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1. Introduction

Fourier multipliers are by far the most important operators in analysis. One can say 
that classical harmonic analysis has been developed around Fourier multipliers. The 
main task there is to find criteria for the boundedness of Fourier multipliers on various 
function spaces, notably on Lp-spaces. However, it is in general impossible to characterize 
their Lp-boundedness for finite p �= 2. In this regard, the most fundamental result is the 
celebrated Hörmander-Mikhlin multiplier theorem which asserts that if m is a C [ d2 ]+1

function on Rd\{0} such that

sup
0≤|α|≤[ d2 ]+1

sup
ξ∈Rd\{0}

|ξ||α||∂αm(ξ)| < ∞,

where α = (α1, · · · , αd) denotes a multi-index of nonnegative integers and |α| = α1 +
· · · + αd, then the associated Fourier multiplier Tm, defined via Fourier transform by 
̂Tm(f) = mf̂ , is a bounded map on Lp(Rd) for all 1 < p < ∞. A similar statement holds 
for the periodic case, i.e., for Td instead of Rd. More precisely, if m : Zd → C satisfies

‖m‖HM = sup
0≤|α|≤[ d2 ]+1

sup
k∈Zd

|k||α||∂αm(k)| < ∞, (1)

where ∂α = ∂α1
k1

· · · ∂αd

kd
denotes the partial discrete difference operator of order α =

(α1, · · · , αd), then the associated Fourier multiplier Tm is a bounded map on Lp(Td)
for all 1 < p < ∞. A simple argument by Fubini’s theorem gives that Tm extends to a 
bounded map on Lp(Ẑ∞) for all 1 < p < ∞ if m : Z∞ → C depends only on the first d
variables, and satisfies (1). The main theorem of this article says, in particular, that the 
aforementioned Hörmander-Mikhlin theorem holds for the nonabelian free groups F∞
instead of Z∞, that is replacing the independence by the freeness of the coordinates.

In noncommutative harmonic analysis and operator algebras, the study of Fourier 
multipliers on general groups is of paramount importance. These multipliers are also 
called Herz-Schur multipliers in the literature. The underlying Lp-spaces are then the 
noncommutative Lp-spaces on the group von Neumann algebra. This line of investigation 
finds one of its origins in the study of approximation properties of operator algebras 
inaugurated by Haagerup’s pioneering work [6] on Fourier multipliers on free groups in 
which he solved the longstanding problem on Grothendieck’s approximation property 
for the reduced C*-algebra of a free group: this algebra has the completely bounded 
approximation property. Later, together with De Cannière [2] and Cowling [5], Haagerup 
studied completely bounded multipliers on the Fourier algebras of classical Lie groups.

One of the remarkable recent achievements in the interplay between multipliers and 
noncommutative Lp-spaces is the result of Lafforgue and de la Salle [20] asserting that 
the noncommutative Lp-space with p > 4 associated to the von Neumann algebra of 
SL3(Z) fails the completely bounded approximation property. Haagerup and coauthors 
[9,10,8] extended their result to connected simple Lie groups; later, de Laat and de la 
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Salle [19] discovered that Lp-multipliers are very tightly connected with Banach space ge-
ometry and group representations. Other striking illustrations of this interplay are Junge 
and Parcet’s work [17] on the Maurey-Rosenthal factorization for noncommutative Lp-
spaces which relies on Schur multiplier estimates. Multipliers are also intimately related 
to functional calculus in von Neumann algebras as shown by the resolution of Krein’s 
celebrated Lipschitz continuity problem in noncommutative Lp-spaces by Potapov and 
Sukochev [34], see also [3] where the crucial use of Fourier multipliers is more apparent.

In a recent series of articles [7,11], Haagerup and co-authors obtained a beautiful 
handy characterization of the completely bounded radial multipliers on the von Neumann 
algebras (i.e. L∞) of free groups and p-adic groups, and, more generally, on homogeneous 
trees and free products; see also Wysoczański’s previous work [37]. All this has motivated 
many other publications of the same nature, in particular, building on Ozawa’s work 
[28], Mei and de la Salle [24] obtained a similar characterization for hyperbolic groups. 
Nevertheless, little has been understood for non-radial multipliers,1 nor for Lp-spaces 
with 2 < p < ∞. Here, the most challenging problem is to find a Hörmander-Mikhlin 
type criterion for Fourier multipliers on Lp-spaces to be completely bounded.

The recent papers [15,16,29] provide a first advance towards this direction. The work 
[25] by the first and second named authors is more related to the present article, it 
introduces the free Hilbert transforms on free groups and free products of von Neumann 
algebras and showed their Lp-boundedness for all 1 < p < ∞. We pursue this line 
of investigation by going considerably beyond, and will exhibit a large family of Lp-
multipliers in the free setting.

To proceed further, we need some notation and refer to the next section for all un-
explained notions. Let Γ be a discrete group and λ its left regular representation on 
�2(Γ). The group von Neumann algebra vN(Γ) is the von Neumann algebra generated 
by λ(Γ), it is also equal to the weak* closure of the group algebra C[Γ] that consists of 
all polynomials in λ:

C[Γ] =
{ ∑

g∈Γ
α(g)λ(g) : α(g) ∈ C

}
.

Following notation in quantum groups, we will denote vN(Γ) by Γ̂ in this article. Γ̂ is 
equipped with its canonical tracial state τ defined by τ(x) = 〈δe, xδe〉 for any x ∈ Γ̂, 
where δe denotes the Dirac mass at the identity e of Γ. Lp(Γ̂) is the noncommutative Lp-
space based on (Γ̂, τ), it is equipped with the natural operator space structure introduced 
by Pisier.

For a complex function m on Γ, the associated Fourier multiplier Tm is a linear 
map on C[Γ] determined by λ(g) 	→ m(g)λ(g). We call m a (completely) bounded Lp-
multiplier on Γ if Tm extends to a (completely) bounded map on Lp(Γ̂). Our main 

1 A better understanding of non-radial multipliers seems to be in order to answer some fundamental 
open questions, such as the existence of a Schauder basis for the free group reduced C∗-algebras and the 
construction of a concrete Schauder basis for the corresponding noncommutative Lp-spaces.
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aim is to find sufficient conditions for m to be such a multiplier. Note that the periodic 
Hörmander-Mikhlin theorem recalled at the beginning concerns the case Γ = Zd in which 
Γ̂ = L∞(Td), T being the unit circle equipped with the normalized Haar measure. In 
this case, every function m on Zd satisfying (1) is a completely bounded Lp-multiplier 
on Zd.

Throughout the article, F∞ will denote a free group on infinite generators {g1, g2, · · · }. 
An element g ∈ F∞ different from the identity e is written as a reduced word on 
{g1, g2, · · · }:

g = gk1
i1
gk2
i2

· · · gkn
in

with i1 �= i2 �= · · · �= in, kj ∈ Z \ {0}, 1 ≤ j ≤ n. (2)

Given a complex function m on Zd and a fixed d ∈ N, we define Mm : C[F∞] → C[F∞]
by

Mm(λ(g)) =
®
m(k1, · · · , kd)λ(g) if d ≤ n,

m(k1, · · · kn, 0, · · · , 0)λ(g) if d > n

for every g as in (2). Below is our first main theorem. It is contained in [26] for d = 1.

Theorem 1.1. Let d ∈ N and 1 < p < ∞. If m is a completely bounded Lp-multiplier 
on Zd, then Mm extends to a completely bounded map on Lp(F̂∞). In particular, the 
conclusion holds if m satisfies (1).

To achieve Theorem 1.1, we establish a new platform to transfer the Lp-complete 
boundedness of Fourier multipliers on tori to Fourier multipliers on free groups. The key 
tool is a group of unitary actions on L2(F̂∞) and its complete boundedness on Lp(F̂∞)
for all 1 < p < ∞. Given z = (zj,i)1≤j≤d, 1≤i<∞ ∈ Td × T∞, let

αLd
z (λ(g)) = zk1

1,i1z
k2
2,i2 · · · z

kd

d,id
λ(g)

for g as in (2) (with k� = 0 if � > n). It is obvious that αLd extends to a unitary action 
of the group Td × T∞ on L2(F̂∞).

Theorem 1.2. The above action αLd of Td × T∞ on L2(F̂∞) extends to a uniformly 
completely bounded action on Lp(F̂∞) for every 1 < p < ∞ with constant depending only 
on d and p.

Theorem 1.1 will follow from Theorem 1.2 and a standard transference argument. Our 
initial proof of Theorem 1.2 was very long and technical. We have then luckily found 
a new and shorter argument; the new one depends, in a crucial way, on an analogous 
result on amalgamated free products of von Neumann algebras. The new approach has 
the extra advantage that it allows us to easily extend Theorems 1.1 and 1.2 to free 
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products of general discrete groups. The basic idea is to show that we can exchange the 
first letters by a free copies of them.

In this context, let (Ai, τi)i∈I be a family of finite von Neumann algebras equipped 
with normal faithful tracial states. Let B be a common von Neumann subalgebra of the 
Ai’s and Ei : Ai → B be the corresponding trace preserving conditional expectation. We 
denote by (A, τ) = ∗i∈I,B(Ai, τi) the amalgamated free product of the (Ai, τi)’s over B. 
Let E be the conditional expectation from A to B. As usual, for X ⊂ Lp(A) we write X̊
for the set {x − E(x) : x ∈ X}.

Assume that we are given maps Tj,i : Lp(Ai) → Lp(Ai) with 1 ≤ j ≤ d and i ∈ I

satisfying the following conditions

• Tj,i is B-bimodular, that is, Tj,i(axb) = aTj,i(x)b for a, b ∈ B and x ∈ Lp(Ai);

• Tj,i

( ˚˚�Lp(Ai)
)
⊂

˚˚�Lp(Ai).

We can define a map TLd as follows. TLd(b) = b for b ∈ B and

TLd(a) =
®
T1,i1(a1) ⊗ · · · ⊗ Td,id(ad) ⊗ ad+1 ⊗ · · · ⊗ an if d < n,

T1,i1(a1) ⊗ · · · ⊗ Tn,in(an) if d ≥ n

for a = a1 ⊗ · · · ⊗ an ∈ Åi1 ⊗B · · · ⊗B Åin with i1 �= i2 �= · · · �= in.
The following theorem and its proof contain the main novelty of the article, it gives 

a surprisingly simple condition to ensure the complete boundedness of the map TLd on 
Lp(A).

Theorem 1.3. Let 1 < p < ∞. Assume that the Tj,i’s extend to completely bounded maps 
on Lp(Ai) and on L2(Ai) uniformly in i, j. Then TLd extends to a completely bounded 
map on Lp(A) with

‖TLd‖cb(Lp(A)) �p,d

d∏
j=1

sup
i∈I

(
‖Tj,i‖cb(Lp(Ai)) + ‖Tj,i‖cb(L2(Ai))

)
.

It is clear that the assumption above is necessary for the validity of the conclusion. 
Thus the theorem gives a characterization of the complete boundedness of TLd on Lp(A). 
Another aspect to be emphasized is the fact that p is a single fixed index. One of the main 
ingredients in our argument is a length reduction formula for the Lp-norms associated 
with amalgamated free products that we state as Theorem 4.6. This formula is interesting 
for its own right, it was previously proved in [18, Theorem B] for homogeneous free 
polynomials.

The article is organized as follows. After a brief introduction to necessary preliminar-
ies, we give in section 3 some norms on Hilbert B-modules that are the modular extensions 
of the usual column and row noncommutative Lp-norms; we show that bounded modular 



6 T. Mei et al. / Advances in Mathematics 403 (2022) 108394
maps extend to these modular noncommutative Lp-spaces. The results in this section 
provide crucial tools for section 4 that is the core of the article and contains our major 
ideas. Section 4 gives the proof of Theorem 1.3 that is done through a reduction for-
mula for polynomials in a free product of von Neumann algebras, the latter is proved 
in its turn with the help of an intermediate result (Theorem 4.5) that is a special case 
of Theorem 1.3 where d = 1, p > 2 and every Ti is a ∗-representation on Ai leaving B
invariant and commuting with Ei for all i ∈ I. Theorems 1.1 and 1.2 easily follow from 
the results in section 4; moreover, the arguments can be extended to the free products 
of general (non abelian) discrete groups. We do all this in section 5. This section also 
contains some more paraproducts which might be interesting in free analysis. We end 
the article with an appendix on the endpoint p = ∞.

We will use the following convention through the article: A � B (resp. A �p B) means 
that A ≤ cB (resp. A ≤ cpB) for some absolute positive constant c (resp. a positive 
constant cp depending only on p). A � B or A �p B means that these inequalities as 
well as their inverses hold.

2. Preliminaries

This section presents some preliminaries on noncommutative Lp-spaces and amalga-
mated free products.

Murray and von Neumann’s work [27] demonstrates von Neumann algebras as a natu-
ral framework to do noncommutative analysis. The elements in a von Neumann algebra
M can be integrated over the equipped trace τ and measured by the associated Lp-
norms. In the sequel, M will denote a von Neumann algebra with a normal faithful 
semifinite trace τ . For each 1 ≤ p ≤ ∞, let Lp(M) be the noncommutative Lp-space 
associated with the pair (M, τ). Note that L∞(M) = M with the operator norm. We 
refer to [33] for details and more historical references.

Recall a C∗-algebra A has the weak expectation property of Lance (in short WEP) 
if for the universal representation A ⊂ A∗∗ ⊂ B(H), there is a contraction P from 
B(H) to A such that the restriction of P on A is the identity map. A C∗-algebra N is 
QWEP if it is a quotient of a WEP C∗-algebra by a two sided ideal. See [32, Chp 15]
for more information. It is an unpublished result of Junge that when M is a QWEP von 
Neumann algebra, Lp(M) is completely finitely representable in the Schatten p-class Sp

for 1 ≤ p < ∞.
All Lp-spaces in this article will be equipped with their natural operator space struc-

ture introduced by Pisier in [31,32]. We also refer to [32] for operator space theory. In 
fact, what we will need from the latter theory is only [31, Lemma 1.7] that asserts that a 
linear map T : Lp(M) → Lp(M) is completely bounded iff IdSp

⊗ T : Lp(B(�2)⊗M) →
Lp(B(�2)⊗M) is bounded; and the completely bounded norm of T is equal to the usual 
norm of IdSp

⊗ T and denoted by ‖T‖cb(Lp(M)) or simply ‖T‖cb when no ambiguity is 
possible. As explained just above, here the Schatten p-class Sp can be replaced by Lp(N )
for any QWEP von Neumann algebra N without changing ‖T‖cb. Note that L2(M) is 
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an operator Hilbert space and every bounded map on it is automatically completely 
bounded with the same norm.

We will often be concerned with group von Neumann algebras. Let Γ be a discrete 
group. Recall the definition of its left regular representation λ: for any g ∈ Γ, λ(g) is 
just the left translation by g on �2(Γ), i.e., λ(g)(f)(h) = f(g−1h) for any h ∈ Γ and 
f ∈ �2(Γ). Thus λ(g)(δh) = δgh, where δh is the Dirac mass at h. C[Γ] denotes the linear 
span of λ(Γ). Then the group von Neumann algebra Γ̂ is the weak* closure of C[Γ] in 
B(�2(Γ)). The canonical trace of Γ̂ is the vector state induced by δe with e the identity 
of Γ. When Γ is abelian (e.g. Γ = Zd) Lp(Γ̂) coincides with the usual Lp-space on the 
dual group of Γ. We will need the following result in Section 5.3, which is usually called 
Fell’s “absorption principle”.

Lemma 2.1. Let Id be the trivial representation of Γ on B(H) for some Hilbert space H, 
e.g. Id(g) = IdB(H) for any g ∈ Γ. Then, for any unitary representation U : Γ → B(H), 
λ ⊗ U is unitary equivalent to λ ⊗ Id. In particular, for any finite supported function c
on G, we have that

‖
∑
g

c(g)λ(g)‖Γ̂ = ‖
∑
g

c(g)λ(g) ⊗ U(g)‖Γ̂⊗B(H).

We turn to the second part on amalgamated free products. Let (Ai, τi)i∈I be a family 
of finite von Neumann algebras equipped with normal faithful normalized traces. Let B
be a common von Neumann subalgebra of Ai for all i ∈ I, and Ei : Ai → B the trace 
preserving conditional expectation. Denote (A, τ) = ∗i,B(Ai, τi), the amalgamated free 
product of (Ai, τi)i∈I over B. We will briefly recall the construction to fix notation.

For any x ∈ Ai, we denote by x̊ = x − Eix and Åi = {x̊ : x ∈ Ai}, which yields a 
natural decomposition Ai = B ⊕ Åi. We use the multi-index notation: i = (i1, · · · , in) ∈
In. The space

W =
⊕
n≥0

⊕
(i1,··· ,in)∈In

i1 �=i2 �=···�=in

Wi = B ⊕
⊕
n≥1

⊕
(i1,··· ,in)∈In

i1 �=i2 �=···�=in

Åi1 ⊗B · · · ⊗B Åin

is a ∗-algebra by using concatenation and centering with respect to B. The natural 
projection E from W onto B is a conditional expectation. τi ◦ E is a trace on W that 
is independent of i and will be denoted by τ . Then (A, τ) is the finite von Neumann 
algebra obtained by the GNS construction from (W, τ). Thus W is weak* dense in A
and dense in Lp(A) for p < ∞. Moreover, E extends to a trace preserving conditional 
expectation from A onto B. As E restricts to Ei on Ai, from now on we skip the index 
i for the conditional expectations.

For n ≥ 0, we denote by Pn the natural projection

Pn : W → Wn =
⊕

(i1,··· ,in)∈In

Åi1 ⊗B · · · ⊗B Åin
i1 �=i2···�=in
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and P≥n = Id − (P1 + · · · + Pn−1). Note that Pn extends to a completely bounded 
projection on Lp(A) with cb-norm ≤ 2n + 1 for all 1 ≤ p ≤ ∞ (see [36]).

For k ∈ I let

Lk =
⊕

i:i1=k

Wi and Rk = L∗
k.

We denote the associated orthogonal projections on W by Lk and Rk. Given a family 
ε = (εi)i∈{0}∪I of elements in B, and x ∈ W, we define

Hε(x) = ε0 E(x) +
∑
k∈I

εkLk(x) and Hop
ε (x) = E(x)ε∗0 +

∑
k∈I

Rk(x)ε∗k. (3)

The following is the heart of [25], we state it as a lemma for later reference.

Lemma 2.2. Let 1 < p < ∞ and ε = (εi)i∈{0}∪I be a family of unitaries in the center 
Z(B) of B. Then Hε and Hop

ε extend to completely bounded maps on Lp(A). Moreover,

‖Hε(x)‖p �p ‖x‖p �p ‖Hop
ε (x)‖p , x ∈ Lp(A).

3. Norms on modules

This section is a preparatory part for the next one. Here we will introduce the modular 
versions of the usual row and column p-operator spaces and show the corresponding 
boundedness results. This is quite tedious but we have to cope with it since they will 
be the key tools for the proofs of our main results on amalgamated free products in the 
next section. Our references for Hilbert C*-modules are [21,30].

Let B be a von Neumann subalgebra of a semifinite von Neumann algebra (M, τ)
such that the restriction of τ to B is semifinite too. We need to introduce several norms 
on tensor products related to Lp-modules as in [18].

Let E be a right Hilbert B-module with B-inner product 〈·, ·〉 (or 〈·, ·〉E if we deal with 
several modules). E is equipped with the norm induced by its inner product. However, 
we do not assume that E is complete. A typical example is, given an index set I, the 
module

CI(B) =
{
(xα)α∈I ⊂ B : sup

S⊂I finite

∥∥ ∑
α∈S

x∗
αxα

∥∥
B < ∞

}

with inner product 〈x, y〉 = limS
∑

α∈S x∗
αyα which is well defined as a weak* limit over 

finite subsets of I for inclusion. By [21,30], a general module E can be embedded into 
a self-dual Hilbert module and there exist an index set I and a right B-module map 
u = (uα)α∈I : E → CI(B) so that 〈x, y〉 = 〈u(x), u(y)〉.

Given 2 ≤ p < ∞, we introduce a norm on the amalgamated tensor product E ⊗B
Lp(M) as follows:
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‖x‖Ec⊗pLp(M) =
∥∥∥( n∑

i,j=1
a∗i 〈xi, xj〉aj

)1/2∥∥∥
Lp(M)

for x =
∑n

i=1 xi ⊗ ai ∈ E ⊗B Lp(M). Equipped with this norm, E⊗B Lp(M) is denoted 
by Ec ⊗p Lp(M) (the superscript c refers to column). In [18], this norm is denoted by ∥∥ ∑

i |xi〉ai
∥∥
p
. Via the above concrete embedding of E into CI(B), the map

u⊗ IdLp(M) : Ec ⊗B Lp(M) → CI(B) ⊗B Lp(M) ⊂ Lp

(
B(�2(I))⊗M)

)
is then an isometry that allows us to view Ec ⊗p Lp(M) as a subspace of the column 
subspace of the last space. This also fully justifies that ‖ · ‖Ec⊗pLp(M) is indeed a norm.

Similarly, given F a left Hilbert B-module, we define a norm on Lp(M) ⊗B F by

‖y‖Lp(M)⊗pF r =
∥∥∥( n∑

i,j=1
bi〈yi, yj〉b∗j

)1/2∥∥∥
Lp(M)

for y =
∑n

i=1 bi⊗yi. This norm is denoted by 
∥∥∑

i bi〈yi| 
∥∥
p

in [18]. As above, Lp(M) ⊗pF
r

can be identified with a subspace of the row subspace of Lp

(
B(�2(J ))⊗M

)
for some 

index set J .
We can gather the two definitions together and introduce a norm on E⊗BLp(M) ⊗BF ; 

the resulting space is denoted by Ec ⊗p Lp(M) ⊗p F r, it isometrically embeds into 
Lp

(
B(�2(J , I))⊗M

)
. This is independent of the choice of the sets I, J .

We will need extra notions when we assume that E and F are also bimodules (i.e., 
B ⊂ LB(E), the algebra of adjointable right B-modular maps on E, and B ⊂ BL(F ), 
the algebra of adjointable left B-modular maps on F ). Given E′ another right Hilbert 
B-module, we can consider E′⊗BE as a right B-module with the internal inner product; 
consequently, we have the space (E′ ⊗B E)c ⊗p Lp(M). Note that the norm of (E′ ⊗B
E)c⊗p Lp(M) coincides with that of E′c⊗p (Ec⊗p Lp(M)) when viewing Ec⊗p Lp(M)
in the column subspace of Lp

(
B(�2(I))⊗M

)
as above. Similar constructions apply to 

the row case too. It is clear that all these operations are naturally associative.

Remark 3.1. We will often use without any reference that the above norms are injective. 
We mean that if E′ ⊂ E, F ′ ⊂ F are submodules and (M′, τ) ⊂ (M, τ) is a semifinite von 
Neumann subalgebra, then E′c⊗pLp(M′) ⊗pF

′r isometrically sits in Ec⊗pLp(M) ⊗pF
r.

Proposition 3.2. Assume that T : E → E is a bounded right B-modular map. Then

∥∥T ⊗ IdLp(M) : Ec ⊗p Lp(M) → Ec ⊗p Lp(M)
∥∥ ≤ ‖T‖.

If additionally E is equipped with a left B-action and T is B-bimodular, then for any 
right Hilbert B-module E′
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∥∥IdE′ ⊗ T ⊗ IdLp(M)
∥∥
B

(
(E′⊗BE)c⊗pLp(M)

) ≤ ‖T‖.

Similar statements hold for left modules too.

Proof. By [30, Theorem 2.8], we have 〈T (x), T (x)〉 ≤ ‖T‖2〈x, x〉 for x ∈ E. Let xi ∈ E

and bi ∈ B for 1 ≤ i ≤ n. Then

〈
∑
i

T (xi)bi,
∑
i

T (xi)bi〉 ≤ ‖T‖2〈
∑
i

xibi,
∑
i

xibi〉,

so we can reinterpret this inequality in the matrix algebra Mn(B) as

0 ≤
(
〈T (xi), T (xj)〉

)
i,j

≤ ‖T‖2(〈xi, xj〉
)
i,j
.

The latter immediately implies

(∑
i,j

a∗i 〈T (xi), T (xj)〉aj
)1/2

≤ ‖T‖2
(∑

i,j

a∗i 〈xi, xj〉aj
)1/2

for any ai ∈ Lp(M). This yields the first assertion.
The second follows from the same argument by noticing that IdE′ ⊗ T is bounded on 

the right Hilbert B-module E′ ⊗B E with norm ‖T‖. Indeed, for finite families xi ∈ E

and yi ∈ E′ with 1 ≤ i ≤ n

〈
∑
i

yi ⊗ T (xi),
∑
i

yi ⊗ T (xi)〉E′⊗BE =
∑
i,j

〈T (xi), 〈yi, yj〉E′T (xj)〉E .

As a positive element in Mn(B), the matrix 
(
〈yi, yj〉E′

)
i,j

can be written as

(
〈yi, yj〉E′

)
i,j

=
∑
k

(
b∗k,i bk,j

)
i,j

with bk,j ∈ B.

Thus we deduce

〈
∑
i

yi ⊗ T (xi),
∑
i

yi ⊗ T (xi)〉E′⊗BE ≤ ‖T‖2
∑
k

〈
∑
i

bk,ixi,
∑
i

bk,ixi〉E

= ‖T‖2〈
∑
i

yi ⊗ xi,
∑
i

yi ⊗ xi〉E′⊗BE .

This is the desired boundedness of IdE′ ⊗ T on E′ ⊗B E. Thus the proposition is 
proved. �

Thanks to the identifications recalled at the beginning of this section, the previous 
proposition immediately implies the following
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Remark 3.3. If T : E → E is a bounded right B-modular map, then for any left B-module 
F

∥∥T ⊗ IdLp(M) ⊗ IdF : Ec ⊗p Lp(M) ⊗p F
r → Ec ⊗p Lp(M) ⊗p F

r
∥∥ ≤ ‖T‖.

A similar statement holds for bimodules, namely, IdE′ ⊗ T ⊗ IdLp(M) ⊗ IdF is bounded 
on (E′ ⊗B E)c ⊗p Lp(M) ⊗p F

r with norm less than or equal to ‖T‖ if additionally E is 
equipped with a left B-action and T is B-bimodular.

Remark 3.4. Proposition 3.2 is the modular version of the fact that the row and column 
p-operator spaces are homogeneous (i.e., when B = C and E and F are just Hilbert 
spaces).

A typical situation in which we will apply the previous results is the case when 
E = F = A with A a finite von Neumann algebra containing B. The right inner product 
on A is 〈x, y〉 = E(x∗y) and the left 〈〈x, y〉〉 = E(xy∗), E being the trace preserving 
conditional expectation from A onto B. In this case, we have Ac ⊗2 L2(B) = L2(A)
isometrically. Thus if T : A → A is right B-modular and bounded for 〈·, ·〉, it au-
tomatically extends to a map T̃ : L2(A) → L2(A) with ‖T̃‖B(L2(A)) ≤ ‖T‖. Since 
‖〈x, x〉‖B = supb∈L2(B),‖b‖2≤1 ‖xb‖2 for x ∈ A, we actually have ‖T̃‖B(L2(A)) = ‖T‖. We 

may still write T instead of T̃ .
We state this fact as a lemma for later use.

Lemma 3.5. Let (A, τ) be a finite von Neumann and B ⊂ A a von Neumann subalgebra 
with the associated conditional expectation E. Assume that A is equipped with the right 
B-module inner product 〈x, y〉 = E(x∗y). Then any bounded right B-modular map T :
A → A extends to a bounded map on L2(A) with ‖T‖B(L2(A)) = ‖T‖.

If T : A → A is completely positive and leaves B invariant, then it satisfies the above 
conditions. If additionally E ◦T ≤ E, then T also extends to a completely bounded map 
on Lp(A).

We will need the following

Proposition 3.6. Let T : Lp(M) → Lp(M) be a completely bounded map. Then for any 
right Hilbert B-module E and left Hilbert B-module F we have

∥∥IdE ⊗ T ⊗ IdF

∥∥
cb(Ec⊗pLp(M)⊗pF r) ≤ ‖T‖cb.

Proof. This is a direct consequence of the fact that identifying Ec ⊗p Lp(M) ⊗ F r with 
a subspace of Lp

(
B(�2(J , I))⊗M

)
, then IdE ⊗ T ⊗ IdF acts like Id ⊗ T . �



12 T. Mei et al. / Advances in Mathematics 403 (2022) 108394
4. Multipliers on amalgamated free products

This section is the core of the article and contains our major novelty. The principal 
result is Theorem 4.9 that will imply Theorem 1.3 by iteration. Throughout this section, 
(Ai, τi)i∈I will denote a family of finite von Neumann algebras containing B as a common 
subalgebra. We will use notation introduced in section 2 on amalgamated free products, 
in particular, (A, τ) = ∗i∈I,B(Ai, τi).

4.1. An intermediate result

Given a family π = (πi)i∈I of ∗-representations πi : Ai → Ai such that πi(b) = b for 
all b ∈ B and E ◦πi = E, we introduce a linear map Tπ on W by Tπ(b) = b for b ∈ B and

Tπ(a1 ⊗ · · · ⊗ an) = πi1(a1) ⊗ a2 ⊗ · · · ⊗ an

for n ≥ 1 and a1 ⊗ · · · ⊗ an ∈ Wi where i = (i1, · · · , in) and i1 �= · · · �= in. Define T op
π on 

W as T op
π (x) = Tπ(x∗)∗. Note that both Tπ and T op

π commute with the projections Pn.
We aim to show that Tπ extends to a bounded map on Lp(A) for 1 < p < ∞. We will 

first need some elementary free algebraic facts.

Lemma 4.1. Let g ∈ Wl, h ∈ Wn with l, n ≥ 0.

i) If l > n, then Tπ(gh) = Tπ(g)h.
ii) If n > l, then T op

π (gh) = gT op
π (h).

iii) If l = n, then P≥2[Tπ(gh)] = P≥2[Tπ(g)h] and P≥2[T op
π (gh)] = P≥2[gT op

π (h)].

Proof. One can assume that g and h are elementary tensors. The first item is then clear 
as the first letter of g cannot be canceled if l > n. The second is obtained by passing to 
adjoints. Similarly, if n = l, P≥2(gh) is a sum of elementary tensors that all start with 
the first letter of g and end with the last letter of h, up to a multiplication by an element 
of B. �

The following Cotlar type formula immediately follows from the previous lemma.

Lemma 4.2. For g, h ∈ W we have

P≥2
[
Tπ(g)T op

π (h)
]

= P≥2
[
Tπ(gT op

π (h)) + T op
π (Tπ(g)h) − TπT

op
π (gh)

]
. (4)

Proof. By linearity, it suffices to show the formula for g ∈ Wl, h ∈ Wn. Then it remains 
to check it by using Lemma 4.1 according to the different cases. We omit the details. �
Lemma 4.3. Let g = g1 ⊗ · · · ⊗ gl ∈ Wl, h = hn ⊗ · · · ⊗ h1 ∈ Wn with l, n ≥ 0, and let 
g′ = g2 ⊗ · · · ⊗ gl and h′ = hn ⊗ · · · ⊗ h2.
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i) If n > l, then P1(gh) = δn,l+1E(gh′)h1.
ii) If l > n, then P1(gh) = δn+1,l g1E(g′h).
iii) If l = n, then P1(gh) = P1(g1E(g′h′)h1).

Proof. This proof is easy. Let us verify only i). If n > l + 1, then both P1(gh) and 
E(gh′)h1 vanish. The case n = l + 1 is checked by induction on l and n thanks to the 
following simplification formula:

gh = g− ⊗
˚

(̇glhn) ⊗ h− + g− E(glhn)h−

where g− = g1 ⊗ · · · ⊗ gl−1 and h− = hn−1 ⊗ · · · ⊗ h1. It then follows that P1(gh) =
P1(g− E(glhn)h−). �

We will also need the notation of paraproducts on W ×W in the manner of [25] to 
prove the boundedness of Tπ. Given x, y ∈ W, let

x
1,0
‡ y = Eε[Hop

ε (xHop
ε (y))],

x
0,1
‡ y = Eε[Hε(Hε(x)y)],

x
1,1
‡ y = EεEε′ [HεH

op
ε′ (Hε(x)Hop

ε′ (y))],

x
1,0
† y = xy − Eε[Hop

ε (xHop
ε (y))],

x
0,1
† y = xy − Eε[Hε(Hε(x)y)],

where Hε and Hop
ε are the free Hilbert transforms defined in (3) and Eε, Eε′ are the 

expectation over all possible choices of symmetric independent signs ε = (εi), ε′ = (ε′i). 

Note that when x and y are elementary tensors, then x
1,0
‡ y collects in xy the parts that 

end in the same algebra as y and x
1,0
† y collects in xy the parts that do not end in the 

same algebra as y, that is, all letters in y must have been simplified. Similarly, x
0,1
‡ y

collects in xy the parts that start in the same algebra as x, x
0,1
† y collects in xy the parts 

that do not start in the same algebra as x, and x
1,1
‡ y collects in xy the parts that start 

in the same algebra as x and end in the same algebra as y. We have the identity

xy = x
1,0
† y + x

0,1
† y + x

1,1
‡ y.

By Lemma 2.2, all these bilinear operators are bounded from Lp(A) × Lq(A) to Lr(A)
for all 1 < r, p, q < ∞, 1p + 1

q = 1
r .

The following is a complement to the Cotlar formula (4).
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Lemma 4.4. For g, h ∈ W we have

P1
(
Tπ(g)T op

π (h)
)

= Tπ

[
P1

(
g
1,0
† T op

π (h)
)]

+ T op
π

[
P1

(
Tπ(g)

0,1
† h

)]
+ Tπ

[
P1

(
g
1,1
‡ h

)]
. (5)

Proof. Note that the identity is bilinear, we will only check the formula for elementary 
tensors g ∈ Wl, h ∈ Wn with l, n ≥ 0 according to the three cases in Lemma 4.3 and use 
the notations g′, h′ there.

For the case i), we can assume n = l + 1, otherwise all terms are 0. Then

P1
(
Tπ(g)T op

π (h)
)

= E
(
Tπ(g)h′)πj1(h1).

On the right side, we have P1(g
1,1
‡ h) = 0 and g

1,0
† h = 0 as the last letter of h in gh is not 

canceled. To deal with g
0,1
† h, note that

Hε[P1(Hε(g)h)] = εi1εj1P1(gh),

with i1 = 0 if l = 0. Note that E(gh′) = 0 unless i1 = j2, but then j1 �= j2 and 

Eε(εi1εj1) = 0. It follows that P1(g
0,1
† h) = P1(gh). Hence the right hand side of (5) is 

exactly T op
π

[
P1

(
Tπ(g)h

)]
= E

(
Tπ(g)h′)πj1(h1).

The case ii) is obtained from i) by passing to adjoints.
For the case iii), we have P1(gh) = 0 unless ik = jk for all 1 ≤ k ≤ n. Hence we can 

assume that i1 = j1. Then noting that

Hε[P1(Hε(g)h)] = ε2
i1P1(gh) = P1(gh),

we deduce P1(g
0,1
† h) = 0; by symmetry, P1(g

1,0
† h) = 0 too. Thus the right hand side of 

(5) becomes

Tπ

[
P1

(
g
1,1
‡ h

)]
= Tπ

[
P1

(
g1E(g′h′)h1

)]
= πi1

[
P1

(
g1E(g′h′)h1

)]
.

However, the left hand side is

P1
[
πi1(g1)E(g′h′)πi1(h1)

]
= P1

[
πi1

(
g1E(g′h′)h1

)]
= πi1

[
P1

(
g1E(g′h′)h1

)]
because πi1 is a ∗-representation that leaves the elements of B invariant and P1πi1 =
πi1P1. (5) is thus proved in the case l = n too. �

The following is an intermediate result to Theorem 4.9, it will be the key for the 
reduction formula in Theorem 4.6 below.

Theorem 4.5. The map Tπ extends to a completely bounded map on Lp(A) for all 2 ≤
p < ∞ with cb-norm majorized by a constant depending only on p.
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Proof. As the πi’s are trace preserving and leave B invariant, Tπ is an isometry on W
for the L2(A)-norm, thus it extends to an isometry on L2(A). We need only to prove 
the boundedness of Tπ since the complete boundedness will then be automatic thanks 
to the usual trick of replacing B by the matrix algebra Mn(B).

As in [25], we show that the Lp-boundedness of Tπ implies its L2p-boundedness for 
2 ≤ p < ∞. Starting with p = 2, using iteration and interpolation, we will deduce the 
assertion for the full range 2 < p < ∞. In the following, we will denote by γp the norm 
of Tπ and T op

π on W equipped with the Lp-norm.
For x ∈ W we write

Tπ(x)Tπ(x)∗ = Tπ(x)T op
π (x∗)

= P≥2[Tπ(x)T op
π (x∗)] + P1[Tπ(x)T op

π (x∗)] + E[Tπ(x)T op
π (x∗)].

By (4) and the fact that P≥2 has norm less than 5 on Lp(A), we have

∥∥P≥2[Tπ(x)T op
π (x∗)]

∥∥
p
≤ 5

[
2γp‖x‖2p‖Tπ(x)‖2p + γ2

p‖x‖2
2p

]
.

On the other hand, by [25, Proposition 3.14] or Lemma 2.2, the paraproducts 
i,j

† are 
bounded from L2p(A) × L2p(A) to Lp(A) with norm less than ηp. Thus using (5) and 
the fact that P1 has norm less than 3 on Lp(A), we get

∥∥P1[Tπ(x)T op
π (x∗)]

∥∥
p
≤ 3ηpγp

[
2‖x‖2p‖Tπ(x)‖2p + ‖x‖2

2p
]
.

Clearly,

∥∥E[Tπ(x)T op
π (x∗)]

∥∥
p

= ‖E(xx∗)‖p ≤ ‖x‖2
p.

So combining all the estimates yields

‖Tπ(x)‖2
2p ≤ γp

(
10 + 6ηp)‖x‖2p‖Tπ(x)‖2p + (1 + 3ηpγp + 5γ2

p)‖x‖2
p.

It follows that

‖Tπ(x)‖2p ≤ Cγpηp‖x‖2p

for some absolute constant C, whence γ2p ≤ Cγpηp. This finishes the proof. �
4.2. A length reduction formula

We show here how to recursively estimate the Lp-norm of an element in W in the 
spirit of [18]. The space W is naturally a right Hilbert B-module with inner product 
〈x, y〉 = E(x∗y) and also a left Hilbert B-module with 〈〈x, y〉〉 = E(xy∗). The same 
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holds for W1 and W̊ as submodules. A typical element in W can be written as a finite 
sum

x = x0 + x1 +
∑
i,α

ai(α) ⊗ bi(α)def=x0 + x1 + z, (6)

where x0 ∈ B, x1 ∈ W1 and ai(α) ∈ Åi and bi(α) ∈ W̊ with Li(bi(α)) = 0.
The following result extends the main result of [18] on homogeneous polynomials to 

any polynomials, it is the key tool for the argument in the next subsection.

Theorem 4.6. With the notation above, for 2 ≤ p < ∞, we have (considering z ∈ W1⊗W̊)

‖x‖p ≈p ‖x0‖p + ‖x1‖p + ‖z‖Wc
1⊗pLp(A) + ‖z‖Lp(A)⊗pW̊r . (7)

Proof. By the boundedness of the projections P0 and P1, it suffices to prove the estimate 
for z. To this end, we consider two copies of A, and put a superscript to distinguish them. 
We use associativity of the free product to write

A(1) ∗B A(2) =
(
∗i∈I,B A(1)

i

)
∗B

(
∗i∈I,B A(2)

i

)
= ∗i∈I,B

(
A(1)

i ∗B A(2)
i

)def= ∗i∈I,B ‹Ai.

Since the traces are compatible, ‖x‖Lp(A) = ‖x(1)‖Lp(A(1)∗BA(2)) for every x ∈ Lp(A).
For each i, we define the swap map πi on ‹Ai by

a
(1)
1 ⊗ a

(2)
2 ⊗ a

(1)
3 ⊗ · · · 	→ a

(2)
1 ⊗ a

(1)
2 ⊗ a

(2)
3 ⊗ · · ·

a
(2)
1 ⊗ a

(1)
2 ⊗ a

(2)
3 ⊗ · · · 	→ a

(1)
1 ⊗ a

(2)
2 ⊗ a

(1)
3 ⊗ · · ·

for B-centered elements a(j)
k and by πi(b) = b for b ∈ B. It is clear that πi is a ∗-

representation, E-preserving and leaves the elements of B invariant. Thus, noticing that 
π2
i = Id ‹Ai

, we use Theorem 4.5 to get

∥∥∥ ∑
i,α

ai(α) ⊗ bi(α)
∥∥∥
Lp(A)

�p

∥∥∥ ∑
i,α

ai(α)(2) ⊗ bi(α)(1)
∥∥∥
Lp(A(1)∗BA(2))

.

The element 
∑

i,α ai(α)(2) ⊗ bi(α)(1) is homogeneous of degree 2 with respect to the 
length of A(1) ∗B A(2). Thus by [18, Theorem B]

∥∥∥ ∑
i,α

ai(α)(2) ⊗ bi(α)(1)
∥∥∥
Lp(A(1)∗BA(2))

�
∥∥∥ ∑

i,α

|ai(α)(2)〉b(1)i (α)
∥∥∥
p

+
∥∥∥ ∑

i,α

ai(α)(2)〈b(1)i (α)|
∥∥∥
p
.

Since taking copies clearly does not change norms, we have
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∥∥∥ ∑
i,α

|ai(α)(2)〉b(1)i (α)
∥∥∥
p

=
∥∥∥ ∑

i,α

ai(α)(2) ⊗ b
(1)
i (α)

∥∥∥
(W(2)

1 )c⊗pLp(A(1)∗BA(2))

=
∥∥∥ ∑

i,α

ai(α) ⊗ bi(α)
∥∥∥
Wc

1⊗pLp(A)
.

Similarly, ∥∥∥ ∑
i,α

ai(α)(2)〈b(1)i (α)|
∥∥∥
p

=
∥∥∥ ∑

i,α

ai(α) ⊗ bi(α)
∥∥∥
Lp(A)⊗pW̊r

.

This concludes the proof of the theorem. �
Remark 4.7. We could also have used [18, Theorem C] to make some terms more explicit. 
Namely,

‖x1‖p �
∥∥(

E(x∗
1x1)

)1/2∥∥
p

+
( ∑

i

‖Li(x1)‖pp
)1/p

+
∥∥(

E(x1x
∗
1)

)1/2∥∥
p
,

and

‖z‖Lp(A)⊗pW̊r �p

∥∥z∥∥Wc
1⊗W̊r +

∥∥(
E(zz∗)

)1/2∥∥
p

+
(∑

i

∥∥( ∑
α,β

ai(α)E(bi(α)bi(β)∗)ai(β)
)1/2∥∥p

p

)1/p
.

Here Wc
1 ⊗ W̊r has to be understood as Wc

1 ⊗p Lp(B) ⊗p W̊r.

Remark 4.8. It is now rather easy to get an analogue of [18, Theorem C]. The norm of 
the last term ‖z‖Wc

1⊗pLp(A) corresponds to that of an element in Sp ⊗p Lp(A) and we 
can formally iterate the argument. Thus, we can write the norm of x in P≥k

(
Lp(A)

)
as 

a sum of 2k + 1 norms. For simplicity assume x ∈ P≥k(W), they are given by

‖x‖Wc
l ⊗Wr , 0 ≤ l ≤ k,

‖x‖Wc
l ⊗p(⊕p

˚Lp(Ai))⊗pWr , 0 ≤ l ≤ k − 2

‖x‖Wc
k−1⊗pLp(A).

The last one being recursive. We leave the details to the interested reader.

4.3. Maps of the d-th letters and the proof of Theorem 1.3

This subsection contains our principal result that is the key step of the proof of 
Theorem 1.3. Fix 1 < p < ∞. Given a family of maps Ti : Lp(Ai) → Lp(Ai) we will 
define an associated map of the d-th letters of reduced words in W for d ≥ 1. The 
minimal assumption required for the Ti’s is the following
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(H1) Ti is B-bimodular and Ti

( ˚˚�Lq(Ai)
)
⊂

˚˚�Lq(Ai) for q = 2 and q = p.
(H2) Ti : Lq(Ai) → Lq(Ai) is completely bounded and

cbq = sup
i∈I

‖Ti‖cb(Lq(Ai)) < ∞ for q = 2 and q = p.

Note that the cb-norm of Ti on L2(Ai) coincides with its usual norm since L2(Ai) is a 
homogeneous operator space. On the other hand, it is obvious that

cbq =
∥∥ ⊕i Ti : Lq(⊕iAi) → Lq(⊕iAi)

∥∥
cb .

Now we define a linear map T (d) on W by T (d)(b) = b for b ∈ B and

T (d)(a1 ⊗ · · · ⊗ an) =
®
a1 ⊗ · · · ⊗ ad−1 ⊗ Tid(ad) ⊗ ad+1 ⊗ · · · ⊗ an if d ≤ n,

a1 ⊗ · · · ⊗ an if d > n

for n ≥ 1 and a1 ⊗ · · · ⊗ an ∈ Wi with i = (i1, · · · , in) and i1 �= · · · �= in. Note that the 
range of T (d) is not inside W but clearly in Lp(A).

Theorem 4.9. Under the hypotheses (H1) and (H2), T (d) extends to a completely bounded 
map on Lp(A) with

‖T (d)‖cb(Lp(A)) �p,d cb2 + cbp.

Proof. We start the proof by a crucial observation related to Lemma 3.5. We view Ai

as a right Hilbert B-module with the inner product 〈x, y〉 = E(x∗y). We claim that 
E(Ti(x)∗Ti(y)) belongs to B for any x, y ∈ A. By polarization, we can assume x = y. 
Then for b ∈ L2(Ai), by the modularity of Ti,

τ [b∗E(Ti(x)∗Ti(x))b] = τ [E(Ti(xb)∗Ti(xb))] = ‖Ti(xb)‖2 ≤ ‖Ti‖ ‖xb‖2 .

This implies the claim, as well as E(Ti(x)∗Ti(x)) ≤ ‖Ti‖〈x, x〉. Thus Ti(Ai) is a B-
bimodule. A similar statement holds when Ai is viewed as a left B-module with the 
inner product 〈〈x, y〉〉 = E(xy∗).

We have stated the results in section 3 for maps T : E → E but they clearly remain 
true if T : E → E′. We can thus apply them to the restriction of Ti to Ai with range 
Ti(Ai). The same holds for direct sums.

An immediate consequence is the boundedness of T (d) on W equipped with the L2-
norm, this follows from the orthogonality of the Wn’s and Proposition 3.2 combined with 
the above observation. So the theorem holds for p = 2. On the other hand, by duality, 
we need only to consider the case 2 < p < ∞ that will be assumed in the remainder of 
the proof.
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Before going into the core of the proof, we point out that the result of Theorem 4.6
can be applied to T (d)(x) when x ∈ W by using an obvious approximation argument. 
One just need to adapt correctly the modules, replacing Wc

1 by T (1)(W1)c if d = 1 and 
W̊r by T (d−1)(W̊)

r
if d ≥ 1.

We continue the proof by induction on d. The main part is the initial step: d = 1. By 
the usual argument of tensoring with the matrix algebras Mn, it suffices to prove the 
boundedness of T (1). We will apply Theorem 4.6. Let x = x0 + x1 + z ∈ W as (6).

To deal with ‖T (1)(x1)‖p, we use the Khintchine inequality from Remark 4.7. We have 
that T (1) is bounded on Lp(⊕iAi) with norm majorized by cbp, that is,

( ∑
i

‖Li(T (1)(x1))‖pp
)1/p

=
( ∑

i

‖Ti(Li(x1))‖pp
)1/p

≤ cbp

(∑
i

‖Li(x1)‖pp
)1/p

.

On the other hand, thanks to the previous observation, ⊕iTi can be viewed as a bounded 
modular map on W1 with respect to both inner products 〈·, ·〉 and 〈〈·, ·〉〉 with norm 
bounded by cb2. Thus by Proposition 3.2,

∥∥(
E[T (1)(x1)∗T (1)(x1)]

)1/2∥∥
p

=
∥∥(

E[([⊕iTi](x1))∗[⊕iTi](x1)]
)1/2∥∥

p

≤ cb2
∥∥(

E(x∗
1x1)

)1/2∥∥
p

and similarly for the second inner product. Hence,

‖T (1)(x1)‖p � (cb2 + cbp)‖x1‖p.

For the remaining part z, note that

T (1)(z) =
∑
i,α

[⊕jTj ](ai(α)) ⊗ bi(α).

Thus by the observation that ⊕iTi : W1 → T (1)(W1) is B-bimodular and Proposition 3.2, 
we again have

∥∥∥ ∑
i,α

Ti(ai(α)) ⊗ bi(α)
∥∥∥
T (1)(W1)c⊗pLp(A)

≤ cb2

∥∥∥ ∑
i,α

ai(α) ⊗ bi(α)
∥∥∥
Wc

1⊗pLp(A)
.

For the other norm of z, we use Proposition 3.6 to obtain
∥∥∥ ∑

i,α

Ti(ai(α)) ⊗ bi(α)
∥∥∥
Lp(A)⊗pW̊r

≤ cbp

∥∥∥ ∑
i,α

ai(α) ⊗ bi(α)
∥∥∥
Lp(A)⊗pW̊r

.

Thus T (1) extends to a (completely) bounded map on Lp(A).
Now assume that d ≥ 2 and T (d−1) is completely bounded on W for the Lp-norm. For 

x = x0 + x1 + z as above, we have
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T (d)(x0 + x1) = x0 + x1 and T (d)(z) =
∑
i,α

ai(α) ⊗ T (d−1)(bi(α)).

Using the boundedness of T (d−1) on L2(A) and Proposition 3.2, we have
∥∥∥T (d)

(∑
i,α

ai(α) ⊗ bi(α)
)∥∥∥

Lp(A)⊗pT (d−1)(W̊)r
≤ cb2

∥∥∥ ∑
i,α

ai(α) ⊗ bi(α)
∥∥∥
Lp(A)⊗pW̊r

.

Similarly, the complete boundedness of T (d−1) on Lp(A) and Proposition 3.6 imply
∥∥∥T (d)

( ∑
i,α

ai(α) ⊗ bi(α)
)∥∥∥

Wc
1⊗pLp(A)

�p,d cbp

∥∥∥ ∑
i,α

ai(α) ⊗ bi(α)
∥∥∥
Wc

1⊗pLp(A)
.

This concludes the induction, and the proof of the theorem too. �
Theorem 1.3 immediately follows from Theorem 4.9.

Proof of Theorem 1.3. For 1 ≤ k ≤ d, let T (k)
k be the map T (k) in Theorem 4.9 associated 

to the family (Tk,i)i∈I . Then

TLd = T
(1)
1 T

(2)
2 · · ·T (d)

d .

This yields the assertion. �
We extend Lemma 2.2 to the Hilbert transform of the d-th letters in the spirit of 

Theorem 4.9 and Theorem 1.3. Let ε = (εi)i∈I be a family of elements in the unit ball of 
Z(B). Let Ti be the left multiplication map on Lq(Ai) by εi. Clearly, the Ti’s satisfy the 
hypotheses (H1) and (H2). Denote the corresponding T (d) by H(d)

ε . If d = 1, this coincides 
with the free Hilbert transform in (3). More generally, given d let ε = (εj,i)1≤j≤d,i∈I be 
a family in the unit ball of Z(B). The corresponding map TLd as in Theorem 1.3 is 
denoted by HLd

ε .
The following is a particular case of Theorem 1.3, it extends [25, Theorem 4.7] to the 

amalgamated free product case.

Corollary 4.10. Both H(d)
ε and HLd

ε extend to completely bounded maps on Lp(A) for all 
1 < p < ∞ with cb-norms controlled by constants depending only on p and d.

We conclude this section with the boundedness of some paraproducts that generalize 
those introduced at the beginning of subsection 4.1. These paraproducts are of indepen-
dent interest in free analysis.

Let ε = (εj,i)j≥1,i∈I be an independent family of symmetric random variables with 
values ±1. Let HLd

ε be the map associated to (εj,i)1≤j≤d,i∈I as in the previous corollary, 
and let HLd,op

ε (x) = [HLd
ε (x∗)]∗. We use the convention that HL0

ε = Id. For j, k ≥ 0 and 
x, y ∈ W, define
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x
j,k

‡ y = Eε Eε′ HLj
ε HLk,op

ε′ [HLj
ε (x)HLk,op

ε′ (y)],

where Eε denotes the underlying expectation and ε′ is an independent copy of ε. This 

paraproduct is easily understood for elementary tensors x and y: x
j,k

‡ y then collects all 
those terms in the development of xy into elementary tensors whose first j letters come 
from the same algebras of the first j letters of x, and whose last k letters from the same 
algebras of the last k letters of y.

The previous corollary implies the following

Corollary 4.11. The paraproduct 
j,k

‡ extends to a bounded bilinear map from L2p(A) ×
L2p(A) to Lp(A) for all 1 < p < ∞ with norm majorized by a constant depending only 
on p, j and k.

Remark 4.12. We leave to the reader familiar with Haagerup noncommutative Lp-spaces 
to extend, with necessary modifications, the results of this section to the type III case, 
that is, to amalgamated free products of von Neumann algebras equipped with faithful 
normal states instead of traces.

5. Multipliers on free products of groups

In this section we will first prove Theorems 1.1 and 1.2, then consider Fourier multi-
pliers on free products of general discrete groups. Recall that Γ̂ denotes the group von 
Neumann algebra of a discrete group Γ generated by the left regular representation λ.

5.1. Proofs of Theorems 1.1 and 1.2

We start by the results on the free group F∞.

Proof of Theorem 1.2. We will apply Theorem 1.3 to the special case where Ai = Ẑ =
L∞(T ) for all i ∈ N. Fix a family z = (zj,i)1≤j≤d, 1≤i<∞ of complex numbers with 
modulus 1. Define Tj,i to be the measure preserving ∗-representation on Ai given by 
Tj,i(λ(n)) = znj,iλ(n) for any n ∈ Z, or equivalently in terms of the generator ζ ∈ L∞(T ), 
Tj,i(ζn) = znj,iζ

n. Tj,i extends to a complete isometry on Lp(T ) for 1 ≤ p ≤ ∞. The cor-
responding map TLd is exactly the map αLd

z in Theorem 1.2. Thus Theorem 1.3 implies 
that αLd

z is completely bounded on Lp(F̂∞) for 1 < p < ∞, whence Theorem 1.2. �
Proof of Theorem 1.1. We will use αLd

z in the previous proof for the special case where 
zj,i = zj for all i, and write αz = αLd

z for z ∈ Td. Thus α is a uniformly completely 
bounded action of Td on Lp(F̂∞). We then easily deduce Theorem 1.1 by the standard 
transference argument as presented in [4]. Let us give the details.

Let m be a Hörmander-Mikhlin multiplier on Zd, that is, m satisfies (1). Then the as-
sociated Fourier multiplier Tm on Lp(Td) is completely bounded with cb-norm majorized 
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by Cp,d‖m‖HM. This follows from [1] for d = 1 and [22,39] for d ≥ 2 since the Schatten 
p-class Sp is a UMD space. Note that valid for general UMD spaces, the results in these 
papers require more regularity on m than the condition (1), that is, the partial discrete 
derivations should run to all orders up to d instead of [d2 ] + 1 in (1). However, using the 
arguments of [23, Theorem 6.4] and the interpolation or the argument of [38, section 4.1], 
we can show that when the UMD space in consideration is a noncommutative Lp(M), 
we can go down again to the classical order [d2 ] + 1. Hence

∥∥Tm ⊗ IdSp
: Lp(Td;Sp) → Lp(Td;Sp)

∥∥
cb �p,d ‖m‖HM .

The Schatten p-class Sp here can be replaced by Lp(M) for any QWEP M, in particular, 
by Lp(F̂∞). Thus

∥∥Tm ⊗ Id
Lp(F̂∞) : Lp(Td;Lp(F̂∞)) → Lp(Td;Lp(F̂∞))

∥∥
cb �p,d ‖m‖HM .

Now given x ∈ Lp(F̂∞) define f ∈ Lp(Td; Lp(F̂∞)) by f(z) = αz(x) for z ∈ Td. Then 
by Theorem 1.2

‖f(z)‖
Lp(F̂∞) �p,d ‖x‖

Lp(F̂∞), z ∈ Td.

Clearly, we have the intertwining identity:

[Tm ⊗ Id
Lp(F̂∞)](f)(z) = αz(Mm(x)), z ∈ Td.

Thus we deduce

∥∥Mm(x)
∥∥p

Lp(F̂∞) �p,d

∫
Td

∥∥αz(Mm(x))
∥∥p

Lp(F̂∞)dz

=
∥∥[Tm ⊗ Id

Lp(F̂∞)](f)
∥∥p

Lp(Td;Lp(F̂∞))

�p,d ‖m‖pHM
∥∥f∥∥p

Lp(Td;Lp(F̂∞))

�p,d ‖m‖pHM
∥∥x∥∥

Lp(F̂∞) .

Therefore, Mm is bounded on Lp(F̂∞) with norm controlled by Cp,d‖m‖HM. The com-
plete boundedness follows from the usual argument of tensoring with Sp. �

We end this subsection with some examples of Fourier multipliers on the free group. 
The free Hilbert transform of [25] is a typical example of Fourier multipliers studied in 
this article. Theorem 1.1 allows us to exhibit plenty of examples of Fourier multipliers 
on the free group. We give here just some typical ones.
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Example 5.1. Let Ai = L∞(T ) for all i ∈ N and z = (zj,i)1≤j≤d,i∈N be a family of 
complex numbers of modulus 1. Then the corresponding transforms H(d)

z and HLd
z in 

Corollary 4.10 are completely bounded on Lp(F̂∞) for all 1 < p < ∞.

Example 5.2. We give two more examples of similar nature: For 1 ≤ j ≤ d let Tj,i be 
the map on Ai = L∞(T ) defined by Tj,i(ζn) = z

sgn(n)
j,i ζn for ζ ∈ T and n ∈ Z. Clearly, 

Tj,i is completely bounded on Lp(T ) for all 1 < p < ∞. Let ‹HLd
z be the corresponding 

map TLd in Theorem 1.3 and ‹H(d)
z the map T (d) in Theorem 4.9 associated to (Td,i)i∈N . 

Again, ‹HLd
z and ‹H(d)

z are completely bounded on Lp(F̂∞) for all 1 < p < ∞.

Example 5.3. The Riesz transforms Rj , 1 ≤ j ≤ d, on Lp(Td) are the Fourier multipliers 
of symbols

mj(k) = kj
‖k‖ for k = (k1, · · · , kd) ∈ Zd, ‖k‖ =

»
k2
1 + · · · + k2

d.

It is classical that Rj is completely bounded on Lp(Td) for 1 < p < ∞. The corresponding 
multipliers Mmj

in Theorem 1.1 are denoted by RLd
j and may be called the free Riesz 

transforms of the first d letters on F∞. RL1
j is just the free Hilbert transform of [25]. 

RLd
j , 1 ≤ j ≤ d, are completely bounded on Lp(F̂∞) for 1 < p < ∞.

Example 5.4. Our final example is given by the classical Littlewood-Paley multiplier. 
By the vector-valued multiplier theory, we know that the following Littlewood-Paley 
multiplier

m =
∞∑
i=0

εi1Ri
,

where Ri = {k = (k1, · · · , kd) ∈ Zd : 2i − 1 ≤ max1≤j≤d |kj | < 2i+1} is a completely 
bounded Fourier Lp-multiplier on Zd for all 1 < p < ∞ (cf. [39]). The corresponding 
multiplier Mm in Theorem 1.1, denoted by LPLd, is completely bounded on Lp(F̂∞). By 
changing of variables, one can equally consider the following Littlewood-Paley multiplier:

m =
∞∑
i=0

εi1{k∈Zd:2i−1≤|k|<2i+1} with εi = ±1, |k| = |k1| + · · · + |kd|

It gives rise to a completely bounded multiplier on Lp(F̂∞) too.

5.2. More paraproducts

We make the paraproducts in Corollary 4.11 more precise in the case of free groups. 
Let z = (zj,i)j∈N, i∈N ∈ TN × TN . Let αLd

z be the map associated to (zj,i)1≤j≤d,i∈N in 
Theorem 1.2. Note that
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αLd
z = T (1)

z · · ·T (d)
z ,

where T (j)
z (λ(g)) = z

kj

j,ij
λ(g) (with kj = 0 for j > n) for g = gk1

i1
· · · gkn

in
∈ F∞ in reduced 

form. Put

αLd,op
z (x) = [αLd

z (x∗)]∗ and T (j),op
z (x) = [T (j)

z (x∗)]∗.

Let ε = (εj,i)j∈N,i∈N be an independent family of symmetric signs. Recall that we use 

H(j)
ε and H(j),op

ε to denote the free Hilbert transforms on the (last) j-th letters considered 
in Corollary 4.10,

H(j)
ε (λg) = εj,ijλg and H(j),op

ε (λg) = εj,im+1−j
λg.

We use again the convention that T 0
z = H0

ε = αL0
z = Id. For j, k ≥ 0 and x, y ∈ C[F∞], 

define

x
j,k

� y = Ez Ez′ αLj
z αLk,op

z′
[
αLj
z (x)αLk,op

z′ (y)
]
,

where Ez and Ez′ denote the expectations on z and z′ respectively. Let us interpret these 
paraproducts for x = λ(g) and y = λ(h). To this end, we say that the first j blocks of 
g survive in gh if the first j blocks of gh and g are exactly the same, and that the j-th 
block of g marks in gh if the j-th blocks of gh and g are powers of a same generator. 
Replacing “first” by “last” (i.e., counting the letters of a reduced word in the reverse 
order), we get similar notions.

Thus for g, h ∈ F∞

• λ(g)
j,k

�λ(h) = λ(gh) if the first j blocks of g and the last k blocks of h survive in gh; 

λ(g)
j,k

�λ(h) = 0 otherwise;

Note 
j,k

� is different from 
j,k

‡ defined in Section 4 in general. For example, for x =

λ(g1g2), y = λ(g−1
2 g−2

1 ), then x
1,0
‡ y = λ(g−1

1 ) but x
1,0
�y = 0. There are two more para-

products that may be useful for future research. Let

x
j+,k

� y = Eε H
(j+1)
ε

[
H(j+1)

ε (x)
j,k

�y
]
,

x
j,k+
� y = Eε H

(k+1),op
ε

[
x
j,k

�H(k+1),op
ε (y)

]
.

Then for g, h ∈ F∞

• λ(g)
j+,k

� λ(h) = λ(gh) if the first j blocks of g and the last k blocks of h survive in gh, 

and in addition, the (j + 1)-th block of g marks in gh; λ(g)
j+,k

� λ(h) = 0 otherwise.
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• λ(g)
j,k+
� λ(h) = λ(gh) if the first j blocks of g and the last k blocks of h survive in gh, 

and in addition, the last (k+1)-th block of h marks in gh; λ(g)
j,k+
� λ(h) = 0 otherwise.

Our first approach to Theorem 1.2 heavily relies on the boundedness of the above 
paraproducts and several variants of them. Now their boundedness immediately follows 
from Theorem 1.2.

Proposition 5.5. All the above paraproducts extend to bounded bilinear maps from 
Lp(F̂∞) × Lq(F̂∞) to Lr(F̂∞) for all 1 < r, p, q < ∞, 1p + 1

q = 1
r with norm majorized by 

constants depending only on r, p, q, j and k.

5.3. Extension to free products of groups

In the proof of Theorem 1.1 one can easily replace Z by any abelian discrete group 
Γ. However, to go beyond the abelian case, one needs extra efforts. In this subsection, Γ
will denote a general discrete group. Let Γ∞ = Γ∗N be the infinite free power of Γ. Each 
g ∈ Γ∞ \ {e} is written as a reduced word:

g = g1g2 · · · gn

with gj �= e belonging to the ij-th copy of Γ in Γ∞ and i1 �= i2 �= · · · �= in.
We begin by extending Theorem 1.2 to this general setting. Define a linear map 

αLd : C[Γ∞] → C[Γd × Γ∞] as follows: for g = g1 · · · gn ∈ Γ∞ as above in reduced form,

αLd(λ(g)) = λΓd(g1, · · · , gd) ⊗ λ(g)

with g� = e in λΓd(g1, · · · , gd) if � > n. Here we have denoted by λΓd the left regular 
representation of Γd to avoid ambiguity (λ being that of Γ∞).

Theorem 5.6. Let d ∈ N and 1 < p < ∞. Then the map αLd extends to a completely 
isomorphic embedding of Lp(Γ̂∞) into Lp(Γ̂d ⊗ Γ̂∞).

Proof. We use an argument similar to that of Theorem 4.6. Let G = ∗l=1,··· ,d+1Γ and 
G∞ = ∗i≥1G. To avoid confusion we use Γi,l to denote the l-th copy of Γ in the i-th copy 
of G in G∞.

First, let πl : “G → “G be the ∗-representation given by the cyclic permutation of the 
copies that sends the l-th copy of Γ to the l + 1 (mod d + 1)-th copy. Consider the map 
TLd on Lp(“G∞) given by Theorem 1.3 associated to Tk = πk, 1 ≤ k ≤ d, as well as 
its inverse associated to T−1

k = π−k, 1 ≤ k ≤ d. By Theorem 1.3, TLd is a complete 
isomorphism on Lp(“G∞). We will need the restriction of TLd to a copy of Lp(Γ̂∞) in 
Lp(“G∞) and will make its presentation more precise.
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Let us identify Γ∞ with ∗i≥1Γi,1. For an element in g ∈ Γi,1, we denote its copy in 
Γi,l by g(l). Thus, for g = g1 · · · gn ∈ Γ∞ in reduced form, we have

TLd(λ(g)) = λ(g(2)
1 · · · g(d+1)

d g
(1)
d+1 · · · g(1)

n ). (8)

As we have explained, (8) defines a complete isomorphic embedding of Lp(Γ̂∞) into 
Lp(“G∞).

Next, we consider the group morphism φ from G∞ onto Γd such that for all i and 
g ∈ Γi,k ⊂ G∞

φ(g) = e if k = 1 and φ(g) = (e, · · · , e︸ ︷︷ ︸
k−2

, g, e, · · · , e) if 2 ≤ k ≤ d + 1.

Let U = λΓd ◦ φ. Then U is a unitary representation of G∞ on �2(Γd). Applying the 
Fell absorption principle (Lemma 2.1) to U , we get a completely isometric embedding of 
Lp(“G∞) into Lp(Γ̂d ⊗ “G∞):

Πφ :
∑

g∈G∞

c(g)λ(g) 	→
∑

g∈G∞

c(g)λΓd(φ(g)) ⊗ λ(g). (9)

By (8) and (9), we see that

αLd(x) = Πφ · TLd(x), x ∈ C[Γ∞].

Thus αLd extends to a completely isomorphic embedding on Lp(Γ̂∞). �
Remark 5.7. There is an alternate proof to Theorem 5.6. First, one may apply Theo-
rem 4.6 and Remark 4.7 for Ai = Γ̂d ⊗ Γ̂ for all i ∈ N, and B = Γ̂d ⊗ C, and check 
that

‖αL1(x)‖
Lp(”Γd ⊗ Γ̂∞) �p ‖x‖Lp(Γ̂∞)

for any x ∈ C[Γ∞]. Next, one may apply Theorem 4.6 repeatedly to get

‖αLd(x)‖
Lp(”Γd ⊗ Γ̂∞) �p ‖αL(d−1)(x)‖

Lp(”Γd ⊗ Γ̂∞) �p · · · �p ‖x‖Lp(Γ̂∞).

This alternate proof gives a better constant.

As in the free group case, the previous theorem, together with transference, easily 
implies a multiplier result on Γ∞. Given a bounded function m on Γd, define a linear 
map Mm on L2(Γ̂∞) by

Mm(λ(g)) = m(g1, g2, · · · , gd)λ(g)
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with g� = e in m(g1, g2, · · · , gd) if � > n for every g ∈ Γ∞ in reduced form. Note that Γ̂
is QWEP iff Γ is hyperlinear (cf. [35]).

Theorem 5.8. Assume that Γ̂ is QWEP. Let d ∈ N and 1 < p < ∞. If the Fourier 
multiplier Tm is completely bounded on Lp(Γ̂d), then Mm extends to a completely bounded 
map on Lp(Γ̂∞).

Proof. This proof is similar to that of Theorem 1.1. As Γ̂ is QWEP, so is Γ̂∞. Thus 
Tm⊗IdLp(Γ̂∞) is completely bounded on Lp(Γ̂d ⊗ Γ̂∞) by Junge’s noncommutative Fubini 
theorem [12]. Let x ∈ C[Γ∞]. Using the action αLd in Theorem 5.6, we have

‖x‖Lp(Γ̂∞) �d,p ‖αLd(x)‖
Lp(”Γd ⊗ Γ̂∞) .

It remains to use the intertwining formula

Tm ⊗ Id[αLd(x)] = aLd[Mm(x)]

to conclude as in the proof of Theorem 1.1. �
In the same line, we conclude this subsection by stating another application. Consider 

a family of discrete groups Γi, i ∈ I, and its free product Γ∞ = ∗i∈IΓi; consider also 
a family of finite von Neumann algebras (Mi, τi), i ∈ I, and its von Neumann tensor 
product (M, τ) = ⊗i∈I(Mi, τi). Let {mi,g}g∈Γi

⊂ Mi for all i ∈ I, and let Mi be the 
operator-valued Fourier multiplier on Γi:

Mi(λ(g)) = mi,g ⊗ λ(g), g ∈ Γi.

We construct a map MLd similar to Theorem 5.8. Given g = g1 · · · gn ∈ Γ∞ in reduced 
form, define

MLd(λ(g)) =
®
mi1,g1 ⊗ · · · ⊗mid,gd ⊗ λ(g) if n ≥ d,

mi1,g1 ⊗ · · · ⊗min,gn ⊗ λ(g) if n < d.

Theorem 5.9. Let 1 < p < ∞. Then MLd extends to a completely bounded Fourier 
multiplier from Lp(Γ̂∞) to Lp(M ⊗ Γ̂∞) iff the family 

{∥∥Mi

∥∥
cb

(
Lp(Γ̂i), Lp(Mi ⊗ Γ̂i)

)}
i∈I

is 
bounded. In this case, we have

∥∥MLd‖cb
(
Lp(Γ̂∞), Lp(M⊗ Γ̂∞)

) �p,d sup
i∈I

∥∥Mi

∥∥
cb

(
Lp(Γ̂i), Lp(Mi ⊗ Γ̂i)

).

Proof. We can easily adapt the proofs of Theorem 5.6 to the present setting, so we omit 
the details. �
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Appendix A. Endpoint boundedness of free Hilbert transforms

Our arguments rely on the Lp-boundedness (1 < p < ∞) of the free Hilbert trans-
forms Hε in Lemma 2.2 and their variants H(j)

ε in Corollary 4.10. We will discuss their 
bounds on homogeneous polynomials when p = ∞, since they cannot be bounded in 
full generality at the end point. It is also natural to ask if one can get an L∞-BMO 
boundedness for the BMO spaces studied in [14].

A.1. Bounds on homogeneous polynomials

We work in the setting of amalgamated free products of von Neumann algebras as in 
section 4. Let H(j)

ε be the maps introduced in Corollary 4.10 with ε a family of signs.
The case j = 1 of the following theorem follows from [18, Proposition 2.8].

Theorem A.1. Let d ≥ 1 and 1 ≤ j ≤ d. Then for any x ∈ Wd we have

‖H(j)
ε (x)‖∞ � min

{
log(j + 2), log(d− j + 2)

}
‖x‖∞.

Proof. For z ∈ T , let Uz be the unitary on L2(A) sending w ∈ Wn to znw for n ≥ 0. 
Given x ∈ Wd, y ∈ L2(A) and 0 ≤ k ≤ 2d, let

x⊥ky = Ez[zd−kUz(xUz(y))].

It is easy to verify that

xy =
2d∑
k=0

x⊥ky and ‖x⊥ky‖2 ≤ ‖x‖∞‖y‖2.

Moreover, we easily show

H(j)
ε (x)⊥ky =

®
H

(j)
ε (x⊥ky) if k ≤ 2(d− j),

x⊥kH
(d+1−j)
ε (y) if k > 2(d− j).

Thus

H(j)
ε (x)y =

∑
H(j)

ε (x⊥ky) +
∑

x⊥kH(d+1−j)
ε (y).
0≤k≤2(d−j) 2(d−j)<k≤2d
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On the other hand, using the elementary estimate

∥∥ n∑
k=0

zk
∥∥
L1(T) � log(n + 2),

we get

∥∥ n∑
k=0

x⊥ky
∥∥

2 +
∥∥ 2d∑

k=n

x⊥ky
∥∥

2 � min
{

log(n + 2), log(2d− n + 2)
}
‖x‖∞‖y‖2.

Therefore, since H(j)
ε is isometric on L2(A), we deduce

∥∥H(j)
ε (x)y

∥∥
2 ≤

∥∥ 2(d−j)∑
k=0

x⊥ky
∥∥

2 +
∥∥ 2d∑

k=2(d−j)+1

x⊥kH(d+1−j)
ε (y)

∥∥
2

� min
{

log(j + 2), log(d− j + 2)
}
‖x‖∞‖y‖2,

whence the desired estimate on ‖H(j)
ε (x)‖∞. �

A.2. Failure of the L∞-BMO boundedness

Let us restrict ourselves to the free group case. Recall that the Poisson semigroup 
(St)t≥0 on F∞ is the normal unital completely positive semigroup given by

St(λ(g)) = e−t|g|λ(g), g ∈ F∞.

We also recall the definitions of various BMO-spaces according to [14]. As usual we 
denote by L0

p(F̂∞) the subspace of centered elements (i.e., elements with vanishing trace) 
in Lp(F̂∞). Define

BMOc(S) =
{
x ∈ L0

2(F̂∞) : ‖x‖BMOS
< ∞

}
,

bmoc(S) =
{
x ∈ L0

2(F̂∞) : ‖x‖bmoS
< ∞

}
,

where

‖x‖BMOc(S) = sup
t>0

∥∥St

[
|x− St(x)|2

]∥∥1/2
∞ ,

‖x‖bmoc(S) = sup
t>0

∥∥St(|x|2) − |St(x)|2)
∥∥1/2
∞ .

Similarly, we define the row versions BMOr(S) and bmor(S) by passing to adjoints. 
One of the main results of [14] states that the intersection space BMOc(S) ∩ BMOr(S)
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behaves well with complex interpolation, i.e., it replaces L∞ as an endpoint space in the 
complex interpolation scale 

{
Lp(F̂∞)

}
p>1.

Let Hε denote the free Hilbert transform of the first letters associated to a sequence of 
signs, see Lemma 2.2. It is easy to see that ‖Hε(x)‖bmoc(S) = ‖x‖bmoc(S) for x ∈ C[F∞].2

We will explain why one cannot hope the boundedness of Hε from L∞(F̂∞) = F̂∞ to 
any of BMOr(S), BMOc(S) or bmor(S).

Lemma A.2. Let a, b ∈ F∞ be two free elements. Let z be a finite sum z =
∑

k≥1 ckλak

and zn = zλ(bn). Then

i) lim
n→∞

‖zn‖bmor(S) = ‖z‖∞,
ii) (e−1 − e−2)‖z‖∞ ≤ lim sup

n→∞
‖xn‖BMOα(S) ≤ 2‖z‖∞, α ∈ {c, r}.

Proof. i) It is clear that

‖zn‖bmor(S) ≤ ‖zn‖∞ = ‖z‖∞.

For a fixed t > 0, we have lim ‖St(zn)‖∞ = 0. Thus,

lim sup
n→∞

‖zn‖2
bmor(S) ≥ sup

t

∥∥St(znz∗n)
∥∥
∞ = ‖z‖2

∞.

ii) The upper bound is clear. For the lower, we use the Kadison inequality to ensure

∥∥St|z∗n − St(z∗n)|2
∥∥
∞,

∥∥St|zn − St(zn)|2
∥∥
∞ ≥

∥∥(St − S2t)zn
∥∥2
∞.

But in F̃∞,

lim
n→∞

(
(S 1

n
− S 2

n
)zn

)
λb−n = (e−1 − e−2)z.

This finishes the proof. �
As Hε(zn) = Hε(z)λbn , we get

Corollary A.3. The transform Hε is unbounded from L∞(F̂∞) to any of BMOr(S), 
BMOc(S) and bmor(S).

2 One can verify directly that St|Hεx|2 − |StHεx|2 = St|x|2 − |Stx|2. From this identity, one may obtain 
directly that Hεx belongs to Lp(‘F∞) if x ∈ Lp(‘F∞) and Hεx is selfadjoint via the probability model 
introduced in [13].
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