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1. Introduction

Fourier multipliers are by far the most important operators in analysis. One can say
that classical harmonic analysis has been developed around Fourier multipliers. The
main task there is to find criteria for the boundedness of Fourier multipliers on various
function spaces, notably on L,-spaces. However, it is in general impossible to characterize
their L,-boundedness for finite p # 2. In this regard, the most fundamental result is the
celebrated Hérmander-Mikhlin multiplier theorem which asserts that if m is a clsl+t
function on R%\{0} such that

sup sup  [€[1*1]0%m(€)| < oo,
0<|a|<[2]+1 £€R\{0}

where a = (o, -+ ,aq4) denotes a multi-index of nonnegative integers and |a] = o +
- o then the associated Fourier multiplier T,,, defined via Fourier transform by
T (f) = mf, is a bounded map on L,(R%) for all 1 < p < co. A similar statement holds
for the periodic case, i.e., for T? instead of R?. More precisely, if m : Z? — C satisfies

Imllive = sup  sup [k[[*|0%m(k)] < oo, (1)
0<|a|<[4]+1 keZd

where 0% = 8,‘3‘11 8,':: denotes the partial discrete difference operator of order @ =
(a1, ,aq), then the associated Fourier multiplier 7}, is a bounded map on L,(T%)
for all 1 < p < co. A simple argument by Fubini’s theorem gives that T;,, extends to a
bounded map on LP(Z;) for all 1 < p < oo if m: Z*> — C depends only on the first d
variables, and satisfies (1). The main theorem of this article says, in particular, that the
aforementioned Hérmander-Mikhlin theorem holds for the nonabelian free groups Fuo
instead of Z°, that is replacing the independence by the freeness of the coordinates.
In noncommutative harmonic analysis and operator algebras, the study of Fourier
multipliers on general groups is of paramount importance. These multipliers are also
called Herz-Schur multipliers in the literature. The underlying L,-spaces are then the
noncommutative L,-spaces on the group von Neumann algebra. This line of investigation
finds one of its origins in the study of approximation properties of operator algebras
inaugurated by Haagerup’s pioneering work [6] on Fourier multipliers on free groups in
which he solved the longstanding problem on Grothendieck’s approximation property
for the reduced C*-algebra of a free group: this algebra has the completely bounded
approximation property. Later, together with De Canniére [2] and Cowling [5], Haagerup
studied completely bounded multipliers on the Fourier algebras of classical Lie groups.
One of the remarkable recent achievements in the interplay between multipliers and
noncommutative Ly-spaces is the result of Lafforgue and de la Salle [20] asserting that
the noncommutative L,-space with p > 4 associated to the von Neumann algebra of
SL3(Z) fails the completely bounded approximation property. Haagerup and coauthors
[9,10,8] extended their result to connected simple Lie groups; later, de Laat and de la
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Salle [19] discovered that L,-multipliers are very tightly connected with Banach space ge-
ometry and group representations. Other striking illustrations of this interplay are Junge
and Parcet’s work [17] on the Maurey-Rosenthal factorization for noncommutative L,-
spaces which relies on Schur multiplier estimates. Multipliers are also intimately related
to functional calculus in von Neumann algebras as shown by the resolution of Krein’s
celebrated Lipschitz continuity problem in noncommutative L,-spaces by Potapov and
Sukochev [34], see also [3] where the crucial use of Fourier multipliers is more apparent.

In a recent series of articles [7,11], Haagerup and co-authors obtained a beautiful
handy characterization of the completely bounded radial multipliers on the von Neumann
algebras (i.e. Ly,) of free groups and p-adic groups, and, more generally, on homogeneous
trees and free products; see also Wysoczaniski’s previous work [37]. All this has motivated
many other publications of the same nature, in particular, building on Ozawa’s work
[28], Mei and de la Salle [24] obtained a similar characterization for hyperbolic groups.
Nevertheless, little has been understood for non-radial multipliers," nor for L,-spaces
with 2 < p < oco. Here, the most challenging problem is to find a Hérmander-Mikhlin
type criterion for Fourier multipliers on L,-spaces to be completely bounded.

The recent papers [15,16,29] provide a first advance towards this direction. The work
[25] by the first and second named authors is more related to the present article, it
introduces the free Hilbert transforms on free groups and free products of von Neumann
algebras and showed their L,-boundedness for all 1 < p < oco. We pursue this line
of investigation by going considerably beyond, and will exhibit a large family of L,-
multipliers in the free setting.

To proceed further, we need some notation and refer to the next section for all un-
explained notions. Let I be a discrete group and X its left regular representation on
£5(T). The group von Neumann algebra vN(T') is the von Neumann algebra generated
by A(T'), it is also equal to the weak® closure of the group algebra C[I'] that consists of
all polynomials in A:

Clr]={)>_alg)A(g): alg) € C}.

gel

Following notation in quantum groups, we will denote v N(T") by T in this article. T is
equipped with its canonical tracial state 7 defined by 7(x) = (Je, xd.) for any = € f,
where J. denotes the Dirac mass at the identity e of I'. Lp(f) is the noncommutative L,-
space based on (f, T), it is equipped with the natural operator space structure introduced
by Pisier.

For a complex function m on I', the associated Fourier multiplier T}, is a linear
map on C[I'] determined by A(g) — m(g)A(g). We call m a (completely) bounded L,-

~

multiplier on T if T, extends to a (completely) bounded map on L,(I'). Our main

L A better understanding of non-radial multipliers seems to be in order to answer some fundamental
open questions, such as the existence of a Schauder basis for the free group reduced C*-algebras and the
construction of a concrete Schauder basis for the corresponding noncommutative L,-spaces.
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aim is to find sufficient conditions for m to be such a multiplier. Note that the periodic
Hoérmander-Mikhlin theorem recalled at the beginning concerns the case I' = Z¢ in which
T = Loo(T9), T being the unit circle equipped with the normalized Haar measure. In
this case, every function m on Z¢ satisfying (1) is a completely bounded L,-multiplier
on Z4.

Throughout the article, F, will denote a free group on infinite generators {g1, g2, - - - }-
An element g € Fo, different from the identity e is written as a reduced word on

{917927"'}:
g=gltgl? - gin with iy #iy # - #in, kj € Z\{0}, 1<j<n. 2)

Given a complex function m on Z? and a fixed d € N, we define M,, : C[Fo.] — C[Fo]
by

Jka) AM(g) if d<n,
m(ky, - kn,0,---,0)A(g) if d>n

for every g as in (2). Below is our first main theorem. It is contained in [26] for d = 1.

Theorem 1.1. Let d € N and 1 < p < oo. If m is a completely bounded L,-multiplier
on Z%, then M,, extends to a completely bounded map on L,(Fs). In particular, the
conclusion holds if m satisfies (1).

To achieve Theorem 1.1, we establish a new platform to transfer the L,-complete
boundedness of Fourier multipliers on tori to Fourier multipliers on free groups. The key

tool is a group of unitary actions on Ls(Fs ) and its complete boundedness on L, (F.)
for all 1 < p < co. Given z = (2j,;)1<j<d, 1<i<oo € T x T, let

ki ok k
oz (Mg)) = 1%, 2%, 245, M9)

for g as in (2) (with k; = 0 if £ > n). It is obvious that al? extends to a unitary action
of the group T x T on La(Fs).

Theorem 1.2. The above action o*® of T4 x T> on Lg(]ﬁx,) extends to a uniformly

completely bounded action on Ly(Fs) for every 1 < p < co with constant depending only
on d and p.

Theorem 1.1 will follow from Theorem 1.2 and a standard transference argument. Our
initial proof of Theorem 1.2 was very long and technical. We have then luckily found
a new and shorter argument; the new one depends, in a crucial way, on an analogous
result on amalgamated free products of von Neumann algebras. The new approach has
the extra advantage that it allows us to easily extend Theorems 1.1 and 1.2 to free
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products of general discrete groups. The basic idea is to show that we can exchange the
first letters by a free copies of them.

In this context, let (A;,7;)icr be a family of finite von Neumann algebras equipped
with normal faithful tracial states. Let B be a common von Neumann subalgebra of the
A;’sand E; : A; — B be the corresponding trace preserving conditional expectation. We
denote by (A, 7) = ;e g(A;, 7)) the amalgamated free product of the (A;, 7;)’s over B.
Let E be the conditional expectation from A to B. As usual, for X C L,(A) we write X
for the set {x —E(z) : z € X}.

Assume that we are given maps T}; : Lp(A;) = Lp(A;) with 1 < j < dandi e[
satisfying the following conditions

e T}, is B-bimodular, that is, T} ;(axb) = aT} ;(z)b for a,b € B and = € L,(A;);

o T;i(Lp(Ai)) C Lp(A).
We can define a map TX? as follows. T14(b) = b for b € B and

TLd(a): Tlvil(a’l)@"’@Td,id(ad)®ad+1®"‘®an if d<n7
T17i1 (a’l) (R Tn,in (an) if d>n

fora:a1<§©~~<>§>anEfii1 ®3~--®Bflin with 49 £ ig # -+ #£ iy,
The following theorem and its proof contain the main novelty of the article, it gives

a surprisingly simple condition to ensure the complete boundedness of the map 7% on

Ly(A).

Theorem 1.3. Let 1 < p < co. Assume that the T} ;’s extend to completely bounded maps
on Ly(A;) and on La(A;) uniformly in i,j. Then T*? extends to a completely bounded
map on L,(A) with

d

1T en(r, (a)) Spad H Sup (”Tj,i”cb(Lp(Ai)) + ||Tj,i||cb(L2(Ai))>-
j=1"

It is clear that the assumption above is necessary for the validity of the conclusion.
Thus the theorem gives a characterization of the complete boundedness of T%? on Ly, (A).
Another aspect to be emphasized is the fact that p is a single fixed index. One of the main
ingredients in our argument is a length reduction formula for the L,-norms associated
with amalgamated free products that we state as Theorem 4.6. This formula is interesting
for its own right, it was previously proved in [18, Theorem B] for homogeneous free
polynomials.

The article is organized as follows. After a brief introduction to necessary preliminar-
ies, we give in section 3 some norms on Hilbert B-modules that are the modular extensions
of the usual column and row noncommutative L,-norms; we show that bounded modular
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maps extend to these modular noncommutative L,-spaces. The results in this section
provide crucial tools for section 4 that is the core of the article and contains our major
ideas. Section 4 gives the proof of Theorem 1.3 that is done through a reduction for-
mula for polynomials in a free product of von Neumann algebras, the latter is proved
in its turn with the help of an intermediate result (Theorem 4.5) that is a special case
of Theorem 1.3 where d = 1, p > 2 and every T; is a xrepresentation on A; leaving B
invariant and commuting with E; for all ¢ € I. Theorems 1.1 and 1.2 easily follow from
the results in section 4; moreover, the arguments can be extended to the free products
of general (non abelian) discrete groups. We do all this in section 5. This section also
contains some more paraproducts which might be interesting in free analysis. We end
the article with an appendix on the endpoint p = co.

We will use the following convention through the article: A < B (resp. A <, B) means
that A < ¢B (resp. A < ¢,B) for some absolute positive constant ¢ (resp. a positive
constant ¢, depending only on p). A ~ B or A ~, B means that these inequalities as
well as their inverses hold.

2. Preliminaries

This section presents some preliminaries on noncommutative L,-spaces and amalga-
mated free products.

Murray and von Neumann’s work [27] demonstrates von Neumann algebras as a natu-
ral framework to do noncommutative analysis. The elements in a von Neumann algebra
M can be integrated over the equipped trace 7 and measured by the associated L,-
norms. In the sequel, M will denote a von Neumann algebra with a normal faithful
semifinite trace 7. For each 1 < p < oo, let LP(M) be the noncommutative L,-space
associated with the pair (M, 7). Note that Lo (M) = M with the operator norm. We
refer to [33] for details and more historical references.

Recall a C*-algebra A has the weak expectation property of Lance (in short WEP)
if for the universal representation A C A** C B(H), there is a contraction P from
B(H) to A such that the restriction of P on A is the identity map. A C*-algebra A is
QWERP if it is a quotient of a WEP C*-algebra by a two sided ideal. See [32, Chp 15]
for more information. It is an unpublished result of Junge that when M is a QWEP von
Neumann algebra, L, (M) is completely finitely representable in the Schatten p-class S,
for 1 <p < 0.

All L,-spaces in this article will be equipped with their natural operator space struc-
ture introduced by Pisier in [31,32]. We also refer to [32] for operator space theory. In
fact, what we will need from the latter theory is only [31, Lemma 1.7] that asserts that a
linear map T : L,(M) — L,(M) is completely bounded iff Ids, @ T : L,(B({2)®M) —
L,(B(f2)®@M) is bounded; and the completely bounded norm of T' is equal to the usual
norm of Idg, ® T" and denoted by ||T[|cb(z, )y or simply ||T'||c, when no ambiguity is
possible. As explained just above, here the Schatten p-class S, can be replaced by L, (N)
for any QWEP von Neumann algebra N without changing ||T||c,. Note that Lo(M) is
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an operator Hilbert space and every bounded map on it is automatically completely
bounded with the same norm.

We will often be concerned with group von Neumann algebras. Let ' be a discrete
group. Recall the definition of its left regular representation A: for any g € T', A(g) is
just the left translation by g on #3(T), i.e., A(g)(f)(h) = f(g~'h) for any h € T and
f € £5(T). Thus A(g)(0n) = dgn, where dj, is the Dirac mass at h. C[I'] denotes the linear
span of A(T'). Then the group von Neumann algebra I' is the weak* closure of C[I] in
B(l5(T)). The canonical trace of I is the vector state induced by d. with e the identity
of T. When T is abelian (e.g. T' = Z4%) L,(T) coincides with the usual L,-space on the
dual group of I'. We will need the following result in Section 5.3, which is usually called
Fell’s “absorption principle”.

Lemma 2.1. Let Id be the trivial representation of I' on B(H) for some Hilbert space H,
e.g. Id(g) = Idg(my for any g € T'. Then, for any unitary representation U : T' — B(H),
A® U is unitary equivalent to X ® Id. In particular, for any finite supported function c
on G, we have that

1> c@X@)lg = 11D c@)M9) @ U@)llszp -

We turn to the second part on amalgamated free products. Let (A;, 7;):cr be a family
of finite von Neumann algebras equipped with normal faithful normalized traces. Let B
be a common von Neumann subalgebra of A; for all i € I, and E; : A; — B the trace
preserving conditional expectation. Denote (A, 7) = *; sg(A;,7;), the amalgamated free
product of (A;, 7;)ier over B. We will briefly recall the construction to fix notation.

For any = € A;, we denote by Z = x — E;z and A = {& : © € A;}, which yields a
natural decomposition A; = B® .Az We use the multi-index notation: i = (i1, -+ ,i,) €
I™. The space

el D W-Be@ D Aiesosd,

n>0 (ig, yin) €™ n>1 (i1, yin )€™
i1 i Fin 1 Fi e Fin
is a x-algebra by using concatenation and centering with respect to B. The natural
projection E from W onto B is a conditional expectation. 7; o E is a trace on W that
is independent of ¢ and will be denoted by 7. Then (A, ) is the finite von Neumann
algebra obtained by the GNS construction from (W, 7). Thus W is weak* dense in A
and dense in L,(A) for p < co. Moreover, E extends to a trace preserving conditional
expectation from A onto B. As E restricts to E; on A;, from now on we skip the index
i for the conditional expectations.
For n > 0, we denote by P,, the natural projection

P, W-—>W, = EB ./Ziil®3-~®3.zlin

(i1, in) €T
i17£7;2"‘7£7:71
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and P>, = Id — (P, + -+ + P,_1). Note that P, extends to a completely bounded
projection on L, (A) with cb-norm < 2n+ 1 for all 1 < p < oo (see [36]).
For k € I let

Ly= @ Wi and Ry = L;.

1:i1=k

We denote the associated orthogonal projections on W by Ly and Rjy. Given a family
€ = (€i)iefoyur of elements in B, and x € W, we define

He(zx) =oE(z) + Y exLi(x) and HP(x) = E(z)ey + Y Ri(2)e}. (3)

kel kel

The following is the heart of [25], we state it as a lemma for later reference.

Lemma 2.2. Let 1 < p < 00 and € = (&;)ieqoyur be a family of unitaries in the center
Z(B) of B. Then H. and H2P extend to completely bounded maps on L,(A). Moreover,

[He(@)lp 2p l2]lp 2 [[HP@)[p,  x € Lp(A).
3. Norms on modules

This section is a preparatory part for the next one. Here we will introduce the modular
versions of the usual row and column p-operator spaces and show the corresponding
boundedness results. This is quite tedious but we have to cope with it since they will
be the key tools for the proofs of our main results on amalgamated free products in the
next section. Our references for Hilbert C*-modules are [21,30].

Let B be a von Neumann subalgebra of a semifinite von Neumann algebra (M, 7)
such that the restriction of 7 to B is semifinite too. We need to introduce several norms
on tensor products related to L,-modules as in [18].

Let E be a right Hilbert B-module with B-inner product (-, -) (or (-, -) g if we deal with
several modules). E is equipped with the norm induced by its inner product. However,
we do not assume that E is complete. A typical example is, given an index set Z, the
module

Cz(B) = {(ﬂ?a)aez CcB: Sczuf[i)mte H O;SxaxaHB < oo}

with inner product (z, y) =limg Y ,cg 25Ya which is well defined as a weak* limit over
finite subsets of Z for inclusion. By [21,30], a general module FE can be embedded into
a self-dual Hilbert module and there exist an index set Z and a right B-module map
u = (Uq)aez : B — Cz(B) so that (z, y) = (u(z), u(y)).

Given 2 < p < oo, we introduce a norm on the amalgamated tensor product F ®p3
L,(M) as follows:
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n

1/2
e > cilena; 45) [, e

forz ="z, ®a; € E®p Ly(M). Equipped with this norm, E ®p L, (M) is denoted
by E° ®, L,(M) (the superscript ¢ refers to column). In [18], this norm is denoted by
> |aci>ain. Via the above concrete embedding of F into Cz(B), the map

u®Idy (pm) 2 B @p Lp(M) = Cz(B) @5 Ly(M) C L, (B(l2(Z)@M))

is then an isometry that allows us to view E° ®, L,(M) as a subspace of the column
subspace of the last space. This also fully justifies that || - || geg, L, (A1) is indeed a norm.
Similarly, given F' a left Hilbert B-module, we define a norm on L,(M) ®@g F' by

n 1/2
19112, e, = H(;_l el 3085) ||,
for y = 3" b;®y;. This norm is denoted by || 3=, b; (ys| Hp in [18]. As above, L,(M)®,F"
can be identified with a subspace of the row subspace of L, (B(f2(J))®M) for some
index set J.

We can gather the two definitions together and introduce a norm on E®gL, (M) F;
the resulting space is denoted by E° ®, L,(M) ®, F", it isometrically embeds into
L,(B({2(J,Z))®M). This is independent of the choice of the sets Z, J .

We will need extra notions when we assume that F and F are also bimodules (i.e.,
B C Lg(E), the algebra of adjointable right B-modular maps on F, and B C gL(F),
the algebra of adjointable left B-modular maps on F'). Given E’ another right Hilbert
B-module, we can consider E' @3 E as a right B-module with the internal inner product;
consequently, we have the space (E' ®g E)¢ ®, L,(M). Note that the norm of (E’ ®p
E)¢®, L,(M) coincides with that of E'° ®, (E°®, L,(M)) when viewing E¢®,, L,(M)
in the column subspace of Ly, (B({2(Z))®M) as above. Similar constructions apply to
the row case too. It is clear that all these operations are naturally associative.

Remark 3.1. We will often use without any reference that the above norms are injective.
We mean that if B/ C E, F' C F are submodules and (M’, 1) C (M, 1) is a semifinite von
Neumann subalgebra, then E°®,, L,(M’)®, F'" isometrically sits in E°®, L,(M)®Q,F".
Proposition 3.2. Assume that T : E — E is a bounded right B-modular map. Then

|7 ®1dg, (2 EC ®p Ly(M) = E° @, Ly(M)|| < |T]I.

If additionally E is equipped with a left B-action and T is B-bimodular, then for any
right Hilbert B-module E’
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e T @1z, | (o < |7

®BE)C®pr(M))

Similar statements hold for left modules too.

Proof. By [30, Theorem 2.8], we have (T'(z), T(z)) < ||T||*(x, z) for x € E. Let 2; € E
and b; € B for 1 < i <n. Then

(ZT i 1,ZT:¢Z 2 < 1T Zml Z,Zx“

so we can reinterpret this inequality in the matrix algebra M, (B) as

0 < ((T(xi), T(x)), ; < ITIP(Cxir 23)), ;-
The latter immediately implies
1/2 1/2
(Za Te)as) < ITI2( 3 a5 e zs)a;)
,j

for any a; € L,(M). This yields the first assertion.

The second follows from the same argument by noticing that Idg ® T' is bounded on
the right Hilbert B-module E’ @ E with norm ||T||. Indeed, for finite families x; € E
and y; € B with1<i<mn

<Z yi @ T(x:), Zyi QT (@) pose = p_(T(@:), (Yo v5) 2T () 6.

(]

As a positive element in M, (B), the matrix ((yl, yj>E’)ij can be written as

(i ) ), = Z (ki brj);; with by, € B.
k

Thus we deduce

O wioT(@), Y 4i@T(@:)pess < ITI7Y O briwi Y briwi)s
i i k i %
= ‘|T‘|2<Zyz & x4, Zyl ®Ti)EropE-

This is the desired boundedness of Idg: ® T on E’ ®p E. Thus the proposition is
proved. O

Thanks to the identifications recalled at the beginning of this section, the previous
proposition immediately implies the following
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Remark 3.3. If T : E — FE is a bounded right B-modular map, then for any left B-module
F

|T ®1dL, (rm) ©@Idp : BC @p Lp(M) @ F™ — E° ®, Lp(M) @, F7|| < || T

A similar statement holds for bimodules, namely, Idg: ® T'® Idz (A1) @ IdF is bounded
on (E'®p E)°®, L,(M) ®, F" with norm less than or equal to ||T|| if additionally E is
equipped with a left B-action and T is B-bimodular.

Remark 3.4. Proposition 3.2 is the modular version of the fact that the row and column
p-operator spaces are homogeneous (i.e., when B = C and E and F are just Hilbert
spaces).

A typical situation in which we will apply the previous results is the case when
E = F = A with A a finite von Neumann algebra containing 3. The right inner product
on Ais (z,y) = E(z*y) and the left ((z, y)) = E(ay*), E being the trace preserving
conditional expectation from .4 onto B. In this case, we have A° Q9 Lo(B) = La(A)
isometrically. Thus if T : A — A is right B-modular and bounded for (-, -), it au-
tomatically extends to a map T : Lo(A) — Ly(A) with HTHB(Lz(A)) < ||IT||. Since
[{z, )||B = subper,(s), bl <1 [|70]l2 for @ € A, we actually have || T p(r,(a)) = [|T]]- We
may still write T instead of T.

We state this fact as a lemma for later use.

Lemma 3.5. Let (A, 7) be a finite von Neumann and B C A a von Neumann subalgebra
with the associated conditional expectation E. Assume that A is equipped with the right
B-module inner product (z, y) = E(x*y). Then any bounded right B-modular map T :
A — A extends to a bounded map on Ly(A) with ||T||g(r,ay = T

IfT: A— Ais completely positive and leaves B invariant, then it satisfies the above
conditions. If additionally E o T' < E, then T also extends to a completely bounded map
on L,(A).

We will need the following

Proposition 3.6. Let T' : L,(M) — L,(M) be a completely bounded map. Then for any
right Hilbert B-module E and left Hilbert B-module F' we have

||IdE ® T ® IdF||Cb(EC®pr(M)®pFT) é ||T||Cb

Proof. This is a direct consequence of the fact that identifying E° ®,, L,(M) ® F" with
a subspace of Lp(B(Eg(j,I))®M), then Idg ® T ® Idr acts like Id®@T. O
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4. Multipliers on amalgamated free products

This section is the core of the article and contains our major novelty. The principal
result is Theorem 4.9 that will imply Theorem 1.3 by iteration. Throughout this section,
(A, 74)ier will denote a family of finite von Neumann algebras containing B as a common
subalgebra. We will use notation introduced in section 2 on amalgamated free products,
in particular, (A, 7) = *iecr,8(Ai, 7i).

4.1. An intermediate result

Given a family m = (m;);er of *-representations m; : A; — A; such that m;(b) = b for
all b € Band Eom; = E, we introduce a linear map T on W by T (b) = b for b € B and

Trla1 ® - ®ap) =7, (a1) ®aa @+ @ ay

forn>1anda; ® - ®a, € W, where i = (i1, ,i,) and i1 # - - - # iy. Define TP on
W as TP () = T (x*)*. Note that both 75 and TP commute with the projections P,.

We aim to show that T); extends to a bounded map on L,(A) for 1 < p < co. We will
first need some elementary free algebraic facts.

Lemma 4.1. Let g € W, h € W,, with l,n > 0.

i) If il > n, then Tx(gh) = Tr(g)h.
i) If n > 1, then TSP (gh) = gTSP(h).
iii) If I =mn, then P>3[Tr(gh)] = P>2[Tx(g)h] and P>2[T2P(gh)] = P>2[gT7P (h)].

Proof. One can assume that g and h are elementary tensors. The first item is then clear
as the first letter of g cannot be canceled if [ > n. The second is obtained by passing to
adjoints. Similarly, if n = I, P>2(gh) is a sum of elementary tensors that all start with
the first letter of g and end with the last letter of A, up to a multiplication by an element
of B. O

The following Cotlar type formula immediately follows from the previous lemma.
Lemma 4.2. For g,h € W we have

Poa[To(9)TS ()] = Poa[ T (g () + TP (Ta(g)h) —~ TLTP(gh)]. (4)

Proof. By linearity, it suffices to show the formula for ¢ € Wi, h € W,,. Then it remains
to check it by using Lemma 4.1 according to the different cases. We omit the details. O

Lemmad43. Let g=g1 Q-+ Qg EW,, h=h, ®---®@hy € W,, with l,n >0, and let
g =902® Qg andh' =h, ® - ® hs.
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i) If n > 1, then Pi(gh) = 0p1+1E(gh')h1.
ii) If 1 > n, then Pi(gh) = dpt11 1E(¢'R).
iti) If I = n, then Py(gh) = Pi(g1E(g’'h )hy).

Proof. This proof is easy. Let us verify only i). If n > [ + 1, then both P;(gh) and
E(gh')h; vanish. The case n = [ + 1 is checked by induction on [ and n thanks to the
following simplification formula:

—

gh =g~ @ (gihn) @ ™ + g~ E(gihn)h™

where ¢ =1 ® - ® gj—1 and A~ = hy,—1 ® -+ ® hy. It then follows that P;(gh) =
Pl(gi E(glhn)hi)' g

We will also need the notation of paraproducts on W x W in the manner of [25] to
prove the boundedness of T;.. Given x,y € W, let

1,0
21y = EL[H (wH(y),
vty = E[H.(H.(x)y))

1,1
vty =EE[HHJ (H:(x)HZ ()],

1,0
zty=uay—EJ[HP(xHP(y))],

0,1
riy=wy— EE[HE(HE(x)y)]a

where H. and H2P are the free Hilbert transforms defined in (3) and E.,E. are the

expectation over all possible choices of symmetric independent signs € = (g;),&’ = (g}).
Note that when = and y are elementary tensors, then mlj;oy collects in xy the parts that
end in the same algebra as y and xljfoy collects in xy the parts that do not end in the
same algebra as y, that is, all letters in y must have been simplified. Similarly, xoily
collects in xy the parts that start in the same algebra as x, xojfly collects in xy the parts
that do not start in the same algebra as x, and aclily collects in xy the parts that start

in the same algebra as x and end in the same algebra as y. We have the identity

1,0 0,1 1,1
ry=ztfytziy+aziy.

By Lemma 2.2, all these bilinear operators are bounded from L,(A) x Ly(A) to L,-(A)
fOI‘aHl<’/‘7p7q<oo,%+%:l.

The following is a complement to the Cotlar formula (4).
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Lemma 4.4. For g,h € W we have

PUTL ()T () = Tx [Pr(g § T2 ()] + T2 [Py (Tu(g) T 1)] + T [P (g F 1)) 5)

Proof. Note that the identity is bilinear, we will only check the formula for elementary
tensors g € Wy, h € W,, with [, n > 0 according to the three cases in Lemma 4.3 and use
the notations ¢’, h’ there.

For the case i), we can assume n = [ + 1, otherwise all terms are 0. Then

P1(Tx(9)T3P (h)) = E(Tx(g)h') ), (ha).

1,1 1,0
On the right side, we have Pi(g 1 h) =0 and g  h = 0 as the last letter of h in gh is not
0,1
canceled. To deal with g T h, note that
H.[Pi(H:(g)h)] = €i,¢5, P1(gh),

with 43 = 0 if [ = 0. Note that E(gh’) = 0 unless i1 = ja, but then j; # jo and

E.(e;s,€5,) = 0. It follows that P, (gojrlh) = Pi(gh). Hence the right hand side of (5) is
exactly T2P [Py (Tx(g9)h)] = E(Tx(g9)h)7j, (h1).

The case ii) is obtained from i) by passing to adjoints.

For the case iii), we have P;(gh) = 0 unless ix, = j; for all 1 < k < n. Hence we can
assume that ¢; = j;. Then noting that

H.[Pi(H:(g)h)] = € Pi(gh) = Pi(gh),

0,1 1,0
we deduce Pi(g t h) = 0; by symmetry, Pi(g T h) = 0 too. Thus the right hand side of
(5) becomes

T [Pi(g 1 h)] = T [P (1 E(6'H )] = i, [P (0 (W) -
However, the left hand side is
Py [mi, (91)E(g'h )i, (h1)] = Pi[mi, (1 E(g'h)h1) ] = 7, [PL(g1E(g'h )ha) ]

because m;, is a *-representation that leaves the elements of B invariant and Pym;, =
7, P1. (5) is thus proved in the case [ = n too. O

The following is an intermediate result to Theorem 4.9, it will be the key for the
reduction formula in Theorem 4.6 below.

Theorem 4.5. The map T extends to a completely bounded map on L,(A) for all 2 <
p < oo with cb-norm majorized by a constant depending only on p.
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Proof. As the m;’s are trace preserving and leave B invariant, T} is an isometry on W
for the La(A)-norm, thus it extends to an isometry on Lo(A). We need only to prove
the boundedness of T since the complete boundedness will then be automatic thanks
to the usual trick of replacing B by the matrix algebra M, (B).

As in [25], we show that the L,-boundedness of T); implies its Lo,-boundedness for
2 < p < oo. Starting with p = 2, using iteration and interpolation, we will deduce the
assertion for the full range 2 < p < co. In the following, we will denote by ~, the norm
of T and T2P on W equipped with the L,-norm.

For z € W we write

T () T ()" () T7P (")

— T7-|— . *
= Poo[ T () T2 (27)] + Pr [T (2) T2P (27)] + E[Tr (2) T2P (7))
By (4) and the fact that P>, has norm less than 5 on L,(A), we have

[ Poa[Tr ()T ()], < 5 [29p |2 126/ T (@) ]2 + 3 [12[13,]-

2%
On the other hand, by [25, Proposition 3.14] or Lemma 2.2, the paraproducts { are
bounded from Ly, (A) X La,(A) to L,(A) with norm less than 7,. Thus using (5) and
the fact that P; has norm less than 3 on L,(A), we get

[P T (2)T22 ()], < 357 (2l |20 1 T () 12 + (1113, ]
Clearly,
[E[Tr ()T (@), = [1E(z2*)lp < [l]f3-
So combining all the estimates yields
1T (@)113, < 7 (10 + 6mp) [2l|2p | T (@) |2 + (1 + 31p7p + 59) 2l
It follows that
1T (z)ll2p < Cypmipllzll2p
for some absolute constant C, whence vy, < Cv,np. This finishes the proof. O
4.2. A length reduction formula
We show here how to recursively estimate the L,-norm of an element in W in the

spirit of [18]. The space W is naturally a right Hilbert B-module with inner product
(x,y) = E(a*y) and also a left Hilbert B-module with ((x, y)} = E(zy*). The same
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holds for W; and W as submodules. A typical element in W can be written as a finite
sum

x—xo—&—xl—l—Zaz ) ® b« )—x0+x1+z (6)

1(1

where zg € B, 1 € Wy and a;(a) € A; and b;() € W with L;(b;(r)) = 0.
The following result extends the main result of [18] on homogeneous polynomials to
any polynomials, it is the key tool for the argument in the next subsection.

Theorem 4.6. With the notation above, for 2 < p < 0o, we have (considering z € Wy ®W)

[2llp ~p lzolly + 121 llp + 1zlhwe e, L, ) + 1211, )0, 040 (7)

Proof. By the boundedness of the projections Py and Py, it suffices to prove the estimate
for z. To this end, we consider two copies of A, and put a superscript to distinguish them.
We use associativity of the free product to write

AW 5y AP = (51,5 AE”) 5 (*ier,B «41(»2)) = *ieJ, B(A( ) x5 A(z)) = xicr 5 Ay
Since the traces are compatible, ||z (4) = ||x(1)HLp(A<1>*5A<2>) for every x € L,(A).
For each i, we define the swap map 7; on ,ZZ by
dV@ad? @) @l @l @al) @

a0 s alV 9a® @ad @

for B-centered elements a(] ) and by m(b) = b for b € B. It is clear that 7; is a *-

representation, E-preserving and leaves the elements of B invariant. Thus, noticing that
2= Id 7 , we use Theorem 4.5 to get

Hzai(a>®bi ‘L(A) Hzaz ) @ bila

Lp(AMD xp AR)

The element y~, ai(a)® ® b;(a)M) is homogeneous of degree 2 with respect to the
length of A1) x5 A). Thus by [18, Theorem B]

[ en], .o, Sloter],

g,

Since taking copies clearly does not change norms, we have
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] = | St
HZ\al )b, Za ®b; (@) WP)e@, Ly (AL x5A(2))
- H %:a,-(oz) ® bi(a)HWf(@pr(A) '
Similarly,

|2 a@®el@], = [ La one)

This concludes the proof of the theorem. 0O

Lp(A)@, W'

Remark 4.7. We could also have used [18, Theorem C] to make some terms more explicit.
Namely,

il = [ (B (i) ), + (ZHL elf) "+ | E )

and

P e [LXC )

(IS a@EG@m(a))am) 7).
4 o,

Here WS ® W has to be understood as W ®p Lp(B) @p Wwr.

Remark 4.8. It is now rather easy to get an analogue of [18, Theorem C]. The norm of
the last term ||z|ee, 1, (4) corresponds to that of an element in S, ®, L,(A) and we
can formally iterate the argument. Thus, we can write the norm of z in P>y (L,(A)) as
a sum of 2k + 1 norms. For simplicity assume x € P>;(W), they are given by

||‘THW;®W7'7 0 < l < ka

”xHWlC@p(@pr(:“i))@pW” 0< l < k—2
2llwe @ Ly (-

The last one being recursive. We leave the details to the interested reader.
4.8. Maps of the d-th letters and the proof of Theorem 1.5

This subsection contains our principal result that is the key step of the proof of
Theorem 1.3. Fix 1 < p < oo. Given a family of maps T; : L,(A;) = Lp(A;) we will
define an associated map of the d-th letters of reduced words in W for d > 1. The
minimal assumption required for the T;’s is the following
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—

(Hy) T; is B-bimodular and T;(Lg(A;)) C Lg(A;) for ¢ =2 and g = p.
(Hy) T; : Ly(Ai) = Ly(A;) is completely bounded and

cbg = s_uII) 1 Tilleb(z,(a,)) < oo for ¢ =2and g =p.
1€

Note that the cb-norm of T; on Ly(A;) coincides with its usual norm since Lo(A;) is a
homogeneous operator space. On the other hand, it is obvious that

qu = H ®D; TZ : Lq(@;A;) — Lq(@lA")HCb .
Now we define a linear map 79 on W by T®(b) = b for b € B and

T(d)(a1®~~®an): a1®-~-®ad71®ﬂd(ad)®ad+1®~-~®an 1f d <n,

a1 ® - Qap if d>n
forn>1land a1 ® - ®a, € W; with ¢ = (i1, ,i,) and i3 # - -+ # i,,. Note that the
range of T(?) is not inside W but clearly in L,(A).

Theorem 4.9. Under the hypotheses (Hy) and (Hy), TP extends to a completely bounded
map on L,(A) with

1T leb(r, (a)) Sp.a cbz + cby.

Proof. We start the proof by a crucial observation related to Lemma 3.5. We view A4;
as a right Hilbert B-module with the inner product (z, y) = E(z*y). We claim that
E(T;(x)*T;(y)) belongs to B for any z,y € A. By polarization, we can assume z = y.
Then for b € Ly(A;), by the modularity of T,

T0"E(Ti(2)" Ti())b] = 7[E(Ti(xb)"T;(xb))] = | Ti(zb)[l2 < | Till |20l -

This implies the claim, as well as E(T;(z)*T;(x)) < ||T;||{z, ). Thus T;(A;) is a B-
bimodule. A similar statement holds when A; is viewed as a left B-module with the
inner product ((x, y)) = E(xy*).

We have stated the results in section 3 for maps T : F — E but they clearly remain
true if T : F — E’. We can thus apply them to the restriction of T; to A; with range
T;(A;). The same holds for direct sums.

An immediate consequence is the boundedness of 7% on W equipped with the Lo-
norm, this follows from the orthogonality of the W,,’s and Proposition 3.2 combined with
the above observation. So the theorem holds for p = 2. On the other hand, by duality,
we need only to consider the case 2 < p < oo that will be assumed in the remainder of
the proof.
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Before going into the core of the proof, we point out that the result of Theorem 4.6
can be applied to 7@ (z) when € W by using an obvious approximation argument.
One just need to adapt correctly the modules, replacing WY by T(l)()/\il)c if d =1 and
Wr by TE=D V)" if d > 1.

We continue the proof by induction on d. The main part is the initial step: d = 1. By
the usual argument of tensoring with the matrix algebras M,,, it suffices to prove the
boundedness of T, We will apply Theorem 4.6. Let @ = xg + 1 + 2 € W as (6).

To deal with ||T™ (x1)]|,, we use the Khintchine inequality from Remark 4.7. We have
that 7™ is bounded on L, (®;.4;) with norm majorized by cb,, that is,

(j{jnz> a0 @lg) " = (j{jnﬂ’ e)lg)"” < ey (3 ILuta)lg)

q

1/p

On the other hand, thanks to the previous observation, @;T; can be viewed as a bounded
modular map on W; with respect to both inner products (-, -) and ((-, -)) with norm
bounded by cbs. Thus by Proposition 3.2,

[ETD @) TO @) 2| = || (El(@:T] @) [T @)) |,
< cbo| (E(aian) |,
and similarly for the second inner product. Hence,
IO (@)l S (cbs + cby)l|z1]l,-

For the remaining part z, note that

TO(2) = > [®,Tj](ai(@) @ bi().

[N

Thus by the observation that ©;T; : Wy — T (W)) is B-bimodular and Proposition 3.2,
we again have

H;n@@mmwhwmmwwgmﬂgm@®wﬂhmwm

For the other norm of z, we use Proposition 3.6 to obtain

| taionsno], <] Soor )

Lp(A)@, W

Thus 7™M extends to a (completely) bounded map on L,(.A).
Now assume that d > 2 and T@1) is completely bounded on W for the L,-norm. For
r = xg+ x1 + 2z as above, we have
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TD(zg + 1) = 2o + 21 and T Zal Y@ T (by(a)).

Using the boundedness of 7(4~1) on Ly(A) and Proposition 3.2, we have

HT(d) ( Z ai(a) ® bi(a))

b H : bi( ) »
Lp(A)®,T (= 1)(W C 2 Zza ® Lp(A)@pWr

Similarly, the complete boundedness of T(¢~1) on L,(A) and Proposition 3.6 imply

HT(d)(Zai(a) ® bi(a)) HWf®pLP(A) S Cpr Zai(a) ¥ bi(a)HWfé@prMY

This concludes the induction, and the proof of the theorem too. O
Theorem 1.3 immediately follows from Theorem 4.9.

Proof of Theorem 1.3. For1 < k < d, let T,ik) be the map 7™ in Theorem 4.9 associated
to the family (T} ;)icr. Then

1) (2 d
TLd:Tl( )TQ()---Té).

This yields the assertion. O

We extend Lemma 2.2 to the Hilbert transform of the d-th letters in the spirit of
Theorem 4.9 and Theorem 1.3. Let € = (g;);er be a family of elements in the unit ball of
Z(B). Let T; be the left multiplication map on Ly (A;) by g;. Clearly, the T;’s satisfy the
hypotheses (H;) and (Hs). Denote the corresponding T'(%) by # If d = 1, this coincides
with the free Hilbert transform in (3). More generally, given d let ¢ = (g;:)1<j<dicr be
a family in the unit ball of Z(B). The corresponding map T7¢ as in Theorem 1.3 is
denoted by HE.

The following is a particular case of Theorem 1.3, it extends [25, Theorem 4.7] to the
amalgamated free product case.

Corollary 4.10. Both Héd) and HE? extend to completely bounded maps on L,(A) for all
1 < p < oo with cb-norms controlled by constants depending only on p and d.

We conclude this section with the boundedness of some paraproducts that generalize
those introduced at the beginning of subsection 4.1. These paraproducts are of indepen-
dent interest in free analysis.

Let € = (gj)j>1,ier be an independent family of symmetric random variables with
values 1. Let ’HELd be the map associated to (£;)1<j<a,icr as in the previous corollary,
and let HL4°P(x) = [HE4(2*)]*. We use the convention that HL? = Id. For j, k > 0 and
x,y € W, define
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J:k ; i
1y =E.Eo HE HI M ()M P ()],

where E. denotes the underlying expectation and &’ is an independent copy of . This

paraproduct is easily understood for elementary tensors x and y: xjit y then collects all
those terms in the development of xy into elementary tensors whose first j letters come
from the same algebras of the first j letters of x, and whose last k letters from the same
algebras of the last k letters of y.

The previous corollary implies the following

3k
Corollary 4.11. The paraproduct { extends to a bounded bilinear map from La,(A) X
Lo, (A) to L,(A) for all 1 < p < co with norm magorized by a constant depending only
onp,j and k.

Remark 4.12. We leave to the reader familiar with Haagerup noncommutative L,-spaces
to extend, with necessary modifications, the results of this section to the type III case,
that is, to amalgamated free products of von Neumann algebras equipped with faithful
normal states instead of traces.

5. Multipliers on free products of groups

In this section we will first prove Theorems 1.1 and 1.2, then consider Fourier multi-
pliers on free products of general discrete groups. Recall that I" denotes the group von
Neumann algebra of a discrete group I' generated by the left regular representation A.

5.1. Proofs of Theorems 1.1 and 1.2
We start by the results on the free group F.

Proof of Theorem 1.2. We will apply Theorem 1.3 to the special case where A; = 7 =
L(T) for all i« € N. Fix a family z = (2;:)1<j<d, 1<i<oo Of complex numbers with
modulus 1. Define Tj; to be the measure preserving -representation on A; given by
Tji(A(n)) = 2}, A(n) for any n € Z, or equivalently in terms of the generator ¢ € Loo(T),
T;:(¢") = 27,¢". Tj,; extends to a complete isometry on L,(T) for 1 < p < oo. The cor-
responding map 714 is exactly the map aZ? in Theorem 1.2. Thus Theorem 1.3 implies
that o~ is completely bounded on L, (Fs) for 1 < p < oo, whence Theorem 1.2. O

Ld

> in the previous proof for the special case where

Proof of Theorem 1.1. We will use «
zji = z; for all ¢, and write a, = ald for z € T Thus « is a uniformly completely
bounded action of T¢ on Lp(?oo). We then easily deduce Theorem 1.1 by the standard
transference argument as presented in [4]. Let us give the details.

Let m be a Hérmander-Mikhlin multiplier on Z<, that is, m satisfies (1). Then the as-

sociated Fourier multiplier T}, on L,(T?) is completely bounded with cb-norm majorized
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by Cp.allm||um. This follows from [1] for d = 1 and [22,39] for d > 2 since the Schatten
p-class Sy, is a UMD space. Note that valid for general UMD spaces, the results in these
papers require more regularity on m than the condition (1), that is, the partial discrete
derivations should run to all orders up to d instead of [ ]+ 1in (1). However, using the
arguments of [23, Theorem 6.4] and the interpolation or the argument of [38, section 4.1],
we can show that when the UMD space in consideration is a noncommutative L,(M),
we can go down again to the classical order [%] + 1. Hence

| T ®1ds, : Lpy(T% Sp) = Lyp(T% Sp)||y Spoa lImle -

The Schatten p-class S;, here can be replaced by L, (M) for any QWEP M, in particular,
by L,(Fs). Thus

HTm ® Ide : LP(Td?LP(FOO» - Lp(Td§Lp(Foc)>HCb Spd [l -

(Foo)

Now given x € L ( ) define f € L (Td;Lp(ﬁoo)) by f(z) = a.(x) for z € T Then
by Theorem 1.2

||f(Z)HLp(I[<A‘OO) =p.d Hx”L,,(]I?w)’ S T<.

Clearly, we have the intertwining identity:
[T ®1d, 5 \1(f)(2) = az(Mn(z)), 2€T

Thus we deduce

W@} 5y S [ ot} 6z
d

= 1Tm @14, @ JDIE, o,

Spod 1Ml HfHL p(T% Ly (Foo))
Spd mllfim HmHLP(]?w) :

Therefore, M,, is bounded on Lp(]foo) with norm controlled by C,, 4||m|lam. The com-
plete boundedness follows from the usual argument of tensoring with S,. O

We end this subsection with some examples of Fourier multipliers on the free group.
The free Hilbert transform of [25] is a typical example of Fourier multipliers studied in
this article. Theorem 1.1 allows us to exhibit plenty of examples of Fourier multipliers
on the free group. We give here just some typical ones.
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Example 5.1. Let A; = Loo(T) for all i € N and 2z = (2j,)1<j<dieN be a family of
complex numbers of modulus 1. Then the corresponding transforms H\" and #L¢ in

~

Corollary 4.10 are completely bounded on L,(Fs) for all 1 < p < oo.

Example 5.2. We give two more examples of similar nature: For 1 < j < d let T}, be
the map on A; = Lo (T) defined by Tj,;(¢") = z;i-n(")(j" for ( € T and n € Z. Clearly,
Tj; is completely bounded on L,(T) for all 1 < p < co. Let ’gﬁd be the corresponding
map 774 in Theorem 1.3 and 772‘1) the map 74 in Theorem 4.9 associated to (T4,i)ieN-

Again, ’gzLd and ’;qu) are completely bounded on L,,(]I? 0o) for all 1 < p < oo.

Example 5.3. The Riesz transforms R;, 1 < j <d, on Lp('JTd) are the Fourier multipliers
of symbols

k,
mj(k) = m for k= (k1,--- ,ka) € Z%, ||k = /K2 + - + k2.

It is classical that R; is completely bounded on Lp(Td) for 1 < p < oo. The corresponding
multipliers M., in Theorem 1.1 are denoted by RJLd and may be called the free Riesz
transforms of the first d letters on Fq. Rle is just the free Hilbert transform of [25].
R4, 1 < j <d, are completely bounded on Ly(Fa) for 1 < p < oo.

Example 5.4. Our final example is given by the classical Littlewood-Paley multiplier.
By the vector-valued multiplier theory, we know that the following Littlewood-Paley
multiplier

oo
m = E gilg,,
i=0

where R; = {k = (k1,--- ,kq) € Z% : 20 — 1 < maxi<j<q|k;j| < 2771} is a completely
bounded Fourier L,-multiplier on Z? for all 1 < p < oo (cf. [39]). The corresponding
multiplier M,,, in Theorem 1.1, denoted by LP*?, is completely bounded on Lp(ﬁ 00)- By
changing of variables, one can equally consider the following Littlewood-Paley multiplier:

oo
m = Zfi]l{kezdﬂi_lg‘k‘<2i+l} with ¢; = +1, |k}| = ‘kl‘ + -+ ‘kd|
=0

~

It gives rise to a completely bounded multiplier on L,(F) too.
5.2. More paraproducts
We make the paraproducts in Corollary 4.11 more precise in the case of free groups.

Let z = (2j:)jen.ien € TN x TN, Let a£? be the map associated to (2;;)1<j<dieN in
Theorem 1.2. Note that
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akd =M. .7
where Tz(j)()\(g)) = zf’zj/\(g) (with k; = 0 for j > n) for g = gfll gf" € F in reduced
form. Put

oo () = [al1(a")]" and TOP(2) = [ (a")]".

Let € = (£j,i)jen,ien be an independent family of symmetric signs. Recall that we use
H?) and "ng )P ¢4 denote the free Hilbert transforms on the (last) j-th letters considered
in Corollary 4.10,

HO (Ng) =¢ji,Ag and HIP(A\) =g ., Ag.

We use again the convention that 70 = H? = a0 = 1d. For j,k > 0 and z,y € C[F.],
define

J:k . .
€T T Yy = ]Ez Ez' aﬁl] ag/’f:OP [afj (‘T) aﬁ[’f»OP (y)]7

where E, and E, denote the expectations on z and 2’ respectively. Let us interpret these
paraproducts for x = A(g) and y = A(h). To this end, we say that the first j blocks of
g survive in gh if the first j blocks of gh and g are exactly the same, and that the j-th
block of g marks in gh if the j-th blocks of gh and g are powers of a same generator.
Replacing “first” by “last” (i.e., counting the letters of a reduced word in the reverse
order), we get similar notions.

Thus for g,h € F

3.k
o Ag) TA(h) = A(gh) if the first j blocks of g and the last k blocks of h survive in gh;
3.k
A(g) TA(h) = 0 otherwise;

J:k J:k
Note T is different from 1 defined in Section 4 in general. For example, for z =
1,0 1,0
Mg192),y = Mgy 191 ?), then 1y = A(g;") but 2 Ty = 0. There are two more para-
products that may be useful for future research. Let

Jj+.k 1 i J,k
' T y=E.HID[HID (2)Ty],
Jrk+ g,k
x T y=E, H5(k+1),0p [I,THE(kJrl);OP(y)]

Then for g, h € Fo

Jt.k
e Ag) T A(h) = A(gh) if the first j blocks of g and the last k blocks of h survive in gh,
Jj+.k
and in addition, the (j + 1)-th block of g marks in gh; A(g) T A(h) = 0 otherwise.
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gk
e Ag) T A(h) = A(gh) if the first j blocks of g and the last &k blocks of h survive in gh,
Gkt
and in addition, the last (k+1)-th block of h marks in gh; A(g) T A(h) = 0 otherwise.

Our first approach to Theorem 1.2 heavily relies on the boundedness of the above
paraproducts and several variants of them. Now their boundedness immediately follows
from Theorem 1.2.

Proposition 5.5. All the above paraproducts extend to bounded bilinear maps from

~ ~ ~

L,(Foo) X Ly(Fso) to Ly (Foo) for all 1 <, p,q < o0, % + % = L with norm magjorized by

=
constants depending only on r,p,q,j and k.

5.3. Extension to free products of groups

In the proof of Theorem 1.1 one can easily replace Z by any abelian discrete group
T". However, to go beyond the abelian case, one needs extra efforts. In this subsection, I"
will denote a general discrete group. Let T'ss = I'*N be the infinite free power of T'. Each
g € ' \ {e} is written as a reduced word:

g=9192-"gn

with g; # e belonging to the i;-th copy of I' in ' and 41 # io # -+ # ip.
We begin by extending Theorem 1.2 to this general setting. Define a linear map
al?: C[My] — C[I'? x I'y] as follows: for g = g1 - - - g € s as above in reduced form,

o™ (X(9)) = Aralgr, -+ 1 9a) ® Ag)

with g¢ = e in Apa(g1,---,g4) if £ > n. Here we have denoted by Ara the left regular
representation of I'? to avoid ambiguity (A being that of I'y,).

Theorem 5.6. Let d € N and 1 < p < co. Then the map o*?® extends to a completely
isomorphic embedding of L,(T's) into Ly(I*® ).

Proof. We use an argument similar to that of Theorem 4.6. Let G = %=1 ... q+1" and
G = #;>1G. To avoid confusion we use I'; ; to denote the [-th copy of I in the i-th copy
of G in G.

First, let 7' : G — G be the x-representation given by the cyclic permutation of the
copies that sends the I-th copy of I to the [ + 1 (mod d + 1)-th copy. Consider the map
TLd on Lp(aoo) given by Theorem 1.3 associated to T}, = 7%,1 < k < d, as well as
its inverse associated to T,;l = w‘k, 1 < k < d. By Theorem 1.3, TLd i a complete
isomorphism on Lp(aoo). We will need the restriction of T*? to a copy of Lp(foo) in
L,,(@OO) and will make its presentation more precise.
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Let us identify I'sc with #;>1I; ;. For an element in g € I'; 1, we denote its copy in
i by g®. Thus, for g = g1 -+ gn € I'so in reduced form, we have

d
TEN(g) = Mgt? - g0 gt D). 8)

As we have explained, (8) defines a complete isomorphic embedding of Lp(fm) into
L,(G)-

Next, we consider the group morphism ¢ from G onto I'? such that for all i and
g € Fz‘,k C Geo

d(g)=e it k=1 and ¢(g) = (e, -+ ,e,g,e,-+-,e) f2<k<d+1.
——

k—2

Let U = Apa 0 ¢. Then U is a unitary representation of G, on fo(I'%). Applying the
Fell absorption prlnmple (Lemma 2.1) to U, we get a completely isometric embedding of
L,(G) into L (Fd®G ):

I D elghg) = Y c9)Ara(d(9) @ Alg). (9)

9€G o0 9€G o
By (8) and (9), we see that
old(z) =T, - TH(x), x€ C[To].
Thus a’? extends to a completely isomorphic embedding on Lp(foo). O
Remark 5.7. There is an alternate proof to Theorem 5.6. First, one ¢ may apply Theo-

rem 4.6 and Remark 4.7 for A; = I‘d®F for all i € N, and B = rd ® C, and check
that

1
et (m)HLP(fE@fm) =p ||$‘|Lp(fm)
for any © € C[[']. Next, one may apply Theorem 4.6 repeatedly to get
lab @), g, = 16 @, mmr, =~ Il @
This alternate proof gives a better constant.

As in the free group case, the previous theorem, together with transference, easily
implies a multiplier result on I's,. Given a bounded function m on I'?, define a linear
map M, on Ly(T's) by

My (Mg)) = m(g1, 92, , 9a)A(9)
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with g, = e in m(g1,92, -+ ,ga) if £ > n for every g € I'; in reduced form. Note that r
is QWEP iff T' is hyperlinear (cf. [35]).

Theorem 5.8. Assume that T is QWEP. Let d € N and 1 < p < oo. If the Fourier
multiplier T,,, is completely bounded on L,(I'?), then M, extends to a completely bounded
map on L,(Ts).

Proof. This proof is similar to that of Theorem 1.1. As T is QWEP, so is foo. Thus
Tn®lId, (o) 18 completely bounded on L (Fd e 00 ) by Junge’s noncommutative Fubini
theorem [12]. Let € C[['»]. Using the action aX? in Theorem 5.6, we have

”xHLP(fM) =d,p ||0‘Ld($)||Lp(fE@foo)'

It remains to use the intertwining formula
T ©1d[a"(z)] = a™[My (2)]
to conclude as in the proof of Theorem 1.1. O

In the same line, we conclude this subsection by stating another application. Consider
a family of discrete groups I';, i € I, and its free product 'y = #;¢7I;; consider also
a family of finite von Neumann algebras (M;,;),4 € I, and its von Neumann tensor
product (M, 7) = ®;cr(M;,7;). Let {m; 4}ger, C M, for all i € I, and let M; be the
operator-valued Fourier multiplier on I';:

M;(A(g)) =mig®Ag), geTi

We construct a map ML? similar to Theorem 5.8. Given ¢ = g1 - - gn € I'so in reduced
form, define

Miy gy @ - @Miy g, @A(g) ifn>d,
Miy g, @ - @My, g, D ANg) ifn<d.

Theorem 5.9. Let 1 < p < oo. Then M*™® extends to a completely bounded Fourier
multiplier from L,(T's) to Ly(M QT ) iff the family {HMZ'ch(L (T Ly (M ET)) }iEI is
bounded. In this case, we have

HMLdch Lp(Poo), Ly(MBTa)) ~Pid Si‘éII)HMZ'HCb(Lp(fi),LP(M@ﬁ-))'

Proof. We can easily adapt the proofs of Theorem 5.6 to the present setting, so we omit
the details. O
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Appendix A. Endpoint boundedness of free Hilbert transforms

Our arguments rely on the L,-boundedness (1 < p < oo0) of the free Hilbert trans-
forms H,. in Lemma 2.2 and their variants Hs(j ) in Corollary 4.10. We will discuss their
bounds on homogeneous polynomials when p = oo, since they cannot be bounded in
full generality at the end point. It is also natural to ask if one can get an L,.-BMO
boundedness for the BMO spaces studied in [14].

A.1. Bounds on homogeneous polynomials

We work in the setting of amalgamated free products of von Neumann algebras as in
section 4. Let HE(J ) be the maps introduced in Corollary 4.10 with ¢ a family of signs.
The case j = 1 of the following theorem follows from [18, Proposition 2.8].

Theorem A.1. Let d > 1 and 1 < j < d. Then for any x € Wy we have
|HY (@) ]| 0o < min { log(j + 2), log(d — j + 2) }|z|oo-

Proof. For z € T, let U, be the unitary on Ly(A) sending w € W,, to z"w for n > 0.
Given € Wy,y € Lo(A) and 0 < k < 2d, let

zLPy = B[z "U(aU. (y)))-

It is easy to verify that

2d

zy= alfy and [eLy]z < ]|yl
k=0

Moreover, we easily show

() : .
HO () Ly = e (zﬂ/)} if k< 2(d—j),

) e LFHSTD () it k> 2(d — j).
Thus

HY) (z)y = HO@lby)+ Y wlPFHSD(y).
0<k<2(d—7) 2(d—j)<k<2d
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On the other hand, using the elementary estimate

I szHLl(T) ~ log(n +2),
k=0

we get
2d
I X:glcj_’“yH2 + Z xJ_kyHQ < min {log(n + 2), log(2d — n + 2) }|z || [|y|2-
k=0 k=n

Therefore, since He ) s isometric on Ly (A), we deduce

2(d—j) 2d
[HO @yl < || D atbl,+ | Y el*HS (),
k=0 k=2(d—j)+1

< min { log(j +2), log(d — j + 2) }|z[l [z,
whence the desired estimate on HHé”(m)HOO O
A.2. Fuailure of the Loo-BMO boundedness

Let us restrict ourselves to the free group case. Recall that the Poisson semigroup
(St)t>0 on Fo is the normal unital completely positive semigroup given by

Si(M(9) = e "IN(g), g € Fu.

We also recall the definitions of various BMO-spaces according to [14]. As usual we
denote by LY (F) the subspace of centered elements (i.e., elements with vanishing trace)
in Lp(fF\Oo). Define

BMO“(S) = {z € LY(Fx) : [|z]Bmos < 00},
bmo®(S) = {z € LY (Fuo) : [[#]lbmos < 00},
where

I#llmarors) = sup |8 [l = Se) PTI1LL

Illomer(s) = sup | Se(lal?) = Si(@))[.L"
t>0

Similarly, we define the row versions BMO"(S) and bmo"(S) by passing to adjoints.
One of the main results of [14] states that the intersection space BMO(.S) N BMO"(.S)
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behaves well with complex interpolation, i.e., it replaces Lo, as an endpoint space in the

complex interpolation scale {Lp(ﬁ,o) }p>1.

Let H. denote the free Hilbert transform of the first letters associated to a sequence of

signs, see Lemma 2.2. It is easy to see that | H.(2)|/bmoc(s) = [|#[lbmoe(s) for € C[Fu].”

We will explain why one cannot hope the boundedness of H. from L. (Fs) = Foo to
any of BMO"(S), BMO“(S) or bmo"(5).

Lemma A.2. Let a,b € Foo be two free elements. Let z be a finite sum z = ) 51 CkAqr
and z, = z\(b"). Then

i) lm |lznllbmor(s) = [12]lee

i) (e7! —e?))2/loe < limsup lznllBMOa(5) < 2200, @ € {c,7}.
n—oo

Proof. i) It is clear that

”ZTLHbmoT(S) < Hanoo = ||Z||oo

For a fixed t > 0, we have lim ||.S;(2,,)||coc = 0. Thus,

lim sup ||zn||§mor(3) > sup HSt(anZ)HOO = [|2[I2
n—o00 t

ii) The upper bound is clear. For the lower, we use the Kadison inequality to ensure
15127 = Se 2P|y [1Selzn = Se(zn)Pllg 2 [1(S: = See)zal |2
But in ﬁoo,

lim ((S1 —S2)zp)Ap-n = (e = e %)z,

2
n— 00 n n

This finishes the proof. 0O

As H.(z,) = He(2)\pn, we get
Corollary A.3. The transform H. is unbounded from LOO(I/F\OO) to any of BMO"(S),
BMO“(S) and bmo"(S).

2 One can verify directly that S;|H.xz|?> — |S;H.x|?> = S¢|x|?> — |Stz|?. From this identity, one may obtain
directly that H.z belongs to L,(F) if © € L,(Fw) and H.z is selfadjoint via the probability model
introduced in [13].
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