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Periodically driven (Floquet) quantum systems have recently been a focus of nonequilibrium physics by
virtue of their rich dynamics. Time-periodic systems not only exhibit symmetries that resemble those in
spatially periodic systems, but also display novel behavior that arises from symmetry breaking. Charac-
terization of such dynamical symmetries is crucial, but often challenging due to limited driving strength and
lack of an experimentally accessible characterization technique. Here, we show how to reveal dynamical
symmetries, namely, parity, rotation, and particle-hole symmetries, by observing symmetry-induced Floquet
selection rules. Notably, we exploit modulated driving to reach the strong light-matter coupling regime, and
we introduce a protocol to experimentally extract the transition matrix elements between Floquet states from
the system coherent evolution. By using nitrogen-vacancy centers in diamond as an experimental test bed, we
execute our protocol to observe symmetry-protected dark states and dark bands, and coherent destruction of
tunneling. Our work shows how one can exploit the quantum control toolkit to study dynamical symmetries
that arise in the topological phases of strongly driven Floquet systems.
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Symmetries play an important role in determining
system properties: they can lead to intriguing physical
phenomena, such as topological phases [1-7], and univer-
sality classes [8]. As an example, different phases of
topological insulators have been arranged into a periodic
table [1]. Engineering novel quantum materials with
desired symmetry properties [2-5] can be challenging.
Time-periodic systems provide an alternative solution with
increased versatility, even enabling novel dynamical phases
that are absent in static systems [9-14], as the periodic
driving can force the system towards topological phases
[15-17]. These dynamical time symmetries are described
by Floquet theory [6], in analogy to the description of
spatial symmetries by Bloch theory.

A hallmark of symmetries is the presence of induced
selection tules. Selection tules of transitions between
Floquet states have recently been analyzed theoretically
[18], but their experimental observation remains challeng-
ing. First, although strong light-matter coupling is required
to generate high-order Floquet bands, this regime is
difficult to reach in practice due to the finite strength of
the driving fields. Second, observing the selection rules
requires an experimental toolkit that enables an extraction
of transition elements between Floquet states. In this
Letter, we tackle both challenges and provide a feasible
solution by combining modulated driving with the obser-
vation of the subsequent quantum coherent dynamics, to
experimentally detect symmetry-induced selection rules—
and their breaking.
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Recent years have witnessed a rapid development of
exquisite quantum control techniques that can enable
engineered driving beyond hardware limitations [19]. For
example, concatenated continuous driving (CCD), origi-
nally introduced to counteract driving inhomogeneities in
dynamical decoupling [20-22], has recently been shown to
allow one to reach the strong-coupling regime and uncover
phenomena such as high-order Mollow friplets [23] that
would be “invisible” in simple driving protocols. Here we
exploit modulated driving not only to achieve an effective
strong-coupling regime even with limited driving strength,
but also to engineer driving transitions {such as double-
quantum transitions) that would otherwise not be directly
accessible. To extract transition elements between Floquet
states, we further develop a protocol based on monitoring
the coherent state evolution by projective measurements,
which enacts a mapping of the dynamical dipole matrix
elements describing Floquet band transitions to measurable
Rabi oscillation amplitudes. We take advantage of the
controllability and long coherence times achieved in qubit-
like systems [24-26], avoiding the need for dissipation and
for “pump-probe” methods traditional in atomic and optical
physics. Our method, also applicable to general N-level
quantum systems, is thus convenient in many modemn
quantum platforms.

By exploiting these technical advances, we are able to
experimentally study parity and particle-hole symmetries
by monitoring the evolution of two levels of a nitrogen-
vacancy (NV) center in diamond, under modulated driving.
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Our experiments reveal the emergence of dark states and
dark bands and their vanishing once the corresponding
symmetries are broken—as well as coherent destruction of
tunneling [27-30]. We further show that modulated driving
can engineer a rotationally symmetric Hamiltonian over the
NV center three levels, further indicating that cur methods
are broadly applicable, and exemplify an important step
toward exploring topological phases that arise in Floquet
systems [10].

Methods.—Spatially periodic Hamiltonians in solid-state
physics can be analyzed by Bloch theory, which predicts a
periodic structure in reciprocal space. Likewise, the dynam-
ics of a periodically driven Hamiltonian H(¢) = H(r + T)
is solved by Floquet theory, yielding a series of equidistant
energy bands (manifolds) ¥ + nm,, (n € Z) with Floquet
eigenenergies & and frequencies @, = 2z/T [6,31]. The
time-dependent Schrodinger equation is indeed equi-
valent to the eigenvalue problem for a time-independent
Floquet matrix [H(z) — i(3/01)||®*(1)) = 4#|D#(¢)). The
Floquet eigenstates |®#(z)} have the same period as the
Hamiltonian and can be decomposed into Fourier series as
|4 (1)) = S T e~} [31]. The evolved state is
then a superposition of Floquet eigenstates,

(1)) = Y ckemi | (1)) = Y ekt (1)
H

HA

with the coefficients ¢ set by initial conditions at 7 = 0,
Consider a time-independent symmetry operator &
{rotation, parity, particle-hole, etec.) satisfying

- d| - d

S[strJr ts) — iE] &1 = [H(r) - LE], (2)
where {as, fs} € {1, -1} and 75 define the detailed para-
meters of the symmetry. Then the Floquet eigenstates also
have the same symmetry |®* (7)) = ztf3|®”wgt+ ig)),
with |z,| = 1, as derived in Ref. [18]. These symmetries
can be probed by evaluating the susceptibility, e.g., in light
scattering experiments of a probe field V, in analogy with
“pump-probe” schemes common in atomic and optical
physics. The susceptibility depends on the dynamical
dipole matrix elements associated with the probing
operator V

] 1 7 —ina
vil -7 [[@ oMo mea,

where n denotes the energy band order. When SyE =
ayV, the dynamical symmetry gives rise to symmetry-
protected selection rules, including symmetry-protected
dark states (spDSs) for V,SHB = 0, symmetry-protected dark
bands (spDBs) for vanishing susceptibility of complete
bands, and symmetry-induced transparency (siT) due to the
destructive interference between nonzero elements [18,32].

Rather than measuring the susceptibility in a pump-
probe experiment [18], here we establish a general exper-
imental method to directly measure the dipole operator V.
Specifically, we draw a correspondence between the dipole
matrix elements, typical of light scattering experiments,
and measurable Rabi oscillation amplitudes arising in the
context of coherent state evolution. We show that in a
coherent system, the amplitudes of the Fourier components
of {V(1)} display the desired properties (spDBs, spDSs, siT,
etc.) associated with dipole matrix elements Vfln,z

We consider a generic N-level quantum system and
infroduce the spectral decomposition V = >, V. |k}{k|,
such that the dipole matrix elements in Eq. (3) can be
calculated as

VL = Vi (@b k) (k|- )
P

From Egs. (1), (4) the expectation value of V(1) is then

(V) = (B@IVIP() = D e erei—remoniy ) (5)

TN

By considering the Fourier decomposition of {V},

(V) = 1Al cos(wfiir + i3, (6)
JIRIR"
with frequencies a)ffg = nw,, + (¥ — i¥), we find that the
Fourier amplitudes

AL = | exp(igl) = 20#* V(Y (7)

can be used to extract the dipole matrix elements.

Since in general it might be difficult to directly measure
the operator V, one can rely on system preparation and
readout to separately monitor the overlap of the state with
the eigenstates of V, i.e., Py (1) = |(k|¥(1)}|*. We can then

analyze the “weighted Rabi” oscillations

P(t) = Z%Pu{)@) E%)L), with V=Y "[Vil. (8)

The weighted Rabi oscillations can then be decomposed
into frequency components with amplitudes a}(ﬂ = Af,”ﬁ /V,
which can be used to investigate symmetry properties. For
example, consider a two-level system (TLS). The probing
operator V is then a combination of Pauli operators o;
with eigenvectors [0}, |1;) and normalized eigenvalues

+1. The weighted Rabi oscillations have the form P{z)=
(1/2)[Pyo,y (1) = P)1,5(2)] which can be simplified to the typi-
cal Rabi oscillations P(z) + 1/2 = Py (1), thus clarifying
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the connection of our protocol with typical Rabi
measurements.

In addition to using control of the readout state to
measure Pz, we can also control the initial state to extract
mmformation about selected dipole matrix elements, by
appropriately choosing the coefficients c*.

When g = v, all bands under the same order (n) are
degenerate with frequency nw,, (centerbands), and the
observed Rabi component is their coherent interference

with an amplitude ag”) =23, |c“|2V%/V. Each band

V&nﬁ can also be observed individually by setting the initial
condition |¢*| = 1 (this tuning is known as quantum mode
control) [23].

When g # v, the off-diagonal dipole matrix elements
Vf{”ﬁ can be mapped to the Rabi amplitudes a| corre-
sponding to the bands nm,, + (4 — A7) (sidebands). At the
degeneracy points (e.g.. A = 2A"), different sidebands
interfere with each other, inducing phenomena such as
the siT, or more generally the Landau-Zener-Stiickelberg
interferometry [42,43] and coherence destruction of tun-
neling (CDT) [27-30].

Results—To demonstrate the power of combining
modulated driving with weighted Rabi measurements we
characlerize symmefries arising in two- and three-level
systems, experimentally realized using NV centers.

NV centers in diamond are atomlike solid-state defects
with a triplet ground state labelled by |m, = 0, 1) with
long-coherence time that enables their applications in
quantum information science, including quantum sensing
[44—48] and quantum control [15,22]. To truncate the 3-
level NV center to an effective TLS, we break the
|m; = +1) degeneracy by applying an external magnetic
field with strength 239 G, and selectively use the two
ground states |m, = 0) and |m, = —1} as logical |0) and
|1} [22,23,49]. We simultaneously address an ensemble of
noninteracting NV centers (~10'® qubits) to increase the
signal-to-noise ratio. An arbitrary waveform generator
{(WX1284C) is used to generate the desired waveform
for Hamiltonian engineering.

To engineer strong driving on the NV centers, we rely on
the phase-modulated CCD technique [50], which has been
applied previously to approach the strong-coupling regime
even with limited driving fields [20-22]. As shown in
Fig. 1{a), we apply a phase-modulated waveform

2
H= %az + Qcos (wgz‘ + &cos(wmr - c,b)) o, (9)

where @y = (27)2.20 GHz is the qubit frequency, Q the
microwave driving strength, and e, @,,, ¢ are modu-
lation parameters. In the interaction picture defined by
U = exp {—i((001/2}01, T enlcos(@nt + §)/0]0,)}, the
Hamiltonian H; = UTHU — U'i(d/dr)U is

(a) Lab frame
(GCD)

2 rotating trame
{mode control)
F & Elgenstate

Rotating frame

(b) Rabi Oscillations Py, (t)

Signal

2 3
t(}is) * Iritial state

FIG. 1. (a) Sketch of the CCD technique for a TLS. (b) Rabi
oscillations of |01} state under different modulation phases ¢ with
other parameters (£, @, e, ) = (27)(3,3,0.75) MHz. (c) The
FFT spectra of Rabi oscillations in (b).

Q
H; =50t en sin(w,,t + ¢)o,. (10)

We thus obtain a time-periodic Hamiltonian H; with
T =2r/w,, where Q and ¢, behave as the static and
driving fields, respectively, and their relative strength can
be easily tuned to approach the strong coupling regime,
without hardware limitations.

The periodic Hamiltonian #,;(¢) in Eq. (10) has two
nontrivial Floquet eigenenergies A* and the transitions in
the complete Floquet energy structure form Mollow triplets

a)!(-n) = nw,, +i(A* — 7). Here i = 0, £1 correspond to
the centerbands and sidebands, respectively. These tran-
sitions can be probed either through conventional pump-
probe spectroscopy, such as spontaneous emission [51],
or via projective Rabi measurements in the context of
coherent state evolution [23,33,52], where the Rabi ampli-
tudes can be exactly mapped to the dipole matrix element
{Table I). Under a weak-coupling regime, the Floquet
eigenenergies and eigenstates can also be analytically
obtained in a second rtotating frame as shown in
Fig. 1(a). Figures 1(b),1{c) show instances of the Rabi
measurement in time and frequency domains where differ-
ent Mollow bands are separately measured under different
initial conditions.

In the following, we experimentally evaluate the dynami-
cal symmetries of the qubit Hamiltonian X, and study the
associated spD2Ss, spDBs, and sil through the intensities of
the Floquet state transitions, which are extracted from Rabi
oscillations.

The first dynamical symmetry is a twofold rotation or
parity symmetry defined by R =0, which satisfies
RH(r +T/2)RT = H,{t). The selection rules are then
given by VEZ@ x[1 +gi”(m;‘—mv)—f””age)], where y € {+, -},

m, € {0, 1}, and the constant aga) satisties RTVR = aga)V.
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TABLE 1. )
and dipole matrix element VE,"U) for a TLS. Note that

o (0] @), and listed cases do not include i=n=10

Correspondence between the Rabi amplitudes a

p0;
[23,32].
Bandsy; ) Rabi amplitudes a,(ff,g Expressed in V,(fg
{0, n} 23 e 3 O, Pk, [tV | |2VL
{~Ln}  2Nlete ot Ot ¢y
(L} 23 et e ol OF, et v

For observation operators that anticommute with the
symmetry operator (V = oy, ¢, ), the Mollow center bands
with even orders and sidebands with odd orders vanish. The
opposite holds for the commuting observation operator
{V =0,). As a result, a series of spDSs and spDBs are
predicted by the parity symmetry.

To experimentally observe these selection rules, we
measure the Rabi oscillations under different modulation
strengths 2e,,/m,, and plot their Fourier spectrum. In
Figs. 2(a),2(b), the 1st, 3rd, 5th Mollow sidebands, and
2nd, 4th Mollow centerbands have vanishing intensities, as
indicated by dashed lines and labels where nonzero
transition amplitudes would otherwise have been expected.
In Figs. 2(c),2(d), the opposite behavior is observed. These

results validate the theoretical analysis. Note that some
unexpected bands [e.g., odd order centerbands in the range
of 2.5 < 2e,,/w,, < 5 in Figs. 2(c),2(d)] are still visible,
albeit with small intensities. We attribute their occurrence
to experimental imperfections such as inhomogeneities that
introduce a detuning term in the Hamiltonian H, [22,32].

The second symmetry is a particle-hole symmetry
defined by P, = o,, which satisfies PyH,{tr + T/2)P," =
—H;(t). The selection rules are then given by
V,Ef) = aE,Pl)e"””Vgi,, where agfpl) satisfies PTvP, =
aE,P”V* [53]. For sidebands, the selection rules are con-
sistent with the parity symmetry predictions as observed in
Figs. 2{a)-2(d). For centerbands, destructive interference is

induced when aE,Pl)ef’m = —1 and the initial state is
an equal superposition of two ecigenstates such that
VSf)Jr = V(_”)_ = 0. This property gives rise to vanishing
centerbands in the guantum mode control as shown in
Fig. 1{c) and Ref. [23]. For a modulation phase ¢ = 0, the
Floquet eigenstates are in the x —y plane of the Bloch
sphere such that |¢*|* = 1/2 for the initial state |0}, and the
destructive interference transpires in the odd (even) center-
band when V = o, (V = 6,). Combining with the parity
symmetry that makes the opposite orders of centerband
vanish, all centerbands vanish under ¢ = 0 as observed in
Figs. 2(a),2(c). Instead, under the modulation phase

(a) , On-rescnance (w_=£1) (c) . On-resonance (w,_=§) (9)7 Symmetry breaking x410'3
- - - 3pDSs = o mr =aSpREe [ s A =
o o | e | Voo,
5 ¥ - : T gt B : = wi) gile " 5 Vn_a—re_mergence of spDSs | 35
= = o ) e i

ol 4 Sog s s e 4 R T

3 I ) g 55 —— ——

-3 BT e E R, e e i —— 2
2P — 2 T ——— " Wl o e oy
1(;/:‘::717_‘:5&” i 1 Feg =" ; 25

— sl + - 0 [~
0 1 2 3 4 & 0 1 2 3 4 & 0 1 2 3 4 5 5
(b) On-resonance (w_={1) (d) On-resonance (w_=51) M Off-resonance (w_=1002)
7 T T T T 7 T T T T T T T T
af === spDSs V=az,¢=m’2 gl mom = spDSs V=rrx,¢=m’2 4} - - - spDSs V=a-x,¢=0 E B
(5)
5 i Rl 5
= I e B B s £ e S SRS e HE]4) 4 i — =1
2, N S o e —— () b o w5 s g il
E—— ) = +1
_________________ [2) §
2 wy 2 = " 1 siT (CDT) s aDS\ 0s
* [ e
m
D
0 1 2 3 4 & 0 1 3 4 & 1 4
2£m/wm 2em/wm 2em/wm

FIG. 2. Experimental observation of spDSs, spDBs, and siT. {a)—~(d) Observation of spDSs, spDBs under resonant modulation
®,, = £ = (27)3 MHz. The initial state is |0}, and we measure generalized Rabi oscillations Pyy(7) or Pp4y(z} under different
modulation strength 2e,,/®,,, from 0 to 4 ps with 401 sampling points (see Fig. 1.) The plots are the Fourler spectrum of the Rabi
measurements for specified modulation phases ¢ and probe operator V. In (a) the odd sidebands vanish (spDSs, marked by dashed lines
and labels). Similarly, we observe vanishing even (b} and odd (d) centerbands. The even sidebands vanish in (c), but they reemerge in

(e} (arrows and dotted lines), due to symmetry hreaking induced by adding a perturbation, H’

(2e,, sin(2m,,t)e, to the periodic

Hamiltonian. (f) Observations of siT, spDSs, spDBs and accidental dark states (aDS) under off-resonant modulation w,,, 10 =
(27)15 MHz (labels indicate the revealing features). Rabi oscillations P, (¢) of an initial state |0} are measured from 0 to 2 ps with 401

sampling points.
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¢ = 7/ 2, the Floquel eigenstates are in the x — z plane and
the condition |c*|* =1/2 is not always satisfied.
The symmetry-allowed centerbands appear as shown in
Figs. 2(b),2(d) and vanish at 2e,,/m,, ~ 4, where |¢*|? =
1/2 is accidentally satisfied.

To further demonstrate the symmetry-protected selection
rules, we break both the parity and particle-hole symmetries
by introducing an additional term 0.2¢,, sin(2a,,1)o, in the
Hamiltonian H;, and measure the Rabi spectrum in
Fig. 2(e), where we see the emergence of all sidebands
[odd allowed sidebands as in Fig. 2(c) and symmetry-
breaking even sidebands.]

Another type of destructive interference, siT, is observ-
able when sidebands interfere destructively at degeneracy
points, which requires two discrete particle-hole sym-
metries in the system. In the strong coupling and far off-
resonance regime (£ <& ¢, w,,), an additional particle-
hole symmetry P, — I arises such that I'H,(t + T/2)] =
—H;(1), which results in a relation between two side-
bands Vi = a(PI)ef’mV( with a1 given b (PT)V =

+- 14 -+ v~ Blven by ay

P™ VP *. Under the initial condition ¢T¢™ = ¢™¢~, the
siT happens when a&fl)e!”m = —1, and the qubit evolution
is suppressed in the direction of the driving field (the CDT
effect, which has been observed before both numerically
[29] and experimentally [30].) In Fig. 2(f), we engineer a
strong-coupling Hamiltonian and measure the Rabi spec-
trum. The siT is observed when two sidebands are
degenerate at 2e,/w, = 24048 (see Supplemental
Material for a constructive interference [32]). In addition,
spl>Ss are also observed as in Fig. 2(c).

In order to demonstrate that our technique can be
extended beyond TLSs, we show how to use the 3 levels
associated with the spin-1 of NV centers to explore a
threefold rotation symmetry. We use modulated driving to
both reach the strong driving regime and to engineer
the double quantum (DQ) transition (|my = —1) <
|ms = +1}) in the rotating frame. Indeed, the DQ transition
cannot be directly generated by microwave driving
{(although it could be achieved by mechanical oscillations
54.55]].) Here we overcome this limitation by simulta-
neously applying two modulated driving on the single
quantum transitions (|mg = 0) < |mg = +1}), leading to
the rotating-frame Hamiltonian [32]

H3 (1) = J[cos(m,,0)| — 13 {+1| + cos(m,, ¢ +27/3)| + 13{0]
+cos(w,,t +4z/3)| — 1){0| +H.c| (11)

with a threefold rotation symmetry RH}(r+ T/3)RT =
H,(t), where the totation R = | —13{0| + |0){+1| + |+
13(—1|. We find symmetry-protected selections rules by
evaluating the Floquet eigenstates and the observation
operator [32]. In Fig. 3, we simulate the Fourier spectrum

of the weighted Rabi signal for the probe operator
V=|03{+1| +]0}{(~1| + |+ 1}{~1| +H.c., which clearly

8 - 02
5 -
- - - spDSin the 2™ manilold 0.15
aF
=
2 3} wihy, {1 o1
(2 e
Waasg g o S L e o]
kel il i - o St =
wﬁ?)g/’(zj"" i 0.05
1 wiy i
s} & Lo
0 1 2 3 4 ] 4]
2diwr
FIG. 3. Simulation of spDS8s and spDBs in a three-level system

(vanishing intensities marked by the dashed lines). The initial
state is (1/v/3)(|e1) + |ez) + |ea)) where |e; 54) are eigenstates
of V¥, such that evolution mode involves all bands. The weighted
Rabi P(I) = (1/4) [2P|El)(I) - P|gz)(t) - P|63) (I)] is simulated
from 0 to 40 gs with 5001 sampling points and the modulation
frequency is 0.3 MHz.

displays the expected spDSs, protected by the threefold
rotation symmetry.

Discussions and conclusion—By combining modulated
driving and detection via Rabi oscillations, we are able to
experimentally observe selection rules protected by
dynamical symmetries in a periodically driven solid-state
system. The modulated driving scheme is instrumental to
reach the strong light-matter coupling regime used to reveal
high-order Floquet bands; it also introduces additional
flexibility in quantum control, enabling one to engineer
transitions forbidden in the unmodulated frame and reveal
details of the dynamics (e.g., Mollow triplets) via mode
control. Direct measurement of the dipolar transition
operator V., or indirectly via weighted Rabi oscillations
is a more efficient strategy than previous pump-probe
methods in the highly coherent quantum systems that
can now be routinely engineered. In virtue of these
techniques, we characterized the time-domain parity and
particle-hole symmetries as well as the CDT effect in the
engineered system. In the context of quantum control, the
dynamical symmetries studied here have applications in
inducing selections rules for higher harmonic generation
and driving quantum synchronization [56-59].

While we showed simulations and experiments for two-
and three-level systems, the experimental techniques we
introduced can be generalized to many-body (N-level)
systems in a broad set of platforms beyond spins, such
as cold atoms and superconducting circuits.

When combined with spatial symmetries, dynamical
symmetries characterized in this work can lead to novel
Floquet topological phases such as Floquet topological
insulators and superconductors [10]. The breaking of these
dynamical symmetries might lead to intriguing dynamical
phase transitions. Furthermore, by engineering of the
dissipation such as tuning the decoherence rate of the
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system, the work here paves the way towards further
exploration of non-Hemmitian Floquet Hamiltonians.
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I. DYNAMICS OF A PERIODICALLY DRIVEN QUANTUM SYSTEM

In this section we introduce the basics of Floquet theory as well as the concatenated continucus driving technique.
While many of the definitions and results below have been presented in reference [1] (and elsewhere), we briefly
reiterate them here for convenience.

A. Floquet theory
1. General derivation

We first give the detailed steps to solve the Floquet problem [2]. Given a time-periodic Hamiltonian H(t) =
H(t+ 2m/w), its eigenstates have the form |T(2)) = e~ |B(t)}, where |®(t)) = |®(t + 27/w)) is periodic in time and
A denotes the eigenenergy. The Schrodinger equation i% [ () = H(t) |P(t)) is then equivalent to

(1) - i, ) 1302) = A[50). 1)

Plugging the Fourier expansions [®(t)) = 3, |$,) e ™8, H(t) = 3, Hae ™ into Eq. (S1), we obtain

nl
—inw - d —{rw —{imw
(Z H, (t)e it zat) 3 [Bppe it — N (B, et (82)
n 4 4

This can be expressed in matrix form as %Fq; = )\‘I;,

: 0 : : :
Ho-HAJ H_l 0 @_1 ‘b_]_
o, Hy H_; Dy |=A] Bo |, (S3)
0 Hl Ho—w Sl ‘b]_ ‘b]_
which defines the Floquet matrix Hp.
Given the Floquet matrix eigenenergies A* and eigenvectors & = (--- ,&" &4, % .., the state evolution of
the system 1s a superposition of these elgenvectors
. +Oo .
[T() =D [TH()) =D e Y et Bl (54)
Iz Iz n=—oo

with coeflicients <* determined by the initial condition

o0
(B(e=0))=> ¢ > |84, (55)

n=—0o

a. Quasi energy. Given an eigenenergy A, A* + nw for any integer n is also an eigenenergy since |W*(7)} =
eVt b (1)) = gt It (ginwt |G (1)), To simplify the calculation, we usually limit the range of the eigenvalues
within the first “Brillouin zone” (—w/2,w/2]. Note that the definition of “Brillouin zone” is flexible and in Ref. [1] it
iz defined as (0,w] to comply with the conventional definition of Mollow triplets. In this work, we pick (—w/2,w/2]
to make it easier to analyze the particle-hole symmetry, where two eigenvalues have a symmetry-induced relation
AT = At

b, Number of nonirivial eigenvalues in an N-level quantum system. For an N-level quantum system, the Hamil-
tonian H(t) is an N x N matrix, while state vectors [U(¢)), |®(¢)) and their the Fourier components |&,}, are IV x 1
vectors, which can also be equivalently written as |W(¢)),|$(¢)}. In Floquet space, there are N non-trivial eigenvalues
(in the first Brillouin zone) denoted by A*, while all the other eigenvalues are simple translations of these values with
AP 4w,



c.  Number of nontrivial eigenvalues in a qubit system. For qubit systems, the Hamiltonian H(¢) are 2 x 2 matrices,
eigenstates |V (t)}, |[P(2)} and the Fourier components |$,,}, are 2 x 1 vectors which can also be equivalently written
ag |¥(t)},|P()). Dueto the equidistant energy structures of a Floquet problem, there are two non-trivial eigenvalues
denoted by AT for a 2-level system and all the other eigenvalues are simple translation of these two values with
AT 4w,

d.  Truncation in numerical simulations. Since the Floquet matrix Hp has infinite dimension, in this work we
truncate the matrix to 400 x 400 blocks in the numerical simulation for the 2-level system, and to (300 x 300} blocks
for the 3-level system. In Figs. S12(e-h) we compare the Floquet simulation to a simulation based on a Trotterized
evolution, and show that the Floquet solution overlaps perfectly with the Trotter solution. Note that in the Trotterized
evolution, we discretize the time into small steps d¢ = 0.0004ps (dt = 0.008,0.00025s for Figs. S14(a,c)) and calculate
the evolution by multiplying the time series of e~ *#¥% with the Hamiltonian in H.

We used Floquet simulations for the plots of eigenstates in the Bloch sphere, to calculate Floquet eigenvalues and
the parameters m,,. All other simulations in this work were done by the using the Trotterized evolution, although the
Flequet simulation has similar precision and efficiency.

2. Generalized Rabi amplitudes

Although the Rabi oscillation is typically defined for a(n effective) two-level system (e.g., measurement of Py (t)
for a qubit), a generalized Rabi oscillation Py () can be defined for an N-level system where k denotes the projection
state. With Floquet theory, such a Rabi oscillation for an initial state described by coefficients ¢*’s can be calculated
as

Pay(t) = D et 3Tt x 3 ety T o ey (56)
" & P v

G s
_ E ez(p nlwt E ‘CHF@gfk@i X s E " P(AH—A )tcpcr/*¢z g ;fk ;
il # oL

We can rewrite this expression as

Py (6 = 3 Jaff cos (it + 050 ) (S7)

ooty

with frequency wgfz = nw + (A* — A¥), and amplitudes aff,’,k) = \afﬁ,’,k” exp (qugf,;k)) = ZP c"‘*c”‘b}ﬁn # 8, 5. Note

that when drawing a correspondence to the dynamical dipole matrix element of a probing operator V, the state |k)
should be an elgenstate of the probing operator V.

B. Concatenated continuous driving

Concatenated continuous driving (CCD) is a dynamical decoupling technique with modulated driving fields, and
it has been explored in the context of qubit coherence protection and noise decoupling [1, 3-14]. Although more
complicated CCD schemes have been studied [3, 4], in this work, we focus on the simplest one where only one
modulation is applied to the main driving field. We can classify the CCD schemes into two types: amplitude
modulated CCI and phase-modulated CCD.

Amplitude-modulated CCD - By applying an amplitude-modulated microwave with waveform w,,, = £ cos(wt) —
2e., sin(wi) cos{wmt + ¢) to a qubit along the transverse z axis w,,0,, the Hamiltonian in the lab frame can be
written as

H= %O’Z + (@ cos(wt) — 26, sinfwt) cos(wmt + @) oy (88)
where wq 1s the level splitting of the qubit, £, ¢, are the driving and modulation strengths. We assume Q,¢,, < wy
and § = w —wy < wp (as typically the power of AC fields is limited) such that the rotating wave approximation
(RWA) is valid. In the first rotating frame defined by a unitary transformation U/ = exp(—é%tcrz), and applying the
BWA, the Hamiltonian becomes

Hi = *g% + %Jm + €m cos(wit + oy 59)



Phase-modulated CCD - In the phase-modulated scheme, the driving waveform has a time-dependent phase and
the Hamiltonian in the lab frame is

26
H = @az + Qcos (wt + £ coslWet + 05)) Ty (510)

2 Wm

The rotating frame transformation to simplify the analysis is defined by U = exp (—z’ fot Ho(tf)dt]) with Ho(t) =
(wi2)o, — (emwm /) sin(wmt + @)o, and then IV = exp {—z’ (%%rz 4 Emwgz)}_ Assuming that the RWA is

valid, the Hamiltonian in the interaction picture is

& 9
Hi=—;0:+ 505 + emsin(wmt + ¢)o..

S0t (811)

Both amplitude-modulated CCD and phase-modulated CCD can implement similar Hamiltonians Hj; comprising a
static and an oscillating field. However, the amplitude modulation is applied by varying the second driving amplitude
which is more affected by power fluctuations, while the phase modulation is applied by varying the driving phase
(26 /wm) cos(wmt + @) and is robust against power fluctuations (although noise associated with imperfect resclution
and faulty electronic elements are still possible). The phase-modulated CCD usually has better performance such as
longer coherence time [6, 7, 14], and less power limitations, enabling larger e,,.

C. Floquet solution to a driven qubit

We consider the Hamiltonian of the phase-modulated concatenated continucus driving in the interaction picture
Hr = (8/2)0, + ¢y sinfwp,t + ¢)o,. Fourler decomposition of this Hamiltonian gives Hy o = (2/2)0,, Hrq =
FlemeT?/(28)]o.. The Floquet matrix problem is

“';1:1 % *i%ﬂew 0 0 0 D, P 10

) W 0 i%”ﬂtﬁw " 0 B 54 ®_11

Z‘.eﬂe_?’ 0 0 - *’Leﬂ’iez 0 . (I)[) 0 (I)[) I
? 0 —ifpe g 8 20 ifpett . doq | A P (512)

0 4] jeng—i¢ 4] — g D10 D10

0 0 0 —ifpe®® g —Wm ®1. g

Since we can always write the eigenstate |®(¢)), | ¥(t)} in the basis of V = o; (|05}, |1;}), the evolution of the system
can be written In a more general form as

[T@) =cre Y] @
! ($13)

where the coefficients ¢ are given by the initial condition [¥(0)) = 3 ¢F |®F(0)}, and 0,1, denotes the component
in the basis [0;),]1;) (for o; = 04,0,,0,, the basis [0;) = |+),|+i},]0) with [+) = (|0} +|1))/v2 and |+&) =
(1) +2]1))/v/2).

For the Rabi measurements in this work, the qubit state is projected onto |0;}, the eigenstate of the probing operator
V' = ;. The probability of being in the [0;) state P, (t) presents three classes of frequencies: {nwnm£(AT—A7), nwm }
where n Is the integer denoting the band order:

et
+€71>\ t(I)Jr

c n,l;

+

'ﬁ,Oj) — it — —ixTt

+ )€ T E :( N
n,1; n (I)n,la et (I)'n,lj

P\Oj) (t) - Zefinwmt(chefi)\‘l't(I)Jr 5, 4 Cfefz')\_t(I);l,Oj) w Zeimwmt(CJr*ei)\“'t(I);Bj + Cf*ei)\_t(I);,B?) (814)

n’
P

7,05

n

_ ei(pfn)wmt |C+|2@+* @—0—
E : 2,0y
Y2

_ _ — I _ _ ik, sy _ _
—0—‘8 |2@p,87@n,0j +e HORE )tc+c *@;lb—’oj@p,aj —0—810\ A )tc+*c @;B &

g naog

- + —ixteg+ — —iATtFH—
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We can rewrite this expression as

Po,(8) = 3 [af | cos (1wt + ¢{) (S15)

with wgn) = Wy, + (AT — A7), where ¢ = +1,0 corresponding o sidebands and centerbands, respectively, a(il) =

o lexp (64 ) = 253, 65 B0, 850, and ) =25, [65° 53, 8570, B,

II. CORRESPONDENCE BETWEEN RABI AMPLITUDES AND SUSCEPTIBILITY

In Ref. [15], Floquet bands were probed through the susceptibility x, as typically done in light scattering ex-
periments. Here we instead reveal the Floquet bands through the Rabi amplitudes of the coherent evolution of a
driven qubit [1]. Before proceeding to derive the selection rules in the Rabi measurement, we first establish the
correspondence between Rabl amplitudes and susceptibility .

Susceptibiity x - In Ref. [15], the Floquet band siructure of a periodically driven qubit is probed through a
bichromatic probe field (wp 1 and wy 9 = Wy 1 + fwy,) where the intensity change of the second frequency component
Al{wy2) = [—ixn(wp, el ol Zawp .+ el is used to identify the symmetry-protected selection rules. There, the

susceptibility xn(wp.1) was dofined B

V" TV (o0 — pa)

AP — W oy, — Wy q — i’yﬂz)

Xn(wp1) = iAZ Z

JYRN i)

($16)

where v is a phenomenological dephasing factor, and the probabilities {p,} are associated with the assumption of a
long time stationary state p(t) = E.u P |BH(2)) (@#(t)| [15]. The symmetry-protected dark states (spDS) and dark

bands (sp}B) are induced by a vanishing dynamical dipole matrix element V,JETL) =0 and susceptibility xn(wp1) =0,
respectively, and the symmetry-induced transparency (siT) is induced by the destructive interference of two nonzero

dynamical dipole matrix elements V,EL) # 0.

N-level system - In this work, we discuss the selection rules in the context of a coherent state evolution, and we
find that the spD)Ss, spDBs, and =T also appear in the coherent state evelution under similar conditions. According
to Floquet theory, the state evolution of a periedically-driven quantum system is |¥(¢)) = ZH e P BH (1)) where

[DH(1)) = ST o=t BEY and o is determined by the initial condition |¥(0)} = >, |$(0)). Assuming the

NnN=—00

probing operator can be written as V = >, Vi |k} (k|, the dynamical dipole matrix element VH(TL) can be calculated ag

i
V=7 [ @OV @), 1)

0

Using |B#(¢)) = 3, |[P¥)e @t and V = 57, Vi |k){k|, we have

VA = R (B 0K ) = SN (518)

where &% = (®L k), ®}_, , = (k {k|®y_ ). We define a “weighted Rabi oscillation” for the N-level system as

P() = 325 R0 ($19)
k

where 1 = 37, | Vi is the normalization factor and Flgy (£) = | (k| ¥(¢)}|? is the measured population on |k}. Then we
have

VP@) = (V) = (T@)| V[¥{F) (520)
with [U(t)) =22, ¢ |84 () g — > un &2 e inwte—iA"t we ohtain

<V> = Z cy,*cyei()\“f)\’/)teinwtvjfi) (821)

a1



This weighted Rabi oscillation can then be decomposed into a series of frequency components as

Pl =L=) |a(n)|cos( M+ ¢(n>), (S22)
Han
with frequencies wgg = nw + (A* — A¥), and amplitudes a,&,y = |ajp ) =23, p e (Vk/V)CI)gin B

When g = v, the observed signal arises from the coherent interference of all centerbands, resulting in amplitudes
a(()"ﬂ) — \agn)| exp(g'qsgn)) =230k |2 (Ve/V)BLL 12
peints, such as A* = A", For N-level systems, the frequency modes of the Rabi oscillation P(¢) are comprised of a
geries of equidistant manifolds, with one centerband nw and N (N —1) sidebands nw—+ (M — A") within each manifold.

As derived above, we obtain the correspondence between the weighted Rabl amplitudes and the dynamical dipole
matrix element

. Interference of sidebands can happen at energy degeneracy

{n)

n o o Vi
ol = 2e"c L, (23)
n)

1743
al™ —22| M\Q—. (S24)

The off-diagonal terms of the dynamical dipole transition element ZCM*CVVM(TL)#M/V can be exactly mapped to the

Lng#,u, and the weighted summation of the diagonal terms 2 ZM |c’*|2V£3/V can be mapped to
(n)

the centerbands amplitude q
Quantum mode control - Since we have phase control over the applied microwave, we can selectively observe
centerbands or sidebands by tuning the coefficients &* through the initial condition (guentum mode control) as

sideband amplitudes a

discussed in both the main text and in Ref. [1]. As a result, all elements of the dynamical dipole matrix V( ™) can be
individually probed through quantum mode control. We clarlfy that symmetry-protected selection rules chscussed in
this work determine the selection rule of V,,Ej,l,), while quantum mode contrel determines via ¢# which mode amplitudes
are observed, by tuning the initial state with respect to the Floquet eigenstates.

2-level system - According to Floquet theory, the state evolution of a driven qubit is [¥{t)) = >, cremiNTe |bF (1))

where |d+(t)) = E+Oo e~ iwnt | By For the two-level qubit, the probing operators o,,7,,, can be written as
Te = |+ {+H] — |—) <f| oy = |+8) (+i] — |-8) (—i] 0, = |0} {0] — |1} (1], thus the dynamical dipole matrix element
VVETL) can be simply calculated as
i 7 .
Vi == fo (@H(0)|V |8 (D)) et = 3 (‘ﬁﬁfog B o, — B @;,n,lj) ($25)
I

where p,1v € {+,—} corresponding to the two Floquet eigenstates, and 0;,1; denote the projection on the two
eigenstates of the probing operator V' = ¢;. Since Fgy(t) + F1,3(¢) = 1, the measurement of the weighted Rabi
is (1/2) [P,y (t) — Pp,y(8)] = P,y () — 1/2, we can measure the typical qubit Rabi oscillation Py instead of the
equivalent population difference between |0;) and |15} (except for the zero frequency component where the equivalence
is no longer satisfied). The Rabi amplitudes Ho,y in Eq. (S22) can be expressed in terms of the dynamical dipole
matrix elements as listed in Table. S1.

TABLE S1. Correspondence between the Rabi amplitudes aén) and dipole matrix element V,LEE) for a TLS. Note that (I)g,oj =

{0; |<I>g>, and listed cases do not include i = n =0 [1].

BandS{ﬁ—’n}‘ Rabi amplitudes a,(fg | Expressed in V,,E,?
{on} 2%, \cﬂzzk Pitng, Pho, | VAL Hle [V
{-1n} 2 Ek k 0 (I)k:n 0 ct _*V(n)
{+1n} | 2%, c+* BT o Py &t *V“’")




IIT. OBSERVATION OF SYMMETRIES IN A TWO-LEVEL SYSTEM

We apply the phase-modulated CCI} technique to engineer the interaction picture Hamiltonian

Hr = %aw + em sin(wmt + ¢)os. (S26)

The time period of such a Hamiltonian is T' = 27 fwy,.

A. Parity (2-fold rotation) symmetry o

The first symmetry associated with the Hamiltonian H; in Eq. (S26) is a 2-fold rotation or, equivalently, a parity
symmetry given by the operator B = gz, satisfylng R?—.{j (t + T/Q)}%T = H;(t). Such a symmeiry gives rise to
the relation between eigenstates |$#(¢)} = WLR)JA% [Pt +T/2)) = gimm | |4+ T/2)) with p € {—,+} and m, €
{0,1} [15]. Tn Fig. S1 we numerically calculate and plot the Floquet eigenstates |®+(t)) under the resonance condition
1 = wp, = (2m)3MHg, for a modulation strength 2¢.,/wy = 2.75 and phase ¢ = 0. Under such condition, TriR) =,
ag validated in the comparison between Figs. S1(a,d) and Figs. S1(c,f).

The values of TT,&R) depend on the modulation parameters we choose (and also on how the band range iz defined, as
discussed in Ref. [1]). In Figs. S2(c,f) we plot the two values of W(iR) as a function of 2e,, /wy,. Note that W(iR) ==+1,
and their value switches sign (or in other words 7 switches with w_) when the eigenvalues cross the degeneracy peint
(under the assumption that A~ < At and defining the band as, A € (—wp/2,wn/2)). Due to the parity symmetry
(2-fold rotational symmetry), the relation TT_(‘_R)’!T(_R) = —1 is satisfied, which is used in the following derivations of

selection rules.
We now derive the selection rule by evaluating the value of the dynamical dipole matrix element, which is

T ) /2 ) :
Vi = % / (B (£)|V " (£) ) mtdt = % / (@ (1) |V (t))e~9mtdt x |1+ n(BrFle ™oy,
0 0

. o @ (T2
@ B R (b) _ e (),

Value

(d

Value

T T VT

FIG. 51. Symmetry of Floquet eigenstates ‘@i(t)>. Floquet simulation is applied to calculate the time-dependent Floquet
eigenstates |@i (t)} under the condition 2e, /wm = 2.75, ¢ = 0, and wy, = @& = (27)3MHz. (a) &7 (¢) plotted in the first two
time periods. Since ®7(¢) is a 2 x 1 normalized complex vector, we plot the real (solid line) and imaginary (dashed lines)

parts of each component (red and blue colors). The basis used here is the ¢, basis. Same rules apply for the other plots. (b)
—a BT T/2) () o (2 4+ T/2), (d) @7 (2). (e} —a- & " (t +T/2). (£} o ®M (¢ +T/2).
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FIG. 82. Floquet eigenenergies and m,. (a) Floquet eigenenergies At under the condition ¢ = 0, . = 100 = {27)15MHz.
Note that 3 is defined in the range (—wm/2,wm /2] and A~ < XT. (b) The values of Tr:(tpl), ﬂ_:(th) corresponding to the two

particle-hole symmetries P = 2z, P, = I under the condition in (a). (c) The values of Tr:(tR) corresponding to the parity
symmetry B = o, under the condition in (a). (d) Floquet eigenenergies A* under the condition ¢ = 0, wm = © = (27)3MHz.

{e) The values of wipl) corresponding to the particle-hole symmetry P, = o, under the condition in (d). (f) The values of Trf)

corresponding to the parity symmetry R = o, under the condition in (d).

where the value of oy is given by the relation RVEAt = ayV. When the observation operator is V = o, o, such
that ay = —1, Mollow centerbands with odd (n} orders are visible, while the even orders vanish. The opposite is true
for the sidebands. When the observation operator is V = &, such that ey = 1, Mollow centerbands with even (n)
orders are visible while the odd orders vanish. The sidebands show the opposite behavior: the odd orders are visible

as WELR)WER) = —1, while the even orders disappear. These predictions are observed in both simulations (Fig. S4) and
in experiments reported in the main text. Here we also show the complete data for the experiments in Fig. 53) as
well as the experimental raw data (Fig. S5) before Fourier transform that would yield the spectrum in Fig. S3. The
Rabi oscillations under different modulation strengths 2¢, /ey, are shifted vertically to avoid overlap.
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FIG. 53. FExperimental observation of spDBs, spDSs, and destructive interference between centerbands. The Hamiltonian

Hr in Eq. (326) is engineered by the phase modulated CCD technique with parameters @ = w,, = (2m)3MHz, ¢ = 0,7/2
corresponding to {a-c¢,b-d). Rabi oscillations of an initial state |0} from ¢t = 0 to t = 4us are measured with 401 sampling
points and their Fourier spectrum are plotted as intensity map. (a,d) Fourier spectrum of Rabi measurement on |+} (V = a2)
under different modulation strength 2e., /. (b,e) Fourier spectrum of Rabi measurement on |+3} {V = o) under different
modulation strength 26 /wem. (c,f) Fourier spectrum of Rabi measurement on |0} (V' = o) under different modulation strength
2€4 fto,,. Please check the complete raw data in Fig. S5.
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FIG.84. Simulation of spDBs, spDSs, and destructive interference between centerbands under the Hamiltonian H; in Eq. (S26).
{a,e) Floquet eigenstates ‘@i(0)> visualized on a Bloch sphere. Floquet eigenstates are calculated with the Hamiltonian in
Eq. (826). Modulation strength 2¢., /o, is swept from 0 to 5 with darker colors, and other parameters are {& = w,, = (2m)3MHz,
¢ = 0,7/2 corresponding to {a-d}, {e-h) respectively. (b,f} Fourier spectrum of Rabi measurement on |+} (V' = .} under
different modulation strength 2., /w... Rabi oscillations of an initial state |0) from ¢ = 0 to ¢ = 4us are simulated and their
Fourier spectrum are plotted as intensity map. (e¢,g) Fourier spectrum of Rabi measurement on |+¢} (V' = o) under different
modulation strength 2e. /wm. Other parameters are the same as in (bf). (d,h) Fourier spectrum of Rabi measurement, on |0}
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FIG. S5. Raw data of Fig. 33. (a-f) correspond to Figs. S3{a-f}), respectively. Legend shows the corresponding modulation
strength 2e., /wy,m. We shift different curves manually to make them easier to read.
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B. Particle-hole symmetry o,

The second symmetry is a particle-hole symmetry By = @, which yields P, H t+ T/Z)I%Jr = —H(t). Given an
eigenstate |P* (1)} corresponding to the sigenenergy M, its counterpart B |PH* (t 4+ T/2)) is also an eigenstate of the
gystem with eigenenergy —A*. For our qubit system with two nontrivial eigensclutions (two eigenvalues are defined
within the first “Brillouin zone” {—w., /2, wy/2]), such a relation yields [®~#(t)} = w,ﬂpl)ﬁl | Pt + T/2)) where W,&Pl)

is gauge-dependent [15]. Here we have ijpl) e {1,—1} as validated by Floquet simulations — compare Figs. S1(a,d)

and Figs. S1(b,e).
From the equality |$#(¢)} = Wffl)pl @”f*(t+T/2)> = ijjl)ﬁlﬁfbpl)*ﬁl* |Prt+T)) = Wfbpl)vrffl)* |[B“(2)}, we

obtain that Wfbpl)wffl)* = 1, though the specific values of TT,&PI) depend on the parameter 2e,, fwn,. In Figs. S2(b,e},

we plot the values of Wf,jpl) for ) = wp, /10, @ = wyy, as a function of the modulation strength 2e,, /wy,. We note that

the condition W,&Pl)vr(%) =1 is always satisfled although the value of ijDl) depends on the modulation parameter.

The dynamical dipole matrix element can be calculated as

7 1 ’ 1 —inw 1 ! =~ Pyt p P, vk R
v :Tfo (B8 (1) |V |8 (1) ety — _fo (@ (¢ + T/ BV P (PO -+ T/2) e omom bl

T #
—afemmy e = o gy () (S27)
where CEE}DI) is given by the relation ﬁlTVﬁl = ag}l)v*. Since the particle-hole symmetry operator 151 = g, maps

the Floquet eigenstate to its counterpart, rather than to itself as for the parity symmetry, we have to consider the
following two situations:

1. When g # v, the symmetry gives rise to selection rules for the Mollow sidebands with (p4,2) = (2, i¢') such that
V,E,TL) _ agjl)eiﬂ'nvig’”y).

- When the observation operator is V =, a%,Pl) =1, only even-order Mollow sidebands are visible.

- When the observation operator is V = o, a‘(fl) = —1, only odd-order Mollow sidebands are visible.

This is consistent with the prediction from parity symmetry.

2. When p = v, the symmetry gives rise to vanishing centerbands when |c7|> = |¢=|? = 1/2 (that is, when the

initial state iz an equal superposition of two Floquet eigenstates) and cegfl)e”” = o],

- When the observation operator is V = o, a%fl) = 1, only even-order Mollow sidebands are visible, since

Viﬂ = fVE?:"Z for aye ™ = —1 with odd n.

- When the observation operator is V = o, agjl) = —1, only odd-order Mollow sidebands are visible.

- Combining the selection rules for both particle-heole symmetry and parity symmetry, no centerband is
visible for both observation operators.

We confirm this last prediction by observing that centerbands disappear for ¢ = 0 (yielding |¢+|?> = 1/2) in both
experiment (Fig. $3) and simulation (Fig. 84), while they reappear for ¢ = 7/2 since then |e+|? # 1/2. To clarify the
relationship between the phase and the initial state coeflicients, we plot the Floquel eigenstates on the Bloch sphere
in Figs. Sd(a,e). Under the modulation phase ¢ = 0, the Floquet eigenstate is always in the r — y plane, such that
|ct|?2 = 1/2 is always satisfied. Under the modulation phase ¢ = 7/2, the Floquet eigenstate is in the  — z plane
such that |¢*|? #£ 1/2, except at modulation strength 2e,, /wy, = 4 where |¢T[? = 1/2 is accidentally satisfied.

Note that PP* = [ is required for particle-hole symmetry, thus when considering the amplitude-modulated CCD
scheme, where the periodically driving fields are along the y direction, a frame transformation to align the driving
fields to the z direction is needed before applying a particle-hole symmetry analysis.
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C. Symmetry Breaking

To demoenstrate that the selection rules arise from the symmetries of the Hamiltonian, we spoil such symmetries by
introducing additional terms. The complete experimental data under the resonance condition £ = w,,, = (27)3MHz
under an engineered symmetry breaking Hamiltonlan is plotted in Fig. S6, where the appearance of more forbidden
bands (in comparison to Fig. S3) clearly signals the symmetry breaking. Corresponding simulations are plotted in
Fig. S7. See also section VI for experimental limitations that might induce weak breaking of the symmetries.

V=g V=g V=g -3
a ¥ b () 2 x 10
@ —_— b}, — ), ]
7t $=0 Tt ¢=0 7t ¢=0
13 & 3 35
5 5 5
= = =
24 3 == ,
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R / —- 25
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e . B — T |
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
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8 8 8 '
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2 e s 3 4
3 = 3 — — 3
—_— e —
2 —— ¥ . 8 08
1 = —— 1 1
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 — 40
Ze fw 2e fw Ze fwr

FIG. S6. Experimental observation of symmetry breaking. Same experiment conditions are used as in Fig. 83 except for the
engineered Hamiltonian H; = (Q/2)os + e sin{wmt + 9) + 0.26., sin(2wimt + ¢) where the third term breaks both the parity
symmetry and particle-hole symmetry.
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FIG. S7.  Simulation of symmetry breaking. Same parameters are used as in Fig. S4 except for the Hamiltonian H' =

(}/2)0% + €m sin(wmt + o, + 0.26,, sin(2wm t + ¢)o, where the third term breaks both the parity symmetry and particle-hole
symmetry.
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IV. SYMMETRY-INDUCED TRANSPARENCY (SIT OR CDT)
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FIG. 88. Symmetry of Floquet eigenstates ‘@i(t)>. Floquet simulation is applied to calculate the time-dependent Floquet
eigenstates |®i(t)> under the condition 2em /wm = 2.6934, ¢ = 0, and wm = 10 = (27)15MHz. (a) &7(¢). (b) e & (t+T/2).
{c) "¢+ T/2). (d) (&), (e) e.® (¢t + T/2). {f) @ (¢t + T/2). In comparison to Fig. S1 where the parity and first
particle-hole symmetries are presented, this figure presents the two discrete particle-hole symmetries under a far off-resonance
condition.

Symmetry-induced transparency (siT) or coherent destruction of tunneling (CI)T) are generated by destructive

interference of two transition elements V(TL) # 0. In the context of light scattering, siT requires two terms in the
gusceptibility (Eq. S16) to cancel each other [15]:

(=) gp(m) _ yr(—nmm)y(m)
vy -y Crmmy (), (S28)

In the context of coherent state evolution for our two-level system, the si'T requires the amplitudes of two sidebands,
at the degenerate point AT = 0, to destructively interfere:

et VETQ Sl sz =0 (S29)

When Q0 < €,,,, wm, an additional particle-hole symmetry B = ]5; = [ iz introduced (as easily seen for £ = 0.)

Together with the always-present particle-hole symmetry 151 = ]slT = 0., we denote them as ]51 =g, 152 = I. Unlike
P, which maps the Floquet eigenstate to its counterpart with opposite eigenenergy, Fr, maps the Floquet eigenstate

to itself, with [$#(#)} = WE,VPZ) [Pt + T'/2)) as shown in Fig. S8 (more detailed derivations and explanations can be
found in the supplemental materials of Ref. [15]). These results can be summarized as

n{PO B | (24 T/2)) = |84 (1) )

n(P) By | @4 (¢t + T/2)) = | B*(2)) (S30)
where Wfbp)wff)* =1, o = F for p = 4, as derived above in Sec. II[. Then the dynamical dipole matrix element is

1 T ) 1 T 5 - .
v = / (B4 0|V |2 (1)) "t = f (@ (¢ + T/2) G PIV By 2|7 (¢ 4 T/2))e=omtdy
1] 1]

:agz)eiﬁnvi’;n)* _ QE/PZ)eiﬂnv,/(,Z), (831)
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where agz)

In summary, two particle-hole symmetries result in the following relations

= 1 since the symmetry operator is identity.

(o) P1) _irn 3
Vi = ol ey,

(0 P2} _irn n TN k)
V;.E,r/) = cegf)e Vy(,”) =e VV(,M).

(932)
(933)

As discussed in Sec. III, the selection rules for the sidebands induced by the first particle-hole symmetry f31 =g, are
already included in the parity symmetry prediction, and destructive (or constructive) interference happens for the
centerbands when the initial state is an equal superposition of Floquet eigenstates. Considering the second particle-
hole symmetry P = I, destructive (or constructive) interference happens in the sidebands when they have the same
frequency (degenerate condition A% = 0).

1. When ¢"c ™ = ¢"™ ¢ (e.g., initial state |0}, modulation phase ¢ = 0 or ¢ = 7/2), destructive interference
happens for the odd bands with e = —1, which is observed in simulation shown in Figs. S9(b,f) where a clear
siT happens at 2ep, /wy, = 2.4048.

2. When cte™ = —ctte™ (e.g., initial state |+¢), modulation phase ¢ = m/2), constructive interference happens
for the odd bands with ™ = —1, which is observed in simulation shown in Figs. S10(h,f).
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FIG. 89. Simulation of siT, aDS and spDS under a strong coupling regime. Qubit initial state is prepared to |0} and the

Rabi oscillations are simulated from ¢ = 0 to ¢t = 2us. Parameters are (@ = (27)1L.5MHz, w., = (27)15MHz, ¢ = 0,7/2. (a,e)
Visualization of Floquet eigenstates |@i(0)> on the Bloch sphere. The color change from white to red or blue as the increase of
2€m /i from O to 4.8006. (b,f) Fourler spectrum of Rabi measurement on |+) (V = ¢, ) under different modulation strength
2€m /wm. (c,g) Fourler spectrum of Rabi measurement on |+i) (V = o) under different modulation strength 2€. /wem. (d,h)}
Fourier spectrum of Rabi measurement on |0) (V = &) under different modulation strength 2€m /wim.

We also perform experiments to observe both the destructive and constructive interferences with different qubit
initial states (Fig. 811.) When the qubit initial state is |0}, such thal ete™ = ¢ ¢~ and Vfg = —Vfﬂ ab 26 /W =
2.4048, a destructive interference between two sidebands happens and sil' or CDT are observed in Fig. S11{a).
However, when the qubit initial state is prepared to |+i) such that ¢te™ = —ct* ¢, a constructive interference
happens at the degeneracy point as chserved in Fig. S11{b).

In both derivations of Eq. (S27) and Eq. (S31), the observation operator needs to satisly Ptvp = ag})v*. Thus,
the previous derivations do not predict the situation of V' = #,,. However, siT is also cbserved for V' = o, as shown
in simulation in Figs. S9(c,g). We show in the following that si'T can be also observed when the probe operator is oy,
thanks to particle-hole symmetry.
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FIG. 810. Simulation of siT, aDS, spDS and spDB under a strong coupling regime. Qubit initial state is prepared to |44}
(the eigenstate of #,) and the Rabi oscillations are simulated from ¢ = 0 to t = 2us. Parameters are Q = (2r)1.5MHz,
W = (2m)16MHz, ¢ = 0,7/2. (a,e) Visualization of Floquet eigenstates ‘@i(0)> on the Bloch sphere. The color change from
white to red or blue as the increase of 2e.,/w., from 0 to 4.8096. (b,f) Fourier spectrum of Rabi measurement on |4} (V = o)
under different modulation strength 2¢,, /w... (c,g) Fourier spectrum of Rabi measurement on |+¢} (V = o) under different
modulation strength 2e., /w,. (d,h) Fourier spectrum of Rabi measurement on |0} (V' = #,) under different modulation strength
2€um ftWim.

Here we combine both particle-hole symmetries in the derivation and calculate the dynamical dipele matrix element:
i P ) 1 /T L .
14%6) = / (BH()| VB (1)ye~romtds = - / (@ (t + T/2)|nl 0 PIV Pyn (P2 @7 (¢ + T /2) et
0 0

1 T, . o . [ '
=7 / (O (2 4+ T)‘p;r*ﬂgfjl)ﬂﬁpz)*PJVPQWI(}PZ)WEDQ Priov (¢ + T)}e_znw’”tdt
0

=olBly Sy, (534)
where W&P)W,(,P)* — 1,]52 = I are used and Oz‘(/Pf) is given by ayV = ﬁl*Vﬁf. Since 161 = 151* = g,, then ag/Pl*) =-1
and Vinl = fVERJ)r for both V' = 0,0, and destructive interference happens for both situations. Note that here we

do not ;:equire V=V*

Under the siT condition, the transition between |0) and |1} is suppressed, a phenomenon which is also called coherent
destruction of tunneling (CD'T). To further visualize this exotic phenomenon, we plot the state evelution on the Bloch
gphere under four different conditions w,, = 2Q,6Q, 100,200} in Figs. S12(a,b,c,d) with their corresponding Rabi
oscillations in Figs. S12(e,f,g,h). From the comparison, we can see that as Q/w,, decreases, the second particle-hole
symmetry becomes progressively prominent, and the transition between |0} and |1} is more suppressed, as predicted
by the symmetry analysis.
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FIG. S11. Experimental observation of siT, aDS, spDS, and spDB under a strong coupling regime. (a) Qubit initial state is
prepared to |0} and the time-dependent population on |4} is readout (V = o.) from ¢ = 0 to £ = 2us. Driving parameters are
{1 = (20)1.56MHz, w,, = (2m)156MHz, ¢ = 0. The intensity plot is the Fourier spectrum of measured Rabi oscillations under
different €... (b) Same experiment as (a) except for the initial state |+3) (eigenstate of o) and the modulation phase ¢ = /2.
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FIG. 812. Simulation of siT (CDT) under different Q. Parameters are wwm = (27)15MHz, ¢ = 0,2, /. = 2.4048 and
the qubit evolutions of an initial state |0} are plotted on Bloch sphere in (a-d) and population on |0} is plotted in (e-h} (a,e)
0 =wn/2. (b)) O =w,/6. (c,g) O =w,/10. (dh) Q =w,/20.



17
V. ROTATION SYMMETRY IN A 3-LEVEL SYSTEM
A. Hamiltonian engineering by amplitude or phase modulation

In this section we introduce a novel method that exploits simultaneous modulated driving of various transitions
as a playground to study rotation symmetry. In particular, focusing on the NV center in diamond, here we show
that even with just two modulated microwave drivings, all three energy levels can be directly coupled in the rotating
frame.

Amplitude modulation - The NV center ground state Hamiltonian in the lab frame under simultanecus driving of
the transitions between |m, =0} and |m, = +1) is

H=+BS5,+ DS? + \ﬁ[ﬂl cos(w1t) — 261 (t) sin{wit) + Qo cos(wat) + 2ema(t) sin(wat)] S, (S35)

We consider identical detuning for both transitions A = wyggy — (D) £ ¥B) (here D is the NV zero-field splitting, B
the magnetic field and « the gyromagnetic ratic). In the rotating frame defined by U] = diag(e™*1%,0, e~ %2%) under
the rotating wave approximation we obtain

) 0 S — e (2) 0
0 2 jema(t) 0

where a constant term (energy shift) diag(—A, —A, —A) is neglected. While the relation between the detuning A
and the driving strength 219 can be tuned over a broad range, here we set {}; = (s = 2A. We then diagonalize the
static part of Eq. S36:

2A _i€m1(3)+\/_€m2(3) Z‘Eml(t)_emZ(t)
3 2
= j Em1 {8 tema®) ) _jem1(®)temal®) | (837)
_jEmi (ﬁemz (&) jem1 (O dema(t) _f
V2 3

To reach the target Hamiltonian which has the same driving strengths but different phases between all the three
energy levels, we set the modulations to be

em1(t) = 2v/3J sin(2A¢) cos (wmt - 2;) — 24/2J sin(3At) cos(Wmt), €ma(t) = 2¢/6J sin(At) cos (wmt + 4;) ,
(S38)
Under the rotating frame defined by Us = diag(e~24%,0, 2%, we finally obtain
0 Jcos (wmt + %’r) J cos(wpt)
Hr = Jcos(wmt + %ﬂ) 0 Jcos (wmt =a 4?”) : (539)
J cos(wpt) Jcos (wmt s %”) 0

Note that here we use the rotating wave approximation which holds when A >3 wy,, J (see Fig. S14(c) for a symmetry
breakdown caused by the neglected fast oscillating terms in this approximation}. The period of this Hamiltonian is
T =27 fwm,.

Phase modulation - An alternative way to engineer a similar Hamiltonian is by phase modulation, where two phase
modulated microwaves are applied to the transition between |m, = 0) and |m,; = +1). Again we start from the
Hamiltonian in the lab frame

H =+BS, + DS ++/2[Qy cos(wyt + f1(t)) + Qg cos(wat + fo(1))] S5, (S40)

with identical detuning for both transitions A = wyy — (D = yB). In the rotating frame defined by U =
diag(e_i(“’l‘:"'f1 ®» 0, e_i(w2t+f2(t))), under the rotating wave approximation we reach

2 2

& 0
2
A (S41)
% €Em?2 (t)
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where a constant term diag{—A, —A, —A) is neglected, and €102y = —%fl(g) (t). Setting again £21/2 = Q/2 = A
and diagonalizing the static part of Eq. (S41), we obtain
et (B Hemalt) —€mi(Bema(t) Em1(t)+ema(t)
. (z;+ ; (zj 1(5+3 Q(t) 1(?’:)+2 Q(t)
_ — i1 (B4ems €t (B +Emo —€m1 () +ema
Hy = s . % . (S42)
€1 () €malt) —em1 (OFema(t) A | Em1(EHema(®)
3+/2 /6 3

To reach the target Hamiltonian, Eq. (S39), we set the modulation to be

2 4
€m1 (1) = —44/3J sin(2A¢) cos (wmt + g) + 6+/2J sin(3AL) cos(wmt),  emaz(t) = 2+/6J sin(At) cos (wmt + g)

(S43)
Under the rotating frame defined by Us = diag(e=%24%,0, €¥2?), we finally get the same Hamiltonian as in Eq. (S39).
Note that here we also use the similar rotating wave approximation.

B. Symmetry protected selection rules

(a) ; Eigenvalues (b) Values of m,
A 20 m,
05} Y] | - m;
. - A5 15 m,|.
£
3 = )
= g 1 \
05
05F 4 ‘
o] ! -
| N N . . \ .
0 2 4 6 8 0 2 4 6 8
2Jfw 2Jiw
m m

FIG. 813. Floquet eigenenergies and 7. (a) Floquet eigenenergies A»%. Note that X is defined in the range (—tm/2,em /2]
and A' < A% < A% (b) The values of m, 5 3 corresponding to the rotation symmetry. Floquet simulations in this figure are
implemented under the condition wy, = (27)0.3MHz.

The symmetry associated with the Hamiltonian Hy in Eq. (539} is a 3-fold rotation symmetry

H=

o = O

01
oo, (S44)
10

which simply gives RH; (¢ + T/B)}%T = H1(¥). Such a symmetry gives rise to a relation among eigenstates, |$#(¢t)) =
TTLR)R‘(I)“@+T/3)> = ei%mﬁ/gﬁ@“(tJrT/S)) with ¢ € {1,2,3} and ne, € {0,1,2} [15]. The values of 7T',S,R) =
e2m./3 depend on the driving parameter J (also on how we define the bands). In Figs. S13(b), we simulate and plot
the three values of my 5 5 as a function of 2J/w,, where my 5 switch with each other when their eigenvalues cross the
degeneracy point.

Now we derive the selection rules by evaluating the value of the dynamical dipole matrix element,

1 T )
1% () i e v — W, T
s T/(; (B V] (2))e dt

T

/3 ) i ox 2
_ % f ((I)“(t)‘V‘CI)V(t»E_znwmtdt % |14+ WéR)WgR)*e—z%naV + (W,&R)W;SR)*E_z%nav) :| 3 (845)
0



19

(a) Exact simulation ) Floquet simulation {c) Experiment simulation
T T T T T T T T T T T T T T T 0.2
6 —  6F - 6
4 4 4
1 0.1
2 3 3 3 '
2 21 2
_ . 2 005
1 — 1 vl 1 ' =
0 0 : 0 —
1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 5
2w, 2w, 2w,

FIG. S14.  Simulation of spDSs and spDBs in a 3-level system. The initial state is prepared to (1/v/3){(|e1) + |ea} + |es))
where |1} = (1/v3)[1,1,1]7, les) = (1/v6)[—2,1,1]7, |es} = (1/v/2)[0,1, —1]7 are three eigenstates of ¥, such that evolution
mode involves all bands. Driving parameters w., = (2n)0.3MHz, and 2J/w,, is swept from 0 to 6. The intensity plot is the
Fourier spectrum of simulated Rabi oscillations under different 2.J/w..,. (a) Exact simulation. The time-dependent weighted
Rabi population P(#) is simulated from ¢ = 0 to ¢ = 40us with 5001 sampling points. Hamiltonian in Eq. (S39) is used to
calculate the exact evolution. (b) Floquet simulation. The Floquet matrix is truncated to a 300 blocks by 300 blocks, the
evolution time is swept from ¢ = 0 to ¢ = 40us with 5001 sampling points. (¢) Experiment simulation. Hamiltonian in the first
rotating frame in Eq. (336) is used where (1 = {3 = 2A = (27)30 MHz is used. The time-dependent weighted Rabi population
P(%) is simulated from ¢ = 0 to ¢ = 40us with 160001 sampling points to achieve high precision.

where the value of o is given by the relation RVR! = ayV. Since v, Wff,‘q) and W;(,R) can only take values from
{ei%,ei%, 1} due to their 3-fold rotational symmetry, the band vanishing condition is that gt —m—n) =+ 1,
which is validated in the simulation shown in the main text as well ag in supplementary Fig. S14.

In this work, we evaluate the observation cperator

0
V=11
1

—_ O =

1
1, (546)
0

which gives o = 1. This chservation operator can be rewritten in its eigen-bagis as V = 2|e1} {e1| —|e2) {ez] —|es) {es]
where |er) = (1/v/3)[1,1,1]7, |ez) = (1/4/6)[=2,1,1]F, ez} = (1/v/2)[0,1,—1]F. Thus, the weighted Rabi signal is
defined as P(t) = (1/4) 2P,y {(t) — Ple,y(t) — By (). The Fourier spectrum of this signal presenting the spDSs and
spDBs is shown in both the main text and in Fig. S14.

We notice that due to the relation Az = —A; as shown in Fig. S13(a), the sideband degenerate conditions wénz) = wgnl)

and wg?g) = wgng) are always satisfied. Due to the equality ﬂ'gR)?TgR)* =: ’JTER)TT%R)* as validated in Fig. S13(b), the

selection rules for spDSs are the same for degenerate bands. In the main text plot, we only label each band with one
frequency to avoid confusion. We note that the interference of these degenerate bands cannot be clearly observed
under the initial state we choose in the simulation, [T(0)) = (e} + |ea) + |ez))/+/3, due to [c**c®| # |¢H*c?|.

To further mimic a practical experiment, we perform the exact simulation in the first rotating frame [Eq. (336)],
where fast oscillating terms at harmonics of frequency A are not neglected as in Eq. (539). We take the parameters
W = (2m)0.3 MHz, A = Q;/2 = Q/2 = (27)15 MHz, and show the result in Fig. S14(c). In comparison to both
exact and Floguet simulations in Figs. S14(a,b), some protected spDSs or sp[}Bs start to appear at larger J when
the rotating wave approximation starts to break down.



20
VI. EXPERIMENTAL IMPERFECTIONS

In the comparison between the experimental data in Fig. 83 and exact simulations in Fig. S84, we find that some
unexpected centerbands are observed experimentally, which are forbidden by the selection rules. Since we are using a
qubit ensemble with 10% qubits being addressed simultaneously, the dominant noise comes from field inhomogeneities
ag discussed in detail in Ref. [14]. One possible reason for these unexpected bands is that the inhomogeneities
introduce a detuning term (#/2)o, in the Hamiltonian #j, which breaks both parity and particle-hole symmetries.
In PFig. S15, we simulate this effect assuming a normal distribution of the detuning term & ~ A(Q, (2x)0.15MHz),
and the simulation shows the appearance of the unexpected centerbands and also sidebands. Since the centerband is
highly robust against experimental noise and other imperfections as studied in Ref. [14], the unexpected centerbands
are more prominent than the sidebands.

A second experimental imperfection arises from the coupling to the N nuclear spin (m; = 0,+1) with hyperfine
coupling constant 4 = (27)2.16MHz. Under the experimental conditions, where the magnetic field iz 239G, only
~ T0% of the NV spin is polarized in the hyperfine level m; = +1 (which is the state we assume in this work), and
there are still 30% NV spins with detunings 4 = (27)2.16MHz, 24 = (27)4.32MHz. These static detunings break the
same dynamical symmetries and could also induce the unexpected bands.

A third experimental imperfection is due to the nonlinearity of the microwave amplifier. In the supplemental
materials of Ref. [1], we characterize the nonlinearity of the microwave amplifier in the same experimental setup and
show that such nonlinearity may induce higher harmonics which affect the engineered Hamiltonian.

A fourth experimental imperfection arises from the fact that the microwave field also has a longitudinal component
which gives rise to an additional o, term in the lab frame Hamiltonian which breaks the aforementioned symmetries.

Finally, the Hamiltonian H; was derived under the rotating wave approximation. For strong driving, counter-
rotating terms may also induce symmetry breaking, as validated by the comparison in Fig. 814, where the simulation
performed using the Hamiltonian in the first rotating frame in Fig. S14(c) causes symmetry breaking, while the
gimulation with the Hamiltonian in the second rotating frame {(where the RWA has been applied) in Fig. $14({a) and
(b) does not show any symmetry breaking.

V=g, V=g V=g
a % b c z
@ . : ; o), ; s ), : . : ; 05
=0 §=0 @=0
5 . 5 1 5 . 048
£ £ =]
aaf R s 1
0.35
2= B 2 b 2 1
e : 0.3
0 B ]| L L L 0 1 L 1 L 0 L ] e L ==
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
H0.25
@ . : : (e} ¢ : : U ‘ : :
p=m/2 P=n/2 $=n/2 0.2
6 b 6 b 6 b
015
£ £ £
St { et 1 faf 1
= = = 8l
2r B S b 2r 1
q0.05
0 1 L 1 L 0 1 L 1 L 0 L 1 L i
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0
2e fw 2e fw Ze fw

FIG. 515, Simulation of symmetry breaking due to inhomogeneities. Parameters are the same as in Fig. 54 except for assuming
a Normal distribution of the detuning 6 ~ A (0, = (27)0.15MHz) in Hamiltonian H; = (6/2)a,+(/2)or +er sinlwnt + ¢)o,.
To simplify the simulation, we sample 51 points from é = —2¢ to é = 20 and calculate their average Rabi signals.

Even if these experimental imperfections might be obfuscating the results, there are several strategles to separate
their effects from the physics of interest.

1. As done In our experiments, one can exploit the modulated driving technique to engineer any desired symmetry
breaking Hamiltonian. Then, by comparing the band amplitudes with and without symmetry breaking, one can
deduce the bands that are protected by the symmetries. This strategy can be further used to study different
types of symmetry breakings, e.g., the inhomogeneities-induce symmetry breaking by adding a static ¢, term,



21

the symmetry breaking induced by electronics imperfections such as power saturation through higher harmonic
driving terms. Since different symmetry breakings might induce different features in the Rabi spectra, they
can also be utilized to characterize the imperfections of any quantum devices, especially in combination with
simulation.

2. The modulated driving technique can be implemented by many different schemes that display different imperfec-
tions. For example, amplitude modulation suffers more from power saturation due to large amplitude variation,
while the phase modulation is more affected by phase noise due to limited time resclution of arbitrary waveform
generators. Finally, one could add another input source to apply the ¢, driving in the lab frame without any
need for modulation, which potentially has better performance than modulation methods. By comparing results
using different techniques one can extract the interesting physics from effects due to imperfection and further
pinpoint the best method for a given experimental condition.

VII. EXPERIMENTAL SETUP

In Fig. 816, we show a simplified schematic of our experimental setup. An IQ mixer mixes a low frequency signal
(~ 100 MHz) generated by an arbitrary waveform generator (AWG) with a high frequency signal (~ 2.1 GHz)
generated by a signal generator, to apply the quantum control. The phase-modulated CCD is implemented through
MATLAB coding of the AWG. The mixed microwave signal is further delivered to the diamond through a loop structure
on a PCB board. The fluorescence signal is collected by three photodiodes, which connect to a data acquisition card.
The laser path is controlled by an acousto-optic modulator (AOM). A pulse blaster (PulseBlasterESR-PRO 500) is
used to apply synchronized gates to electronics and optics. We apply an external magnetic field 239 G to the sample.
The field strength is chosen as a compromise between achieving efficient polarization of the nitrogen nuclear spin and
reducing field inhomogeneities on the spin ensemble.

Experimental Setup

Arbitrary waveform generator
> WX 1284C
(~100MHz)
: MW amplifier
Mixer (1Q) ZHL-16W-43+
RF Signal Generator
SynthNV
(~2GHz)
Magnet 9
PCB
DAQ Fluorescence
Electronics control PCL-6281 Unused port
)
Data
532nm Laser AOM phlagnet 2

Sprout

FIG. S16. Simplified schematic of the experimental setup.
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