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ABSTRACT

Charged particle transport plays a critical role in the evolution of high energy-density plasmas. As high-fidelity plasma models continue to incor-
porate new micro-physics, understanding multi-species plasma transport becomes increasingly important. We briefly outline theoretical chal-
lenges of going beyond single-component systems and binary mixtures as well as emphasize the roles experiment, simulation, theory, and
modeling can play in advancing this field. The 2020 Division of Plasma Physics mini-conference on transport in Transport in Non-Ideal, Multi-
Species Plasmas was organized to bring together a broad community focused on modeling plasmas with many species. This special topics issue of
Physics of Plasmas touches on aspects of ion transport presented at that mini-conference. This special topics issue will provide some context for
future growth in this field.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0048227

I. INTRODUCTION

Charged particle transport, both ionic and electronic, plays a crit-
ical role in the evolution of high energy-density (HED) plasmas. For
example, the symmetry of laser-driven implosions relies on controlling
ionic transport and eliminating instabilities,1 and transport is crucial
in species mixing and persistent separation as well.2,3 This is particu-
larly important for understanding the effect of impurities4 or target
structure5 on plasma performance. As plasma models continue to
incorporate new microphysics, a detailed understanding of ion trans-
port becomes an increasingly important priority.6–12 Ionic and elec-
tronic transport is an active and ongoing area of high interest and
importance in HED science.13–18 As shown in Fig. 1, the number of
citations to research papers in plasma transport now reaches a few
tens of thousands per year.

Broadly speaking, transport is determined by three different
mechanisms: (1) advection, in which the particles stream freely at their
current velocity; (2) forces, which change the velocities on those trajec-
tories; and (3) collisions, which act to impede the fluxes in the presence
of gradients in the thermodynamic variables such as pressure, temper-
ature, or density. Depending on the driving fields and physical condi-
tions, collisions shape the time-evolving distribution functions; their
relative strength can, for example, determine the growth rate of

instabilities. A simple way to quantify the effects of transport is
through the Knudsen number, which is defined as the ratio of the
mean free path of particles to the characteristic length scale (L) of a
given system. The larger the Knudsen number, the more the assump-
tions of hydrodynamic models break down, as collisionality can no
longer be taken as instantaneous. An approximate formula for the
Knudsen number is given by

Kn ¼ vthsii
L

¼
ffiffiffiffiffi
2p

p
ai

kLC2 ; (1)

where vth ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2T=m

p
is the thermal velocity, sii is the collision time, ai

is the typical inter-particle spacing, C is the Coulomb coupling param-
eter, and k is the Coulomb logarithm. Furthermore, we have chosen
k ¼ 4K11ðgÞ, where K11ðgÞ is the dimensionless collision integral
taken from Ref. 19. Ranges of Kn are shown in Fig. 2 for typical
parameter values of warm dense matter (WDM), inertial confined
fusion (ICF), solar atmospheres and the ions and electrons of ultracold
neutral plasmas (UNP). It can be seen that the selected plasmas span
nearly ten orders of magnitude in the Knudsen number, which illus-
trates the complexity of transport in these systems.

A goal of experiments is to provide information on transport,
often in the form of numerical values of the transport coefficients.
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Doing so requires establishing well-controlled gradients in some varia-
bles and not others, a very challenging task. Even if the desired initial
conditions can be established, one still requires very challenging mea-
surements of small plasma regions on fast time scales.20–25 If the
experiment cannot resolve the relevant fluxes and associated gradients,
plasma models and modeling codes are needed to interpret the mea-
surements.26–29 In recent years, the experimental situation has
improved with the application of emission spectroscopy of photons
and particles30–32 and Thomson scattering33–36 for higher resolution.

Including detailed transport microphysics in radiation–hydrody-
namics codes faces roughly three different kinds of challenges. The

first is the overwhelming complexity of writing density, momentum,
and energy equations for all of the different species in their various
ionization states.37,38 The number of equations scales as N2 for N spe-
cies, and more importantly, there can be ambiguity as to which gra-
dients should be included, where expansions can be truncated and
which terms can be combined (e.g., velocity and temperature fields are
often assumed to be locked, but this approximation might be invalid
for HED plasmas39) The second challenge is understanding appropri-
ate physics models that can be implemented across the plasma temper-
ature and density ranges as the system evolves; many plasma
experiments span the cold, warm, and hot dense matter regimes. The
third is knowing the appropriate transport coefficients (or equivalent
representations) within the contexts of those models.18,19,40 This last
challenge can be acute in non-ideal plasmas.41–44

II. PLASMAMIXTURES

In plasma mixtures, kinetic equations can be used to describe the
evolution of each single-species distribution function under the influ-
ence of the other distribution functions associated with all other spe-
cies. In particular, the multispecies Boltzmann equation is appropriate
for dense plasmas in which collisions are characterized by strong
binary scattering events. In this section, we sketch an approach for
deriving transport coefficients within this framework.

A. The multispecies Boltzmann equation

The multispecies Boltzmann equation for a mixture of N species
can be written as38

@fi
@t

þ v � rxfi þ ai � rvfi ¼
XN
j¼1

Qij fi; fj
� �

: (2)

Here, fiðx; v; tÞ is the single-species distribution function of species i at
position x and velocity v at time t, and ai is the particle acceleration of
that species due to both internal and external driving fields. The
Boltzmann collision operator Qij½fi; fj� between particles of species i
and j is given by

Qij fi; fj
� �

¼
ð
fiðv0Þfjðv0�Þ � fiðvÞfjðv�Þ
� �

grij dXdv�; (3)

where g ¼ jgj ¼ jv � v�j is the relative velocity of the two particles,
rij is the differential cross section, and X is the unit vector in the scat-
tering direction v0 � v0�. Finally, the velocities in Eq. (3) are coupled
and conserve momentum and energy according to

miv þmjv� ¼ miv
0 þmjv

0
�; (4)

mi

2
jvj2 þ

mj

2
jv�j2 ¼

mi

2
jv0j2 þ

mj

2
jv0�j

2: (5)

Numerical solutions of the Boltzmann equations remain prohibitively
expensive: N coupled integrodifferential equations need to be solved
each in a six-dimensional phase space. This computational issue is
partly mitigated by exploiting the collisionality that maintains the
plasma close to equilibrium.

B. Hydrodynamic equations

Hydrodynamic equations based on velocity moments of an
underlying kinetic equation (such as the Boltzmann equation) reduces
the dimensionality from six to three. Furthermore, for collisional

FIG. 2. Range of Knudsen numbers for warm dense matter (WDM), inertial con-
fined fusion (ICF), solar atmospheres, and the ions and electrons of ultracold neu-
tral plasmas (UNP). The Knudsen number is defined as Kn ¼ kmfp=L, where kmfp
is the mean free path determined from Eq. (1), and the characteristic length scale
of the system was chosen as L ¼ 1 lm for all cases except for solar atmospheres
in which L ¼ 1 km.

FIG. 1. Citations to plasma transport papers per year, broken out by a few subcate-
gories. The data were obtained by searching Web of Science by topic using the
labeled text ended with “transport,” “plasma,” and/or “physics.” The exception is
ultracold neutral plasmas (UNP), which shows all citations in that field. WMD
¼ warm dense matter. The number of citations per year for fusion transport has
been divided by 10 for convenience of viewing on this plot.
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plasmas that are close to equilibrium, only the first few moments are
needed for an accurate description. We sketch the derivation of such
hydrodynamic models by first multiplying Eq. (2) by the mass mi of
species i and integrating over v to give the continuity equation,

@qi
@t

þrx � ðqiuÞ þ rx � ðqiUiÞ ¼ 0; (6)

where qi is the mass density of species i. The species diffusion velocity
Ui is given by

Ui ¼
1
ni

ð
ðv � uÞfi dv ¼ ui � u; (7)

where the bulk velocity of species i is uiðx; tÞ, and uðx; tÞ is the center
of mass velocity defined as

u ¼ 1
q

XN
i¼1

qiui; q ¼
XN
i¼1

qi: (8)

Next, the total momentum equation can be determined by multi-
plying Eq. (2) by miðv � uÞ, integrating over velocity, and summing
over all species to give

@ðquÞ
@t

þrx � ðqu� uÞ þ rx � r ¼
XN
i¼1

qiai; (9)

where � denotes an outer product, and the total stress tensor r is
given by

r ¼
XN
i¼1

ð
miðv � uÞ � ðv � uÞfidv ¼

XN
i¼1

ri: (10)

Similarly, multiplying Eq. (2) by mijv � uj2=2, integrating over veloc-
ity, and summing over species gives the (kinetic) energy equation,

3
2

@ðnTÞ
@t

þrx � ðnTuÞ
� �

þrx � qþ r :rxu ¼
XN
i¼1

qiUi � ai; (11)

where the n is the total number density, the colon ð:Þ denotes a tensor
contraction over the indices, and the total heat flux q is given by

q ¼
XN
i¼1

ð
mi

2
jv � uj2ðv � uÞfiðx; v; tÞ dv ¼

XN
i¼1

qi: (12)

As the number of species increases, there will be an equation like
Eq. (6) for each species. However, hydrodynamic coupling between
the species occurs through equations like Eqs. (11) and (12).

C. Transport coefficients

In highly collisional plasmas, the distribution functions are nearly
Maxwellian, a fact that hydrodynamics exploits and one we can exploit
to model the Boltzmann collision operator. Near equilibrium, we can
employ the approximation of Bhatnagar, Gross, and Krook (BGK) for
the collision operator of Eq. (3) with the form

QBGK
ij ¼ �ij Mij � fi

� �
; (13)

where Mij is a Maxwellian distribution at a pair temperature Tij and
velocity vij, and �ij is a collision rate.45 The collision frequencies are
determined by matching the momentum relaxation rate or

temperature relaxation rate of a plasma mixture in the BGK approxi-
mation to the Boltzmann equation.46 These rates then connect to the
Boltzmann equation through the momentum transfer cross section
rð‘Þij , and collision integrals of the form19

Xð‘;mÞ �
ð1
0
w2mþ3rð‘Þij ðwÞe�w2

dw (14)

can be calculated. Transport coefficients are proportional to these inte-
grals, which then enables the calculation diffusion coefficients, viscos-
ity, temperature relaxation rates, and thermal and electrical
conductivity. Collision integrals that have been verified by molecular
dynamics (MD) simulations and fit to simple functional forms have
been published for binary mixtures.19

D. Beyond binary mixtures

A binary mixture could be characterized by a seven-
dimensional parameter space: Z1;Z2;m1;m2; n1; n2, and T, which
corresponds to the charge numbers, masses, number densities, and
temperature, respectively. While certain symmetries present in the
system can allow some of these dimensions to be combined, any
model-dependent parameters would further increase the dimen-
sionality. If an experimental or simulation program was designed
to (sparsely) explore this parameter space by choosing three points
along each dimension, then 37 ¼ 2187 different plasma systems
would need to be explored. Taking this idea to the general case of
mixtures with N species, the parameter space might be character-
ized by a 3N þ 1 dimensional space, thus requiring 33Nþ1 experi-
ments or simulations for this sparse sampling. This scaling is an
example of the so-called “curse of dimensionality,” which worsens
considerably in the more realistic scenario that more than three
points would be needed to appropriately sample a given
dimension.

Furthermore, when extending hydrodynamic models to plasma
mixtures with more species, the complexity increases rapidly in ways
that are fundamentally different from a one-component or binary
plasma due to the breakdown of symmetries between species. For
example, for three or more species, the number of transport coeffi-
cients increases quadratically, and their calculation requires full matrix
inversions.37,47 Simplifying approximations are often made, such as
locking the velocity and temperature fields of each species together;
however, it has been found that this unrealistic in non-equilibrium
plasmas.39

III. DPP MINI-CONFERENCE ON TRANSPORT
IN NON-IDEAL, MULTI-SPECIES PLASMAS

Because of the importance of this complex problem, a minicon-
ference was organized to bring together a broad community focused
on modeling plasmas with many species. In this Special Topics issue
on Transport in Non-Ideal, Multi-Species Plasmas, contributors from
the 2020 DPP mini-conference on this topic present their state-of-the-
art research in transport physics. Topics included transport in the solar
atmosphere, diffusion in monolayers in dusty plasmas,48 electron and
ion transport in ultracold neutral plasmas,49–51 and MD simulations
along with theoretical treatments of pair potentials, electronic trans-
port, transport coefficients in a conservative BGK model, model verifi-
cation, and using machine learning to extend the applicability of MD
data.
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