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A synthetic monopole source
of Kalb-Ramond field in diamond
Mo Chen (陈墨)1,2†‡, Changhao Li1,3‡, Giandomenico Palumbo4,5, Yan-Qing Zhu4§,
Nathan Goldman4, Paola Cappellaro1,3,6*

Magnetic monopoles play a central role in areas of physics that range from electromagnetism to topological
matter. String theory promotes conventional vector gauge fields of electrodynamics to tensor gauge fields
and predicts the existence of more exotic tensor monopoles. Here, we report the synthesis of a tensor
monopole in a four-dimensional parameter space defined by the spin degrees of freedom of a single solid-state
defect in diamond. Using two complementary methods, we characterized the tensor monopole by measuring
its quantized topological charge and its emanating Kalb-Ramond field. By introducing a fictitious external
field that breaks chiral symmetry, we further observed an intriguing spectral transition, characterized by
spectral rings protected by mirror symmetries. Our work demonstrates the possibility of emulating
exotic topological structures inspired by string theory.

O
ur current understanding of fundamental
physical phenomena relies on two main
pillars: general relativity and quantum
field theory. Theirmutual incompatibility,
however, poses critical limitations to the

formulation of a unifying theory of all funda-
mental interactions. String theory proposes a
powerful and elegant formalism to unify grav-
itational and quantum phenomena, providing a
concrete route to quantum gravity (1). Within
this scenario, conventional point-like particles
are replaced with extended objects, such as

closed and open strings, and conventional vector
gauge fields are promoted to tensor Kalb-
Ramond (KR) gauge fields (2, 3). In direct
analogy with the Dirac monopole (4), tensor
gauge fields can emanate frompoint-like defects
called tensor monopoles. In four spatial dimen-
sions, the tensor monopole charge is quantized
according to the topological Dixmier-Douady
(DD) invariant (5–7),whichgeneralizes theChern
number associated with the Dirac monopole.
Experimental evidenceofmagneticmonopoles

is still lacking in high-energy physics experi-

ments. However, synthetic monopoles associ-
ated with effective gauge fields have recently
been detected in ultracold matter (8–13). Addi-
tionally, momentum-space monopoles play a
central role in topological matter, such as in
characterizing three-dimensional (3D) Weyl
semimetals. Recently, the notions of tensor
monopoles andDD invariants were shown to
arise in 3D chiral topological insulators (14, 15)
and in higher-order topological insulators (16).
In this work, we exploited the high con-

trollability of engineered quantum three-level
(qutrit) systems to reveal exotic gauge struc-
tures, originally introduced in the context of
string theory (2, 3). We considered the spin
triplet ground state of a single nitrogen-vacancy
(NV) center in diamond, which can be mapped
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Fig. 1. Parametric modulations. (A) Determining
the resonance condition for parametric modula-
tion. We fixed t = 7.5 ms, (ma, mb, mf) = (0, 1/30,
1/30), and swept the modulation frequency
around 4 MHz to find wr = 2H0. (B) Examples of
coherent Rabi oscillations under parametric
modulations, for the engineered Hamiltonian at
(a0 = p/4, b0 = f0 = 0). The measured Rabi
frequencies are used to calculate the matrix

elements Gm nð Þ
�;m [shown in (C) and (D)]. To extract

the diagonal components of the metric tensor,
we used a single-parameter modulation—as shown
by the blue curve, for example—representing
the SQ transition (w = wr/2) for a modulation.

Owing to chiral symmetry, Gm nð Þ
�;0

��� ��� ¼ Gm nð Þ
þ;0

��� ���. We

therefore measured the population in the first
excited state m0ij , which gives half contrast (20).
The other two curves represent two-parameter
modulations resonant with the DQ transition
(w = wr) and possess full contrast. Illustrations
of the relevant single- and two-parameter
modulations in the Bloch sphere representation

are provided at left. (C) Matrix elements Gm nð Þ
�;0

��� ���
measured for SQ transitions at w = wr/2. Many matrix elements are expected from theory to coincide, and thus their measured values overlap at

ffiffiffi
2

p
MHz. (D) Matrix

elements Gm nð Þ
�;þ

��� ��� measured for DQ transitions at w = wr. Markers are experimental data, and solid lines are fits in (A) and (B) and theory in (C) and (D) (20).
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into a three-level Weyl-type Hamiltonian Ĥ 4D

qx; qy; qz ; qwð Þ defined over a 4D parameter
space

Ĥ 4D ¼
0 qx � iqy 0

qx þ iqy 0 qz þ iqw
0 qz � iqw 0

0@ 1A
ð1Þ

Here, the parameters q = (qx, qy, qz, qw) can be
expressed in terms of the experimentally con-
trollable parameters (H0, a, b, f) described
below, through qx+ iqy=H0cos(a)e

ib, qz+ iqw=
H0sin(a)e

if, where a ∈ [0, p/2] and b,f ∈ [0, 2p).
This Hamiltonian hosts a threefold degen-
erate point in the spectrum, located at the
origin q = 0. This singularity is topologically
protected by chiral symmetry Ĥ 4D;U

� � ¼ 0,
where U = diag(1, –1, 1), and is a good can-
didate for a synthetic monopole source of
tensor gauge field, as we explain below.
A nodal point in a 3D parameter space is

associated with an effective Dirac monopole
(12–14). In this scenario, the Berry-curvature
field emanates radially from the node, and
its flux through a two-sphere enclosing it is
quantized, characterized by the Chern num-
ber (17). In 4D space, the topological charge
associated with a nodal point is provided by
a similar invariant, which now involves the
flux of a radial three-form curvature over a
three-sphere that surrounds the node (14). The
three-form curvatureHmnl is well known in the
context of p-form electromagnetism (3), where
it derives from a two-form gauge field: the
Abelian and antisymmetric KR field Bmn (2)

Hmnl ¼ @mBnl þ @nBlm þ @lBmn ð2Þ
This KR field plays an important role in string
theory because it naturally couples to extended
objects (2, 3).
Similarly tomonopoles associatedwith vector

gauge fields in 3D space, the tensor KR field Bmn
gives rise to tensor monopoles with distinct
topological properties (5–7, 14–16). These exotic
monopoles are point-like sources of the gen-
eralized “magnetic” field Hmnl , and their topo-
logical charge is obtained by measuring the
corresponding flux over a three-sphere sur-
rounding them

DD ¼ 1

2p2 ∫S3Hmnldq
m∧dqn∧dql ð3Þ

This topological invariant is known as the
DD invariant (5–7, 14–16) and generalizes the
well-known Chern number. The field Hmnl

radially emanates from the singularity in 4D
space, hence providing an observable and un-
ambiguous signature of tensor monopoles.
We next explored how these exotic gauge

structures can be measured in engineered sys-
tems. First, the KR field Bmn in Eq. 2 can be
reconstructed from the eigenstates of the
Hamiltonian in Eq. 1 (14, 15). Although state

tomography could be performed to reconstruct
these states and the related tensor fields, this
approach is resource intensive.We provide two
alternativemethods to experimentallymeasure
the curvature Hmnl . The first approach builds
on a relation between the three-form curvature
and the Fubini-Study quantummetric gmn (14, 15)

Hmnl ¼ Dmnl 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det g�m�n
� �q� 	

ð4Þ

where Dmnl is the Levi-Civita symbol, and �m;�n ¼
qx; qy; qzf g forHxyz (and similarly for the other

components). The metric tensor gmn, which de-
fines the distance between nearby states u qð Þj i;
u q þ dqð Þj i(12, 13, 18–20), thus allows for a
measurement of the tensormonopole field. The
second approach builds on our experimental
parametrization (H0, a, b, f), which expresses
the three-form curvature in Eq. 2 as (20)

Habf ¼ � 1

2
F ab þF fa
� � ð5Þ

whereF mn is the standard (2-form) Berry cur-
vature. We will refer to the latter as the Berry
curvature, not to be confused with the three-
form curvature Hmnl . Both the metric tensor

gmn in Eq. 4 and the Berry curvatureF mn in Eq. 5
can be experimentally extracted from spectro-
scopic responses upon modulating the param-
eters m, n (12, 13, 18, 20).
In our experiment, we exploited these two

different probes of the three-form curvature
to demonstrate two distinct signatures of the
tensor monopole field: its quantized topological
charge and its characteristic radial behavior in
4D parameter space.
To synthesize the 4D Hamiltonian in Eq. 1,

we used the ground triplet states of a single
NV center in diamond at room temperature
(fig. S4). An externalmagnetic field,B = 490G,
is applied along the NV axis to lift the de-
generacy between the qutrit spin states T1j i.
At this magnetic field, optical illumination
of a 532-nm laser polarizes both the NV
electronic spin and the native 14N nuclear
spin through polarization transfer in the ex-
cited state (21). Hence, we can neglect the
nuclear spin part of the Hamiltonian in the
analysis: We applied a dual-frequency micro-
wave pulse (22), on resonance with the 0j i↔
T1j i transitions. In the doubly rotating frame,
and upon the rotating wave approximation,
we reproduced the minimal tensor monopole
model in Eq. 1, where b, f are the phases of the
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Fig. 2. Revealing the tensor monopole. (A) Independent components of the metric tensor gmn measured
as a function of a. (B) Non-zero components of Berry curvature F mn measured as a function of a.
(C) Generalized three-form curvature Habf with respect to a, reconstructed from the measured metric
tensor gmn in (A) and the Berry curvature F mn in (B). These complementary measurements yield topological
invariant DDexp;g ¼ 0:99 3ð Þ and DDexp;F ¼ 1:11 3ð Þ, revealing the existence of a tensor monopole
within the hypersphere. (D) Radial field component H⊥

xyzw extracted from the quantum metric in (A) and

Berry curvature in (B), showing the characteristic inverse-cube dependence on the radial coordinate. Markers
are experimental data, and solid lines are theory (20). The error bars are propagated from fitting errors of
resonant frequencies and Rabi oscillations.
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two microwave tones, and H0cosa, H0sina are
their correspondingmicrowave amplitudes (20).
This Hamiltonian has three eigenstates

u �;0;þf g
�� 


, with eigenvalues D�; D0; Dþf g in as-
cending order. Precise modulations of the
microwave frequencies, amplitudes, and phases
grant us full access to the 4D parameter space
spanned by (H0, a, b, f). Using this parametri-
zation, the system is rotationally symmetric
about b, f. Therefore, the measurable geometric
quantities (the metric tensor and Berry curva-
ture) are independent of b, f

g þ i
F
2
¼

1

2

isin 2að Þ
4

� isin 2að Þ
4

� isin 2að Þ
4

cos2a 2� cos2 að Þ½ �
4

� sin2 2að Þ
16

isin 2að Þ
4

sin2 2að Þ
16

sin2a 2� sin2 að Þ� �
4

0BBBBB@

1CCCCCA
ð6Þ

As a demonstration of our engineered system,
we initialized the NV in the 0j i state and let it
evolve under the target Hamiltonian (with b =
f = 0). We further chose the microwave am-
plitudes so that the parameters span a hyper-
sphere with fixed radius H0 = 2 MHz, which
encloses the tensor monopole at the origin.
For various values of a, the resulting dynam-
ics of all three states show excellent agree-
ment with theory (fig. S6).
We next measured the quantummetric ten-

sor and Berry curvature using weak modu-
lations of the parameters m, n ∈ {a, b, f}
(12, 13, 18). Considering themodulations m(t) =
m0 + mmsin(wt + g), n(t) = n0 + mnsin(wt), with
mm;mn ≪ 1, the Hamiltonian takes the form

Ĥ ≈ Ĥ a0; b0; f0ð Þ þmm@mĤ sin wt þ gð Þ þ
mn@nĤ sin wtð Þ ð7Þ

When g = 0, we linearly modulated m, n and
extracted themetric tensor, whilewe set g = p/2
to elliptically modulate m, n and extract the
Berry curvature, as outlined below.
The parametricmodulations coherently drive

Rabi oscillations between u�j i↔ u0j i and
u�j i↔ uþj iwhen the modulation frequency
is tuned on resonance with the energy gap be-
tween ground and excited state, w ¼ D0 � D�
and w ¼ Dþ � D� , respectively. We call the
transitions uTj i↔ u0j i “single quantum (SQ)
transitions” and the transition u�j i↔ uþj i
“double quantum (DQ) transition,” following
the change in quantum number. Their Rabi
frequencies are directly related to the transition
matrix elementswhen varying oneHamiltonian
parameter,Gm

�;n ¼ u�h j@mĤ nj i�� ��, or whenmod-
ulating two parameters, either linearly, Gm;Tn

�;n ¼
u�h j@mĤT@nĤ nj i or elliptically, Gm;T�n

�;n ¼ u�h j
@mĤTi@nĤ nj i, wheremm = ±mn (20). Here, the
subscript for the matrix element, {–, n},
stands for the transition between eigenstates
u�j i↔ nj i . Last, we reconstructed the quan-
tum metric tensor and Berry curvature from
the relations (12, 20)

gmm ¼
X
n≠�1

Gm
�;n


 �2
D� � Dnð Þ2

gmn ¼
X
n≠�1

Gm;n
�;n


 �2
� Gm�n

�;n


 �2� 	
4 D� � Dnð Þ2 ðlinearÞ ð8Þ

F mn ¼
X
n≠�1

Gm;n
�;n


 �2
� Gm�n

�;n


 �2� 	
2 D� � Dnð Þ2 ðellipticalÞ

To measure the quantum metric tensor and
Berry curvature in the experiment, we first
initialized the NV in the ms ¼ 0j i state and
coherently drove it to the ground eigenstate
u�j i of the Weyl-type Hamiltonian with two
microwave pulses. The system was then sub-
jected to the linear and elliptical parametric
modulations in Eq. 7, which resonantly drive
Rabi oscillations between eigenstates. Last,
either the u�j i or u0j i state was mapped back
to 0j i with microwave pulses and optically
read out (20).
We began our measurements by precisely

determining the resonant frequency wr ¼ Dþ�
D� ¼ 2 D0 � D�ð Þ. As shown in Fig. 1A, we fixed
the time and swept the modulation frequency
w to find the resonance condition. A very weak
modulation amplitude reduces power broadening
and improves the precision in estimating wr.
We then measured the coherent Rabi os-

cillations under linear and elliptical parame-
tric modulations at the calibrated w ¼ wr

2 and
wr for SQ and DQ transitions, respectively.
Examples of SQ and DQ Rabi curves for the
quantum-metric measurements are shown in
Fig. 1B and figs. S8 to S12, including both
single- and two-parameter modulations for
extracting the diagonal and off-diagonal com-
ponents. No decoherence effect was observed
in these parametricmodulations owing to the
long coherence time of the NV center. For
every combination of modulations m and mn,
we measured both the SQ and DQ Rabi fre-
quencies and recovered the matrix elements
Gm
�;n andG

m;Tn
�;n , respectively. All measuredmatrix

elements G are plotted in Fig. 1, C and D, for
the quantum-metric tensor and in fig. S14 for
the Berry curvature, showing good agreement
with theoretical predictions.
As the main results of this work, we re-

constructed both the quantummetric and the
Berry curvature of our 4D setting and used
them as two complementary approaches to
determine the three-form curvatureHmnl and
its related monopole charge (DD invariant).
The independent components of the metric

tensor, reconstructed by using Eq. 8, are shown
in Fig. 2A. The excellent agreement between
theory and experiment demonstrates an exquis-
ite control over the 4D Weyl-type Hamiltonian
inEq. 1, providing precise information about the
quantumgeometry of the ground-statemanifold.
Using Eq. 4, we then connected the metric

tensor to the three-form curvature, a gener-
alized “magnetic” field predicted to emanate
from nodal points in 4D space. The measured
three-form curvatureHabf is shown in Fig. 2C.
Using these experimental data, we obtained
the quantization of the generalized “magnetic”
flux over the three-sphere

DDexp;g ¼ 1

2p2 ∫
p
2

0
da∫

2p

0
db∫

2p

0
dfHabf

¼ 0:99 3ð Þ ð9Þ
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Fig. 3. Spectral transition triggered by an external field. The central plot shows experimental data (blue
squares) and numerical simulation (green triangles) (20) of the experimental observable G based on the
metric tensor, experimental data (red squares), and analytical result (yellow line) of the observable B based
on the Berry curvature (20). Both observables show a sudden change at Bz = H0, when the spectral rings
cross the boundary of the integration hypersphere. The experimental observables G, B correspond to theDD
invariant when Bz = 0 and chiral symmetry is preserved. (Insets) Three representative energy spectra
as the longitudinal field Bz increases (qz = qw = 0). The external field splits the triply degenerate Weyl node
(left) into doubly degenerate spectral rings (middle). As the field further increases, the system becomes
gapped in the enclosed integration hypersphere (right).
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which provides an estimation of the DD in-
variant in Eq. 3 and signals the presence of the
tensor monopole at the center of our param-
eter space.
Alternatively, one can identify the tensor

monopole through the Berry curvatures, F mn,
using Eq. 5. We show the Berry curvature
measured through elliptical parametric mod-
ulations in Fig. 2B and the reconstructed three-
formcurvature in Fig. 2C. This second approach,
which is complementary to the metric-tensor
measurement, further confirms the existence of
the tensor monopole through the measurement
of its quantized charge

DDexp;F ¼ 1

2p2 ∫
p
2

0
da∫

2p

0
db∫

2p

0
dfHabf

¼ 1:11 3ð Þ ð10Þ

Besides its topological charge, the 4D tensor
monopole is also fully characterized by its
field distribution (6, 14, 20)

Hmnl qð Þ ¼ Dmnlgqg= q2x þ q2y þ q2z þ q2w


 �2
ð11Þ

which reflects that the curvature field radially
emanates from the topological defect in 4D
parameter space. As a consequence, the mono-
pole field has a characteristic inverse-cube de-
pendence on the radial coordinate,H e 1=H0ð Þ3.
We have verified this additional signature of the
tensor monopole through the experimental
determination of the three-form curvature
distribution (Fig. 2D). Together, the measure-
ment of the quantized topological charge (DD
invariant) and the characteristic radial be-
havior of a monopole field fully confirm the
existence of a tensor monopole in our syn-
thetic 4D parameter space.
We further explored a spectral transition

that can be induced by adding a longitudinal
field to the Weyl-type Hamiltonian (23)

Ĥ ST ¼ Ĥ 4D þ diag Bz ; 0;�Bzð Þ=
ffiffiffi
2

p
ð12Þ

The field is realized by detuning the dual-
frequency microwave driving by equal and
opposite amounts. The field breaks the chiral
symmetry but preserves mirror symmetries:
M1Ĥ ST qx; qy; qz ; qwð ÞM�1

1 ¼ Ĥ ST �qx;� qy;ð
qz ; qwÞ, M2Ĥ ST qx; qy; qz ; qwð ÞM�1

2 ¼ Ĥ ST qx;ð
qy;�qz ;�qwÞ, with M1 = diag(–1, 1, 1), M2 =
diag(1, 1, –1), keeping the Hamiltonian gapless.
Upon application of the field, the system

undergoes a topological spectral transition
from the 4D Weyl-like structure. The new
symmetry-protected energy spectrum features
a pair of doubly degenerate surfaces in the b –
f space along [a = 0(p/2), Bz = H0]. The
spectrum has a more intuitive description in
cartesian coordinates, (qx, qy, qz, qw), where
the field gives rise to two spectral rings in the

qx – qy and qz – qw space along qz = qw = 0 and
qx = qy = 0, respectively, with radius Bz (Fig. 3).
We identified signatures of the spectral rings
using two observables inspired by the tensor-
monopole measurements, G ¼ 8∫Dmnl

ffiffiffiffiffiffiffiffiffiffiffiffi
detg�m�n

p
da

and B ¼ �∫ F ab þF fa
� �

da . They represent
integration over a hyperspherical surface with
radius H0 when viewed in the cartesian
coordinate and converge to theDD invariant
when Bz = 0.
As the field strength Bz increases, the two

spectral rings expand from the origin and cross
the boundary of our integration hypersphere at
Bz = H0. For various Bz, we performed linear
and elliptical parametricmodulations to recon-
struct the metric tensor (figs. S15 to S20) and
the Berry curvature (figs. S21 to S27), from
which we obtained G, B. We observed a sharp
change in both experimental observablesG,B
at Bz = H0, signaling the topological spectral
ring (Fig. 3). The results are in agreement
with the simulation for G and analytical form
for B (20),

B ¼
1; Bz < H0

� 1

2
1� Bzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
z þ 8H2

0

p !
otherwise

8><>:
ð13Þ

These results reveal that exotic spectral tran-
sitions can be simulated in our system upon
increasing Bzwhile keepingH0 fixed (restrict-
ing ourselves to a hypersphere in parameter
space): From the Weyl-type nodes (Bz = 0) to
topological spectral rings (Bz < H0), charac-
terized by a robust B index, and eventually to
a gapped spectrum (Bz > H0).
Our precise control over the Weyl-type

Hamiltonian illustrates the potential offered
by solid-state qudits in the realm of quantum
simulation. Interesting perspectives include
the fate of tensor monopoles upon coupling
the system to other spins or qubits (10) and the
study of non-Abelian structures induced by
spectral degeneracies and tensor fields (24).
The Hamiltonian Ĥ 4D qð Þ in Eq. 1 further

suggests that the physics of tensor monopoles
could be investigated in systems of particles
moving on a 4D lattice, where q would rep-
resent the corresponding crystalmomenta. Such
4D Weyl lattice systems have been recently
proposed (15, 25) and could be realized in
quantum-engineered systems, extending the
3D lattice where particles lie with a synthet-
ic dimension (26, 27). 4D Weyl many-body
settings are particularly intriguing because
they would enable studying the effects of
interactions in systems in which quasipar-
ticles are effectively coupled to higher-form
fields (28).
Note added in proof: During the prepara-

tion of this manuscript, we noticed another ex-
perimental work that describes the observation

of the tensor monopole by using superconduct-
ing circuits (29).
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I. THEORETICAL DESCRIPTION OF THE MODEL HAMILTONIAN AND THE TENSOR
MONOPOLE

A. Tensor monopole and Dixmier-Douady (DD) invariant

In this section we review the generalization from Chern number to DD invariant and present the relation between
the 3-form curvature and the 2-form connection.
In electromagnetism, the Dirac monopole is closely related to the first Chern number, C1. Similar to Gauss’s law

for the electric charge, the Dirac monopole is revealed by the well-known Berry curvature Fµν integrating over any
enclosed manifold containing the monopole:

C1 =
1

2π

∫

S2

Fµνdqµ ∧ dqν . (S1)

The Berry curvature Fµν appears in the quantum geometric tensor (QGT):

χµν = gµν + iFµν/2, (S2)

where the real part is the metric tensor. More details on the measurement of the metric tensor is covered in the next
section. It has been shown that one can obtain the Berry curvature entirely from the metric tensor gµν

14:

Fµν = 2ǫµν
√

det gµ̄ν̄ , (S3)

where ǫµν is the Levi-Civita symbol.
Given the parallelism between the Dirac monopole and the metric tensor monopole, it is natural to introduce the

generalized 3-form Berry curvature in the 4D parameter space:

Hµνλ = ǫµνλ(4
√

det(gµ̄ν̄)), (S4)

and the corresponding topological invariant (Dixmier-Douady invariant):

DD =
1

2π2

∫

S3

Hµνλdq
µ ∧ dqν ∧ dqλ. (S5)

Alternatively, the curvature H can be derived from the generalized 2-form Berry connection Bµν associated with
the ground state |u−〉:

Hµνλ = ∂µBνλ + ∂νBλµ + ∂λBµν , (S6)

a Present address: Institute for Quantum Information and Matter, and Thomas J. Watson, Sr., Laboratory of Applied Physics, California

Institute of Technology, Pasadena, CA 91125, USA
b MC and CL contributed equally to this work.
c Present address: Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam

Road, Hong Kong, China
d pcappell@mit.edu
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Quantum geometry Electromagnetism Tensor (2-form) gauge field

Berry connection: Aµ,Bµν vector potential Aµ tensor potential Bµν

Berry curvature: Fµν ,Hµνλ magnetic field strength Fµν = ∂µAν − ∂νAµ field strength Hµνλ = ∂µBνλ + ∂νBλµ + ∂λBµν

Topological invariant first Chern number C1 Dixmier-Douady invariant DD

TABLE S1. Ground state quantum geometric properties in electromagnetism in 3D and in the tensor gauge field in 4D.

where the 2-form tensor connection can be constructed from the state |u−〉14,15:

Bµν = ΦFµν ,Φ =
−i

2
log(u1u2u3) (S7)

with u1(2,3) denoting the components of |u−〉, and Fµν = ∂µAν − ∂νAµ being the 2-form Berry curvature. From
Eq. S6 and S7, it follows that in general, the generalized curvature can be obtained by performing state tomography
of the eigenstate, upon external perturbations of the parameters. We will provide a simpler expression of the 2-form
connection and the 3-form curvature for our model in Sec. I C.
We note that the 2-form Berry connection Bµν can be more generally constructed from a mixed set of pseudoreal

and complex scalar fields ψ1,2,3 satisfying the U(1) gauge transformation and linked to the ground state,

Bµν =
i

3

3
∑

j,k,l=1

ǫjklψj ∂µψk ∂νψl =
i

3
ψj(∂µψk ∂νψl − ∂µψl ∂νψk) (S8)

Choosing for example

ψ1 = −i log(u1 + u3), ψ2 = u∗
1 − u∗

3, ψ3 = u3 − u1, (S9)

where |u−〉 = [u1, u2, u3]
T , yields a gauge-invariant Hµνλ that gives the same DD and B as above.

We compare the quantum geometric properties in electromagnetism in 3D and in the tensor gauge field in 4D in
Table S1.

B. Analytical solutions of the metric tensor and generalized Berry curvature (Bz = 0)

For convenience, here we reproduce the system Hamiltonian already introduced in the main text

ĤST = Ĥ4D + diag(Bz, 0,−Bz)/
√
2, (S10)

Ĥ4D =







0 qx − iqy 0

qx + iqy 0 qz + iqw
0 qz − iqw 0






, (S11)

where the parameters q = (qx, qy, qz, qw) can be expressed in terms of the experimentally controllable parameters
(H0, α, β, φ) through qx+ iqy = H0 cos(α)e

iβ , qz + iqw = H0 sin(α)e
iφ, where α ∈ [0, π/2] and β, φ ∈ [0, 2π). The

Hamiltonian in Eq. S28 is parameterized by the three parameters α, β, φ at fixed H0 when Bz = 0. The analytical
solutions for the quantum metric tensor can be easily obtained via exact diagonalization:

g =







gαα gαβ gαφ
gβα gββ gβφ
gφα gφβ gφφ







=







1
2 0 0

0 1
4 cos

2 α(2 − cos2 α) − 1
16 sin

2 2α

0 − 1
16 sin

2 2α 1
4 sin

2 α(2 − sin2 α)






.

(S12)

The resulting 3-form Berry curvature is:

Hαβφ = cosα sinα. (S13)

One can then easily verify that the integral of the above curvature over α, β and φ will yield DD = 1.
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C. Analytical form of B calculated from the tensor Berry connection (arbitrary Bz)

With ĤST parametrized by (H0, α, β, φ), we present the analytical calculations of the experimental observable B
(see main text) in the presence of an external field (Bz 6= 0). Up to a global phase, the ground state of the Hamiltonian
Eq. S28 has the form

|u−〉 = [e−iβv1, v2, e
−iφv3]

T (S14)

where v1, v2, v3 are functions of α only. Then, we can calculate the vector gauge potential for this special gauge

Aα = 0, Aβ = v21 , Aφ = v23

and the 2-form Berry curvature Fµν = ∂µAν − ∂νAµ

Fαβ = ∂α(v
2
1),

Fφα = −∂α(v
2
3).

(S15)

We repeat Eq. S6 and S7 here for convenience

H = ∂αBβφ + ∂φBαβ + ∂βBφα, (S16)

where Bµν = FµνΦ, and

Φ = − i

2
log

3
∏

i=1

ui = − i

2
log(e−i(φ+β)v1v2v3).

Combining all above, we obtain the simplified form for the curvature

Hαβφ = ∂φ(ΦFαβ) + ∂β(ΦFφα) + ∂α(ΦFβφ)

= −1

2
(Fαβ + Fφα)

= −1

2

d

dα
(v21 − v23),

(S17)

where the second line is used in experiments to extract the curvature.
With the alternative definitions in Eq. S8 and S9 we arrive at

Hαβφ = − 2

e−iβv1 + e−iφv3

[

e−iφv3
d

dα
(v21)− e−iβv1

d

dα
(v23)

]

, (S18)

which yields the same B upon integration. Note that while the particular choice of the ψ’s fields in Eq. S9 ensures
that Hαβφ coincides at Bz = 0 with its value calculated from the QGT, there is much freedom in the choice of the
field ψ.
As a result, there is no well-defined B that can be considered a good topological number to characterize the emergent

topological spectral ring phase protected by mirror symmetries. The classification of topological nodal line semimetals
is not yet complete in 3D31, and still lacking in 4D. Nevertheless, as we have shown, the observable B, although not
topological, serves as a convenient experimental tool to signal the spectral ring and the associated spectral transition.
We can gain further insight into the observable B by explicitly evaluating the integral of Eq. S17

B =
1

2π2

∫

S3

Hαβφdαdβdφ = [v21(0)− v23(0)]− [v21(π/2)− v23(π/2)]

For α = 0, π/2 the Hamiltonian eigenvectors can be calculated easily. We obtain

u1(0) =











−
√

1
2

(

1− Bz√
B2

z+8H2
0

)

, Bz < H0

0 otherwise
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u3(0) =

{

0, Bz < H0

1 otherwise

u1(π/2) = 0 u3(π/2) =

√

√

√

√

1

2

(

1 +
Bz

√

B2
z + 8H2

0

)

Finally we obtain

B =







1, Bz < H0

− 1
2

(

1− Bz√
B2

z+8H2
0

)

otherwise
(S19)

We remark that upon breaking chiral symmetry, we choose here a special gauge (v2 ∈ R) for convenience. Indeed, the
3-form curvature in Eq. S17 is not gauge-invariant and the gauge structure we defined is not universal. Nevertheless,
B only depends on the eigenvector when α = 0, π/2, where the two-fold degenerate points reside, and as we show
analytically, numerically and experimentally, it indeed provides signatures of these non-trivial singularity points.

D. Topological phase transition triggered by manifold displacement

The most straightforward topological phase transition could be induced by displacement of the hypersphere along
one of the parameter axis , e.g., qx → qx + δx. The Hamiltonian can be written as:

Ĥdisp =







0 H0 cosαe
−iβ + δx 0

H0 cosαe
iβ + δx 0 H0 sinαe

iφ

0 H0 sinαe
−iφ 0






. (S20)

We can analytically calculate the 3-form Berry curvature in the presence of displacement:

Hαβφ(H0, α, β, δx) =
H3

0 cosα sinα(H0 + δx cosα cosβ)

(δ2x +H2
0 + 2H0δx cosα cosβ)2

(S21)

and evaluate its integral to find the DD invariant.
The topological phase transition is characterized by the DD invariant, as shown in Fig. S1, where DD = 1 → 0

when |δx/H0| > 1.
However, the β dependence of the 3-form curvature introduced by the translation poses a challenge in experiments,

as it greatly prolongs the total measurement time. Instead, in our experiment we choose to add a fictitious z field to
the system which preserves rotation symmetry about β, φ, as discussed in more detail in Sec. I E next.

E. Topological spectral transition triggered by external field

Having been discussed in the main text, we elaborate in more detail about the topological spectral transitions
induced by external field Bz . For this purpose, it is useful to rewrite the Hamiltonian (S28) in terms of the Gell-Mann
matrices32 that highlight its symmetries

ĤST = qxλ1 + qyλ2 + qzλ6 + qwλ7 +
Bz

2
√
2
(λ3 +

√
3λ8) (S22)

Without the external field (Bz = 0), our Hamiltonian preserves chiral symmetry

{Ĥ4D, U} = 0, (S23)

where U = diag(1,−1, 1).
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FIG. S1. Phase transition triggered by a manifold displacement. When |δx/H0| < 1, the manifold encloses the triply
degenerate point and DD = 1; when |δx/H0| > 1, the monopole is no longer enclosed, leading to a trivial phase DD = 0.

Upon breaking the chiral symmetry (Bz 6= 0), the tensor monopole disappears and splits into spectral rings. The
nodal structures are two degenerate nodal surfaces spanning the β − φ space along (α = 0, π/2, Bz = H0). Viewed
from the (qx, qy, qz, qw) parameter space, the eigenvalue analytical forms in the subspace of qz = qw = 0 are

ǫ− =
1

2

(

Bz√
2
−
√

B2
z

2
+ 4q2x + 4q2y

)

, ǫ0 = −Bz√
2
, ǫ+ =

1

2

(

Bz√
2
+

√

B2
z

2
+ 4q2x + 4q2y

)

, (S24)

and the lower two bands become degenerate when q2x + q2y = B2
z , as shown in Fig. S2. Indeed, we find that there are

two nodal rings, one between the middle band and the lower band (corresponding to α = 0) and another at α = π/2,
between the middle and upper bands:

q2x + q2y = B2
z , qz = qw = 0,

or q2z + q2w = B2
z , qx = qy = 0.

(S25)

Because nodal/spectral rings are more commonly encountered and studied in 3D31 than nodal surfaces, we will refer
to the nodal structure in our model as nodal/spectral rings for the convenience of the reader.

FIG. S2. Nodal structures when Bz/H0 = 0.4
√
2. (Left) nodal ring between the lower two bands in the qx, qy plane when

qz = qw = 0 and Bz 6= 0. The nodal rings are protected by the mirror symmetries. (Right) nodal points between the middle
band and the lower (upper) band in the qx, qz plane when qy = qw = 0 and Bz 6= 0. These nodal points are protected by the
PT symmetry.
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As soon as the chiral symmetry is broken by Bz 6= 0, our system undergoes a phase transition from the Weyl-type
Hamiltonian hosting a tensor monopole to the topological spectral ring phase, protected by two mirror symmetries:

M1ĤST (qx, qy, qz, qw)M
−1
1 = ĤST (−qx,−qy, qz, qw)

M2ĤST (qx, qy, qz, qw)M
−1
2 = ĤST (qx, qy,−qz,−qw),

(S26)

where M1 = diag(−1, 1, 1), M2 = diag(1, 1,−1). These mirror symmetries naturally imply inversion symmetry:

UIĤST (qx, qy, qz , qw)U
−1
I = ĤST (−qx,−qy,−qz,−qw) (S27)

where UI = M1M2. The aforementioned nodal rings are protected by these mirror symmetries (see experimental data
in Sec. II J). The symmetries can be further broken by introducing terms that are proportional to the λ4(5) Gell-Mann
matrices,

λ4 =







0 0 1

0 0 0

1 0 0






, λ5 =







0 0 −i

0 0 0

i 0 0






,

and the degenerate rings will become gapped.

We further remark that there exists PT symmetry for the specific 2D subsystem given by qy = qw = 0. The nodal
points in the qx − qz plane between the lower and upper two bands shown in Fig. S2 (right plot) are protected by
PT symmetry. Introducing the λ4 term breaks the mirror symmetries, but preserves the PT symmetry. Therefore
λ4 gaps the nodal rings into PT-symmetry-protected nodal points, and the system remains gapless due to the PT
symmetry. An energy gap can fully open only by adding terms, such as the λ5 Gell-Mann matrix, that break the PT
symmetry. On the same note, we find that for the subsystem given by qx = qz = 0, the system Hamiltonian satisfies
anti-commutation relation with the PT operator and we observe similar nodal points as mentioned above.

As examples of broken mirror symmetries and broken PT symmetry, we plot in Fig. S3 the energy spectrum
projected to the qx axis, when breaking mirror symmetries by introducing λ4 and the PT symmetry by introducing
λ5. In both cases, we break the chiral symmetry due to the Bz field.

-1 -0.5 0 0.5 1
qx

E
ne

rg
y 

(a
.u

.)

-1 -0.5 0 0.5 1
qx

E
ne

rg
y 

(a
.u

.)

FIG. S3. Energy spectrum upon broken symmetries. We take the qy = qw = 0 slice, project the energy spectrum to
the qx axis and plot the envelope of the three energy bands. The red lines correspond to the envelop of the middle band.
Two examples are (left) broken mirror symmetries, but preserved PT symmetry and (right) broken PT symmetry. The PT
symmetry protects the nodal points and keeps the system gapless. By introducing terms that break the PT symmetry (such
as λ5 matrices), we can fully open the gap.
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F. System Hamiltonian: equivalence with SG220 linear k · p model

In this section we review the Hamiltonian implemented in our experiments, and point out an interesting relation
between this model and a three-band linearized k · p Hamiltonian33.
As shown in the main text, our Hamiltonian is:

Ĥ = H0







0 cosαe−iβ 0

cosαeiβ 0 sinαeiφ

0 sinαe−iφ 0






+

Bz√
2







1 0 0

0 0 0

0 0 −1






, (S28)

where α ∈ [0, π/2] and β, φ ∈ [0, 2π). The linearized k · p Hamiltonian for space group (SG) 220 is given by:

Ĥ220(k) =







0 ky kx
ky 0 −kz
kx −kz 0






, (S29)

We note that when we take a slice of our Hamiltonian k = (kx, ky, kz) = (H0 sin(α− π/4), H0 cos(α − π/4), Bz/
√
2),

Eq. S28 and Eq. S29 have identical eigenvalue spectrums for any β, φ.
For the Hamiltonian in Eq. S29, pairs of two bands are degenerate along |kx| = |ky| = |kz |. This corresponds to the

condition Bz = H0 and α = 0, π/2 in our model, matching our numerical simulation and experimental results. Due
to the rotation symmetry of β and φ in our model, we remark that a pair of doubly degenerate nodal surfaces along
(α = 0, π/2, Bz = H0) emerge when Bz 6= 0 in our 4D parameter space. This corresponds to two nodal rings in the
(qx, qy, qz, qw) coordinate. We will discuss this later in Sec. I E.
The equivalence between the SG220 model and a slice of our model presented here implies that the doubly degeneracy

induced by the detuning Bz has a correspondence to crystal symmetry-protected fermionic excitations, and the
observed phase transition has a non-trivial topological meaning. It would be interesting to use our experimental
system to further simulate the topological properties of the SG220 model (and other triple-degenerate point models).

II. EXPERIMENTAL DETAILS

A. Sample and Experiment Setup

We used a home-built confocal microscope to initialize and measure a single Nitrogen-Vacancy (NV) center in an
electronic grade diamond sample (Element 6, 14N concentration nN < 5 ppb, natural abundance of 13C ). The NV
center is chosen to be free from close-by 13C . A magnetic field of 490 G is applied using a permanent magnet, where
excited state level anti-crossing allows polarization transfer from the NV electronic spin to the native 14N nuclear
spin21. Consequently, a 1µs green laser excitation polarizes the NV-14N system to the |0,+1〉 state. Throughout the
experiment, 14N remains in |+1〉. Hence, we can restrict ourselves to the electronic part of the NV Hamiltonian. For
the NV of interest, we measure T1 = 3.2 ms, T2,echo > 700µs.

RF A

LO A

LO B

RF B

IQ mixer A

IQ mixer B

MW switch

to amplifier

FIG. S4. Setup schematics. (Left) Energy levels of the NV center in the lab frame and in the rotating frame under two-tone
driving. (Right) Electronics scheme in the setup.
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B. Hamiltonian under dual-frequency microwave driving

We now derive the effective Hamiltonian in the rotating frame of the dual-frequency microwave pulses following
Ref.22.
The intrinsic Hamiltonian of NV is DS2

z + γeBSz, where γe = 2.8 MHz/G is the gyromagnetic ratio, D = 2.87
GHz is the zero-field energy splitting of the NV ground state, B = 490 G here is the external field along the N-V axis
and Sz is the spin-1 z operator with eigenvalues ms = ±1, 0. Under the dual-frequency microwave control, the total
Hamiltonian is given by:

ĤNV =DS2
z + γeBSz

+ 2
√
2[γeB1 cos(ω1t+ φ1) + γeB2 cos(ω2t+ φ2)]Sx

(S30)

where Sx, Sz are the spin-1 operators, the first line is the NV spin intrinsic Hamiltonian and the second line represents
the dual-frequency microwave driving at frequencies ω1, ω2. In the bare NV frame with basis |ms = +1, 0,−1〉, the
above Hamiltonian can be written as:

ĤNV =



















D + γeB 2
(γeB1 cos(ω1t+ φ1)

+ γeB2 cos(ω2t+ φ2)

)

0

2
(γeB1 cos(ω1t+ φ1)

+ γeB2 cos(ω2t+ φ2)

)

0 2
(γeB1 cos(ω1t+ φ1)

+ γeB2 cos(ω2t+ φ2)

)

0 2
(γeB1 cos(ω1t+ φ1)

+ γeB2 cos(ω2t+ φ2)

)

D − γeB



















, (S31)

Upon entering the rotating frame defined by the unitary transformation:

V =







e−iω1t 0 0

0 1 0

0 0 e−iω2t






,

the Hamiltonian Eq. S31 can be rewritten in the same form as ĤST :

ĤNV =







D + γeB − ω1 B1e
−iφ1 0

B1e
iφ1 0 B2e

iφ2

0 B2e
−iφ2 D − γeB − ω2






=







Bz/
√
2 H0 cosαe

−iβ 0

H0 cosαe
iβ 0 H0 sinαe

iφ

0 H0 sinαe
−iφ −Bz/

√
2






= ĤST (S32)

where Bz = D ± γeB − ω1(2) corresponds to detunings in microwave frequency, B1 = H0 cosα, B2 = H0 sinα and
φ1 = β,φ2 = φ are the amplitudes and phases of the microwave pulses, respectively. We call this Hamiltonian the
double quantum (DQ) Hamiltonian in the following, for its ability to drive the |ms = −1〉 ↔ |ms = +1〉 transition,
where the quantum number changes by 2.
When both microwave frequencies are on-resonance ω1(2) = D ± γeB, the eigenstates of Eq.S32 are:

|u±〉 =
1√
2









B1e
−iφ1√

B2
1+B2

2

±1
B2e

−iφ2√
B2

1+B2
2









, |u0〉 =









B2e
−iφ1√

B2
1+B2

2

0
−B1e

−iφ2√
B2

1+B2
2









, (S33)

and the corresponding eigenenergies are ǫ± = ±γe
√

B2
1 +B2

2 and ǫ0 = 0 (Fig. S4). This Weyl-like Hamiltonian hosts
a tensor monopole at the origin.

C. Generation of dual-frequency microwave pulses

To achieve precise control over the amplitude and phase of both microwave frequencies, we choose to use frequency
modulation with two separate IQ mixers, shown schematically in Fig. S4. The in-phase (I) and quadrature (Q) RF
signals are generated from an arbitrary waveform generator (Tektronix 5014B) using 3 separate channels. One of the
outputs is further split into 0 and 90◦ (Mini-Circuits ZMSCQ-2-90). A two-channel microwave generator (Windfreak
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e B1

0.1 0.2 0.3 0.4 0.5
IQ voltage 2 (a.u.)
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.)

1.5
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e B2
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FIG. S5. IQ voltage calibrations. From left to right we show the measured γeB1 (left), γeB2 (middle) and ωe in units
of (2π) MHz. x(y)-axis represents the IQ voltage for the AWG channels that drive the |ms = 0〉 ↔ |ms = −1〉 (|ms = 0〉 ↔
|ms = +1〉) transition.

SynthHD) generates the Local Oscillator (LO) signals. The IQs and LOs are combined in two IQ mixers (Texas
Instrument, TRF370317; Marki Microwave, IQ-0318) that create up-converted single-sideband microwave signals.
The output signals are then combined and controlled by a microwave switch (Analog Devices, ADRF5020) before
being amplified. For brevity, we left out pre-amplifiers in the schematics.

To characterize our engineered Weyl-type Hamiltonian in Eq. S32 under dual-frequency microwave driving, we
prepare NV in the |ms = 0〉 state and let it evolve under the DQ Hamiltonian (Eq. S32). When both microwave
frequencies are on-resonance, we expect the following time-dependent state evolution







c+(t)

c0(t)

c−(t)






=









−iB1e
−iφ1 sinωet√
B2

1+B2
2

cosωet
−iB2e

−iφ2 sinωet√
B2

1+B2
2









, (S34)

with the effective Rabi frequency ωe = γe
√

B2
1 +B2

2 . By measuring the amplitude and frequency of the Rabi
oscillation, we can extract both B1(2).

2D maps of the relationship between IQ voltages and the corresponding Rabi frequencies (γeB1, γeB2, ωe) are shown
in Fig. S5. We choose to work in the linear regime of the microwave amplifier, where ωe = 2 MHz. A few examples of
the state evolution under α = 0, π/6, π/4 are shown in Fig. S6. Recalling that we set B1 = H0 cosα,B2 = H0 sinα,
we expect the amplitude of the |ms = +1〉 state to be cos2 α, in excellent agreement with the experiments in Fig. S6.

As a last demonstration, we show in Fig. S7 a histogram of the resonant parametric modulation frequencies ωr

measured throughout experiments to measure the tensor monopole. See also Fig. 1(a) in the main text. The fluctuation
of ωr is well within 2% over the whole α ∈ [0, π/2] range, subject to real experimental conditions including heating
due to prolonged microwave driving. This result verifies the (spherical) shape of hypersphere H0 = 2 MHz we choose
in order to reveal the tensor monopole.
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FIG. S6. Double Quantum Rabi Oscillations. Evolution of the state |ms = 0〉 under the DQ Hamiltonian in Eq. S32. The
experimental conditions are α = 0 (left), α = π/6 (middle), and α = π/4 (right). The expected oscillation amplitude for the
|ms = +1〉 (|ms = −1〉) state is cos2 α (sin2 α)), in good agreement with our experiments
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FIG. S7. Distribution of the resonant parametric modulation frequencies ωr.

D. State preparation and readout

At the beginning of every parametric modulation experiment, we polarize the NV into |ms = 0〉, then apply two
microwave pulses to prepare NV into the ground eigenstate |u−〉 before subjecting the system to the engineered
Weyl-type Hamiltonian.
In preparing the ground state

|u−〉 =
1√
2







− cosαe−iβ

1

− sinαe−iφ






, (S35)

we first apply a microwave pulse that drives the −1 transition |ms = 0〉 ↔ |ms = −1〉, immediately followed by
another pulse for the +1 transition |ms = 0〉 ↔ |ms = +1〉. We set the Rabi frequency of both pulses to be ωinit.
Then the durations t± and phases δ± of the two initialization pulses for the ±1 transitions are

t− = sin−1(sinα/
√
2)/ωinit,

δ− = φ+ π/2,

t+ = sin−1(cosα/
√

2− sin2 α)/ωinit,

δ+ = β + π/2.

(S36)

Similarly for the first excited state

|u0〉 =







− sinαe−iβ

0

cosαe−iφ






(S37)

we have

t− = π/ωinit,

δ− = φ+ π,

t+ = π/2ωinit,

δ+ = β.

(S38)

When modulating at the DQ frequency ωr = 2H0, Rabi oscillations occur between these two states, and we apply
the inverse mapping to rotate |u−〉 back to |ms = 0〉 for fluorescent readout. When modulating at the SQ frequency
ωr = H0, the situation is more involved. Due to chiral symmetry of the Weyl-type Hamiltonian, both SQ transitions
|u0〉 ↔ |u±〉 are on-resonance, and they have the same driving strength Γ = |Γ−,0| = |Γ+,0|. This leads to an effective
DQ Hamiltonian in the eigenbasis of our engineered Weyl-type Hamiltonian. After entering the DQ rotating frame
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and taking the rotating wave approximation similar to what we did in Eq. S31, we obtain:

Ĥ =







0 Γe−iφ1 0

Γeiφ1 0 Γeiφ2

0 Γe−iφ2 0






, (S39)

where φ1(2) are the phases associated with Γ0,±. We remark that although Eq. S39 is of the same form as Eq. S32,
they represent two different Hamiltonians. Eq. S32 is the DQ Hamiltonian in the eigenbasis of |ms〉, and Eq. S39 is
in the eigenbasis of Eq. S32, whose eigenvectors are |u0,±〉.
Starting from the ground state |u−〉, the system under Eq. S39 evolves as:







c+(t)

c0(t)

c−(t)






=







(−1+cos(
√
2Γt))ei(φ1−φ2)

2
1√
2
sin(

√
2Γt)eiφ1

1+cos(
√
2Γt)

2






. (S40)

For ease of fitting, we map |u0〉 back to |ms = 0〉 and read out the population optically. The matrix element Γ of

interest is 1/
√
2mµ of the fitted Rabi frequency.

We remark that the mapping pulses described in this section do not perform the exact unitary transformation
between the basis {|ms〉} and {|u〉}, but a unitary that achieves the desired mapping knowing the initial state (or
observable) and that it is easier to implement experimentally. Still, we emphasize that the exact unitary transformation
could be achieved by three microwave pulses, and is useful in determining the relevant matrix element when the chiral
symmetry of the Hamiltonian is broken by the fictitious transverse field, where |Γ−,0| 6= |Γ+,0|, and the modulation
frequency is resonant for both SQ transitions. In this case, we prepare the initial state in |u0〉, such that it evolves
according to Eq. S34. By measuring both the amplitude and frequency of the Rabi oscillation in |u±〉 states, we are
able to reconstruct the matrix element of interest.
To determine the oscillation amplitudes accurately for all three states, we have to perform three sets of experiments.

Each experiment consists of the same state preparation, parametric modulation, and the unitary map back to all
three |ms〉 states, followed by (i) no operation (ii) π pulse between |ms = 0〉 ↔ |ms = −1〉 and (iii) π pulse between
|ms = 0〉 ↔ |ms = +1〉, and then optically read out. The fluorescence signals recorded in each experiments are labelled
as Si, the reference fluorescent level for each |ms〉 states as measured in separate experiments are rms

, and the final
population of each |ms〉 states are nms

. From the three sets of experiment, we have

r+n+ + r0n0 + r−n− = S1,

r+n+ + r−n0 + r0n− = S2,

r0n+ + r+n0 + r−n− = S3.

(S41)

It is therefore straightforward to extract the populations accurately







n+

n0

n−






=







r+ r0 r−
r+ r− r0
r0 r+ r−







−1 





S1

S2

S3






. (S42)

In addition to the parametric modulations, this readout technique is used in e.g., Fig. S6 to reveal the accurate
populations of all three states.
We remark that this method is only possible when the magnetic field is close to the excited state level anticrossing at

510 G, where the excited state electron-nuclear spin flip-flops yield distinguishable fluorescent levels for |ms = ±1〉34,35.

E. Measurement of the Quantum Geometric Tensor

The quantum geometric tensor (QGT) χµν naturally appears when one defines the distance ds between nearby
states |n(q)〉 and |n(q + dq)〉 of a generic system parametrized by the generalized position q:

ds2 ≡ 1− | 〈n(q)|n(q + dq)〉|2 = dqµχµνdqν +O(|dq|3), (S43)

where we apply the Taylor expansion about dq = 0. Here χµν contains information on the geometry of the manifold
for the state |n〉 and is found to be:

χ(n)
µν = 〈∂µn(q)| (1− |n(q)〉 〈n(q)|) |∂νn(q)〉 = gµν + iFµν/2, (S44)



12

where the symmetric part is the metric tensor gµν , which determines the distance between the states, and the anti-
symmetric part is the conventional 2-form Berry curvature.
Using time-independent perturbation theory to first order we obtain

∣

∣

∣n(1)
〉

= |∂µn(q)〉 =
∑

k 6=n

〈k(q)| ∂µĤ |n(q)〉
ǫn − ǫk

|k(q)〉 (S45)

Then we can plug in Eq. S44 and simplify to the following form

χ(n)
µν =

∑

k 6=n

∑

m 6=n

〈k| ∂µĤ |n〉†
ǫn − ǫk

〈k| (1− |n〉 〈n|) 〈m|∂νĤ |n〉
ǫn − ǫm

|m〉

=
∑

m 6=n

〈m| ∂µĤ |n〉†
ǫn − ǫm

〈m| ∂νĤ |n〉
ǫn − ǫm

=
∑

m 6=n

〈n| ∂µĤ |m〉 〈m|∂νĤ |n〉
(ǫn − ǫm)2

(S46)

As discussed earlier, the real part of the QGT, namely the metric tensor, contains all the information about the
monopole, and it could be used to reconstruct the 3-form curvature, while the imaginary part, namely the Berry
curvature, is connected with the tensor Berry connection. In the following, we show how to experimentally measure
the metric tensor and the Berry curvature.

1. Metric tensor

The technique we use is parametric modulation of the system Hamiltonian12,18. We apply the following linear
modulations

µt = µ0 +mµ sinωt,

νt = ν0 +mν sinωt.
(S47)

If we modulate the parameters weakly, mµ,mν ≪ 1, then

Ĥ ≈ Ĥ(q0) +mµ∂µĤ sinωt+mν∂νĤ sinωt. (S48)

When the modulation frequency is resonant with the energy difference between eigenstates, the parametrically
modulated Hamiltonian will drive coherent Rabi oscillations between relevant eigenstates.
Here we consider the case where ω = ǫ+ − ǫ− is resonant with the double quantum (DQ) transition between

|u−〉 ↔ |u+〉. Then we have the Rabi frequency

Ω−↔+ = | 〈u−| Ĥ(q0) +mµ∂µĤ +mν∂νĤ |u+〉 |
= | 〈u−|mµ∂µĤ +mν∂νĤ |u+〉 |

(S49)

To measure the diagonal component gµµ of the metric tensor, we set mν = 0:

Ωµ
−,+ ≡ mµΓ

µ
−,+ = mµ| 〈u−| ∂µĤ |u+〉 |. (S50)

Similarly, we can obtain the contribution from SQ transition Γµ
−,0 (some complication arises for SQ, which is discussed

in Sec. II D). Using the alternative form of QGT in Eq. S46, we obtain the diagonal components of the metric tensor
from experimentally measurable quantities:

gµµ =
∑

m∈0,+

(Γµ
−,m)2

(ǫm − ǫ−)2
. (S51)

To measure the off-diagonal components gµν , we modulate both parameters such that mµ = ±mν . Then the
coherent Rabi oscillation is:

Ωµ±ν
−,+ = mµ| 〈u−| ∂µĤ ± ∂νĤ |u+〉 |. (S52)
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Setting Γµ±ν
−,+ = Ωµ±ν

−,+/mµ, we have

(Γµν
−,+)

2 − (Γµν̄
−,+)

2 = 4| 〈u−| ∂µĤ |u+〉 〈u+| ∂νĤ |u−〉 | (S53)

We thus obtain an expression for the off-diagonal components

gµν =
∑

m∈0,+

(Γµν
−,m)2 − (Γµν̄

−,m)2

4(ǫm − ǫ−)2
. (S54)

We remark that the metric tensor is symmetric gµν = gνµ, and there are in total 6 independent components in a
4D parameter space. The long coherence time (T2 > 1 ms under multipulse dynamical decoupling) of the NV center
allows us to extract the metric tensor from measuring these Rabi oscillations.

2. Berry curvature

We next summarize the experimental details of measuring the Berry curvature, which is in turn used to get the
experimental DD invariant (Eq. S17). We use the following elliptical modulation of the system Hamiltonian12,18:

µt = µ0 +mµ cosωt,

νt = ν0 +mν sinωt.
(S55)

When the modulation amplitude is small, we have

Ĥ ≈ Ĥ(q0) +mµ∂µĤ cosωt+mν∂νĤ sinωt, (S56)

and we could then measure 〈u−|∂µH ± i∂νH |m〉, and obtain the imaginary part of the QGT. Next we lay out the
exact realization in a 3-level system for SQ and DQ drive, where we need two different interaction pictures.

SQ interaction picture In general, ω1 = ǫ+ − ǫ0 6= ω2 = ǫ0 − ǫ−. We define the unitary (more details in
Sec. II B)

V =







e−iωt 0 0

0 1 0

0 0 e−iωt.






(S57)

For the relevant driving term, we have

Hx = ∂µH =







0 B∗ C∗

B 0 A∗

C A 0






. (S58)

After applying the rotating wave approximation, we have

V †(Hx cos(ωt))V =
1

2







0 B∗ 0

B 0 A∗

0 A 0







V †(Hx sin(ωt))V =
i

2







0 B∗ 0

−B 0 −A∗

0 A 0







(S59)

To measure the (3, 2) matrix element, our choice of the elliptical drive is obvious:

∂µH cos(ωt)± ∂νH sin(ωt) ↔ | 〈u−| ∂µH ± i∂νH |u0〉 | (S60)

However, note that here ω = ǫ− − ǫ0 < 0. In experiments, we always use ω̃ = |ω|, therefore here we have

∂µH cos(ω̃t)∓ ∂νH sin(ω̃t) ↔ | 〈u−| ∂µH ± i∂νH |u0〉 | (S61)
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DQ interaction picture For the DQ drive, the middle state is not involved. Then we have effectively a two
level system, where the |ms = 0〉 level can be neglected

V =







e−iωt 0 0

0 1 0

0 0 eiωt.






(S62)

After taking the rotating wave approximation, we obtain

V †(Hx cos(ωt))V =
1

2







0 0 C∗

0 0 0

C 0 0







V †(Hx sin(ωt))V =
i

2







0 0 C∗

0 0 0

−C 0 0







(S63)

To measure the (3, 1) matrix element, our choice of the elliptical drive is :

∂µH cos(ωt)∓ ∂νH sin(ωt) ↔ | 〈u−| ∂µH ± i∂νH |u+〉 | (S64)

Combining the SQ and DQ analysis, we see that in both cases, we should have cos,− sin elliptical modulations.

Degenerate SQ transitions A special case is when Bz = 0, since then ω1 = −ω2. In this case, when we modulate
at the SQ transition frequency |ω1| = |ω2|, both SQ transitions will occur and yield an effective DQ transition. In
experiment, we start from |u0〉. After the modulation, we perform a unitary map between |u−,0,+〉 ↔ |ms = −1, 0,+1〉.
The population oscillations should follow







n+

n0

n−






=









B2
1

B2
1+B2

2
sin2(ωet)

cos2(ωet)
B2

2

B2
1+B2

2
sin2(ωet)









. (S65)

In terms of the parametric modulation, we have,

V =







e−iωt 0 0

0 1 0

0 0 eiωt.






(S66)

V †(Hx cos(ωt))V =
1

2







0 B∗ 0

B 0 A∗

0 A 0







V †(Hx sin(ωt))V =
i

2







0 B∗ 0

−B 0 A∗

0 −A 0







(S67)

Upon cos / sin elliptical modulation, we find the correspondence

B1 = | 〈u+| ∂µH ± i∂νH |u0〉 | = | 〈u−| ∂µH ± i∂νH |u0〉 |
B2 = | 〈u−| ∂µH ∓ i∂νH |u0〉 |

(S68)
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F. Coherent Rabi oscillations under parametric modulations

With the capability of state preparation and readout described above, we now show the coherent Rabi oscillations
observed in experiments under appropriate linear parametric modulations. In Fig. S8- S12, we plot all 18 Rabi
oscillations (9 for SQ transitions and 9 for DQ transitions) measured for α = 5π/16, β = φ = 0, which are in turn
used to obtain the matrix elements Γ (Fig. 1 in main text) to extract all 6 independent metric tensor components gµν
(Fig. 2 in main text), and ultimately yields the DD invariant, as described in previous sections and the main text.
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FIG. S8. Coherent Rabi oscillations for Ωα (left) and Ωβ (right). The experiment is performed at (α = 5π/16, β =
φ = 0). In each plot, blue is for SQ transition and red for DQ transition. The circles are experimental data and solid lines are
sinusoidal fits.
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FIG. S9. Coherent Rabi oscillations for Ωφ (left) and Ωαβ (right). The experiment is performed at (α = 5π/16, β =
φ = 0). In each plot, blue is for SQ transition and red for DQ transition. The circles are experimental data and solid lines are
sinusoidal fits.
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FIG. S10. Coherent Rabi oscillations for Ωαβ̄ (left) and Ωαφ (right). The experiment is performed at (α = 5π/16, β =
φ = 0). In each plot, blue is for SQ transition and red for DQ transition. The circles are experimental data and solid lines are
sinusoidal fits.
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FIG. S11. Coherent Rabi oscillations for Ωαφ̄ (left) and Ωβφ (right). The experiment is performed at (α = 5π/16, β =
φ = 0). In each plot, blue is for SQ transition and red for DQ transition. The circles are experimental data and solid lines are
sinusoidal fits.
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FIG. S12. Coherent Rabi oscillations for Ωβφ̄. The experiment is performed at (α = 5π/16, β = φ = 0). In each plot, blue
is for SQ transition and red for DQ transition. The circles are experimental data and solid lines are sinusoidal fits.
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G. Experimental verification of rotation symmetry about β, φ

The Weyl-type Hamiltonian is rotationally symmetric about β, φ under our parametrization of (H0, α, β, φ). As a
result, the metric tensor and generalized 3-form Berry curvature is independent of β, φ. To show that this indeed
occurs in our experiments, we fix α = π/8 and sweep β, φ ∈ [0, 2π], and measure the corresponding matrix element Γ
for the metric tensor components gαα, gβφ. The results are shown in Fig. S13, where we indeed see these measurements
remain constant within experimental error for different β, φ.
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FIG. S13. Rotation symmetry. We perform experiments at α = π/8, sweeping either β or φ and measuring gαα, gβφ to
verify that the metric tensor is independent of β, φ due to the rotation symmetry of the Hamiltonian. On the left (right) we
show results when fixing φ = 0 (β = 0) and sweeping β (φ). The top panel shows relevant matrix element measurements Γα

(green), Γβφ (blue), Γβφ̄ (red) in circles, and theoretical values in solid lines. The bottom panel shows extracted metric tensor
components. Within experimental error they stay constant over β, φ.
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H. Matrix element measurements for elliptical parametric modulation

In this section we show the measured matrix elements for SQ and DQ transitions using elliptical parametric
modulation under Bz = 0 in Fig. S14. We extract the Berry curvatures from them, which are shown in Fig. 2 (c) in
the main text, and eventually reveal the tensor monopole.
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FIG. S14. Matrix elements under elliptical parametric modulations when Bz = 0.

I. Radial field distribution

In addition to the quantized topological charge, the monopole can be fully characterized by its field distribution6,14

Hµνλ(q) = ǫµνλγqγ /(q
2
x + q2y + q2z + q2w)

2, (S69)

which reflects the fact that the curvature field radially emanates from the topological defect in 4D parameter space. As
a consequence, the monopole field has a characteristic inverse-cube dependence on the radial coordinate, H ∼ (1/H0)

3.
We now verify this additional signature of the tensor monopole in our experiment. For convenience, we choose to
view the curvature field in cartesian coordinates, (qx, qy, qz, qw). The radial components of the curvature field satisfy

H⊥
xyzwdqxdqydqzdqw = Hαβφ det[J ] dqxdqydqzdqw =

1

H3
0

dqxdqydqzdqw, (S70)

where J is the Jacobian and we have

detJ =
1

H3
0

2

sin 2α
. (S71)

Our experimentally measured curvature field displays an inverse-cube dependence on H0, in good agreement with
the theory (Fig. 2D). In analogy with the field emanating from electric/magnetic monopoles in 3D, we only expect
this behavior from a monopole source in 4D, namely the tensor monopole.

J. Spectral transition induced by an external field: Metric Tensor

As we discussed in the main text, detunings in the dual-frequency microwave pulse induce diagonal terms in our
engineered Hamiltonian, acting as an external z field (with the same form as a spin-1 BzSz field operator). When
Bz = 0, our observable, G = 8

∫

ǫµνλ
√

det gµ̄ν̄ dα, is equivalent to the DD invariant. The corresponding measured
data for G and the metric tensor are shown in Fig. 1 and Fig. 2 of the main text. When Bz 6= 0, the diagonal terms
break the chiral symmetry of our system, thus breaking the relationship between det gµ̄ν̄ and Hµνλ. Surprisingly,
similar to the observable B described in Sec. I C, we find that the chosen observable G can still be used to investigate
the behavior of the nodal surfaces when varying Bz.
We have shown that it is experimentally feasible to measure the metric tensor through parametric modulation,

which yields G. Ref.14 has shown that when Bz = 0, G is equivalent to the DD invariant. Here we numerically
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simulate the case when Bz > 0, where the two are no longer equivalent. The simulation result is shown in green
triangles in Fig. 3 in the main text. We see that G is a good approximation to |B|. When Bz < H0, they quantitatively
match well. At Bz = H0, G correctly characterizes the transition when the spectral rings cross the boundary of the
enclosed manifold. We therefore experimentally measure G to reveal the phase transition, as shown in Fig. 3 in the
main text. We show additional experimental data relevant to the phase transition in Fig. S15-S20.
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FIG. S15. Metric tensor measurements for Bz/H0 = 0.25
√
2. Matrix elements |Γµ(ν)

−,0 | measured for SQ transitions

at ω = ωr/2 (left) and matrix elements |Γµ(ν)
−,+ | measured for DQ transitions at ω = ωr (middle). On the right we show

6 independent components of the metric tensor as functions of α. Circles are experimental data and solid lines numerical
simulations.
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FIG. S16. Metric tensor measurements for Bz/H0 = 0.45
√
2. Matrix elements |Γµ(ν)

−,0 | measured for SQ transitions at

ω = ωr/2 (left) and matrix elements |Γµ(ν)
−,+ | measured for DQ transitions at ω = ωr (middle). On the right: all 6 independent

components of the metric tensor as functions of α. Circles are experimental data and solid lines are numerical simulations.

0 15 30 45 60 75 90
(°)

0

0.5

1

1.5

M
at

rix
 E

le
m

en
t (

M
H

z)

SQ

0 15 30 45 60 75 90
(°)

0

0.5

1

1.5

2

DQ

0 15 30 45 60 75 90
(°)

-5

0

5

10

15

20

25

30

35
g

g

g

g

g

g

g

FIG. S17. Metric tensor measurements for Bz/H0 = 0.6
√
2. Matrix elements |Γµ(ν)

−,0 | measured for SQ transitions at

ω = ωr/2 (left) and matrix elements |Γµ(ν)
−,+ | measured for DQ transitions at ω = ωr (middle). On the right: all 6 independent

components of the metric tensor as functions of α. Circles are experimental data and solid lines are numerical simulations.
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FIG. S18. Metric tensor measurements for Bz/H0 = 0.825
√
2. Matrix elements |Γµ(ν)

−,0 | measured for SQ transitions at

ω = ωr/2 (left) and matrix elements |Γµ(ν)
−,+ | measured for DQ transitions at ω = ωr (middle). On the right we show all 6

independent components of the metric tensor as functions of α. Circles are experimental data and solid lines are numerical
simulations.
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FIG. S19. Metric tensor measurements for Bz/H0 =
√
2. Matrix elements |Γµ(ν)

−,0 | measured for SQ transitions at ω = ωr/2

(left) and matrix elements |Γµ(ν)
−,+ | measured for DQ transitions at ω = ωr (middle). On the right we show all 6 independent

components of the metric tensor as functions of α. Circles are experimental data and solid lines are numerical simulations.
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FIG. S20. Metric tensor measurements for Bz/H0 = 2. Matrix elements |Γµ(ν)
−,0 | measured for SQ transitions at ω = ωr/2

(left) and matrix elements |Γµ(ν)
−,+ | measured for DQ transitions at ω = ωr (middle). On the right we show all 6 independent

components of the metric tensor as functions of α. Circles are experimental data and solid lines are numerical simulations.
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K. Spectral transition induced by an external field: Berry Curvature

While measuring the Berry connection generally involves quantum state tomography and is time-consuming, we
note that thanks to the chosen parametrization for our particular Hamiltonian, measurement of B does not require
state tomography, as we have shown in Section IC. To this end, we calculate and measure the observable B from the
Berry connection using Eq. S6, S7, S17, as shown in yellow (analytical result) and red squares (experiment) in Fig. 3
of the main text. The Berry curvature F is measured by the parametric modulation, similar to the measurement of
the metric tensor, as discussed in previous sections. The experimentally measured B is shown in red squares in Fig. 3
of the main text, and additional experimental data relevant to the measurements are presented in Fig. S21-S27. B
stays constant B = 1 when Bz < H0. At Bz = H0, the two degenerate nodal rings are at the boundary of our enclosed
manifold, as indicated by a sharp change in B to B(Bz/H0 = 1) = −1/3, as expected.
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FIG. S21. Berry curvature measurements for Bz/H0 = 0.35
√
2. Matrix elements |Γµ(ν)

−,0 | measured for SQ transitions

at ω = ωr/2 (left) and matrix elements |Γµ(ν)
−,+ | measured for DQ transitions at ω = ωr (middle) using elliptical modulation.

On the right we show the two relevant Berry curvatures as functions of α. Squares are experimental data and solid lines are
numerical simulations.
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FIG. S22. Berry curvature measurements for Bz/H0 = 0.5
√
2. Matrix elements |Γµ(ν)

−,0 | measured for SQ transitions

at ω = ωr/2 (left) and matrix elements |Γµ(ν)
−,+ | measured for DQ transitions at ω = ωr (middle) using elliptical modulation.

On the right we show the two relevant Berry curvatures as functions of α. Squares are experimental data and solid lines are
numerical simulations.



22

0 15 30 45 60 75 90
(°)

0

0.5

1

1.5

2

M
at

rix
 E

le
m

en
t (

M
H

z)
SQ

0 15 30 45 60 75 90
(°)

0

0.5

1

1.5

2

2.5
DQ

0 15 30 45 60 75 90
(°)

-15

-10

-5

0

5

10

15

20
F

FIG. S23. Berry curvature measurements for Bz/H0 = 0.65
√
2. Matrix elements |Γµ(ν)

−,0 | measured for SQ transitions

at ω = ωr/2 (left) and matrix elements |Γµ(ν)
−,+ | measured for DQ transitions at ω = ωr (middle) using elliptical modulation.

On the right we show the two relevant Berry curvatures as functions of α. Squares are experimental data and solid lines are
numerical simulations.
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FIG. S24. Berry curvature measurements for Bz/H0 = 0.9
√
2. Matrix elements |Γµ(ν)

−,0 | measured for SQ transitions

at ω = ωr/2 (left) and matrix elements |Γµ(ν)
−,+ | measured for DQ transitions at ω = ωr (middle) using elliptical modulation.

On the right we show the two relevant Berry curvatures as functions of α. Squares are experimental data and solid lines are
numerical simulations.
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FIG. S25. Berry curvature measurements for Bz/H0 = 1.2
√
2. Matrix elements |Γµ(ν)

−,0 | measured for SQ transitions

at ω = ωr/2 (left) and matrix elements |Γµ(ν)
−,+ | measured for DQ transitions at ω = ωr (middle) using elliptical modulation.

On the right we show the two relevant Berry curvatures as functions of α. Squares are experimental data and solid lines are
numerical simulations.
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FIG. S26. Berry curvature measurements for Bz/H0 = 2. Matrix elements |Γµ(ν)
−,0 | measured for SQ transitions at

ω = ωr/2 (left) and matrix elements |Γµ(ν)
−,+ | measured for DQ transitions at ω = ωr (middle) using elliptical modulation. On

the right we show the two relevant Berry curvatures as functions of α. Squares are experimental data and solid lines are
numerical simulations.
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FIG. S27. Berry curvature measurements for Bz/H0 = 1.7
√
2. Matrix elements |Γµ(ν)

−,0 | measured for SQ transitions

at ω = ωr/2 (left) and matrix elements |Γµ(ν)
−,+ | measured for DQ transitions at ω = ωr (middle) using elliptical modulation.

On the right we show the two relevant Berry curvatures as functions of α. Squares are experimental data and solid lines are
numerical simulations.
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