
E is�-torsion by Proposition 1.4.2, from [44, Prop. A.2] we deduce that the

sequence

0→ H1
FGr

(K ,ME )→ H1(K�/K ,ME )

→
∏

w∈�,w�p

H1(Kw,ME )× H1(K v̄,ME )→ 0 (1.12)

is exact. Proceeding as in the proof of Proposition 1.2.5, we see that
the �-torsionness of XE implies that H2(K�/K ,ME ) = 0 and that
H1(K�/K ,ME )

∨ has no nonzero pseudo-null�-submodules. The exactness
of (1.12) readily implies a �-module isomorphism

XS
E �

H1(K�/K ,ME )
∨

H1(K v̄,ME )∨
.

Since H1(K v̄,ME ) is �-cofree by Lemma 1.3.1, we thus conclude from
[24, Lem. 2.6] thatXS

E has no nonzero finite�-submodules. Together with the
isomorphism H1

F S
Gr
(K ,ME [p]) � H1

F S
Gr
(K ,ME )[p] of Proposition 1.4.2, the

last claim in the statement of the corollary follows from this. ��
Finally, we note that as in Lemma 1.1.1, one can show that for primesw � p

split in K , the module H1(Kw,ME )
∨ is �-torsion with characteristic ideal

generated by the element

Pw(E) = Pw(�
−1γw) ∈ �,

where Pw = det(1− FrobwX |VIw), for V = T ⊗Qp, is the Euler factor at w
of the L-function of E .

1.5 Comparison I: Algebraic Iwasawa invariants

We now arrive at the main result of this section. Recall that every prime w ∈
� \ {∞} is split in K , and we set S = � \ {v, v̄,∞}.
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Theorem 1.5.1 Assume that φ|Gp �= 1, ω. Then the module XE is �-torsion
with μ(XE ) = 0 and

λ
(
XE

) = λ
(
Xφ

)+ λ
(
Xψ

)+
∑

w∈S
{λ(Pw(φ)

)+ λ
(Pw(ψ)

)− λ
(Pw(E)

)}.

Proof That XE is�-torsion with μ-invariant zero is part of Proposition 1.4.2.
For the λ-invariant, combining Corollary 1.4.3 and the last claim of Proposi-
tion 1.4.1 we obtain

λ
(
XS

E

) = λ
(
XS
φ

)+ λ
(
XS
ψ

)
. (1.13)

On the other hand, from (1.12) we deduce the exact sequence

0→ H1
FGr

(K ,ME )→ H1
F S
Gr
(K ,ME )→

∏

w∈S
H1(Kw,ME )→ 0,

and therefore the relation λ
(
XS

E

) = λ
(
XE

) +∑
w∈S λ

(Pw(E)
)
. This, com-

bined with the second part of Proposition 1.2.5 shows that (1.13) reduces to
the equality of λ-invariants in the statement of the theorem. ��

2 Analytic side

Let E/Q be an elliptic curve of conductor N , p � 2N a prime of good reduction
for E , and K an imaginary quadratic field satisfying hypotheses (Heeg), (spl),
and (disc) from the introduction; in particular, p = vv̄ splits in K .

In this section, assuming E[p]ss = Fp(φ) ⊕ Fp(ψ) as GQ-modules, we
prove an analogue of Theorem 1.5.1 on the analytic side, relating the Iwa-
sawa invariants of an anticyclotomic p-adic L-function of E to the Iwasawa
invariants of anticyclotomic Katz p-adic L-functions attached to φ and ψ .

2.1 p-Adic L-functions

Recall that � = Zp��� denotes the anticyclotomic Iwasawa algebra, and set
�ur = �⊗̂ZpZ

ur
p , forZur

p the completion of the ring of integers of the maximal
unramified extension of Qp.

We shall say that an algebraic Hecke character ψ : K×\A×K → C× has
infinity type (m, n) if the component ψ∞ of ψ at∞ satisfies ψ∞(z) = zm z̄n

for all z ∈ (K ⊗ R)× � C×, where the last identification is made via ι∞.
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2.1.1 The Bertolini–Darmon–Prasanna p-adic L-functions

Fix an integral idealN ⊂ OK with

OK /N � Z/NZ. (2.1)

Let f ∈ S2(�0(N )) be the newform associated with E . Following [3], one has
the following result.

Theorem 2.1.1 There exists an element LE ∈ �ur characterized by the fol-
lowing interpolation property: For every character ξ of � crystalline at both
v and v̄ and corresponding to a Hecke character of K of infinity type (n,−n)
with n ∈ Z>0 and n ≡ 0 (mod p − 1), we have

LE (ξ) =
�4n

p

�4n∞
· �(n)�(n + 1)ξ(N−1)
4(2π)2n+1

√
DK

2n−1 ·
(
1− apξ(v̄)p

−1 + ξ(v̄)2 p−1
)2

·L( f/K , ξ, 1),
where �p and �∞ are CM periods attached to K as in [14, §2.5].

Proof This was originally constructed in [3] as a continuous function of ξ ,
and later explicitly constructed as a measure in [14] (following the approach
in [7]). Since this refined construction will be important for our purposes in
this section, we recall some of the details.

Let Ig(N ) be the Igusa scheme over Z(p) parametrizing elliptic curves with
�1(Np∞)-level structure as in [14, §2.1]; its complex points admit a uni-
formization

[ , ] : H× GL2(Q̂)→ Ig(N )(C). (2.2)

Let c be a positive integer prime to Np. Then ϑ := (DK +√−DK )/2 and the
element ξc := ς(∞)γc ∈ GL2(Q̂) constructed in [14, p. 577] define a point

xc := [(ϑ, ξc)] ∈ Ig(N )(C)

rational over K [c](v∞), the compositum of the ring class field K of conductor
c and the ray class field of K of conductor v∞. For every Oc-ideal a prime to
Nv, let a ∈ K̂ (cp),× be such that a = aÔc ∩ K and set

σa := recK (a
−1)|K [c](v∞) ∈ Gal(K [c](v∞)/K ),

where recK : K×\K̂× → Gab
K is the reciprocity map (geometrically normal-

ized). Then by Shimura’s reciprocity law, the point xa := xσac is defined by
the pair (ϑ, a−1ξc) under (2.2).
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Let Vp(N ; R) be the space of p-adic modular forms of tame level N defined
over a p-adic ring R (as recalled in [14, §2.2]), and let Sa ↪→ Ig(N )/Zur

p
be the

local deformation space of xa⊗Fp ∈ Ig(N )(Fp), sowehaveOSa � Zur
p �ta−1�

by Serre–Tate theory. Viewing f as a p-adic modular form, the Serre–Tate
expansion

f (ta) := f |Sa ∈ Zur
p �ta − 1�

defines aZur
p -valuedmeasure dμ f,a onZp characterized (byMahler’s theorem,

see e.g. [26, §3.3, Thm. 1]) by

∫

Zp

(
x

m

)
dμ f,a =

(
θ

m

)
f (xa) (2.3)

for all m � 0, where θ : Vp(N ;Zp)→ Vp(N ;Zp) is the Atkin–Serre opera-
tor, acting as qd/dq on q-expansions. Similarly, the p-depletion

f � =
∑

p�n

anq
n

defines a Zur
p -valued measure dμ f �,a on Zp (supported on Z×p ) with p-adic

Mellin transform f �(ta), and we let dμ f �a
be the measure onZ×p corresponding

to f (tN(a)
−1√−DK

−1
a ) (see [14, Prop. 3.3]).

Letting η be an auxiliary anticyclotomic Hecke character of K of infinity
type (1,−1) and conductor c, defineLv,η ∈ �ur by

Lv,η(φ) =
∑

[a]∈Pic(Oc)

η(a)N(a)−1
∫

Z×p
ηv(φ|[a]) dμ f �a

(2.4)

where ηv denotes the v-component of η, and φ|[a] : Z×p → O×
Cp

is defined

by (φ|[a])(x) = φ(recv(x)σ−1a ) for the local reciprocity map recv : K×v →
Gab

K � �. Then by [14, Prop. 3.8] the element LE ∈ �ur defined by

LE (ξ) := Lv,η(η
−1ξ)2

has the stated interpolation property. ��
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2.1.2 Katz p-adic L-functions

Let θ : GQ → Z×p be a Dirichlet character of conductor C . As it will suffice
for our purposes, we assume that C |N (so p � C), and let C|N be such that
OK /C = Z/CZ.

The next result follows from the work of Katz [33], as extended by Hida–
Tilouine [31].

Theorem 2.1.2 There exists an element Lθ ∈ �ur characterized by the fol-
lowing interpolation property: For every character ξ of � crystalline at both
v and v̄ and corresponding to a Hecke character of K of infinity type (n,−n)
with n ∈ Z>0 and n ≡ 0 (mod p − 1), we have

Lθ (ξ) =
�2n

p

�2n∞
· 4�(n + 1) · (2π i)

n−1
√
DK

n−1 ·
(
1− θ−1(p)ξ−1(v)

)

× (
1− θ(p)ξ(v̄)p−1)

)

×
∏

�|C
(1− θ(�)ξ(w)�−1) · L(θK ξNK , 0),

where �p and �∞ are as in Theorem 2.1.1, and for each �|C we take the
prime w|� with w|C.
Proof The character θ (viewed as a character of K ) defines a projection

πθ : Zur
p �Gal(K (Cp∞)/K )� → �ur,

where K (Cp∞) is the ray class field of K of conductor Cp∞ (this projection
is just g �→ θ(g)[g] for g ∈ Gal(K (Cp∞)/K and [g] the image of g in �).
The elementLθ is then obtained by applying πθ to the Katz p-adic L-function
described in [37, Thm. 27], setting χ−1 = θK ξNK . ��

2.2 Comparison II: Analytic Iwasawa invariants

The following theorem follows from the main result of [37]. Following the
notations in op.cit, we let N0 be the square-full part of N (so the quotient
N/N0 is square-free), and fix an integral idealN ⊂ OK as in (2.1).
Let also f = ∑∞

n=1 anqn ∈ S2(�0(N )) be the newform associated with
E , and denote by λι the image of λ ∈ � under the involution of � given by
γ �→ γ−1 for γ ∈ �.

Theorem 2.2.1 Assume that E[p]ss � Fp(φ)⊕Fp(ψ) as GQ-modules, with
the characters φ,ψ labeled so that p � cond(φ), and suppose φ �= 1. Then
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there is a factorization N/N0 = N+N− with

⎧
⎪⎨

⎪⎩

a� ≡ φ(�) (mod p) if �|N+,
a� ≡ ψ(�) (mod p) if �|N−,
a� ≡ 0 (mod p) if �|N0,

such that the following congruence holds

LE ≡ (E ιφ,ψ)2 · (Lφ)
2 (mod p�ur),

where

Eφ,ψ =
∏

�|N0N−
Pw(φ) ·

∏

�|N0N+
Pw(ψ),

and for each �|N we take the prime w|� with w|N.

Proof By Theorem 34 and Remark 32 in [37], our hypothesis on E[p] implies
that there is a congruence

f ≡ G (mod p), (2.5)

where G is a certain weight two Eisenstein series (denoted Eφ,φ−1,(N )
2 in

loc. cit.). Viewed as a p-adic modular form, G defines Zur
p -valued measures

μG,a on Zp by the rule (2.3). With the notations introduced in the proof of
Theorem 2.1.1, set

Lv,η(G, φ) =
∑

[a]∈Pic(Oc)

η(a)N(a)−1
∫

Z×p
ηv(φ|[a]) dμG�,a (2.6)

where the cusp form f in (2.3) has been replaced by G, and let LG ∈ �ur be
the element defined by

LG(ξ) := Lv,η(η
−1ξ).

Then for ξ an arbitrary character of � crystalline at both v and v̄ and corre-
sponding to a Hecke character of K of infinity type (n,−n) for some n ∈ Z>0
with n ≡ 0 (mod p−1), the calculation in [37, Prop. 37] (takingχ−1 = ξNK ,
ψ1 = φ, and ψ2 = φ−1 = ψω−1 in the notations of loc.cit., so in particular
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j = n − 1) shows that

LG(ξ) =
�2n

p

�2n∞
· �(n + 1)φ−1(−√DK )ξ(t̄)t

g(φ)
· (2π i)

n−1
√
DK

n−1

·�
ξ−1N−1K

(φ, ψω−1, N+, N−, N0) · L(φK ξNK , 0), (2.7)

where φK denotes the base change of φ to K , and

�
ξ−1N−1K

(φ, ψω−1, N+, N−, N0)

=
∏

�|N+
(1− φ−1ξ(w̄)) ·

∏

�|N−
(1− φξ(w̄)�−1)

×
∏

�|N0

(1− φ−1ξ(w̄))(1− φξ(w̄)�−1).

Comparing with the interpolation property ofLφ in Theorem 2.2.1, and noting
that

Eφ,ψ(ξ−1) = �
ξ−1N−1K

(φ, ψω−1, N+, N−, N0)

for all ξ as above, the equality (2.7) implies that

LG = E ιφ,ψ · Lφ. (2.8)

On the other hand, the congruence (2.5) implies the congruences

(
θ

m

)
f (xa) ≡

(
θ

m

)
G(xa) (mod pZur

p )

for all m � 0, which in turn yield the congruence

LE ≡ (LG)
2 (mod p�ur). (2.9)

The combination of (2.8) and (2.9) now yields the theorem. ��
Theorem 2.2.2 Assume that E[p]ss = Fp(φ)⊕Fp(ψ) as GQ-modules, with
the characters φ,ψ labeled so that p � cond(φ), and suppose φ �= 1. Then
μ(LE ) = 0 and

λ(LE ) = λ(Lφ)+ λ(Lψ)+
∑

w∈S

{
λ(Pw(φ))+ λ(Pw(ψ))− λ(Pw(E))

}
.
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Proof Since K satisfies (Heeg) and (spl), the conductors of both φ and ψ are
only divisible by primes split in K , and hence the vanishing of μ(LE ) follows
immediately from the congruence of Theorem 2.2.1 and Hida’s result [27]
(note that the factorsPw(φ) andPw(ψ) also have vanishingμ-invariant, since
again the primes w are split in K ).

As for the equality between λ-invariants, note that the involution of� given
by γ �→ γ−1 for γ ∈ � preserves λ-invariants, and so

λ(Pw(θ)
2) = λ(Pw(θ))+ λ(Pw̄(θ)),

using that complex conjugation acts as inversion on �. For the term Eφ,ψ in
Theorem 2.2.1 we thus have

λ((E ιφ,ψ)2) = λ((Eφ,ψ)2) =
∑

w|N0N−
λ(Pw(φ))+

∑

w|N0N+
λ(Pw(ψ)),

wherew runs over all divisors, not just the ones dividingN. Using the congru-
ence relations in Theorem 2.2.1 (in particular, that a� ≡ 0 (mod p) for �|N0)
this can be rewritten as

λ((E ιφ,ψ)2) =
∑

w∈S

{
λ(Pw(φ))+ λ(Pw(ψ))− λ(Pw(E))

}
. (2.10)

On the other hand, since ψ = φ−1ω, the functional equation for the Katz
p-adic L-function (see e.g. [37, Thm. 27]) yields

λ(Lψ) = λ(Lφ). (2.11)

The result now follows from Theorem 2.2.1 combined with (2.10) and (2.11).
��

Together with the main result of Sect. 1, we arrive at the following.

Theorem 2.2.3 Assume that E[p]ss = Fp(φ) ⊕ Fp(ψ) with φ|Gp �= 1, ω.
Then μ(LE ) = μ(XE ) = 0 and

λ(LE ) = λ(XE ).

Proof The vanishing of μ(XE ) (resp. μ(LE )) has been shown in Proposi-
tion 1.4.2 (resp. Theorem2.2.2). On the other hand, Iwasawa’smain conjecture
for K (a theorem of Rubin [45]) yields in particular the equalities λ(Lφ) =
λ(Xφ) and λ(Lψ) = λ(Xψ). The combination of Theorem 1.5.1 and Theo-
rem 2.2.2 therefore yields the result. ��
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3 A Kolyvagin system argument

The goal of this section is to prove Theorem 3.4.1 below, extending [28,
Thm. 2.2.10] to the residually reducible setting. This result, which assumes
the existence of a non-trivial Kolyvagin system, will be applied in Sect. 4 to a
Kolyvagin systemderived fromHeegner points to prove one of the divisibilities
towards Conjecture B.

3.1 Selmer structures and Kolyvagin systems

Let K be an imaginary quadratic field, let (R,m) be a complete Noetherian
local ringwith finite residue field of characteristic p, and letM be a topological
R[GK ]-module such that the GK -action is unramified outside a finite set of
primes. We define a Selmer structure F on M to be a finite set � = �(F)
of places of K containing∞, the primes above p, and the primes where M
is ramified, together with a choice of R-submodules (called local conditions)
H1
F (Kw,M) ⊂ H1(Kw,M) for every w ∈ �. The associated Selmer group is

then defined by

H1
F (K ,M) := ker

{
H1(K�/K ,M)→

∏

w∈�

H1(Kw,M)

H1
F (Kw,M)

}
,

where K� is the maximal extension of K unramified outside �.
Below we shall use the following local conditions. First, the unramified

local condition is

H1
ur(Kw,M) := ker

{
H1(Kw,M)→ H1(K ur

w ,M)
}
.

If w | p is a finite prime where M is unramified, we set H1
f (Kw,M) :=

H1
ur(Kw,M), which is sometimes called the finite local condition. The singular

quotient H1
s (K ,M) is defined by the exactness of the sequence

0→ H1
f (Kw,M)→ H1(Kw,M)→ H1

s (Kw,M)→ 0.

Denote by L0 = L0(M) the set of rational primes � �= p such that

• � is inert in K ,
• M is unramified at �.

Letting K [�] be the ring class field of K of conductor �, define the transverse
local condition at λ|� ∈ L0 by

H1
tr(Kλ, T ) := ker

{
H1(Kλ, T )→ H1(K [�]λ′, T )

}
,
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where K [�]λ′ is the completion of K [�] at any prime λ′ above λ.
As in [28], we call a Selmer triple (M,F,L ) the data of a Selmer structure

F on M and a subset L ⊂ L0 with L ∩ �(F) = ∅. Given a Selmer
triple (M,F,L ) and pairwise coprime integers a, b, c divisible only by
primes in L0, the modified Selmer group H1

Fa
b (c)

(K ,M) is the one defined

by �(Fa
b (c)) = �(F) ∪ {w|abc} and the local conditions

H1
Fa
b (c)

(Kλ, T ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

H1(Kλ, T ) if λ|a,
0 if λ|b,
H1
tr(Kλ, T ) if λ|c,

H1
F (Kw, T ) if λ � abc.

Let T be a compact R-module equippedwith a continuous linearGK -action
that is unramified outside a finitely set of primes. For each λ|� ∈ L0 = L0(T ),
let I� be the smallest ideal containing �+ 1 for which the Frobenius element
Frobλ ∈ GKλ acts trivially on T/I�T . By class field theory, the prime λ splits
completely in the Hilbert class field of K , and the p-Sylow subgroups of
G� := Gal(K [�]/K [1]) and k×λ /F×� are identified via the Artin symbol, where
kλ is the residue field of λ. Hence by [41, Lem. 1.2.1] there is a finite-singular
comparison isomorphism

φfs
λ : H1

f (Kλ, T/I�T ) � T/I�T � H1
s (Kλ, T/I�T )⊗ G�. (3.1)

Given a subset L ⊂ L0, we let N = N (L ) be the set of square-free
products of primes � ∈ L , and for each n ∈ N define

In =
∑

�|n
In ⊂ R, Gn =

⊗

�|n
G�,

with the convention that 1 ∈ N , I1 = 0, and G1 = Z.

Definition 3.1.1 A Kolyvagin system for a Selmer triple (T,F,L ) is a col-
lection of classes

κ = {κn ∈ H1
F(n)(K , T/InT )⊗ Gn}n∈N

such that (φfs
λ ⊗ 1)(locλ(κn)) = locλ(κn�) for all n� ∈ N .

We denote by KS(T,F,L ) the R-module of Kolyvagin systems for
(T,F,L ).
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3.2 Bounding Selmer groups

Here we state our main result on bounding Selmer groups of anticyclotomic
twists of Tate modules of elliptic curves, whose proof is given in the next
section. The reader mostly interested in the Iwasawa-theoretic consequences
of this result might wish to proceed to Sect. 3.4 after reading the statement of
Theorem 3.2.1.

Let E/Q be an elliptic curve of conductor N , let p � 2N be a prime of
good ordinary reduction for E , and let K be an imaginary quadratic field of
discriminant DK prime to Np. We assume

E(K )[p] = 0. (h1)

As before, let � = Gal(K∞/K ) be the Galois group of the anticyclotomic
Zp-extension of K . Let α : �→ R× be a character with values in the ring of
integers R of a finite extension �/Qp. Let

r = rankZp R.

Let ρE : GQ → AutZp(TpE) give the action ofGQ on the p-adic Tate module
of E and consider the GK -modules

Tα := TpE ⊗Zp R(α), Vα := Tα ⊗R �, Aα := Tα ⊗R �/R � Vα/Tα,

where R(α) is the free R-module of rank one on which GK acts the projection
GK � � composed with α, and the GK -action on Tα is via ρα = ρE ⊗ α.

Let m ⊂ R be the maximal ideal, with uniformizer π ∈ m, and let T̄ :=
Tα ⊗ R/m be the residual representation associated to Tα . Note that

T̄ � E[p] ⊗ R/m (3.2)

asGK -modules, since α ≡ 1 (mod m). In particular, (h1) implies that T̄ GK =
0.

For w|p a prime of K above p, set

Fil+w(TpE) := ker
{
TpE → Tp Ẽ

}
,

where Ẽ is the reduction of E at w, and put

Fil+w(Tα) := Fil+w(TpE)⊗Zp R(α), Fil+w(Vα) := Fil+w(Tα)⊗R �.
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Following [13], define the ordinary Selmer structure Ford on Vα by taking
�(Ford) = {w | pN } and

H1
Ford

(Kw, Vα) :=
{
im

{
H1(Kw,Fil+w(Vα))→ H1(Kw, Vα)

}
if w|p,

H1
ur(Kw, Vα) else.

LetFord also denote theSelmer structure on Tα and Aα obtainedbypropagating
H1
Ford

(Kw, Vα) under the maps induced by the exact sequence 0 → Tα →
Vα → Aα → 0.

Let γ ∈ � be a topological generator, and let

Cα :=
{
vp(α(γ )− α−1(γ )) α �= α−1,
0 α = α−1,

(3.3)

where vp is the p-adic valuation normalized so that vp(p) = 1. Finally, let

LE := {� ∈ L0(TpE) : a� ≡ �+ 1 ≡ 0 (mod p)},

where a� = �+ 1− |Ẽ(F�)|, and N = N (LE ).

Theorem 3.2.1 Suppose α �= 1 and there is a Kolyvagin system κα =
{κα,n}n∈N ∈ KS(Tα,Ford,LE ) with κα,1 �= 0. Then H1

Ford
(K , Tα) has rank

one, and there is a finite R-module Mα such that

H1
Ford

(K , Aα) � (�/R)⊕ Mα ⊕ Mα

with

lengthR(Mα) � lengthR
(
H1
Ford

(K , Tα)/R · κα,1
)+ Eα

for some constant Eα ∈ Z�0 depending only on Cα , TpE, and rankZp(R).

When ρE |GK : GK → EndZp(TpE) is surjective, Theorem 3.2.1 (with
Eα = 0) can be deduced from [28, Thm. 1.6.1], but the proof of Theo-
rem 3.2.1 assuming only (h1) requires new ideas, some of which were inspired
by Nekovář’s work [42].

3.3 Proof of Theorem 3.2.1

To ease notation, let (T,F,L ) denote the Selmer triple (Tα,Ford,LE ), and
let ρ = ρα . For any k � 0, let

R(k) = R/mk R, T (k) = T/mkT, L (k) = {� ∈ L : I� ⊂ pkZp},
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and letN (k) be the set of square-free products of primes � ∈ L (k).
We begin by recalling two preliminary results from [41] and [28].

Lemma 3.3.1 For every n ∈ N (k) and 0 � i � k there are natural isomor-
phisms

H1
F(n)(K , T

(k)/mi T (k))
∼−→ H1

F(n)(K , T
(k)[mi ]) ∼−→ H1

F(n)(K , T
(k))[mi ]

induced by the maps T (k)/mi T (k) πk−i−−→ T (k)[mi ] → T (k).

Proof The proof of [41, Lem. 3.5.4] carries over, since it only requires the
vanishing of T̄ GK . ��
Proposition 3.3.2 For every n ∈ N (k) there is an R(k)-module M (k)(n) and
an integer ε such that

H1
F(n)(K , T

(k)) � (R(k))ε ⊕ M (k)(n)⊕ M (k)(n).

Moreover, ε can be taken to be ε ∈ {0, 1} and is independent of k and n.

Proof This is shown in [28, Prop. 1.5.5], whose proof makes use of hypothesis
(h1) and hypotheses (H.3) and (H.4) in op.cit., the latter two being satisfied in
our setting by [41, Lem. 3.7.1] and [41, Lem. 2.2.1], respectively. We note that
the independence of ε follows from the fact that, by Lemma 3.3.1, we have

ε ≡ dimR/mH
1
F(n)(K , T̄ ) (mod 2),

and the right dimension is independent of k and n by the “parity lemma” of
[28, Lem. 1.5.3], whose proof is also given under just the aforementioned
hypotheses. ��

3.3.1 The Čebotarev argument

For any finitely-generated torsion R-module M and x ∈ M , write

ord(x) := min{m � 0 : πm · x = 0}.

When ρE has large image, a standard application of the Čebotarev den-
sity theorem can be used to show that, given R-linearly independent classes
c1, . . . , cs ∈ H1(K , T (k)), there exist infinitely many primes � ∈ L such that
ord(loc�(ci )) = ord(ci ), i = 1, . . . , s (see [39, Cor. 3.2]). Assuming only
hypothesis (h1), one can obtain a similar result with “error terms”. Our ver-
sion of this is Proposition 3.3.6 below, which provides the key technical input
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for our proof of Theorem 3.2.1. Before proving this proposition we define the
error terms that appear in its statement.

For any field F ⊂ Q let F(E[p∞]) be the fixed field of the kernel of
ρE |GF . Since (DK , Np) = 1, and therefore E does not have CM by K ,
and p is odd by hypothesis, Q(E[p∞]) ∩ K∞ = Q, as any subfield of K∞
that is Galois over Q is either Q or contains K . Hence the natural projection
Gal(K∞(E[p∞])/K∞) → Gal(Q(E[p∞])/Q) is an isomorphism and so
ρE (GK∞) = ρE (GQ).

The first error term comes from the following.

Lemma 3.3.3 The intersection U = Z×p ∩ im(ρE |GK∞ ) is an open subgroup
of Z×p such that U ⊂ Im(ρ) ⊂ AutR(T ) for all characters α.

Proof By [42, Prop. (6.1.1)(i)], U = Z×p ∩ im(ρE ) ⊂ AutZp(TpE) �
GL2(Zp) is an open subgroup of Z×p . Since im(ρE |GK∞ ) = im(ρE ), U =
Z×p ∩ im(ρE |GK∞ ). As α is trivial on GK∞ the claim for all characters α
follows. ��

For U = Z×p ∩ im(ρE ) as in Lemma 3.3.3, let

C1 := min{vp(u − 1) : u ∈ U }.
Since U is an open subgroup of Z×p , 0 � C1 <∞.

To define the second error term, note that EndZp(TpE)/ρE (Zp[GQ]) is a
torsionZp-module, as ρE is irreducible. Hence there existsm ∈ Z≥0 such that
pm(EndZp(TpE)/ρE (Zp[GQ])) = 0. Then

C2 := min
{
m � 0 : pm EndZp(TpE) ⊂ ρE (Zp[GQ])

}

is such that 0 � C2 <∞.

Lemma 3.3.4 For any α, pC2 annihilates EndR(T )/ρ(R[GK∞]).
Proof Since ρ(GK∞) = ρE (GK∞) = ρE (GQ) (using that E does not have
CM by K ), it follows that

EndR(T )/ρ(R[GK∞]) = EndR(T )/ρE (R[GQ])
= (EndZp(TpE)/ρE (Zp[GQ]))⊗Zp R

is annihilated by pC2 . ��
Remark 3.3.5 If ρE is surjective, then clearly C1 = 0. Similarly, if E[p] is
irreducible, then C2 = 0. In particular, if ρE is surjective, then C1 = 0 = C2.

The third error term is given by the quantity Cα defined before.
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Proposition 3.3.6 Suppose α �= 1. Let c1, c2, c3 ∈ H1(K , T (k)). Suppose
Rc1 + Rc2 contains a submodule isomorphic to md1R(k) ⊕md2R(k) for some
d1, d2 � 0. Then there exist infinitely many primes � ∈ L (k) such that

ord(loc�(c3)) � ord(c3)− r(C1 + C2 + Cα),

and R loc�(c1)+R loc�(c2) ⊂ H1(K�, T (k)) contains a submodule isomorphic
to

md1+d2+2r(C1+C2+Cα)(R(k) ⊕ R(k)).

Proof Let mi = max{0, ord(ci )− r(C1 + C2 + Cα)}. Note that since Rc1 +
Rc2 contains a submodule isomorphic to md1R(k) ⊕ md2R(k), it must be that
max{ord(c1), ord(c2)} � k − d1, k − d2 and hence if m1 = m2 = m3 = 0,
then the lemma is trivially true. So we suppose max{m1,m2,m3} > 0.

Let Kα ⊂ K∞ be such that α|GKα
≡ 1 mod mk . Let L = Kα(E[pk]) be

the fixed field of the kernel of the action of GKα on E[pk] (so in particular,
GL acts trivially on T (k)). Then ρ induces an injection

ρ : Gal(L/K ) ↪→ Aut(T (k)).

Let u ∈ Z×p ∩ im(ρE |GK∞ ) such that ordp(u − 1) = C1. Then u = ρ(g)

for some g ∈ Gal(L/K ). Let T (k)
E = TpE ⊗Zp R/mk . It follows from Sah’s

lemma that g−1 annihilates H1(Gal(L/K ), T (k)), and therefore the kernel of
the restriction map

H1(K , T (k))→ H1(L , T (k)) = H1(L , T (k)
E )(α) = Hom(GL , T

(k)
E )(α)

is annihilated by pC1 and hence byπrC1 (cf. [42, Prop. (6.1.2)]). Here and in the
following we denote by (−)(α) the submodule on which Gal(L/K ) acts via the
character α. The restriction of the ci to GL therefore yields homomorphisms
fi ∈ Hom(GL , T

(k)
E )(α) such that

ord( fi ) � ord(ci )− rC1, i = 1, 2, 3,

and R f1 + R f2 ⊂ Hom(GL , T
(k)
E )(α) contains a submodule isomorphic to

md1+rC1R(k) ⊕md2+rC1R(k).
Note that the complex conjugation τ acts naturally on Hom(GL , T

(k)
E ),

and that this action maps an element f ∈ Hom(GL , T
(k)
E )(α) to an ele-

ment τ · f ∈ Hom(GL , T
(k)
E )(α

−1). The intersection Hom(GL , T
(k)
E )(α) ∩
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Hom(GL , T
(k)
E )(α

−1) is annihilated by γ − α±1(γ ) and so by α(γ )− α−1(γ ),
for all γ ∈ Gal(L/K ). Since

{α(γ )− α−1(γ ) mod mk : γ ∈ Gal(L/K )}
= {α(γ )− α−1(γ ) mod mk : γ ∈ �}

and since α �= α−1 (as α �= 1 and p is odd), it follows from the definition
of Cα that Hom(GL , T

(k)
E )(α) ∩ Hom(GL , T

(k)
E )(α

−1) is annihilated by πrCα .
This implies that f ±i = (1± τ) · fi satisfies

ord( f ±i ) � ord( fi )− rCα � ord(ci )− r(C1 + Cα), i = 1, 2, 3,

and that R f ±1 +R f ±2 = (1±τ)·(R f1+R f2) contains a submodule isomorphic
tomd1+r(C1+Cα)R(k)⊕md2+r(C1+Cα)R(k). Note that sincemax{m1,m2,m3} >
0, it follows that for some j both f +j and f −j are non-zero.

The R-module spanned by the image of f ±i contains R[GK∞] · f ±i (GL).
By Lemma 3.3.4, the latter contains pC2(EndZp(TpE) ⊗Zp R) · f ±i (GL) ⊂
T (k)
E . Since f ±i has order at least ord( fi ) − rCα , f ±i (GL) contains an ele-

ment of order at least ord( fi ) − rCα and hence πk−ord( fi )+r(C2+Cα)T (k)
E ⊂

pC2(EndZp(TpE)⊗Zp R) · f ±i (GL). In particular, the R-module spanned by

the image of f ±i contains mk−mi T (k)
E .

Let H ⊂ GL be the intersection of the kernels of the f ±i . Since some f ±j
is non-zero, H �= GL and Z = GL/H is a non-zero torsion Zp-module.
The subgroup H is stable under the action of complex conjugation and hence
this action descends to Z , which then decomposes as Z = Z+ ⊕ Z− with
respect to this action. Each f ±i can be viewed as an element of Hom(Z , T (k)

E ).

Let g±i be the composition of f ±i with the projection of T (k)
E to (T (k)

E )±. Fix
an R(k)-basis u± of (T (k)

E )±. Since the R-span of the image of f ±i contains

mk−mi T (k)
E , the R-span of the image of g±i containsmk−mi R(k)u±. Moreover,

since f ±i ∈ Hom(Z , T (k)
E )±, g±i (Z−) = 0 and so g±i (Z) = g±i (Z+). Since

max{m1,m2,m3} > 0, it follows that Z+ is nontrivial.
Let W± = ∑3

i=1 R f ±i ⊂ Hom(GL , T
(k)
E )± and let W = W+ ⊕ W− ⊂

Hom(GL , T
(k)
E ). Each f ∈ W can be viewed as a homomorphism from Z to

T (k)
E , and evaluation at z ∈ Z yields an injection

Z ↪→ HomR(W, T (k)
E ).
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Furthermore, this injection is equivariant with respect to the action of complex
conjugation, so the restriction to Z+ is an injection

Z+ ↪→ HomR(W, T (k)
E )+ = HomR(W

+, (T (k)
E )+)⊕ HomR(W

−, (T (k)
E )−).

Let X+ ⊂ HomR(W, T (k)
E )+ be the R-span of the image of Z+. It follows

from [42, Cor. (6.3.4)] and Lemma 3.3.4 that

pC2 HomR(W, T (k)
E )+ ⊂ X+. (3.4)

Given (φ+, φ−) ∈ HomR(W+, (T (k)
E )+)⊕ HomR(W−, (T (k)

E )−), define

q(φ+, φ−) = det

(
β(φ+( f +1 )) β(φ−( f −1 ))

β(φ+( f +2 )) β(φ−( f −2 ))

)
,

φ±(−) = β(φ±(−))u± ∈ R(k)u± = (T (k)
E )±.

The restriction of q to X+ defines an R(k)-valued quadratic form on X+ that
we denote by q(x). Since W+ contains R f +1 + R f +2 , which in turn con-
tains a submodule isomorphic tomd1+r(C1+Cα)R(k)⊕md2+r(C1+Cα)R(k), there
exists ψ+ ∈ HomR(W+, (T (k)

E )+) and j ∈ {1, 2} such that β(ψ+( f +j )) ∈
πmax d1,d2+r(C1+Cα)(R(k))×. Similarly, there existsψ− ∈ HomR(W−, (T (k)

E )−)
such that β(ψ−( f −3− j )) ∈ πmin d1,d2+r(C1+Cα )(R(k))× and β(ψ−( f −j )) = 0.
For such a pair (ψ+, ψ−),

q(ψ+, ψ−) ∈ πd1+d2+2r(C1+Cα)(R(k))×.

From (3.4) it follows that pC2(ψ+, ψ−) = xψ for some xψ ∈ X+, and

q(xψ) = p2C2q(ψ+, ψ−) ∈ πd1+d2+2r(C1+C2+Cα)(R(k))×.

It then follows from [42, Lem. (6.6.1)(ii)] that

q(Z+) �⊂ md1+d2+2r(C1+C2+Cα)+1R(k). (3.5)

If m3 > 0, let Z3 ⊂ Z+ be the submodule such that g+3 (Z3) =
mk−m3+1R(k)u+. Otherwise, let Z3 = 0. Then Z3 is a proper Zp-submodule
of Z+. It then follows from [42, Lem. (6.6.1)(iii)] and (3.5) that

there exists z∈ Z+ such that z /∈ Z3 and q(z) /∈ md1+d2+2r(C1+C2+Cα)+1R(k).
(3.6)
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Let M be the fixed field of the subgroup H ⊂ GL , so Gal(M/L) = Z . Let
g = τ z ∈ Gal(M/Q), and let � � pNDK be any prime such that each ci is
unramified at � and Frob� = g in Gal(M/Q) (there are infinitely many such
�: this is the application of the Čebotarev Density Theorem). Since GL fixes
E[pk] and K , Frob� acts as τ on K and E[pk]. This means that � is inert in
K and that a�(E) ≡ �+ 1 ≡ 0 mod pk . That is, � ∈ L (k).
Since � is inert in K , the Frobenius element for K� is Frob2�. Consider the

restriction of ci to K�. Since ci is unramified at �, loc�(ci ) ∈ H1
ur(K�, T (k).

Evaluation at Frob2� is an isomorphism

H1
ur(K�, T

(k))
∼−→ T (k)/(Frob2� −1)T (k) = T (k) = T (k)

E ,

where the last equality is because Frob2� acts as τ
2 = 1 on T (k) by the choice

of �. This means that loc�(ci ) is completely determined by ci (Frob2�). Further-
more, since Frob2� = g2 = z2 ∈ Gal(M/L), ci (Frob2�) = fi (z2). Hence

ci (Frob
2
�) = fi (z

2) = 2 fi (z) = f +i (z)+ f −i (z)

= (g+i (z), g
−
i (z)) ∈ T (k)

E = (T (k)
E )+ ⊕ (T (k)

E )−, (3.7)

since the projection of f ±i to (T (k)
E )∓ vanishes on Z+.

From (3.7) we see that ord(loc�(c3)) = ord(c3(Frob2�) = ord( f3(z2)) �
ord(g+3 (z)). Since z /∈ Z3 by (3.6),

ord(loc�(c3)) � m3,

which shows that � satisfies the first condition of the theorem.
From (3.7) we also see that

R loc�(c1)+ R loc�(c2)
∼−→ R(g+1 (z), g

−
1 (z))+ R(g+2 (z), g

−
2 (z)) ⊂ T (k)

E

= (T (k)
E )+ ⊕ (T (k)

E )−.

Write g±i (z) = β±i (z)u±. Then

q(z) = det

(
β+1 (z) β

−
1 (z)

β+2 (z) β
−
2 (z)

)
.

Since q(z) /∈ md1+d2+2r(C1+C2+Cα)+1R(k) by (3.6), it follows from the above
expression for q(z) that the module R(g+1 (z), g

−
1 (z))+ R(g+2 (z), g

−
2 (z)) con-

tains a submodule isomorphic to md1+d2+2r(C1+C2+Cα)(R(k) ⊕ R(k)), which
shows that � also satisfies the second condition of the theorem. ��
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Corollary 3.3.7 Suppose α �= 1. Let c1, c2 ∈ H1(K , T (k)). Suppose Rc1 +
Rc2 contains a submodule isomorphic tomd1R(k)⊕md2R(k) for some d1, d2 �
0. Then there exist infinitely many primes � ∈ L (k) such that ord(loc�(c1)) �
ord(c1) − r(C1 + C2 + Cα) and R loc�(c1) + R loc�(c2) ⊂ H1(K�, T (k))

contains a submodule isomorphic to

mk−ord(c1)+r(C1+C2+Cα)R(k) ⊕md1+d2+2r(C1+C2+Cα)R(k).

Proof We apply Proposition 3.3.6 with c3 = c1. Then R loc�(c1) =
R loc�(c3) contains a submodule isomophic tomk−ord(c3)+r(C1+C2+Cα)R(k) =
mk−ord(c1)+r(C1+C2+Cα)R(k), and R loc�(c1)+ R loc�(c2) contains a submod-
ule isomorphic to md1+d2+2r(C1+C2+Cα)(R(k)⊕ R(k)), whence the conclusion
of the corollary. ��

With Proposition 3.3.6—and especially Corollary 3.3.7—in hand, we next
prove the following theorem, which implies the first statement of Theo-
rem 3.2.1 and will be used in the next section to prove the bound on the
length of Mα .

Theorem 3.3.8 Suppose α �= 1. If κα,1 ∈ H1(K , T ) is non-zero, then ε = 1
and for k � 0, every element in M (k)(1) has order strictly less than k. In
particular, H1

F (K , T ) � R.

Proof Suppose κ1 := κα,1 �= 0. The assumption T̄ GK = 0 implies that
H1
F (K , T ) is torsion-free, so ε � 1.
If k � 0, then the image of κ1 inH1

F (K , T
(k)), still denoted by κ1 by abuse of

notation, is non-zero and ind(κ1,H1
F (K , T )) = ind(κ1,H1

F (K , T
(k))), where

by the index ind(c,M) for M a finitely generated R-module and c ∈ M we
mean the smallest integerm � 0 such that c has non-zero image inM/mm+1M
(equivalently, c ∈ mmM). Let s = ind(κ1,H1

F (K , T )). Let e = r(C1 + C2 +
Cα). Suppose k also satisfies

k > s + 3e. (3.8)

By the definition of s, there exist c1 ∈ H1
F (K , T

(k)) such that the image of c1
in H1

F (K , T
(k))/mH1

F (K , T
(k)) is non-zero and κ1 = π sc1. The assumption

T̄ GK = 0 implies that H1
F (K , T ) is torsion-free, so Rc1 � R(k). Suppose

c2 ∈ H1
F (K , T

(k)) is such that c2 /∈ Rc1. We will show that π s+3ec2 ∈ Rc1.
By (3.8) this implies that H1

F (K , T
(k))/Rc1 is annihilated by πk−1 and hence

that ε � 1. It then follows that ε = 1 and every element in M (k)(1) has order
strictly less than k. This in turn implies H1

F (K , T ) � R, since H1
F (K , T ) is

torsion-free.
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Let d be the order of the image of c2 in H1
F (K , T

(k))/Rc1. Then Rc1+ Rc2
contains a submodule isomorphic to R(k) ⊕ mk−d R(k). By Corollary 3.3.7,
there exists � ∈ L (k) such that ord(loc�(c1)) � k − e and

R loc�(c1)+ R loc�(c2) contains a submodule isomorphic to

meR(k) ⊕mk−d+2eR(k). (3.9)

We nowmake use of the assumption that κ1 belongs to a Kolyvagin system.
The finite-singular relation of the definition of a Kolyvagin system implies that
the image of κ� := κα,� in H1

F (K , T
(k)), which we also denote by κ�, satisfies

ord(loc�,s(κ�)) = ord(loc�(κ1)) = ord(loc�(π
sc1)) � k − s − e, (3.10)

where by loc�,s we mean the composition of loc� with the projection to
H1
s (K�, T (k)).
By global duality, the images of

H1
F (K , T

(k)
α )

loc�−−→ H1
ur(K�, T

(k)
α ) and H1

F�(K , T
(k)
α−1)

loc�,s−−−→ H1
s (K�, T

(k)
α−1)

are mutual annihilators under local duality. Since τ · κ� ∈ H1
F�(K , T

(k)
α−1), we

easily conclude from (3.8), (3.9), and (3.10) that

k − s − e � k − d + 2e.

That is, d � s + 3e, as claimed. ��

3.3.2 Some simple algebra

Our adaptation of Kolyvagin’s arguments relies on the following simple results
about finitely-generated torsion R-modules. For a finitely-generated torsion
R-module M we write

exp(M) := min{n � 0 : πnM = 0} = max{ord(m) : m ∈ M}.

Lemma 3.3.9 Let N ⊂ M be finitely-generated torsion R-modules. Suppose
N � ⊕r

i=1R/mdi (N ), d1(N ) � · · · � dr (N ), and M � ⊕s
i=1R/mdi (M),

d1(M) � · · · � ds(M). Then r � s and

di (N ) � di (M), i = 1, . . . , r.

Proof We have r = dimR/m N [π ] � dimR/m M[π ] = s, which proves the
first claim.
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We prove the second claim by induction on r . Let d = dr (N ). Since
N [πd ] = N ∩ M[πd ], the inclusion N ⊂ M induces an inclusion

N ′ = N/N [πd ] ⊂ M/M[πd ] = M ′.

Clearly, N ′ � ⊕r ′
i=1R/mdi (N )−d , where r ′ is the smallest integer such that

di (N ) = d for r ′ + 1 � i � r . Similarly, M ′ � ⊕s′
i=1R/mdi (M)−d . Since

r ′ < r , the induction hypothesis implies that di(M) � di (N ) for i = 1, . . . , r ′.
To complete the induction step we just need to show that at least r of the
di (M)’s are � d. But this is clear from the injection N [πd ]/N [πd−1] ↪→
M[πd ]/M[πd−1], from which it follows that

r = dimR/m N [πd ]/N [πd−1] � dimR/m M[πd ]/M[πd−1]. ��
Next we consider two short exact sequences of finitely-generated torsion

R-modules

0→ X → R/mk ⊕ M
α−→ R/mk−a ⊕ R/mb → 0 (3.11)

and

0→ X → R/mk ⊕ M ′ β−→ R/ma′ ⊕ R/mk−b′ → 0 (3.12)

satisfying:

k > exp(M)+ 2a and a′ � a. (3.13)

We further assume that both M and M ′ are the direct sum of two iso-
morphic R-modules. Let 2s := dimR/m M[π ], 2s′ := dimR/m M ′[π ] and
d1(M), . . . , d2s(M) be the lengths of the R-summands in a decomposition of
M as a direct sum of cyclic R-modules, ordered so that

d1(M) = d2(M) � d3(M) = d4(M) � · · · � d2s−1(M) = d2s(M).

Note that d1(M) = exp(M). Fix a decomposition

M = ⊕2s
i=1Mi , Mi � R/mdi (M).

Let d1(M ′), . . . , d2s′(M ′) be similarly defined for M ′.

Lemma 3.3.10 The following hold:

(i) s − 1 � s′ � s + 1,
(ii) b � exp(M),
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(iii) exp(X) � exp(M)+ a.

Proof Let r(−) denote the minimal number of R-generators of (−). Then
from (3.11) it follows that r(M)− 1 � r(X) � r(M)+ 1 (see Lemma 3.3.9).
Similarly, it follows from (3.12) that r(M ′)− 1 � r(X) � r(M ′)+ 1. From
this we conclude that r(M)−1 � r(M ′)+1 and r(M ′)−1 � r(M)+1. Since
r(M) = 2s and r(M ′) = 2s′, this implies 2s � 2s′ + 2 and 2s′ � 2s + 2.
That is, s − 1 � s′ � s + 1, as claimed in part (i).

For part (ii) we note that since k − a > exp(M) by (3.13), the image
under α of the summand R/mk in the middle of (3.11) must be isomorphic
to R/mmax{k−a,b} (else exp(im(α)) � max{k − a, b} − 1). It follows that α
induces a surjection M � (R/mk−a ⊕ R/mb)/α(R/mk) � R/mmin{k−a,b}.
In particular, min{k − a, b} ≤ exp(M). As k − a > exp(M), this implies part
(ii). For part (iii) we note that (3.11) induces an inclusion

X/(X ∩ R/mk) ↪→ (R/mk ⊕ M)/(R/mk) � M.

It follows that exp(X) � exp(M)+ exp(X ∩ R/mk). As noted in the proof of
part (ii), α(R/mk) � R/mk−a so X ∩ R/mk � R/ma . Part (iii) follows. ��
Proposition 3.3.11 The following hold:

(i) There exists 1 � i0 � 2s such that there is an inclusion ⊕2s
i=1,i �=i0Mi ↪→

X.
(ii) There exists an inclusion X ↪→ M ′ ⊕ R/mexp(X).
(iii) di (M ′) � di+2(M), for i = 1, . . . , 2s − 2.

Proof As explained in the proof of Lemma 3.3.10(ii), the image under α of
the R/mk summand in the middle of (3.11) has exponent k − a. In particular,
we may assume that the R/mk−a summand on the right in (3.11) is the image
under α of the R/mk-summand in the middle.

Let 1 � i0 � 2s be such that im(α) = R/mk−a + α(Mi0). It follows from
(3.11) that there is a surjection

X � (R/mk ⊕ M)/(R/mk ⊕ Mi0) � ⊕2s
i=1,i �=i0Mi .

Taking duals we deduce the existence of an inclusion ⊕2s
i=1,i �=i0Mi ↪→ X ,

proving (i). (Here and in the following we are using that the (Pontryagin) dual
of a torsion R-module is isomorphic to itself as an R-module.)

For (ii), we first claim that β(R/mk) � R/mk−b′ . Suppose that β(R/mk) �
R/mk−b′′ for some b′′ > b′. This would imply that there exists m′ ∈ M
such that β(1 ⊕ m′) ∈ R/ma′ ⊕ 0 ⊂ R/ma′ ⊕ R/mk−b′ . In particular, we
would have πa′(1 ⊕ m′) ∈ X . But since ord(πa′(1 ⊕ m′)) = k − a′ this
would mean that X contains a submodule isomorphic to R/mk−a′ . But since
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k − a′ > exp(M)+ a � exp(X) by (3.13) and Lemma 3.3.10(iii), we reach a
contradiction. Thus we may assume that the R/mk−b′ summand on the right
in (3.12) is the image under β of the R/mk-summand in the middle.

Let M ′′ ⊂ M ′ be the submodule such that β(M ′′) ⊆ R/mk−b′ . Then (3.12)
implies that there is an exact sequence

0→ X → R/mk ⊕ M ′′ → β(R/mk)→ 0.

From this it follows that there is an exact sequence

0→ X ∩ R/mk → X → M ′′ → 0.

Taking duals we conclude that there exists a short exact sequence

0→ M ′′ → X
γ−→ X ∩ R/mk → 0.

Note that X ∩ R/mk is a cyclic R-module. Let R/md ⊂ X be an R-summand
that surjects onto X∩R/mk via γ . Then there is a surjectionM ′′⊕R/md � X .
Taking duals we deduce the existence of inclusions

X ↪→ M ′′ ⊕ R/md ↪→ M ′ ⊕ R/mexp(X).

This proves (ii).
Let d1(X) � d2(X) � · · · � dt (X) be the lengths of the summands in a

decomposition of X as a direct sum of cyclic R-modules. Note that d1(X) =
exp(X). From part (i) we see that t � 2s − 1. From part (i) and Lemma 3.3.9
we also easily conclude that di (X) � di+1(M). Similarly, from part (ii) we
conclude that di (M ′) � di+1(X). Combining these yields (iii). ��

3.3.3 Finishing the proof of Theorem 3.2.1

We now have all the pieces needed to prove Theorem 3.2.1.
Since the character α is fixed, for the rest of the proof we denote κn := κα,n

for all n ∈ N . In particular, our assumption is that κ1 �= 0. Let

ind(κ1) = max{m : κ1 ∈ mmH1
F (K , T )}.

We can write H1
F (K , A) = (�/R)n⊕M , for n ≥ 0 and M a finite R-module.

Since H1
F (K , A) = lim−→k

H1
F (K , T

(k)), it follows from Lemma 3.3.1 that

H1
F (K , A)[mk] � H1

F (K , T
(k)).
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Recall that by Theorem 3.3.8 (and its proof), H1
F (K , T ) has R-rank one and

for k � 0

(R/mk)n ⊕ M[mk] � R/mk ⊕ M (k)(1)⊕ M (k)(1),

with exp(M (k)(1)) < k and hence

H1
F (K , A) � �/R ⊕ M, M � M0 ⊕ M0,

for some finitely-generated torsion R-module M0 such that M0 � M (k)(1) for
k � 0.

Let r(M) be the minimal number of R-generators of M and let

e = (C1 + C2 + Cα)rankZp(R).

We will show that

ind(κ1)+ 3

2
r(M)e � lengthR(M0). (3.14)

Since by Lemma 3.3.1 and (3.2) we have

r(M)+ 1

= dimR/mH1
F (K , T

(k))[m]
= dimR/mH1

F (K , T̄ ) = dimFp H
1
F (K , E[p]),

it follows that (3.14) yields the inequality in Theorem 3.2.1 with an error term
Eα = r(M)e that depends only on Cα , TpE , and rankZp(R).
Let s = r(M)/2 and fix an integer k > 0 such that

k/2 > lengthR(M0)+ ind(κ1)+ (r(M)+ 1)e (3.15)

and M0 � M (k)(1). Our proof of (3.14) relies on making a good choice of
integers in N (k), which in turn relies on a good choice of primes inL (k).

Let n ∈ N (k). By Proposition 3.3.2 and Theorem 3.3.8, there exists a finite
R(k)-module M(n)0 such that

H1
F(n)(K , T

(k)) � R(k) ⊕ M(n), M(n) � M(n)0 ⊕ M(n)0.

Let r(M(n)) be the minimal number of R-generators of M(n) and let

d1(n) = d2(n) � d3(n) = d4(n) � · · · � dr(M(n))−1(n) = dr(M(n))(n)
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be the lengths of the cyclic R-modules appearing in an expression for M(n)
as a direct sum of such modules. Let s(n) = r(M(n))/2. In particular, s(1) =
r(M)/2 = s. In what follows we write, in an abuse of notation, κn to mean its
image in H1(K , T (k)).

Suppose we have a sequence of integers 1 = n0, n1, n2, . . . , ns ∈ N (k)

satisfying

(a) s(n j ) � s(n j−1)− 1,
(b) dt (n j ) � dt+2(n j−1), t = 1, . . . , s(n j−1)− 1,
(c) lengthR(M(n j )0) � lengthR(M(n j−1)0)− d1(n j−1)+ 3e,
(d) ord(κn j ) � ord(κn j−1)− e, and
(e) ord(κn j−1) � ord(κn j )− d1(n j−1)+ 3e,

for all 1 � j � s. Since H1
F (K , T ) is torsion free, ind(κ1) = k− ord(κ1), and

so repeated combination of (b) and (e) yields

ind(κ1) = k − ord(κn0) � d1(n0)+ d3(n0)+ · · · + d2s−1(n0)
− 3se + (k − ord(κns ))

� lengthR(M(n0)0)− 3se.

Since M(n0)0 = M(1)0 � M (k)(1)0 � M0 by the choice of k and 3se =
3
2r(M)e, this means (3.14) holds. So to complete the proof of the theorem it
suffices to find such a sequence of n j ’s. In the following we will define such a
sequence by making repeated use of Corollary 3.3.7 to choose suitable primes
inL (k). Note that if s = 0 then there is nothing to prove, so we assume s > 0.

Suppose 1 = n0, n1, . . . , ni ∈ N (k), i < s, are such that (a)–(e) hold for
all 1 � j � i (note that if i = 0, then this is vacuously true). We will explain
how to choose a prime � ∈ L (k) such that n0, . . . , ni , ni+1 = ni� satisfy (a)–
(e) for all 1 � j � i + 1. Repeating this process yields the desired sequence
n0, . . . , ns .

From (a), s(ni ) � s − i > 0, so d1(ni ) > 0. Let c1, c2 ∈ H1
F(ni )(K , T

(k))

be such that c1 generates an R(k)-summand complementary to M(ni ) and
Rc2 � R/md1(ni ) = mk−d1(ni )R(k) is a direct summand ofM(ni ) = M(ni )0⊕
M(ni )0. Then Rc1+Rc2 ⊂ H1

F(ni )(K , T
(k)) contains a submodule isomorphic

to R(k) ⊕ mk−d1(ni )R(k). Let � ∈ L (k) be a prime as in Corollary 3.3.7 that
does not divide n1 · · · ni . In particular,

ord(loc�(c1)) � k − e

and

R loc�(c1)+ R loc�(c2) contains a submodule isomorphic to

meR(k) ⊕mk−d1(ni )+2eR(k).
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It follows that there is a short exact sequence

0→ H1
F(ni )�(K , T

(k))→ H1
F(ni )(K , T

(k))

loc�−−→ R/mk−a ⊕ R/mb → 0, e � a, b � d1(ni )− 2e. (3.16)

Global duality then implies that there is another exact sequence

0→ H1
F(ni )�(K , T

(k))→ H1
F(ni�)(K , T

(k))

loc�−−→ R/ma′ ⊕ R/mk−b′ → 0, e � a � a′, b′ � b. (3.17)

Here we have used that the arithmetic dual of T (k) = T (k)
α is T (k)

α−1 and

that the complex conjugation τ induces an isomorphism H1
F(n)(K , T

(k)
α−1) �

H1
F(n)(K , T

(k)
α ).

Combining (c) for 1 � j � i yields

lengthR(M(ni )0) � lengthR(M(n0)0)+ 3ie.

From this, together with r(M) = 2s, i < s, and the assumption (3.15), we
find

k > 2 lengthR(M(n0)0)+ 2r(M)e � 2 lengthR(M(ni )0)+ 2r(M)e − 3ie

> lengthR(M(ni ))+ 2e.

It follows that (3.16) and (3.17) satisfy the hypotheses (3.13) for (3.11) and
(3.12) with

X = H1
F(ni )�(K , T

(k)), M = M(ni ), M ′ = M(ni�).

Let ni+1 = ni�. Then (a) for j = i + 1 follows from Lemma 3.3.10(i)
while (b) for j = i + 1 follows from Proposition 3.3.11(iii). To see that (c)
holds we observe that by (3.16) and (3.17)

lengthR(M(ni+1)) = lengthR(M(ni ))− (b + b′)+ (a + a′)
� lengthR(M(ni ))− 2d1(ni )+ 6e.

To verify (d) for j = i + 1 we first observe that by the Kolyvagin system
relations under the finite singular map

ord(κni+1) = ord(κni�) � ord(loc�(κni�)) = ord(loc�(κni )).
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So (d) holds for j = i+1 if we can show that ord(loc�(κni )) � ord(κni )−e. To
check that this last inequality holds, we first note that ord(κni ) � ord(κn0)− ie
by (d) for 1 � j � i . But ord(κn0) = ord(κ1) = k − ind(κ1) by the choice of
k (and the fact that H1

F (K , T ) is torsion-free), and so by (3.15) and repeated
application of (c) for 1 � j � i we have

ord(κni ) � k − ind(κ1)− ie > 4 · lengthR(M(n0)0)+ (4s − i + 2)e

> 3 · lengthR(M(n0)0)+ lengthR(M(ni )0)

+ (4s − 4i + 2)e

> lengthR(M(ni )0)+ 2e.

Write κni = xc1 + m with x ∈ R(k) and m ∈ M(ni ). Since ord(κni ) >

exp(M(ni )0), it follows that x = π t u for t = k − ord(κni ) and some u ∈ R×.
Let n = exp(M(ni )). It follows that

πn loc�(κni ) = πn+t u loc�(c1).

By the choice of �, ord(loc�(c1)) � k − e. Since n + t = k − ord(κni ) +
exp(M(ni )0) < k − 2e, it then follows that

ord(loc�(κni )) = ord(loc�(c1))− t � k − e − t = ord(κni )− e.

It remains to verify (e) for j = i +1. Let c ∈ H1
F(ni+1)(K , T

(k)) be a gener-

ator of an R(k)-summand complementary to M(ni+1). Write κni = uπ gc1+m
and κni+1 = vπhc + m′, where u, v ∈ R×, m ∈ M(ni ) and m′ ∈ M(ni+1).
Arguing as in the proof that (d) holds shows that ord(κn j ) > exp(M(n j ))+2e
for 1 � j � i + 1, hence g = k − ord(κni ) and h = k − ord(κni+1). Arguing
further as in the proof that (d) holds also yields

ord(loc�(κni )) = ord(loc�(c1))− g and ord(loc�(κni+1)) = ord(loc�(c))− h.

From the Kolyvagin system relations under the finite singular map it then
follows that

h − g = ord(loc�(c))− ord(loc�(c1)).

We refer again to the exact sequences (3.16) and (3.17). By the choice of �,
ord(loc�(c1)) � k − e > exp(M(ni )0) ≥ b, the last inequality by Lemma
3.3.10(ii). Hence we must have ord(loc�(c1)) = k − a. As shown in the proof
of Proposition 3.3.11 (ii), we also must have ord(loc�(c)) = k− b′. Hence we
find

h − g = (k − b′)− (k − a) = a − b′ � 3e − d1(n j−1).
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Since h − g = ord(κni )− ord(κni+1), this proves (e) holds for j = i + 1 and
so concludes the proof of Theorem 3.2.1.

3.4 Iwasawa theory

Let E , p, and K be as in Sect. 3.2. Let � = Zp��� be the anticyclotomic
Iwasawa algebra, and consider the �-modules

ME := (TpE)⊗Zp �
∨, T := M∨

E (1) � (TpE)⊗Zp �,

where the GK -action on �∨ is given by the inverse �−1 of the tautological
character � : GK � � ↪→ �×.

For w a prime of K above p, put

Fil+w(ME ) := Fil+w(TpE)⊗Zp �
∨, Fil+wT := Fil+w(TpE)⊗Zp �.

Define the ordinary Selmer structure F� on ME and T by

H1
F�
(Kw,ME ) :=

{
im

{
H1(Kw,Fil+w(ME ))→ H1(Kw,ME )

}
if w|p,

0 else,

and

H1
F�
(Kw,T) :=

{
im

{
H1(Kw,Fil+w(T))→ H1(Kw,T)

}
if w|p,

H1(Kw,T) else.

Denote by

X = H1
F�
(K ,ME )

∨ = Homcts(H
1
F�
(K ,ME ),Qp/Zp)

the Pontryagin dual of the associated Selmer group H1
F�
(K ,ME ), and let

LE ⊂ L0 be as in Sect. 3.2.
Recall that γ ∈ � is a topological generator. ThenP0 := (γ − 1) ⊂ � is a

height one prime independent of the choice of γ .

Theorem 3.4.1 Suppose there is a Kolyvagin system κ ∈ KS(T,F�,LE )

with κ1 �= 0. ThenH1
F�
(K ,T) has�-rank one, and there is a finitely generated

torsion �-module M such that

(i) X ∼ �⊕ M ⊕ M,
(ii) char�(M) divides char�

(
H1
F�
(K ,T)/�κ1

)
in �[1/p, 1/(γ − 1)].
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Proof This follows by applying Theorem 3.2.1 for the specializations of T at
height one primes of �, similarly as in the proof of [28, Thm. 2.2.10]. We
only explain how to deduce the divisibility in part (ii), since part (i) is shown
exactly as in [28, Thm. 2.2.10].

For any height one prime P �= p� of �, let SP be the integral closure of
�/P and consider the GK -module

TP := T⊗� SP,

whereGK acts on SP via αP : � ↪→ �× → S×P. Note that TP is aGK -module
of the type considered in Sect. 3.2. In particular, SP is the ring of integers of a
finite extension ofQp, and TP = TpE⊗Zp SP(αP), where αP = �−1 modP.

FixP as above, writeP = (g), and setQ := (g+ pm) for some integerm.
For m � 0,Q is also a height one prime of �. As explained in [28, p. 1463],
there is a specialization map

KS(T,F�,LE )→ KS(TQ,Ford,LE ).

Writing κ(Q) for the image of κ under this map, the hypothesis κ1 �= 0 implies
that κ(Q)1 generates an infinite SQ-submodule of H1

Ford
(K , TQ) for m � 0. By

Theorem 3.2.1, it follows that X and H1
F�
(K ,T) have both �-rank one, and

letting f� be a characteristic power series for H1
F�
(K ,T)/�κ1 we see as in

[28, p. 1463] that the equalities

lengthZp

(
H1
FQ

(K , TQ)/SQκ
(Q)
1

) = md ordP( f�)

and

2 lengthZp
(MQ) = md ordP

(
char�(Xtors)

)

hold up to O(1) as m varies, where d = rankZp(�/P) and X tors denotes the
�-torsion submodule of X .

On the other hand, Theorem 3.2.1 yields the inequality

lengthZp
(MαQ) � lengthZp

(
H1
FQ

(K , TQ)/SQκ
(Q)
1

)+ EαQ .

If P �= P0, then the error term EαQ is bounded independently of m, since
rankZp(SQ) = rankZp(SP) and the term CαQ in (3.3) satisfies CαQ = CαP

for m � 0. Letting m →∞ we thus deduce

ordP
(
char�(Xtors

))
� 2 ordP( f�),

for P �= (p),P0, yielding the divisibility in part (ii). ��
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Corollary 3.4.2 Let the hypotheses be as in Theorem 3.4.1. Assume also that
H1
F (K , E[p∞]) has Zp-corank one (equivalently, H1

F (K , TpE) has Zp-rank
one). Then char�(M) divides char�

(
H1
F�
(K ,T)/�κ1

)
in �[1/p].

Proof The assumption that H1
F (K , E[p∞]) has Zp-corank one implies that

X tors/P0X tors is a torsionZp-module andhence that ordP0(char�(X tors)) = 0.
��

4 Proof of Theorem C and Corollary D

4.1 Preliminaries

Let E , p, and K be as in Sect. 3.2, and assume in addition that hypotheses
(Heeg) and (disc) hold. Fix an integral ideal N ⊂ OK with OK /N = Z/NZ.
For each positive integer m prime to N , let K [m] be the ring class field of K
of conductor m, and set

G[m] = Gal(K [m]/K [1]), G[m] = Gal(K [m]/K ).

Let also Om = Z+ mOK be the order of K of conductor m.
By the theory of complex multiplication, the cyclic N -isogeny between

complex CM elliptic curves

C/OK → C/(N ∩Om)
−1

defines a point xm ∈ X0(N )(K [m]), and fixing a modular parameterization
π : X0(N )→ E we define the Heegner point of conductor m by

P[m] := π(xm) ∈ E(K [m]).

Building on this construction, one can prove the following result.

Theorem 4.1.1 Assume E(K )[p] = 0. Then there exists a Kolyvagin system
κHg ∈ KS(T,F�,LE ) such that κ

Hg
1 ∈ H1

F�
(K ,T) is nonzero.

Proof Under the additional hypotheses that p � hK , the class number of K ,
and the representation GK → AutZp(T ) is surjective, this is [28, Thm. 2.3.1].
In the following paragraphs, we explain how to adapt Howard’s arguments to
our situation.

We begin by briefly recalling the construction of κHg in [28, §2.3]. Let Kk
be the subfield of K∞ with [Kk : K ] = pk . For each n ∈ N set

Pk[n] := NormK [npd(k)]/Kk [n](P[npd(k)]) ∈ E(Kk[n]),
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where d(k) = min{d ∈ Z�0 : Kk ⊂ K [pd(k)]}, and Kk[n] denotes the
compositum of Kk and K [n]. Letting Hk[n] ⊂ E(Kk[n]) ⊗ Zp be the
Zp[Gal(Kk[n]/K )]-submodule generated by P[n] and Pj [n] for j � k, it
follows from the Heegner point norm relations [43, §3.1] that one can form
the G(n)-module

H[n] := lim←−
k

Hk[n].

By [28, Lem. 2.3.3], there is a family

{Q[n] = lim←−
k

Qk[n] ∈ H[n]}n∈N

such that

Q0[n] = �P[n] (4.1)

where

� =
{
(p − apσp + σ 2

p)(p − apσ ∗p + σ ∗2p ) if p splits in K ,
(p + 1)2 − a2p if p is inert in K ,

(4.2)

with σp and σ ∗p the Frobenius elements at the primes above p in the split case,
and

NormK∞[n�]/K∞[n]Q[n�] = a�Q[n]

for all n� ∈ N . Letting Dn ∈ Zp[G(n)] be Kolyvagin’s derivative oper-
ators, and choosing a set S of representatives for G(n)/G(n), the class
κn ∈ H1(K ,T/InT) is defined as the natural image of

κ̃n :=
∑

s∈S
sDnQ[n] ∈ H[n] (4.3)

under the composite map

(
H[n]/InH[n]

)G(n) δ(n)−−→ H1(K [n],T/InT)G(n) �←− H1(K ,T/InT),

where δ(n) is induced by the limit of Kummermaps δk(n) : E(Kk[n])⊗Zp →
H1(Kk[n], T ), and the second arrow is given by restriction. (In our case, that
the latter is an isomorphism follows from the fact that the extensions K [n] and
Q(E[p]) are linearly disjoint, and E(K∞)[p] = 0.)
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The proof that the classes κn land in H1
F�
(K ,T) and can be modified to a

system κHg = {κHgn }n∈N satisfying theKolyvagin system relations is the same
as in [28, Lem. 2.3.4] et seq., noting that the arguments proving Lemma 2.3.4
(in the case v|p) apply almost verbatim in the case when p divides the class
number of K . Finally, that κHg1 is nonzero follows from the works of Cornut
and Vatsal [16,50]. ��

Applying Theorem 3.4.1 and Corollary 3.4.2 to the Kolyvagin system κHg

of Theorem 4.1.1, we thus obtain the following.

Theorem 4.1.2 Assume E(K )[p] = 0. Then the module H1
F�
(K ,T) has �-

rank one, and there is a finitely generated torsion �-module M such that

(i) X ∼ �⊕ M ⊕ M,
(ii) char�(M) divides char�

(
H1
F�
(K ,T)/�κHg1

)
in �[1/p, 1/(γ − 1)].

Moreover, if H1
F (K , E[p∞]) has Zp-corank one, then char�(M) divides

char�
(
H1
F�
(K ,T)/�κHg1

)
in �[1/p].

Remark 4.1.3 For our later use, we compare the class κHg1 ∈ H1
F�
(K ,T) from

Theorem 4.1.1 with the �-adic class constructed in [14, §5.2] (taking for f
the newform associated with E).

Denote by α the p-adic unit root of x2 − apx + p. With the notations
introduced in the proof of Theorem 4.1.1, define the α-stabilized Heegner
point P[pk]α ∈ E(K [pk])⊗ Zp by

P[pk ]α :=

⎧
⎪⎨

⎪⎩

P[pk ] − α−1P[pk−1] if k � 1,
u−1K

(
1− α−1σp

)(
1− α−1σ∗p

)
P[1] if k = 0 and p splits in K ,

u−1K
(
1− α−2

)
P[1] if k = 0 and p is inert in K .

(4.4)

Using theHeegner point norm relations, a straightforward calculation shows
that the points α−k P[pk]α are norm-compatible. Letting δ : E(Kk)⊗ Zp →
H1(Kk, TpE) be the Kummer map, we may therefore set

κ∞ := lim←−
k

δ(κk) ∈ lim←−
k

H1(Kk, TpE) � H1(K ,T),

where κk = α−d(k)NormK [pd(k)]/Kk
(P[pd(k)]α). The inclusion κ∞ ∈

H1
F�
(K ,T) follows immediately from the construction. For the comparison

with κHg1 , note that by (4.3) the projection prK (κ
Hg
1 ) of κHg1 to H1(K , TpE) is

given by the Kummer image of NormK [1]/K (Q0[1]), while κ0 is the Kummer
image of NormK [1]/K (P[1]α). Thus comparing (4.1) and (4.4) we see that

prK (κ
Hg
1 ) =

{
uKα2(β − 1)2 · κ0 if p splits in K ,

uKα2(β2 − 1) · κ0 if p is inert in K ,
(4.5)

123



On the anticyclotomic Iwasawa theory of rational elliptic… 569

where β = pα−1. In particular, κ∞ and κHg1 generate the same �-submodule
of H1

F�
(K ,T).

4.2 Proof of the Iwasawa main conjectures

Let κ∞ ∈ H1
F�
(K ,T) be the�-adicHeegner class introduced inRemark 4.1.3,

and put �ac = � ⊗Zp Qp. Let H1
FGr

(K ,T) be defined just as H1
FGr

(K ,ME )

but with T replacing ME and the conditions on v and v̄ switched.

Proposition 4.2.1 Assume that p = vv̄ splits in K and that E(K )[p] = 0.
Then the following statements are equivalent:

(i) BothH1
F�
(K ,T) andX = H1

F�
(K ,ME )

∨ have�-rank one, and the divis-
ibility

char�(Xtors) ⊃ char�
(
H1
F�
(K ,T)/�κ∞

)2

holds in �ac.
(ii) Both H1

FGr
(K ,T) and XE = H1

FGr
(K ,ME )

∨ are �-torsion, and the divis-
ibility

char�(XE )�
ur ⊃ (LE )

holds in �ur ⊗Zp Qp.

Moreover, the same result holds for the opposite divisibilities.

Proof See [2, Thm. 5.2], whose proof still applies after inverting p. ��
We can now conclude the proof of Theorem C in the introduction.

Theorem 4.2.2 Suppose K satisfies hypotheses (Heeg), (spl), (disc), and (Sel),
and that E[p]ss = Fp(φ)⊕ Fp(ψ) as GQ-modules, with φ|Gp �= 1, ω. Then
XE is �-torsion, and

char�(XE )�
ur = (LE )

as ideals in �ur.

Proof By Theorem 4.1.2, the modules H1
F�
(K ,T) and H1

F�
(K ,ME )

∨ have
both �-rank one, with

char�
(
H1
F�
(K ,ME )

∨
tors

) ⊃ char�
(
H1
F�
(K ,T)/�κHg1

)2
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as ideals in �ac = �[1/p]. Since by Remark 4.1.3 the classes κHg1 and κ∞
generate the same�-submodule of H1

F�
(K ,T), by Proposition 4.2.1 it follows

that XE is �-torsion, with

char�(XE )�
ur ⊃ (LE )

as ideals in�ac⊗̂ZpZ
ur
p . This divisibility, together with the equalitiesμ(XE ) =

μ(LE ) = 0 and λ(XE ) = λ(LE ) in Theorem 2.2.3, yields the result. ��

As a consequence, we can also deduce the first cases of Perrin-Riou’s Heeg-
ner point main conjecture [43] in the residually reducible case.More precisely,
together with Theorem 4.1.2, the following yields Corollary D in the introduc-
tion.

Corollary 4.2.3 Suppose K satisfies hypotheses (Heeg), (spl), (disc), and
(Sel), and that E[p]ss = Fp(φ)⊕ Fp(ψ) as GQ-modules, with φ|Gp �= 1, ω.
Then both H1

F�
(K ,T) and H1

F�
(K ,ME )

∨ have �-rank one, and

char�(H
1
F�
(K ,ME )

∨
tors) = char�

(
H1
F�
(K ,T)/�κ∞

)2

as ideals in �ac.

Proof In light of Remark 4.1.3, this is the combination of Theorem 4.2.2 and
Proposition 4.2.1. ��

Remark 4.2.4 If the Heeger point PK = NormK [1]/K (P[1]) ∈ E(K ) is non-
torsion, then (Sel) holds by the main results of [36]. In particular, this is so
if the image prK (κ

Hg
1 ) of κHg1 (equivalently, the class κ0) in H1

F (K , Tp(E)) is
non-zero (as H1

F (K , Tp(E)) is non-torsion since E(K )[p] = 0).

5 Proof of Theorem E and Theorem F

5.1 Preliminaries

Here we collect the auxiliary results we shall use in the next sections to deduce
Theorems E and F in the introduction from our main result, Theorem 4.2.2.
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5.1.1 Anticyclotomic control theorem

Assume that p = vv̄ splits in K , and as in [32, §2.2.3], define the anticyclo-
tomic Selmer group of W = E[p∞] by

H1
Fac

(K ,W )

= ker

{
H1(K�/K ,W )→

∏

w∈�
H1(Kw,W )× H1(Kv,W )

H1(Kv,W )div
×H1(K v̄,W )

}
,

where H1(Kv,W )div ⊂ H1(Kv,W ) denotes the maximal divisible submodule
and � = {w : w|N }.

The following result is a special case of the “anticyclotomic control theo-
rem” of [32, §3].

Theorem 5.1.1 Assume that

• E(Qp)[p] = 0,
• rankZE(K ) = 1,
• #W(E/K )[p∞] <∞.

Then XE is a torsion �-module, and letting FE ∈ � be a generator of
char�(XE ), we have

#Zp/FE (0)

= #W(E/K )[p∞] ·
(#(Zp/(

1−ap+p
p ) · logωE

P)

[E(K ) : Z · P]p
)2

·∏w|N cw(E/K )p,

where

• P ∈ E(K ) is any point of infinite order,
• logωE

: E(Kv)/tors → Zp is the formal group logarithm associated to a
Néron differential ωE ,

• [E(K ) : Z · P]p denotes the p-part of the index [E(K ) : Z · P],
• cw(E/K )p is the p-part of the Tamagawa number of E/Kw.

Proof This follows from the combination of Theorem 3.3.1 and equation
(3.5.d) in [32, (3.5.d)], noting that the arguments in the proof of those results
apply without change with the GK -irreducibility of E[p] assumed in loc. cit.
replaced by the weaker hypothesis that E(K )[p] = 0, which is implied by the
hypothesis E(Qp)[p] = 0 since p splits in K . ��
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5.1.2 Gross–Zagier formulae

Let E/Q be an elliptic curve of conductor N , and fix a parametrization

π : X0(N )→ E .

Let K be an imaginary quadratic field satisfying the Heegner hypothesis
relative to N , and fix an integral ideal N ⊂ OK with OK /N = Z/NZ. Let
x1 = [C/OK → C/N−1] ∈ X0(N ) be the Heegner point of conductor 1 on
X0(N ), which is defined over the Hilbert class field H = K [1] of K , and set

PK =
∑

σ∈Gal(H/K )
π(x1)

σ ∈ E(K ).

Let f ∈ S2(�0(N )) be the newform associated with E , so that L( f, s) =
L(E, s), and consider the differential ω f := 2π i f (τ )dτ on X0(N ). Let also
ωE be a Néron differential on E , and let cE ∈ Z be the associated Manin
constant, so that π∗(ωE ) = cE · ω f .

Theorem 5.1.2 Under the above hypotheses, L(E/K , 1) = 0 and

L ′(E/K , 1) = u−2K c−2E ·√|DK |−1 · ‖ωE‖2 · ĥ(PK ),

where uK = #(O×K /±1), ĥ(PK ) is the canonical height of PK , and ‖ωE‖2 =∫∫
E(C) |ωE ∧ ω̄E |.

Proof This is [25, Thm. V.2.1]. ��
Theorem 5.1.3 Under the above hypotheses, let p > 2 be a prime of good
reduction for E such that p = vv̄ splits in K . Then

LE (0) = c−2E · (1− ap p
−1 + p−1

)2 · logωE
(PK )

2.

where logωE
: E(Kv)→ Kv is the formal group logarithm associated to ωE .

Proof Let J0(N ) be the Picard variety of X0(N ), and set�1 = (x1)− (∞) ∈
J0(N )(H). By [3, Thm. 5.13] specialized to the case k = 2, r = j = 0, and
χ = N−1K , we have

LE (0) =
(
1− ap p

−1 + p−1
)2 ·

( ∑

σ∈Gal(H/K )
logω f

(�σ
1 )

)2

,

where logω f
: J0(N )(Hv)→ Hv is the formal group logarithm associated to

ω f . Since logω f
(�1) = c−1E · logωE

(π(�1)), this yields the result. ��

123



On the anticyclotomic Iwasawa theory of rational elliptic… 573

5.1.3 A result of Greenberg–Vatsal

Theorem 5.1.4 Let A/Q be an elliptic curve, and let p > 2 be a prime of
good ordinary reduction for A. Assume that A admits a cyclic p-isogeny with
kernel �A, with the GQ-action on �A given by a character which is either
ramified at p and even, or unramified at p and odd. If L(A, 1) �= 0 then

ordp

(
L(A, 1)

�A

)
= ordp

(
#W(A/Q) · Tam(A/Q)

#(A(Q)tors)2

)
,

where Tam(A/Q) = ∏
� c�(A/Q) is the product over the bad primes � of A

of the Tamagawa numbers of A/Q�.

Proof By [36], if L(A, 1) �= 0 then rankZA(Q) = 0 and #W(A/Q) < ∞;
in particular, #Selp∞(A/Q) = #W(A/Q)[p∞] < ∞. Letting �cyc =
Zp�Gal(Q∞/Q)� be the cyclotomic Iwasawa algebra, by [23, Thm. 4.1] we
therefore have

#Zp/FA(0) = #
(
Zp/(1− ap(A)+ p)2 · #W(A/Q) · Tam(A/Q))

#
(
Zp/(A(Q)tors)2

) , (5.1)

where FA ∈ �cyc is a generator of the characteristic ideal of the dual Selmer
group SelQ∞(Tp A, T+p A)∨ in the notations of [47, §3.6.1]. Under the given
assumptions, the cyclotomic main conjecture for A, i.e., the equality

(FA) = (LA) ⊂ �cyc (5.2)

where LA is the p-adic L-function of Mazur–Swinnerton-Dyer, follows from
the combination of [34, Thm. 12.5] and [24, Thm. 1.3]. By the interpolation
property of LA,

LA(0) =
(
1− α−1p

)2 · L(A, 1)
�A

, (5.3)

where αp ∈ Z×p is the unit root of x2 − ap(A)x + p. Noting that ordp(1 −
ap(A) + p) = ordp(1 − α−1p ), the result thus follows from the combination
of (5.1), (5.2), and (5.3). ��

5.2 Proof of the p-converse

The next result is Theorem E in the introduction. Note that a result for r = 0
can be obtained from the cyclotomic main conjecture proved by combining
[24, Thm. 1.3] and Kato’s divisibility in [34]. However, our assumptions are
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less restrictive, since in [24] the character φ is assumed to be ramified at p and
even or unramified at p and odd.

Theorem 5.2.1 Assume that E[p]ss = Fp(φ) ⊕ Fp(ψ) with φ|Gp �= 1, ω.
Let r ∈ {0, 1}. Then

corankZpSelp∞(E/Q) = r �⇒ ords=1L(E, s) = r,

and so rankZE(Q) = r and #W(E/Q) <∞.

Proof The proof of this result is a consequence of Corollary 4.2.3 for suitable
choices of a quadratic imaginary field K depending on r ∈ {0, 1}.

First we suppose corankZpSelp∞(E/Q) = 1. It follows from [40, Theorem
1.5] that the root numberw(E/Q) = −1. Choose an imaginary quadratic field
K of discriminant DK such that

(a) DK < −4 is odd,
(b) every prime � dividing N splits in K ,
(c) p splits in K , say p = vv̄,
(d) L(EK , 1) �= 0.

The existence of such K (in fact, of an infinitude of them) is ensured by [18,
Thm. B.1], since (a), (b), and (c) impose only a finite number of congruence
conditions on DK , and any K satisfying (b) is such that E/K has root number
w(E/K ) = w(E/Q)w(EK /Q) = −1, and therefore w(EK /Q) = +1. By
work of Kolyvagin [36] (or alternatively, Kato [34]), the non-vanishing of
L(EK , 1) implies that Selp∞(EK /Q) is finite and therefore

corankZpSelp∞(E/K ) = 1,

and hence E satisfies (Sel). In particular, all the hypotheses of Corol-
lary 4.2.3 hold. As in the proof of Corollary 3.4.2, the condition that
corankZpSelp∞(E/K ) = 1 easily implies that ordP0(X tors) = 0, and so it
then follows from Corollary 4.2.3 that the image of κ1 in H1(K , TpE) is
non-zero. This implies that the Heegner point PK ∈ E(K ) is non-torsion
and hence, by the Gross–Zagier formula that ords=1 L(E/K , s) = 1. Since
L(E/K , s) = L(E, s)L(EK , s) and ords=1 L(EK , s) = 0 by the choice of
K , it follows that ords=1 L(E, s) = 1.
We now assume corankZpSelp∞(E/Q) = 0. The result of Monsky used

above implies in this case that w(E/Q) = +1. We now choose an imagi-
nary quadratic field K satisfying the same conditions (a), (b), (c) as above, in
addition to the condition

(d’) ords=1 L(EK , 1) = 1.
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The existence of infinitelymany such K follows from [18, Thm.B.2], since any
K satisfying (b) is such that w(EK /Q) = −1. The Gross–Zagier–Kolyvagin
theorem implies that corankZpSelp∞(E

K /Q) = 1 and therefore

corankZpSelp∞(E/K ) = 1.

Thus, as above, E satisfies (Sel), and we can apply Corollary 4.2.3 and the
Gross–Zagier formula to obtain ords=1 L(E/K , s) = 1, which implies by our
choice of K that L(E, 1) �= 0. ��

Since the hypotheses of Theorem 5.2.1 imply E(Q)[p] = 0, we see that
Selp∞(E/Q)[p] = Selp(E/Q), whence the following mod p version of the
theorem.

Corollary 5.2.2 Suppose E is as in Theorem 5.2.1 and r ∈ {0, 1}. Then
dimFp Selp(E/Q) = r �⇒ ords=1L(E, s) = r,

and so rankZE(Q) = r and #W(E/Q) <∞.

For p = 3, Corollary 5.2.2 together with the work of Bhargava–Klagsbrun–
Lemke Oliver–Shnidman [5] on the average 3-Selmer rank in quadratic twist
families, leads to the following result in the direction of Goldfeld’s conjecture
[19].

Corollary 5.2.3 Let E be an elliptic curve over Q with a rational 3-isogeny.
Then a positive proportion of quadratic twists of E have algebraic and ana-
lytic rank equal to 1 and a positive proportion of quadratic twists of E have
algebraic and analytic rank equal to 0.

Proof Denote by φ : GQ → F×3 = μ2 the character giving the Galois action
on the kernel of a rational 3-isogeny of E . As the condition φ|Gp �= 1, ω can
be arranged by a quadratic twist, combining [5, Thm. 2.6] and Corollary 5.2.2,
the result follows. ��
Remark 5.2.4 The qualitative result of Corollary 5.2.3 was first obtained by
Kriz–Li (see [35, Thm. 1.5]), but thanks to [5] (see esp. [op.cit., p. 2957]) our
result can lead to better lower bounds on the proportion of rank 1 twists. In
particular the proportions provided by [5, Thm. 2.5] are the largest when the
parity of the logarithmic Selmer ratios is equidistributed in quadratic families.
The elliptic curve of smallest conductor over Q for which this happens is
the elliptic curve having Cremona label 19a3 given by the affine equation
y2 + y = x3 + x2 + x . The explicit bounds of [5] and our result give that at
least 41.6% of its quadratic twists have analytic and algebraic rank equal to 1
and at least 25% have analytic and algebraic rank equal to 0.
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5.3 Proof of the p-part of BSD formula

The following is Theorem F in the introduction.

Theorem 5.3.1 Let E/Q be an elliptic curve, and let p > 2 be a prime of
good ordinary reduction for E. Assume that E admits a cyclic p-isogeny with
kernel C = Fp(φ), with φ : GQ → F×p such that

• φ|Gp �= 1, ω,
• φ is either ramified at p and odd, or unramified at p and even.

If ords=1L(E, s) = 1, then

ordp

(
L ′(E, 1)

Reg(E/Q) ·�E

)
= ordp

(
#W(E/Q)

∏

��∞
c�(E/Q)

)
.

In other words, the p-part of the Birch–Swinnerton-Dyer formula for E holds.

Proof Suppose ords=1L(E, s) = 1 and choose, as in the proof of Theo-
rem 5.2.1, an imaginary quadratic field K of discriminant DK such that

(a) DK < −4 is odd,
(b) every prime � dividing N splits in K ,
(c) p splits in K , say p = vv̄,
(d) L(EK , 1) �= 0.

Then ords=1L(E/K , s) = 1,which byTheorem5.1.2 implies that theHeegner
point PK ∈ E(K ) has infinite order, and therefore rankZE(K ) = 1 and
#W(E/K ) <∞ by [36]. In particular, (Sel) holds, and so all the hypotheses
of Theorem 4.2.2 are satisfied. Thus there is a p-adic unit u ∈ (Zur

p )
× for

which

FE (0) = u · LE (0), (5.4)

where FE ∈ � is a generator of char�(XE ). The hypotheses on φ imply that
E(K )[p] = 0, and so Theorem 5.1.1 applies with P = PK , which combined
with Theorem 5.1.3 and the relations (4.5) and (5.4) yields the equality

ordp
(
#W(E/K )

) = 2 ordp
(
c−1E u−1K · [E(K ) : Z.PK ]

)

−
∑

w∈S
ordp

(
cw(E/K )

)
, (5.5)

On the other hand, the Gross–Zagier formula of Theorem 5.1.2 can be
rewritten (see [25, p. 312]) as

L ′(E/K , 1) = 2t c−2E u−2K · ĥ(PK ) ·�E ·�EK ,
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where the power of 2 is given by the number of connected components [E(R) :
E(R)0]. This, together with the relations L(E/K , s) = L(E, s) · L(EK , s)
and

ĥ(PK ) = [E(K ) : Z · PK ]2 · Reg(E/K ) = [E(K ) : Z · PK ]2 · Reg(E/Q),

using that rankZEK (Q) = 0 for the last equality, amounts to the formula

L ′(E, 1)
Reg(E/Q) ·�E

· L(E
K , 1)

�EK
= 2t c−2E u−2K · [E(K ) : Z · PK ]2. (5.6)

Note that uK = 1, since DK < −4. SinceW(E/K )[p∞] �W(E/Q)[p∞]⊕
W(EK /Q)[p∞] as p is odd, and

∑

w|�
ordp(cw(E/K )) = ordp(c�(E/Q))+ ordp(c�(E

K /Q))

for any prime � (see [48, Cor. 9.2]), combining (5.5) and (5.6) we arrive at

ordp

(
L ′(E, 1)

Reg(E/Q) ·�E ·∏� c�(E/Q)

)
− ordp(#W(E/Q))

= ordp

(
L(EK , 1)

�EK ·∏� c�(E
K /Q)

)
− ordp

(
#W(EK /Q)

)
.

(5.7)

Finally, by our hypotheses on φ the curve EK satisfies the hypotheses of
Theorem 5.1.4, and hence the right-hand side of (5.7) vanishes, concluding
the proof of Theorem 5.3.1. ��
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