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Abstract

The V(D)J recombination process rearranges the variable (V), diversity (D), and joining (J) genes in
the immunoglobulin loci to generate antibody repertoires. Annotation of these loci across various
species and predicting the V, D, and J genes (IG genes) is critical for studies of the adaptive immune
system. However, since the standard gene finding algorithms are not suitable for predicting IG genes,
they have been semi-manually annotated in very few species. We developed the IGDetective algorithm
for predicting IG genes and applied it to species with the assembled IG loci. IGDetective generated the
first large collection of IG genes across many species and enabled their evolutionary analysis, including
the analysis of the “bat IG diversity” hypothesis. This analysis revealed extremely conserved V genes
in evolutionary distant species indicating that these genes may be subjected to the same selective
pressure, e.g., pressure driven by common pathogens. IGDetective also revealed extremely diverged V
genes and a new family of evolutionary conserved V genes in bats with unusual non-canonical
cysteines. Moreover, in difference from all other previously reported antibodies, these cysteines are
located within complementarity-determining regions. Since cysteines form disulfide bonds, we
hypothesize that these cysteine-rich V genes might generate antibodies with non-canonical

conformations and could potentially form a unique part of the immune repertoire in bats. We also
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analyzed the diversity landscape of the recombination signal sequences and revealed their features that

trigger the high/low usage of the IG genes.

Introduction

Antibodies (or immunoglobulins) are the key components of the immune system of jawed vertebrates
that provide adaptive immune response by recognizing and neutralizing antigens. Antibodies are not
encoded in the germline genome but rather result from somatic VDJ recombinations (Tonegawa, 1983).
This process affects an immunoglobulin (IG) loci containing the families of the variable (V), diversity
(D), and joining (J) genes (referred to as /G genes) by selecting one V, one D gene, and one J gene, and
concatenating them together to generate one of the antibody chains. Antibodies are further diversified

by somatic hypermutations (Dudley et al. 2005).

The diversity of the IG loci is driven by the variety of antigens: different species encounter different
antigens and develop their unique ways to fight them through mutations in IG genes. As a result, the IG
loci have rapidly evolved independently in different species and resulted in a diverse collection of IG
genes that remain largely unknown since both sequencing highly-repetitive 1G loci and predicting IG

genes in these loci are challenging tasks (Das et al., 2012, Pettinello and Dooley, 2014).

Mammalian genomes have three IG loci: heavy chain (IGH), kappa light chain (IGK), and lambda light
chain (IGL) as well as four T-cell antigen receptor (TCR) loci (TRA, TRB, TRG, and TRD). In this
work, we mainly focus on the IGH locus. The V, D, and J genes in the IGH locus (and the fragments of

the IGH locus containing these genes) are also referred to as IGHV, IGHD, and IGHJ, respectively.

Diversity of immunoglobulin genes. Studies of adaptive immune responses across various vertebrate
species open new therapeutics opportunities (Muyldermans and Smider, 2016). For example, studies of
single-chain camelid antibodies led to the development of nanobodies that are able to diagnose cancer
(Rashidian et al., 2015; Keyaerts et al., 2016), while studies of ultralong cow antibodies revealed that

they recognize various HIV strains (Sok et al., 2017). Understanding the diversity of the adaptive
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immune systems across various vertebrates can also contribute to analyzing the spread of newly
emerged zoonotic pathogens. It is particularly important for bat species that possess a unique immune
system capable of neutralizing viruses that are often lethal to other mammals, such as rabies, Ebola,

SARS-CoV, MERS-CoV, and SARS-CoV-2 (Teeling et al., 2018).

Schountz et al., 2017 formulated a “bat IG diversity” hypothesis that argues that, since bats have a
greater combinatorial diversity of IG genes than other mammals, their large naive antibody repertoires
do not need substantial affinity maturation to successfully neutralize antigens. Indeed, while the human
IGH locus has only 55 functional V genes, the little brown bat is estimated to have at least 200 V genes
(Bratsch et al., 2011), suggesting that bats may be better equipped for clonal selection of B cells
responding to viral antigens. However, the IG genes in bats remain poorly characterized, moreover, the
only support for the “bat IG diversity” hypothesis comes from a probabilistic model (Bratsch et al.,

2011) rather than an annotated IG loci in a well-assembled bat genome.

Annotation of immunoglobulin genes. Annotation of the IG loci (i.e., predicting IG genes) is a
prerequisite for most follow-up immunogenomics studies. Since assembly and annotation of the IG loci
for novel species is complicated by their highly-repetitive structure (Matsuda et al., 1998; Watson et
al., 2013; Rodriguez et al., 2020), the sequences of the IG loci are only known for a few species.
However, recent advancements in long-read sequencing enabled the first contiguous assemblies of
highly-repetitive genomic regions and the Vertebrate Genome Project (VGP) now aims to generate
high-quality reference genomes for all vertebrate species (Rhie et al., 2020). So far, the VGP has

generated well-assembled genomes of nearly 150 vertebrate species.

Although many IG loci have been assembled in the last two years, their automated annotation remains
an open problem. Previous studies of IG genes combined a time-consuming experimental approach with
semi-manual computational analysis, such as in the studies of the platypus (Gambon-Deza et al., 2009),
the cow (Ma et al., 2016), and the ferret (Wong et al., 2020). These studies used the human IG genes
for a similarity-based detection of IG genes in the novel species and may have missed diverged 1G

genes. For example, since most (if not all) V genes in mammalian species were predicted based on their
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similarities with human V and J genes, it remains unclear whether there exist still unknown families of

V genes that are highly diverged from the human IG genes.

Annotation of recombination signal sequences. De novo prediction of IG genes relies on identifying
conserved recombination signal sequences (RSSs) that flank IG genes and enable the VDJ
recombination. Since short RSSs have many spurious RSS-like occurrences in the genome (cryptic
RSSs), their prediction and downstream IG gene annotation is a challenging problem. It is further
complicated by the fact that some cryptic RSSs are implicated in unusual genomic rearrangements
outside the IG and TCR loci (Messier et al., 2003) and sometimes play an important role in antibody
generation. For example, cryptic RSSs flanking the human LA/R1 gene participate in the off-target VDJ
recombination and generates a new type of antibodies (where LAIRI represents an additional domain
of an unusual VDIJ region) that broadly neutralize Plasmodium parasites (Tan et al., 2016). Although
Teng et al., 2016 analyzed the impact of off-target VDJ recombinations on lymphocyte genomes, no

attempts to analyze the landscape of cryptic RSSs within the IG loci have been made yet.

The problem of identifying RSSs in a genomic sequence was considered by Merelli et al., 2010 (RSSsite
tool) and Olivieri et al., 2013 (VgeneExtractor tool). VgeneExtractor further used its RSS predictions
for detecting V genes in various species. However, this method does not account for the variations in
the RSSs within species and does not report D and J genes. Safonova and Pevzner, 2020 recently
benchmarked RSSsite and demonstrated that it results in a high false-positive rate. Even though they
developed a more accurate SEARCH-D algorithm for detecting RSSs of D genes, the problem of
detecting RSSs for all types of IG genes and the follow-up evolutionary analysis of IG genes across

multiple species remains open.

Role of cysteines in immunoglobulins. Cysteines are structurally important amino acids that form
disulfide bonds in immunoglobulins (Frangione et al., 1969). Conserved cysteines of human
immunoglobulins are referred to as canonical cysteines (Tonegawa, 1983). Non-canonical cysteines are
common in some biomedically important species, such as llamas and cows (de Los Rios, 2015;

Prabakaran and Chowdhury, 2020). The current consensus is that the additional disulfide bonds in
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immunoglobulins increase their stability and enrich the complexity of antigen-binding site topology
(Wu et al., 2012). Since cysteine patterns represent a structurally important feature of antibodies, we

analyzed non-canonical cysteines in the newly identified IG genes.

IGDetective tool. We describe the IGDetective tool for predicting IG genes, apply it for annotating IG
loci in the recently assembled mammalian genomes, generate the largest set of IG genes to date, and
reveal surprising diversity of IG genes across multiple species, such as a new family of unusual cysteine-

rich V genes in bats.

Since all previous attempts to annotate V (J) genes in newly sequenced species relied on their
similarities with known human IG genes, it remains unclear whether there exist V (J) genes that are not
similar to the human ones. In addition to a similarity-based search for IG genes (IterativelGDetective
mode), IGDetective has a BlindlGDetective mode for annotating IG genes in the absence of any prior
knowledge about the sequences of IG genes in other species. We benchmark BlindIGDetective on well-
annotated human, mouse, and cow genomes, demonstrate that it automatically derives nearly all known
IG genes in these species in a blind fashion, apply it to newly-sequenced genomes to reveal highly-
diverged IG genes, and reveal new families of highly diverged V genes in bats that evade the similarity-

based approach to predicting IG genes.

Results

From predicting RSSs to predicting IG genes. Sequences of human IG genes were inferred as the
result of painstaking manual analysis at the dawn of the DNA sequencing era (Li et al., 2002).
Consequently, sequences of all non-human IG genes were inferred based on similarities with human IG
genes (Sitnikova and Su, 1998). IterativelGDetective automates this approach and iteratively extends it
by predicting more and more distant IG genes at each iteration. In contrast, BlindIGDetective is

designed to predict IG genes even if they share no similarities with currently known IG genes.



122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Given a newly assembled genome, both IterativelGDetective and BlindIGDetective start from
predicting RSSs in this genome. Each RSS consists of a conserved heptamer followed by a non-
conserved spacer (12 nt long in D genes and 23 nt long in V and J genes in the IGH locus), and a
conserved nonamer (Figure 1A). Each V (J) gene has an RSS at the 3’ (5°) end and each D gene is
flanked by RSSs on both ends. We henceforth refer to the 3° (5”) flanking signal of a V (J) gene as

RSSV (RSSJ) and the 5’ (3°) flanking signals of a D gene as RSSDei (RSSDyigh).

Since RSS motifs are highly conserved across all mammals, the human RSS motif (Figure 1A) can be
used for predicting RSS motifs in other mammalian species. IGDetective forms a motif profile from all
known RSSs in a reference genome and uses this profile to evaluate the likelihood ratio of an arbitrary
string from a target genome to decide whether this string represents a putative RSS (see Methods). For
each genomic position, it computes the likelihood ratio that there is an RSS flanking this position and

classifies a position as a candidate RSS if this ratio exceeds a likelihood threshold (see Methods).

IterativelGDetective pipeline. IterativelGDetective predicts IG genes in the farget genome by
leveraging the knowledge of IG genes in well-studied reference genomes (human, mouse, and cow).
Although the highly-repetitive IGH loci in a few other genomes have been semi-manually assembled
and annotated (e.g., IG loci in pig (Eguchi-Ogawa et al. 2010), goat (Du et al. 2018), and rabbit (Gertz
et al. 2013)), it remains unclear how accurate these short-read assemblies are since it is difficult to
assemble the IG loci even from long reads (Bankevich and Pevzner, 2020), let alone from short reads.
In the absence of accurate IG annotation tools, it is also unclear what are the false positive/false negative

rates of the manually predicted IG genes in these assemblies.

Figure 1A illustrates the IterativelGDetective pipeline with emphasis on detecting V genes. It starts by
identifying a contig (or multiple contigs) containing the IGH locus in the target species and finding
candidate RSSs in this locus based on their similarity to the known RSSs in the reference species.
Afterward, it analyzes the genomic region flanked by the found RSSs to predict the IG genes
themselves. In the case of V and J genes (that are longer and more conserved than D genes), it classifies

a region preceding/following the identified RSS as a novel V/J gene if its similarity with a known V/J
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gene exceeds a similarity threshold determined by percent identity and shared k-mers (See
Supplemental Method “Identification of candidate V and J genes” for parameters specifying similarity

thresholds).

Iterativel GDetective extends the nomn-iterative mode described above (that ends with the similarity-
based identification of V/J genes), by the iterative mode for identifying novel V/J genes whose
similarity with known V/J genes does not exceed the similarity threshold. The iterative mode extends
the set of known V/J genes by the newly identified V/J genes and uses this extended set to iteratively

repeat the non-iterative mode until no novel V/J genes are found (Figure 1A).

The challenge of identifying highly-divergent IG genes. Although IterativelGDetective identifies
many candidate IG genes in target species, it is not capable of detecting distant IG genes that
significantly deviate from all canonical human IG genes, e.g., IG genes from a distant family that has
not been discovered yet. Reducing the similarity threshold in IterativelGDetective increases its false

positive rate and does not necessarily lead to identifying distant IG genes.

We hypothesize that, similarly to IG genes in known families, highly-diverged IG genes from a novel
family should (i) display some degree of pairwise similarity to all other IG genes from the same family,
and (ii) be located within a relatively short region of the genome. Based on these two “IG family”
criteria, BlindIGDetective identifies novel IG genes which do not resemble known human IG genes by

constructing the similarity graph described below.

[I3R]

Similarity graph. Given a position s in a genome, a parameter direction (downstream “-” or upstream

“+”) and an integer segment-length (L), we define the s-fragment as the segment of length L either
downstream or upstream from this position depending on the parameter direction. We define the coding

length of an s-fragment as the length of the longest out of three open reading frames ending at position

9% 9

s (in the case direction="-") or starting at position s (in the case direction="+"). For simplicity, below

9% 9

we assume that direction=
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Given a set S of positions in a genome, parameters direction, and parameter segment-length, we define
an edge-weighted similarity graph (referred to as the S-graph) as follows. Each vertex in this graph
corresponds to a position in the set S and each edge connects similar s-fragments, where similarity is
established based on percent identity between s-fragments. All isolated vertices are removed from the
similarity graph. The edge-weight of an edge (s,s’) is defined as the percent identity between the s-
fragment and the s -fragment. Given a parameter span (default value 0.5 Mb), vertices in the same
connected component of the similarity graph are classified as co-located if they are separated by less

than span nucleotides in the genome.

Given a vertex v in a connected component, its c/ump is defined as the set of all vertices co-located with
v after removing all vertices whose percent identity with any other single vertex in the clump does not
exceed the similarity threshold (default value 70%). A vertex with a maximum-size clump in a given
connected component is called the center of this component (ties are resolved randomly). Two clumps
are linked if the distance between their center vertices does not exceed a distance threshold (default
value 1 Mbp). BlindIGDetective constructs clusters using single linkage clustering of linked clumps
and analyzes the constructed large clusters (of size larger than the default value smallSize=3) as putative
IG genes within a single IG locus. Clusters are further analyzed as candidates for new IG families as

they satisfy the “IG family” criteria specified above.

BlindIGDetective pipeline. Given a position-set S, parameter direction, and parameter segment-length,
BlindIGDetective constructs the S-graph (Figure 1B). Below, we limit attention to the case when S is

e

the set of starting positions of RSSVs predicted by IGDetective, direction= and segment-length=
350 bp. Since this setting models the search for V genes, we refer to the resulting S-graph (s-fragments)
as the V-graph (v-fragments). The default parameters direction and segment-length will need to be
modified for D-graphs and J-graphs since they depend on the position of the gene (5’ or 3* end) with
respect to the RSS and the typical length of the gene. Since IG genes in known genomes are located

within relatively short regions (e.g., human IGHV genes are located within 850 kbp long IGHV locus),

a clump of co-located vertices within a connected component of the V-graph may reveal a family of V
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genes in a newly sequenced genome. To generate such clumps for each connected component,
BlindIGDetective forms a clump of the center vertex in this component, removes vertices of the
constructed clump from this connected component, and iterates until the component has no vertices left.

It further combines clumps into clusters as described above.

We benchmark BlindIGDetective on the entire human genome and demonstrate that it reveals the vast
majority of human V (J) genes, for example, it finds 52 out of 57 known human IGHV genes without
any prior information about their sequences, while limiting possible false positives (with respect to
known human V genes) to 7. Some of these false positives may represent novel candidate V genes in
the human genome (see section “BlindIGDetective reveals novel candidate V genes in the human
genome”). Although BlindIGDetective missed a small number (5) of 57 human IGHV genes with
“weak” RSSs, these genes can be easily identified by slightly reducing the likelihood threshold with
follow-up similarity search against 52 identified IGHVs. In addition to finding IGHV genes,
BlindIGDetective finds V genes from other IG and TR loci and even orphan V genes on Chromosomes
15 and 16 (Supplemental Table S1) that resulted from segmental duplications of the human IGH locus
(Nagaoka et al., 1994). We thus argue that applying this approach to any mammalian species would
reveal most V genes in this species, including highly-diverged V genes missed by IterativelGDetective

as well as unusual genes that are affected by off-target VDJ recombinations.

[FIGURE 1]

Figure 1. IterativelGDetective (A) and BlindIGDetective (B) pipelines. (A) IterativelGDetective iteratively
extends the set of identified IGHV genes. “Known V genes” box represents known V genes in a reference genome.
“RSSV motif” box represents a profile formed by the reference RSSVs for human V genes. (A1) After identifying
a contig containing the IGH locus in the target genome, IterativelGDetective identifies candidate RSSs for V
genes in this contig based on similarities with the human RSS motif. A region preceding a true positive RSS
represents a V gene while a region preceding a false positive RSS does not. (A2) A region preceding a candidate
RSS is classified as a human-like V gene if its similarity with a known human V gene exceeds a similarity

threshold. (A3) Target-like V genes in the target genome are identified based on similarities with human-like V
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genes detected in step (A2). (A3*) Target-like V genes are iteratively identified based on previously detected
target-like V genes, until no new genes are identified. (B) BlindIGDetective constructs the V-graph, analyzes
connected components in this graph, finds clumps of co-localized fragments in each connected component of this
graph, and combines the found clumps into clusters that represent candidate families of V genes. (B1) Candidate
RSSVs in the entire target genome are identified based on similarities with the human RSSV motif for V genes
formed by the reference human RSSVs (represented by the “RSSV motif” box). (B2) The V-graph is constructed
on the vertex-set of all RSSVs. Two vertices (RSSVs) in the V-graph are connected by an edge if fragments
preceding these RSSVs are similar. True (false) positive RSSVs form large (small) connected components in the
V-graph. (B3) Each connected component in the V-graph is partitioned into clumps of co-located genes. (B4)
Non-trivial clumps (containing multiple RSSs from the same connected component and clustered within a short
region of the genome) represent putative V genes within a putative IG loci. Note that a vertex is not included in a
clump if it is not similar to all other vertices in this clump (like light green vertex in the rightmost clump). At the

final step (not shown), BlindIGDetective combines the identified clumps into clusters to reveal IG genes.

Datasets. We extracted known IG genes from the IMGT database (Lefranc et al., 2015) for the three
reference genomes and mapped them to the IGH locus of the same species as described in
Supplemental Method “Annotating IG genes in reference genomes”, Supplemental Table S2.
Table 1 presents information about the mapped IG genes in the reference species that we refer to as
canonical 1G genes. We also generated a combined set of 1G genes by combining human, mouse, and
cow IG genes, thus adding one more “reference” to the human, mouse, and cow references. We refer to

the profile of all RSSs in this set (for each type of IG gene) as the combined RSS and denote it as RSS*.

We selected twenty target mammalian species for prediction of IG genes: three great ape species
(Kronenberg et al., 2018) and seventeen species assembled by the VGP consortium (Rhie et al., 2020)
that represent a wide range of biological orders (Figure 2A, Supplemental Table S3). For each target
species, we identified contigs containing fragments of the IGH loci (/GH-contigs) as described in the
Supplemental Method “Identifying putative IGH-contigs in a genome assembly”, Supplemental

Table S4.
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Benchmarking IterativelGDetective. We benchmark IterativelGDetective on the IG loci of the
human, mouse, and cow genomes by assuming that one of them represents a reference genome and one
of the remaining ones represents a target genome. Since the IG genes and RSSs in these species are
known, we evaluate IterativelGDetective based on (i) maximizing the number of the known RSSs and
IG genes predicted by IterativelGDetective and (ii) minimizing the number of false RSSs and IG genes
predicted by IGDetective. To this end, we attempt to maximize the True Positive Rate (TPR) while

minimizing the False Discovery Rate (FDR).

We tabulated heptamer and nonamer likelihood thresholds (see Methods) (Supplemental Table S5)
and visualized the percentage of RSSs and heptamers/nonamers passing the human reference Ly
likelihood thresholds (Supplemental Figure S1). The vast majority of the heptamers and nonamers in

the genome have very low likelihood ratios.

Given the identified likelihood thresholds for each reference (human, mouse, cow, or combined), we
first launched IterativelGDetective with these thresholds on the same species by considering them as
target species. We then tabulated the number of detected candidate signals in the human IGH locus (in
four cases that represent identifications of putative human RSSs using RSS profiles in human, cow,
mouse and combined) and computed true positives (candidate signals representing canonical signals),
false positives (candidate signals that are not canonical signals), and false negatives (canonical signals
that are not candidate signals) in Supplemental Table S6. Afterward, we tabulated the RSS detection
statistics of IGDetective on all combinations of four references and four targets in Supplemental
Method “Extended benchmarking of IterativelGDetective”, Supplemental Table S7. Finally, we
extracted the V, D, and J genes from the candidate RSSs determined by launching IterativelGDetective
in non-iterative mode (see section “Identification of candidate IG genes” in Methods) with the RSS
profile based on the combined reference. Table 1 provides information about the results of

IterativelGDetective on the reference species and using the combined RSS* profile.

V genes
species # of canonical genes | # of predicted genes | # of true positive genes | FDR | TPR | F1
human 70 57 50 0.12 1 0.71 | 0.78

11
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COW 36 23 21 0.08 | 0.58 | 0.71
mouse 154 97 92 0.05 [ 0.59 | 0.73
combined 260 177 162 0.08 |1 0.62 | 0.74
D genes
species # of canonical genes | # of predicted genes | # of true positive genes | FDR | TPR | F1
human 25 17 15 0.11 | 0.6 | 0.71
COW 14 12 9 0.30 | 0.64 | 0.66
mouse 15 9 8 0.11 ] 0.53 ] 0.66
combined 54 38 32 0.17 1 0.59 | 0.68
J genes
species # of canonical genes | # of predicted genes | # of true positive genes | FDR | TPR | F1
human 6 6 5 0.16 | 0.83 | 0.83
cow 12 4 4 0 0.33 ] 0.5
mouse 4 2 2 0 0.5 | 0.66
combined 22 12 11 0.08 | 0.5 | 0.64

Table 1. Information about IG genes predicted by IterativelGDetective based on the combined RSS* profile.
Rows refer to the species in which IterativelGDetective predicts IG genes based on the RSS* profile. “FDR”,
“TPR” and “F1” columns represent false discovery rate, true positive rate, and F1 score, respectively (see
Methods). Since the same candidate D gene could potentially be reported twice on both the forward and reverse
strands, such a D gene is considered a true positive if either reported D gene’s start and end index matches a
reference gene’s start and end index. Some of the true positive predictions represent pseudogenes that either have
an in-frame stop codon or do not participate in VDJ recombination. We classify a detected gene as a true positive
if (i) its end index is the same as the corresponding reference gene’s end index, and (ii) its start index is within 3
nucleotides towards the 5’ direction of the corresponding reference gene’s start index. This ensures that the gene

is predicted with an offset of at most +1 amino acid.

Detecting IG genes in target genomes. We applied IterativelGDetective using the combined RSS*
profile to IGH-contigs of all target species (Supplemental Method “Analysis of RSSs in reference
and target species”, Supplemental Table S8). Since the identified IGH-contigs are usually longer
than the IGH loci, the predicted RSSs may include many false positives. For example, the number of
predicted RSSV candidates for a single species varies from 69 to 7027 with the median value 995
(Supplemental Table S3). However, further similarity-based filtering (described in Supplemental
Method “Identification of candidate V and J genes”) of regions flanking these candidate RSSVs greatly
reduces the number of false positive predictions, resulting in 3—-64 V genes per species (the median

value is 34) (Supplemental Table S3). In total, IterativelGDetective found 1021 candidate V genes

12
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across twenty target species, including 50 target-like V genes (Supplemental Table S9). 34 out of 50
target-like V genes share at least 80% percent identity with other V genes identified at the previous
iteration (Supplemental Table S9). After filtering candidates with stop codons in the open reading

frame, the number of candidate V genes was reduced to 581.

The number of predicted RSSJs varies from 54 to 3911 and from 4 to 21 (with the median value 8) after
similarity-based filtering, resulting in a total of 174 candidate J genes. After applying the additional
filters based on the conservation of the tryptophan-encoding TGG codon in the candidate J genes
(Supplemental Method “Comparative analysis of IGHJ gene candidates”, Supplemental Figure

S2), the number of candidate J genes was reduced to 60.

The number of predicted RSSDs varies from 1 to 17 with a median value of 4. IterativelGDetective
identified a total of 137 candidate D genes which were extracted as short regions flanked by the
predicted RSSDs (without any filtering). After redefining the boundaries (see Supplemental Method
“Computing boundaries of the IGH loci using predicted IG genes”) of the IGH loci, we discarded
45 candidate D genes located outside these loci (to minimize the number of false positive D genes),

resulting in a set of 92 candidate D genes.

For each target species, we also found positions of constant (C) immunoglobulin genes in its assembly
by aligning highly-conserved human IGHC genes using Bowtie2 (Langmead and Salzberg, 2012). The
number of IGHC genes per species varies from 2 to 19 with the median value 7, resulting in 149 IGHC

gene candidates.

The IGH loci widely vary in length across mammalian species. We analyzed the positions of the
candidate V, D, J, and C genes within the assembled genome in order to identify the boundaries of the
IGH loci and their lengths assuming the standard V—D—J—C ordering (see Methods). Long repeats

within the IGHV locus often break its assembly into multiple contigs, with one of the contigs containing
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the first i V genes (referred to as the /GH-start) and another contig (referred to as an /GH-end)
containing all (or some of) the remaining V genes as well as D, J, and C genes (Figure 2B). See

Supplemental Method “Unusual IGH locus in the sloth genome”, Supplemental Figure S3.

The sloth and the spear-nosed bat have the longest IGH loci among analyzed species (6.7 and 4.6 Mbp,
respectively), while aquatic animals (vaquita, blue whale, platypus, sea lion, and dolphin) have the

shortest IGH loci, varying from 311 kbp for the vaquita to 607 kbp for the dolphin.

Our estimate of the length of the platypus IGH locus (457 kbp) is higher than the previous estimate by
Gambon-Deza et al., 2009 (271 kbp). The analysis of the IGH-start contig (containing V genes only)
and IGH-end contig (containing V, D, J and C genes) in platypus revealed an unusual feature. It turned
out that, the IGH-end contig contains the entire IGH locus in platypus, while the IGH-start contig
contains V genes from the TCRu locus, a unique T-cell receptor locus found only in marsupials and
monotremes (Miller, 2010). Since previous studies demonstrated that V genes from this locus are more
similar to immunoglobulin V genes than TCR V genes (Miller, 2010), this finding illustrates that
IGDetective is capable of detecting unusual TCR genes. Nevertheless, to limit analysis to the IGH loci

only, we discarded V genes from the platypus TCRu locus from further analyses.

[FIGURE 2]

Figure 2. Information about the IGH loci in twenty target mammalian species. (A) The phylogenetic tree
formed by twenty target and three reference species. The tree was subsampled from the Tree of Life constructed
in Hedges et al., 2015. Each species is shown by its common name and a VGP identifier specified in the
parenthesis if available. Each species is encoded by a unique color (left vertical color panel) and a color
representing its order (right vertical color panel). The list of orders is shown in the upper left corner. Here and
below visualization was performed using the BioRender and Iroki (Moore et al., 2020) tools. (B) Information
about the IGH loci of twenty target species. Each line corresponds to a target species and shows fragments of the
IGH locus with positions of candidate V (blue), D (orange), J (green), and C (red) genes. For six out of twenty
species, the IGH-end covers less than 80% of the predicted IGH locus length (lynx, blue whale, mastiff bat,

horseshoe bat, chimpanzee, and grey squirrel). We showed both the IGH-start and the IGH-end for these six
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species and only the IGH-end for the remaining species. For a better visualization, all IGH loci are shown as
having the same length that does not reflect their real lengths (the bar plots next to the IGH loci show the predicted
lengths). The map on the right shows the counts of the productive V, D, J, and C genes identified in the IGH locus.
A C gene is classified as productive if its translated regions (defined by the closest human C gene) does not contain
stop codons. Non-zero counts are shown in green. The green triangles indicate partially found and (likely) partially
missing D and J genes in the sloth IGH locus. Although IterativelGDetective did not identify any J genes in two
species (chimpanzee and spear-nosed bat) within the boundaries of the IGH loci, it found a highly conserved
candidate J gene in a short contig in the chimpanzee assembly (denoted as 1* in the map of the right).
IterativelGDetective did not identify any candidate J genes in the spear-nosed bat, presumably because all its

RSSJs did not pass the likelihood threshold.

Comparative analysis reveals highly-similar V genes in evolutionary distant species. We combined
the candidate V genes (referred to simply as V genes) across all target species with known V genes in
reference species and constructed a phylogenetic tree on their amino acid sequences using Clustal
Omega (Sievers et al., 2011). Figure 3A shows the computed tree where leaves (representing V genes)
are colored according to the species they belong to and the order of the species. “Cutting” this tree by a
horizontal line at a height threshold results in subtrees formed by clusters of similar V genes. We
classified a cluster as large if it contains more than 5 V genes and as multi-species (multi-order) if it
includes V genes from multiple species (orders). Since large multi-species clusters are the main focus
of the comparative analysis, we selected the height threshold 1.12 maximizing the number of these
clusters. The resulting 219 clusters include 43 large clusters, 25 large multi-species clusters, and 7 large

multi-order clusters (Supplemental Figure S4).

For each large multi-species cluster formed by V genes gi,...,g, from species si,...,5m, we computed its
gene distance and species distance. The gene distance is computed as the max{GeneDist(g;, g;)} for all
pairs of genes gi,...,g», Where GeneDist(x, y) represents the fraction of non-matching positions in the
alignment between genes x and y. The species distance is computed as max{SpeciesDist(s;, s;)} for all
pairs of species si,..., sm, Where SpeciesDist(x, y) is the distance between species x and y in the tree

shown in Figure 2A. Figure 3B illustrates correlation between species distances and gene distances for
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25 large multi-species clusters (Pearson’s correlation #=0.77, P-value=7.15x107°). Seven multi-order
clusters (referred to as C1-C7) are represented in blue in Figure 3B, and, for all of them but one (cluster
C7 shown as a blue asterisk), the gene distance is either well-estimated or under-estimated by the
regression line. The unusual C7 cluster is formed by V genes from six target species (chimp, gorilla,
orangutan, marmoset, red squirrel, and horseshoe bat) that are similar to human genes IGHV3-30,
IGHV3-30-3, IGHV3-30-5, and IGHV3-33 (Figure 3C). This cluster reveals a surprising conservation
of V genes across distant species, e.g., the amino acid sequence of the gene HS_bat_58 in the horseshoe
bat has even fewer differences (8) with the human V genes in this cluster than some chimpanzee V
genes (9). We thus conjecture that V genes in this cluster are subjected to the same selective pressure,

e.g., driven by common pathogens that are faced by the species in this cluster.

[FIGURE 3]
Figure 3. Comparative analysis of mammalian IGHYV genes. (A) A phylogenetic tree of IGHV genes in twenty
target (581 V genes) and three reference (310 V genes) species. Edges corresponding to clusters C1-C7 described
in (B) are shown in blue. The scale is shown on the left. The upper and lower horizontal bars show colors of
species and their orders, respectively. List of species and their colors are specified below the tree (species from
the same order are shown by a colored vertical bar on the left). (B) The plot on the left shows the species distance
(x-axis) and the gene distance (y-axis) for 25 large multi-species clusters of V genes. Red and blue dots correspond
to single-order and multi-order clusters, respectively. The linear regression line is shown in grey. The Pearson’s
correlation () and P-value (P) are shown on the top of the plot. Each of seven multi-order clusters C1-C7 is
represented as a pie-chart on the right. An inner (outer) wedge in each pie-chart corresponds to a species (an order)
and the wedge size is proportional to the number of V genes it contains. (C) Multiple alignment of 21 V genes
from the cluster C7. Four human V genes from this cluster are shown on the top. Non-human genes are denoted
according to the short names of species, and “HS_bat” refers to the horseshoe bat. A position in a non-human V
gene is shown as “.” if the amino acid at this position matches the corresponding amino acid in one of four human
V genes and by the corresponding amino acid otherwise. Red rectangles show positions of CDR1 and CDR2
according to the IMGT notation. Green bars show positions of two conserved cysteines (one located close to the

start of CDR1 and another located close to the end of the V gene).
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A new family of cysteine-rich IGHYV genes. 254 out of 309 canonical human V genes (82%) listed in
the IMGT database with productive amino acid sequences (including allelic variants) have two
canonical cysteines located at conserved positions (Figure 3C). We classify a V gene as cysteine-rich
if it contains four or more cysteines and analyze cysteine-rich V genes among all V genes shown in
Figure 3A. There are no human cysteine-rich V genes and only 2 (1) mouse (cow) cysteine-rich V
genes. It remains unclear whether the mouse and cow cysteine-rich V genes represent pseudogenes
rather than functional genes, e.g., the cysteine-rich V gene in cow does not contribute to antibody

repertoires (Safonova et al., 2022).

715 out of 891 V genes (80%) from both reference and target species have 2 cysteines and only 61 (7%)
are cysteine-rich. Cysteine-rich V genes are grouped together in the phylogenetic tree (shown in dark
green in Figure 4A) and appear only in 2 out of 25 identified large multi-species clusters, including a
multi-order cluster C4 (Figure 3B) and a single-order cluster that we refer to as C*. Cluster C4 contains
27 V genes from six species: dolphin, blue whale, sloth, horseshoe bat, spear-nosed bat, and mastiff bat
(Figure 4B). Cluster C* consists of 12 V genes from grey and red squirrels (Figure 4B). 25 out of 27

V genes in cluster C4 are cysteine-rich and 11 out of 12 V genes in cluster C* are cysteine-rich.

Figure 4C shows that, in addition to two canonical cysteines at conserved positions, most V genes from
clusters C4 and C* have two other cysteines, also at conserved positions (one cysteine in CDR1 and
another in CDR2). While several antibodies with a single cysteine in either CDR1 or CDR2 were
reported before (Wu et al, 2012; Prabakaran and Chowdhury, 2020), antibodies with cysteines in both
CDRI1 and CDR2 have not been reported yet. Since cysteines form disulfide bonds, we hypothesize that
cysteine-rich V genes might generate unusual antibodies with non-canonical conformations and could

potentially form a unique part of bat immunity against the great variety of viruses they host.

The cysteine-rich cluster C4 includes a sloth V gene (denoted as “sloth 38” in Figure 4C) with the
unusual 6 aa long suffix CVLLCE classified as the beginning of CDR3. The vast majority of known V
genes have the conserved CAR suffix and thus contribute to at most three first amino acids of CDR3s.

Two known exceptions from this rule are the cattle IGHV1-7 gene that contributes to ultralong
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antibodies in combination with ultralong D gene IGHD8-2 (Wang et al., 2013; Safonova et al., 2022)
and the platypus IGHV1-20 gene with unknown functions (Gambon-Deza et al., 2009). We hypothesize
that, similar to the cattle IGHV1-7 gene contributing to generation of ultralong antibodies, both sloth
mChoDid1_38 and platypus IGHV1-20 V genes with long CDR3 prefixes may generate (alone or in
combination with D genes) antibodies with non-canonical structural features. Below we analyze

unusual candidate D genes in these species and perform comparative analysis of all detected D genes.

[FIGURE 4]
Figure 4. Two novel cysteine-rich clusters of mammalian IGHV genes. (A) A phylogenetic tree of IGHV
genes colored according to the number of cysteines in their amino acid sequences. (B) Only 2 out of 25 large
multi-species clusters of V genes contain cysteine-rich V genes. The description of pie plots is provided in the
caption to Figure 3B. The number within the parenthesis next to the species name indicates the number of V
genes from this species. (C) Multiple alignment of genes from two clusters shown in (B). Three non-cysteine-rich
V genes are marked with a grey circle on the left. The gene on top of each cluster is chosen as the sequence of a
V gene with the minimum average distance from other genes in the cluster. Green (purple) bars show positions of
canonical (non-canonical) cysteines. Some proteins contain cysteines (that are shown in purple) outside these
positions. “HS bat”, “M_bat”, and “SN_bat” in the top alignment refer to V genes of the horse-shoe bat, the
mastiff bat, and spear-nosed bat, respectively. “Red _sq” and “grey sq” in the bottom alignment refer to V genes

of the red squirrel and the grey squirrel, respectively.

Comparative analysis of mammalian D genes. IGDetective identified 92 candidate D genes in target
species (Figure 5A). For the comparative analysis, we combined these D gene candidates with 81
known D genes of three reference species (27 human, 31 mouse, and 23 cow D genes), resulting in a
set of 173 D genes. For the sake of simplicity, we refer to both reference and candidate D genes as

simply D genes.

Figure 5B shows that only five D genes are shared among two or more species. Since, in difference
from V and J genes, D genes are short and very diverse, it remains unclear whether there exist specific
features of D genes that are shared among nearly all mammalian species. To reveal such features, we

searched for common substrings in all 173 D genes. We translated each D gene into three reading frames
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and extracted all its 4-mers in the amino acid alphabet. In total, we collected 738 4-mers, with 128 of
them appearing in multiple species. The maximum number of species represented by a single 4-mer is

6.

We constructed the Hamming graph on 128 shared 4-mers by connecting two 4-mers by an edge if they
differ in a single amino acid (Safonova et al., 2015). It turned out that all connected components in this
graph are small (less than 5 vertices) with exception of two components consisting of 43 and 42 4-mers
and covering 68% of all 4-mers appearing in multiple species (Figure 5C). These two components
cover all highly abundant 4-mers (4-mers that are present in 3—6 species). Below we focus on the first
component since the second component represents the same substrings of D genes as the first

component but translated in a different reading frame.

The 4-mers in the first component represents 16 out 23 analyzed species and are mostly formed by
amino acids G, S, and Y. We refer to D genes that encode these 4-mers as G/S/Y-rich D genes. A half
of all possible single-nucleotide mutations of cysteine-encoding codons (TGT and TGC) result in
codons GGT, AGT, TAT, and TCT encoding amino acids G, S, S, and Y, respectively. These three
amino acids are extremely frequent in the longest cattle D gene IGHDS-2 (Figure 5C) where they play
a special cysteine-triggering role in ultralong cattle antibodies: somatic hypermutations create new
cysteines from these amino acids, forming new disulfide bonds, and reshaping the resulting antibody
(Wang et al., 2013). We conjecture that the G/S/Y -rich D genes may play a similar cysteine-triggering

role as the IGHDS-2 gene in cows.

Unusual cysteine-rich D genes in the platypus genome. Platypus and sloth genomes have two V
genes with long non-canonical suffixes that represent the beginnings of CDR3s: the platypus gene
IGHV1-20 with suffix LAAELLYCR and the sloth gene “sloth 38” with suffix CVLLCE
(Supplemental Figure S5). The only other known V gene with a long non-canonical suffix is the cow
gene IGHV1-7 that plays a special role in generating ultralong CDR3s by recombining with the longest

known D gene (IGHDS-2) of length 148 nt (Wang et al., 2013, Safonova et al., 2022). This long D gene
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is highly unusual: all but three amino acids in its translation are either cysteines or cysteine-triggering
amino acids G, S, and Y (Figure 5C). We thus searched for D genes with similar properties in the
platypus and sloth IGH loci. However, IGDetective, which uses rather stringent parameters for RSS
search, did not report any unusual (long or C/G/S/Y-rich) D genes. In contrast to IGDetective,
SEARCH-D (Safonova and Pevzner, 2020) uses relaxed parameters for finding RSSs at the cost of

reporting more false positive D gene candidates.

We thus launched SEARCH-D on the platypus (457 kbp long) and sloth (6.7 Mbp long) IGH loci.
SEARCH-D reported 45 and 76 D gene candidates (simply referred to as D genes) for the platypus and
the sloth, respectively (including 6 platypus and 1 sloth D gene candidates reported by IGDetective).
Since the candidate D genes in the sloth are scattered through the entire IGH locus, we were unable to
identify the location of the sloth IGHD locus. (Supplemental Figure S6). In contrast, 29 out of 45
candidate D genes in platypus form a dense 60 kbp long cluster pointing to a previously unknown

location of the IGHD locus (Figure 5D,E).

Similarly to other mammalian IGHD loci (Safonova and Pevzner, 2020), the identified 60 kb long
fragment harboring 29 candidate D genes in platypus is a tandem repeat (Figure SD,E), reinforcing the
conclusion that this region indeed represents the IGHD locus. We classify a D gene as cysteine-rich if
it contains at least two cysteines in one of its reading frames (only 3 out of 25 human D genes are
cysteine-rich). Clustering 29 candidate D genes in platypus revealed 4 groups of similar D genes with
percent identity >70% (referred as D1-D4) that include many cysteine-rich D genes: 12 out of 15 D
genes in these groups are cysteine-rich and all genes in these groups, similarly to the cow D gene

IGHDS-2, have many cysteine-triggering amino acids (Figure 5E).

Even though these 15 candidate D genes have rather diverged RSSs (Figure 5F), the high level of their
sequence conservation indicates that they are likely functional. We assume that, similarly to human
IGHD?2 genes, these D genes can be responsible for generating antibodies with a disulfide bond inside

CDR3s (Prabakaran and Chowdhury, 2020). The high number of these D genes suggests that the
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fraction of such antibodies is likely higher in the platypus repertoires as compared to the human
repertoires. This finding agrees with a study by Johansson et al., 2002 (that reported an unusually high
percentage of cysteine-rich antibodies in platypus antibody repertoires) and extends it by revealing the
germline D genes contributing to the cysteine-rich antibodies. Further analysis of platypus Rep-Seq data
will help to determine if these cysteine-rich D genes are recombined with IGHV1-20 (with unusual

suffix LAAELLYCR) and shed light on their role in antibody repertoires.

[FIGURE 5]
Figure 5. Comparative analysis of D genes. (A) The distribution of the counts and lengths of D genes for 20
target species. (B) D genes shared among two or more reference and target species. Green cells show species
containing the corresponding D gene candidates. Species from left to right: chimp, gorilla, human, orangutan,
mastiff bat, horseshoe bat, and otter. (C) The largest connected component of the Hamming graph on amino acid
4-mers of D genes. The component is shown by the subgraph of the Hamming graph (left subpanel) and the amino
acid content at each position of the 4-mer (right subpanel). Vertices of the Hamming graph are colored according
to the number of species they represent: from 2 (pale green) to 6 (dark green). The amino acid sequence of the
G/S/Y-rich cow D gene IGHDS-2 is shown on the bottom of the right subpanel. Panels D—F illustrate the analysis
of D genes in the platypus genome. (D) Positions of D genes detected by SEARCH-D in the platypus IGH locus.
D genes are colored according to their lengths: 50 nt or less (purple), from 51 to 100 nt (green), and from 51 to
150 nt (orange). (E) The dotplot on the left shows the alignment of the =60 kbp long platypus IGHD locus against
itself. Positions and sequences of genes from four D gene families with two cysteines are shown on the right. (F)
Motif logos of RSSD.; heptamer (L7), RSSDes nonamer (L9), RSSD;ign heptamer (R7), RSSD;ign: nonamer (R9)
for families D1-D4. Positions that do not match nucleotides in the consensus RSSs computed using the combined
references are highlighted in grey. Consensus RSSs for the combined reference are shown in Supplemental

Figure S7.

Benchmarking BlindIGDetective. BlindIGDetective constructed the human V-graph from 28394 sites
in the human genome that passed the RSSV likelihood threshold. A connected component is classified
as either small (of size at most smallSize), large (of size larger smallSize but smaller than giantSize), or

giant (of size at least giantSize) for default values smallSize=3 and giantSize=500. The vast majority of
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candidate RSSs in the human genome are false RSSs that often represent isolated vertices or vertices of
giant components that likely originated from spurious RSSs within repeated regions. Indeed, the human
V-graph contains 6942 isolated vertices and one giant component on 20768 vertices. The vast majority
of vertices in the giant component represent spurious repeats that we have ignored in further analysis.
Supplemental Table S10 provides information about the V-graphs for three reference species (human,

mouse, and cow) and two selected target species (the spear-nosed bat and the horseshoe bat).

For each vertex in the V-graph, we define the percent identity, coding length, annotation index, and
conservation index (see Supplemental Methods “Analyzing connected components in the similarity
graph” and “Speeding-up BlindIGDetective” for details). The conservation index of a vertex is
defined as the percent identity between its v-fragment and the closest predicted gene (predicted genes
could either be canonical genes from reference species or candidate genes detected by
IterativelGDetective). A vertex is annotated if its conservation is at least Plannotation (default value =
90%). For annotating human (cow, mouse) vertices, we define conservation with respect to human
(cow, mouse) canonical V genes. However, for annotating the target species, we use either a
conservation threshold of Plamnotion = 90% with respect to IG genes in this species predicted by
Iterativel GDetective or a conservation threshold of Plannotation = 80% with respect to human canonical V

genes.

A vertex in the V-graph is classified as accordant if its coding length exceeds the minimum coding
length threshold (default value minCL=200 bp). Since clusters with short coding lengths are likely
formed by spurious RSS (for reference species, all V genes, except one, have length exceeding 208 bp),
below we focus on accordant clusters (clumps) defined as clusters (clumps) with coding lengths
exceeding the minCL threshold. We note that accordant clusters (clumps) may contain both accordant

and non-accordant vertices.

We launched BlindIGDetective with the RSS profile corresponding to a 23 nt spacer. This setting is
aimed at finding V genes in IGH, IGL, TRA, TRB, TRD or TRG loci (that all have RSSs with 23 nt

spacer) but not the IGK locus (since RSSs in this locus have a 12 nt rather than a 23 nt long spacer).
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However, the IGK locus can be easily identified by simply changing a spacer length from 23 to 12 nt

in BlindIGDetective.

An annotated vertex in a cluster is said to be part of a specific V gene locus (IGH, IGL, TRA, TRB, or
TRG) defined by its most similar (as measured by percent identity) annotated V gene, where the set of
annotated V genes can be sourced either from a canonical set of V genes (if available) or predictions
made by IterativelGDetective. A cluster is classified as annotated by a specific V gene locus if all its

annotated vertices are assigned to this locus.

BlindIGDetective reveals novel candidate V genes in the human genome. BlindlGDetective
identified 79 clumps from 179 connected components in the human V-graph on 684 vertices (after
removing isolated vertices and the giant component). It further removed clumps with very small spans
(below 1 kb) as such clumps are typically formed by multiple candidate (likely spurious) RSSs located
within a short region. Afterward, it combined the remaining clumps into clusters as described in the
subsection “The similarity graph”, resulting in 11 (8) large (accordant) clusters in the human genome
(Table 2). 7 out of 8 accordant clusters revealed seven known loci of human IG genes (IGH and IGL

loci are represented by the largest clusters of size 59 and 31, respectively).

Table 2 shows that the cluster representing human IGH (IGL) genes is formed by 5 (5) clumps,
including 2 (1) unannotated clumps (Supplemental Table S11). There are only 2 (7) unannotated
fragments contained in IGH (IGL) annotated clumps, including 1 (3) accordant v-fragments. Moreover,
unannotated fragments within annotated clumps still show high median conservation of 83% for both

IGH and IGL clusters.

Since 2 (7) unannotated fragments in IGH (IGL) annotated clumps have large median conservation, we
launched an IgBLAST search on them and revealed significant hits with E-values of at most 4e-76 (le-
60) and percent identities of at least 84 (75) % against human V genes IGHV3-48 and IGHV1-46 (for
2 unannotated fragments in IGHV clumps) and IGLV1-44, IGLV3-22, IGLV3-21, IGLV3-9, IGLV3-

31 and IGLV7-46 genes (for 5 unannotated fragments in IGLV clumps). Alignment of 1 (3) out of 2 (7)
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unannotated and accordant IGH (IGL) v-fragments from annotated clusters revealed that they align with
their closest human V gene in a reading frame containing a stop codon. We therefore suggest that these
accordant unannotated fragments could represent previously undiscovered V genes (or pseudogenes)

that may be affected by RAG proteins during VDJ recombination.

The unannotated clumps representing human IGH (IGL) genes accounted for 5 (2) unannotated v-
fragments in the IGH (IGL) cluster and included one accordant v-fragment in the IGH locus (coding
length 597 nt) with a low percent identity with known human genes (under 62%). Unannotated clumps
retained a low median conservation under 62% in both IGH and IGL clusters. A similar IgBLAST
search of these the 5 (2) unannotated v-fragments in the IGH cluster revealed hits for only three v-
fragments against human IGHV genes IGHV3-7, IGHV3-11, and IGHV3-21 with low E-values of
8x10713, 2x107", and 7x1072° and percent identities of 61%, 62%, and 63%, respectively. Although
these three v-fragments share some (albeit low) similarity with known human V genes, they are missing
in the IMGT database. Moreover, all these v-fragments are located in the IGH locus within a short
distance from the canonical IGHV3 gene (at distance 25 kbp, 11 kbp, and 61 kbp, respectively). We
therefore suggest that they represent distant IGHV3 genes missed by earlier methods for annotating V

genes.

The remaining 2 (2) v-fragments in the IGH (IGL) loci had high E-values exceeding 0.42.
Supplemental Figure S8 shows two alignments between the two pairs of these v-fragments (that
extends through the entire sequence) and suggests these 2+2 v-fragments could represent undiscovered
genes (or pseudogenes) that are not similar to known human V genes and therefore would not have been

discovered through V gene finding methods reliant on similarity with previously identified genes.

See Supplemental Method “BlindIGDetective results on cow and mouse genomes” and

Supplemental Table 12 for details of BlindIGDetective benchmarking on other reference species.

Human
# coding | cluster |cluster conservation conservation
cluster|cluster . .
D size clumps| PI |length |density| span center vertex | AI/AI80 wrt species wrt human locus
/ (nt) (%) | (Mb) genes genes
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IL.C| chr coo(ll'\ji[ibn)ate min med min med

HO 59 527 | 91| 342 29 0.93 14 106.34 10.88/0.92| 56 100 56 100 IGH
H1 31 521 | 89| 348 18 0.85 | 22 2243 ]0.71/0.84| 55 100 55 100 IGL
H2 8 4/2 |100] 201 14 0.58 15 21.72 0.5/0.5 54 83 54 83 IGH*15
H3 8 3/4 |99 | 345 57 1.93 16 33.83 |0.75/0.75| 53 100 53 100 | IGH*16
H4 6 1/6 | 95| 435 100 | 0.03 7 38.36 0.83/1 88 100 88 100 TRG
HS5 6 2/4 | 83| 360 47 0.18 14 21.90 1/1 100 100 100 100 TRA
H6 4 2/2 | 88| 330 33 0.12 7 142.50 0.75/1 88 100 88 100 TRB
H7 4 2/2 87 | 252 33 0.28 17 3.22 0/0 54 56 54 56

Spear-nosed bat

conservation conservation

cluster| cluster | clumos coding | cluster |cluster| ~center vertex wrt species wrt human
ID size / PS| py length | density | span AI/AI80 genes genes locus
L.C (nt) (%) | (Mb) . |coordinate . .
IL.C| contig (Mb) min med min med

PDO | 130 | 12/38 | 94 | 357 19 1.672 | S13 59.11 0/0.67 53 56 54 82 IGL
PD1 56 5127 | 90 | 186 21 0.834 | S16 0.97 0.38/0.46 54 86 55 79 IGH
PD2 50 4/27 | 94| 315 30 0.762 | S16 233 0.66/0.64 68 95 65 81 IGH
PD3 35 9/8 96| 327 16 1.401 | S3 145.30 0/0.43 53 55 73 80 TRA
PD4 22 3/8 | 84| 192 19 0.387 | MS7 0.38 0.86/0.5 72 100 62 80 IGH

PD5 14 3/8 | 84| 195 30 0.163 | MS2 0.08 0.36/0.5 53 88 55 81 IGH
PD6 14 35 192 | 177 23 0.127 | MS12 0.06 0.79/0.5 76 99 67 80 IGH
PD7 13 3/8 | 89| 126 15 0.206 | MS33 0.06 0.92/0.46 84 96 69 72 IGH
PD8 12 4/5 |1 90| 369 23 0.052 | MS7 0.01 0/0.67 55 56 56 83 IGL
PD9 10 1710 | 93 | 378 49 0.167 | S11 85.66 0/0.1 55 57 72 76 TRB
PD10 9 2/5 | 79| 318 31 0.15 S2 133.59 10.89/0.44 85 100 66 79 IGH
PD11 7 2/5 | 81| 177 52 0283 | S5 85.09 0.71/0.5 54 100 54 83 IGH
PD12 4 1/4 | 8| 210 100 | 0.048 | S3 80.22 0.75/1 90 91 84 87 IGH
PD13 7 2/4 199 222 43 0.629 | S14 10.95 0/0 52 53 53 54

PD14 5 1/5 | 87| 2286 100 | 0.002 | S4 208.06 0/0 51 51 52 53

Table 2. Information about large clusters derived from the human and spear-nosed bat genomes.
BlindIGDetective constructed 14 large clusters (8 accordant clusters) in the human genome (only accordant
clusters are shown). “L.C” represents the size of the largest clump in the cluster. Annotation index and
annotation80 index are abbreviated to “Al " and “AI80”. Annotated clusters are highlighted in blue. Clusters are
ordered in the decreasing orders of their sizes. Conservation is shown with respect to predicted V genes from the
same species as well as canonical human V genes, with annotation index (annotation80 index) defined with respect
to the former (latter). Predicted V genes are the canonical V genes for human and are the candidate V genes
predicted by IterativelGDetective for spear-nosed bat. The locus column classifies the annotated clusters as one
of the families of human IG or TCR genes described in Supplemental Table S1 (highlighted in blue). All
annotated human clusters, except for H2, have coding length greater than 315 nt, consistent with the range of
coding lengths in known V genes. IGH orphons on Chromosomes 15 and 16 are noted as IGH*15 and IGH*16.
Human cluster H2 with coding length 201 nt (locus IGH*15) has shorter coding length because they contain many

short pseudogenes. The table also shows all 13 large annotated spear-nosed bat clusters, 7 of which are accordant.
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Only accordant unannotated spear-nosed bat clusters are shown. In the spear-nosed bat’s “contig” column,
“mPhyDis] _scaffold <N>" in the VGP assembly version “mPhyDisl.pri.cur.20200504” is shortened to

“MS<N>”.

BlindIGDetective reveals highly diverged candidate V genes in the spear-nosed bat genome.
Bratsch et al., 2011 and Schountz et al., 2017 formulated the “bat IG diversity” hypothesis stating that
bat’s ability to carry many disease-causing pathogens (while themselves being unaffected) could be
linked to their large and diverse immunoglobulin gene-set. However, since assembly of IG loci in any
species is challenging (Bankevich and Pevzner, 2020), accurately assembled (let alone, annotated) IG
loci in bats remained unavailable until recently. In fact, the only support for the claim that bats have a
very large number of IG genes comes from a probabilistic model rather than an annotated IG loci in an
assembled bat genome: Bratsch et al., 2011 used this model to predict =240 V genes in the little brown
bat without having access to its genome. IterativelGDetective results do not support the “bat IG
diversity” hypothesis™: it reported from only 9, 10, 32 and 63 IGHV genes across four bat species. We
thus applied BlindIGDetective to reveal divergent V genes that IterativelGDetective may have missed.
We focused on the spear-nosed bat (only 34 IGHV genes reported by IterativelGDetective) as the bat

species with the longest IGH locus (4.6 Mbp).

BlindIGDetective constructed 72 clusters in the spear-nosed bat genome, including 17 (29) accordant
(large) clusters (Table 2). Vertices in these clusters were annotated using the candidate IGHV genes
predicted by IterativelGDetective and canonical human genes to annotate V genes from IGL, TRA,
TRB, and TRG loci. A total of 13 large, annotated clusters were observed in the spear-nosed bat

genome.

BlindIGDetective identified 9 large IGH clusters (3 of which are accordant) encompassing 27 clumps
and 189 v-fragments. It also identified 2 large IGL clusters with 142 v-fragments, 1 TRA cluster with
35 v-fragments, and 1 TRB cluster with 10 v-fragments (all these clusters are accordant). In addition to
the large clusters, it identified a small IGH cluster containing 2 v-fragments. No small clusters were

detected for IGL, TRA, and TRB loci. For each v-fragment, the opening reading frame and the start
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position of the gene were computed using alignment to the closest human germline V gene. A v-
fragment is classified as productive if it has an open reading frame that begins at its start position and
terminates at its end position. 147 IGH, 95 IGL, 15 TRA, and 1 TRB annotated v-fragments were found
within the identified clusters; 29 IGH, 58 IGL, 6 TRA, and 0 TRB annotated v-fragments were

productive and thus classified as V gene candidates.

BlindIGDetective also identified 44, 47, 20, and 9 unannotated v-fragments within the IGH, IGL, TRA,
and TRB clusters, respectively (including 1 IGH, 20 IGL, 4 TRA, and 7 TRB productive v-fragments).
The alignments of these productive unannotated v-fragments against the translated human IG and TCR
genes revealed high percent identity (in amino acids) varying from 49% to 77% with the average value
68%. To analyze the origin of unannotated candidate V genes, we combined them with productive
annotated gene candidates and constructed phylogenetic trees using Clustal Omega (Sievers et al., 2011)
for IGH, IGL, and TRA loci. Annotated and unannotated V gene candidates are interspersed in trees for
IGH and IGL loci, indicating that unannotated V gene candidates likely represent highly diverged
members of the canonical V gene families (Supplemental Figure S9). In the TRA locus, unannotated
V gene candidates form an independent subtree suggesting that they represent an unknown V gene

family.

Prediction of V genes in bats does not support the “bat IG diversity” hypothesis. Our benchmarking
of BlindIGDetective revealed nearly all IG genes identified by IterativelGDetective and more.
However, the “bat IG diversity” hypothesis was not supported by our analysis of the spear-nosed bat
genome as we identified a much smaller number of IGHV genes than 200+ V genes predicted in Bratsch
et al.,, 2011 using a probabilistic model applied to the little brown bat. There are three possible
explanations for a discrepancy between our analysis and the “bat IG diversity” hypothesis: (i) spear-
nosed bats have relatively few genes as compared to little brown bats; (ii) probabilistic model in Bratsch
et al., 2011 does not adequately approximates the number of IGHV genes; and (iii) many IGHV genes
in spear-nosed bats have “diverged” RSSs that do not pass the default RSS likelihood threshold.

Supplemental Method “Applying BlindIlGDetective to the horseshoe bat genome” and
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Supplemental Table S13 present BlindIGDetective results on the horseshoe bat and also does not

support the “bat IG diversity” hypothesis.

Variations in RSSs trigger high/low usage of human D genes. In addition to analyzing variations in

IG genes, we also analyzed variations in RSSs and their effect on antibody repertoires.

The usage of a gene in an antibody repertoire is defined as the percentage of antibodies formed by VDJ
recombinations in this repertoire that involve this gene. The IG genes have a highly non-uniform usage
that may vary by orders of magnitude, e.g., while the most widely used human D gene (IGHD3-10) is
used in ~15% of all human antibodies, some human D genes hardly ever contribute to formation of
human antibodies (Safonova and Pevzner, 2019). Since the usage of IG genes is likely affected by the
sequence of their RSSs, we analyzed the associations between the gene usage of IG genes and their
RSSs. Supplemental Method “Clustering nonamers in RSSVs” and Supplemental Figures S10,
S11 illustrate that RSSs can be partitioned into subgroups of highly similar signals within the set of all
RSSs. By revealing these subgroups of similar RSSs we can shed light on the correlations between

RSSs and the usage of the genes they flank.

Below we focus on analyzing correlations between the usage of D genes and their RSSs by analyzing
immunosequencing datasets containing rearranged VDJ sequences from 24 donors from the study by
Levin et al., 2017. For each such VDI sequence, we used the IgScout tool (Safonova and Pevzner, 2019)
to identify the D gene that contributed to this sequence. The individual usage of a gene for a single
dataset is defined as the percentage of total VDJ recombinations derived from this gene in this dataset.
Although the individual usages vary, they have a rather low variance across various individuals in a
given species (Safonova and Pevzner, 2019). The usage of an IG gene is defined as the average of
individual usages across all 24 datasets generated in Levin et al., 2017. The usage of an RSS is defined

as the usage of the gene that this signal flanks.

Below we analyze N D-genes in a reference species and consider N pairs (RSSDies, RSSD,igir) flanking

these genes (similar analysis has been conducted for V and J genes). We refer to heptamers (nonamers)
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in this pair as /7 and 7 (19 and r9) and consider 16-mers [7/9 and r7r9 as well as a 32-mer [9]7r7r9,
resulting in various signal types. For each signal type, we computed the NxN matrix of Hamming
distances between all pairs of signals and performed k-means clustering on N-dimensional vectors

formed by rows of this matrix.

We launched the k-means clustering algorithm (20 runs with 200 iterations for each run) for various
cluster numbers and selected an optimal number of clusters based on the elbow method (Yuan and
Yang, 2019) for all signal types. We determined three /7 and three /9 clusters as well as two 77 and
three 79 clusters. Each /9 (9) cluster can be decomposed into groups of D genes, where each group is
a subset of an /7 (19) cluster and no pair of groups can be merged. For three /9 clusters, the relative sizes
of the largest groups with respect to the cluster size are 100%, 100%, and 70% (Supplemental Table
S14). For three r9 clusters, the relative sizes of the largest groups are 53%, 75%, and 100%. We
hypothesize that clusters /7 and /9 (as well 7 and r9) and the high level of overlap between them can

trigger variations in usage patterns of D genes.

Figure 6B illustrates that 12 out of the total 25 human D genes dominate the vast majority (93%) of the
usage. We integrate the usage statistics of the D genes into the clustering process. The distribution of
usage between the clusters described earlier is recorded for all combinations of the RSSD signals in the
Supplemental Method “Cluster-based usage of RSSDs”, Supplemental Table S15. The Kruskal-
Wallis test on the usage of the signals belonging to each cluster revealed statistically significant
associations for both RSSD; and RSSD,g heptamer clusters (P-values = 0.042 and 0.007,
respectively). We also found statistically significant associations for clusters [9/7r7r9, [7r7 and 1919 (P-
values = 0.02, 0.009, 0.028, respectively). These clusters and their significant usage associations are

shown in Figure 6A,B.

Analysis of clusters revealed motifs of RSSs associated with high-usage D genes. Among the
heptamers, the highest used RSSDy.: cluster (accounting for over 80 % of usage) has the general pattern
NACTGTG, where ‘N’ stands for an arbitrary nucleotide. The most used RSSD;er heptamer cluster

(accounting for over 94% of usage) has each heptamer equal to CACAGTG. The highest used nonamer
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cluster for RSSD.; follows a pattern GGTTTNNNN, whereas the RSSD,.z;, nonamer cluster follows a

pattern NNNAAAACN.

Analysis of V and J genes did not reveal any associations between RSS clusters and usage patterns
(Supplemental Method “Finding association between RSSs and usages of V and J genes”,

Supplemental Tables S16—17, Supplemental Figures S12—16).

[FIGURE 6]
Figure 6. Clustering and distribution of human RSSDs. (A) Cluster visualization of I7, 77, 917779, I7r7 and
19r9 signals. We shall henceforth refer to the red, blue, green and yellow clusters as clusters 1, 2, 3, and 4,
respectively. The consensus of a cluster is noted as the legend label. PC1 and PC2 refer to the first 2 principal
components of the clustering performed on the signals, as described in subsection “Variations in RSSs trigger
high/low usage of human D genes” in Results. (B) Usage of D genes with respect to clusters on 7, 7, [917r7r9,
[7r7 and 1979 signals. The p-value of correlation is depicted on the top right of each panel - P* (P**) represents a
p-value less than 0.05 (0.01). (B:Bottom-right) usage of human D genes. Each of 12 highly used human D genes
(with usage at least 2 %) is represented by a single bar. All remaining low-usage human D genes are represented

by a single bar showing their combined usage equal to 7%.

Discussion

IGDetective algorithm. We benchmarked IterativelGDetective on three well-annotated IGH loci
(human, mouse, and cow) and demonstrated that it accurately predicts the known V, D, and J genes in
one of these species based on information about RSSs in other species. This observation justifies our
comparative immunogenomics approach to annotating the IGH loci in newly sequenced species.
Although the IterativelGDetective analysis in this paper is limited to the IGH loci, we plan to extend it
to other IG and TCR loci in a follow-up study. In addition to the three reference species, we applied
Iterativel GDetective to twenty mammalian species with the recently assembled IGH loci and predicted

581, 92, and 60 new putative IGHV, IGHD, and IGHJ genes, respectively.
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In addition to IterativelGDetective, we developed BlindIGDetective algorithm for predicting novel
genes which have diverged from currently known IG genes. BlindIGDetective detects most IG genes
in the absence of any information about IG genes in other species and thus opens a possibility to identify
highly divergent IG genes. Application of BlindIGDetective to detect V genes from three reference
species and two bat species (spear-nosed bat and horseshoe bat) revealed that BlindIGDetective was
sensitive not only to canonical V genes from the IGH locus but also to other V gene loci driven by RAG
proteins, such as V genes in the IGL, TRA, TRB, and TRG loci. Moreover, BlindIGDetective identified

multiple highly-divergent candidate V genes (or pseudogenes) in various species.

We plan to combine IterativelGDetective and BlindlGDetective to extend this analysis to
immunological model organisms such as rabbits and llamas as well as non-mammalian vertebrates with

the goal to construct a comprehensive database of predicted IG genes across multiple species.

The diversity of IG genes. We applied IterativelGDetective to twenty mammalian species with poorly-
studied IGH loci, performed comparative analysis of the detected IGHV genes, and identified a highly
conservative cluster that covers highly divergent species ranging from primates to bats. We hypothesize
that V genes in this cluster are subjected to selective pressure driven by common pathogens or the
genetic organization of IGH loci. Further investigation of this conservative cluster will require

repertoire sequencing (Rep-Seq) data.

In addition to revealing the diversity of IG genes, we also studied the diversity of RSSs, identified
clusters of similar RSSDs in humans, revealed associations between these clusters and the usage of the

IGHD gene they flank, and found the RSSDs motifs triggering high usage of human D genes.

Unusual cysteine-rich V genes. We revealed a new family of unusual cysteine-rich V genes in bats
and other species that have cysteines in both CDR1 and CDR2. We hypothesize that cysteine-rich V
genes might generate unusual antibodies with non-canonical conformations and could potentially form

a unique part of bat immunity against the great variety of viruses they host. Further investigation of
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antibodies derived from these V genes would require both Rep-Seq data and protein structures to shed

light on the functions and to estimate the therapeutic potential of such antibodies.

G/S/Y-rich motifs in D genes. We demonstrated that, despite being highly diverse, D genes in various
mammalian species share the G/S/Y -rich motifs that are formed by cysteine-triggering codons. In cows,
the G/S/Y-rich IGHDS-2 gene plays a special cysteine-triggering role in ultralong cattle antibodies
where somatic hypermutations create new cysteines from these three amino acids, forming new
disulfide bonds and reshaping the resulting antibody (Wang et al., 2013). We conjecture that found

G/S/Y motifs may play a similar cysteine-triggering role in D genes of many mammals.

Limitations and future developments. In the last three decades, gene prediction algorithms have
evolved from relatively simple statistical tests to sophisticated machine learning approaches (Mathé et
al., 2002). However, since even the state-of-the-art gene prediction algorithms generate some false
positive genes, they require validation using complementary experimental approaches, such as
transcriptome sequencing (Allen et al., 2004) and mass spectrometry (Tanner et al., 2007). Likewise,
since IGDetective is merely the first step toward uncovering the diversity of IG genes across vertebrate
species, it has to be complemented by complementary experimental approaches, such as antibody
repertoire sequencing. Our next goal is to modify IGDetective for working with both genome assemblies

and Rep-Seq data.

Iterativel GDetective is currently based on constructing the profile matrices of known RSSs, detecting
novel RSSs using these profile matrices, and follow-up analysis of genomic sequences flanked by these
RSSs. In the future, we plan to develop a Hidden Markov Model for joint analysis of RSSs and the
flanking genes. We also plan to complement the existing analysis (based on only three reference
genomes without re-training) by bootstrapping when the original model is trained on the references only
but the set of references is later extended (based on the reliable predictions of IG genes in new species)

for further re-training.
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IterativelGDetective failed to identify any J genes in the spear-nosed bat genome, presumably because
all its RSSJ motifs did not pass the default likelihood threshold. Since our current goal is to focus on
highly conserved RSSs and minimize the false positive rate, we did not recompute all IG gene
predictions in the spear-nosed bat with a lower likelihood threshold. In the future, we plan to develop a

version of IterativelGDetective that iteratively relaxes the RSS search parameters.

BlindIGDetective currently starts from identifying highly-conserved RSS in the entire genome and thus
misses all IG genes flanked by less conservative RSSs. Lowering the RSS likelihood threshold leads to
explosion of false RSS thus making BlindlGDetective prohibitively slow. We plan to modify
BlindIGDetective (with the goal of identifying the missed IG genes with less conservative RSSs) by
first identifying the IG-contigs, enriching the set of putative RSSs in these contigs by adding less

conservative RSSs, and combining BlindIGDetective and IterativelGDetective in a single pipeline.

Methods

Gene nomenclature. Followed guidelines of the IMGT nomenclature

(https://www.imgt.org/IMGT ScientificChart/Nomenclature/IMGTnomenclature.html), we have not

italicized genes of immunoglobulin (IG) and T-cell receptor (TCR) genes.

Profiles and likelihood ratio of strings. Given a set of k-mers (k-nucleotide-long strings), their profile
matrix is a 4xk matrix Profile defined below. The jM column in the profile matrix represents the j
position in the k-mer and the 4 rows represent the 4 nucleotide bases (A, C, G, and T). Profile(i,j)
represents the frequency of occurrence of the i" base at the j" position in the input k-mers adjusted for
pseudocounts as described in Compeau and Pevzner, 2018. The consensus string (referred to as
consensus=consensus(Profile)) is a k-mer generated by taking a nucleotide with the highest frequency
at each position of the profile (ties are broken arbitrarily). As opposed to numerous V and D genes,
there are few J genes in the reference species, leading to profile matrices with higher entropies (when

compared to V or D gene profiles) due to pseudocounts.
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Given a k-mer S=s,...sr and a 4xk profile Profile, the probability that Profile generates a string S is
defined as prob(S|Profile) = [ j=1.« Profile(s;j). Since prob(S|Profile) is maximized when the string S

is a consensus of Profile, we define the likelihood ratio L(S) of S as

prob(S|Profile)
prob(consensus(Profile)|Profile)’

L(S) =

Given a profile Profile and a likelihood ratio threshold Ly, a k-mer S is classified as a candidate for

Profile if its likelihood ratio L(S) exceeds Luin.

RSS detection algorithm. Given a set of RSSs for each of a reference species (human, mouse, cow, or
combined), we compute their profile matrix (with pseudocounts equal to 1) for heptamers and nonamers
across all signals (RSSV, RSSDyes, RSSD,i4n, and RSSJ). Given a profile-pair (Profile, Profile’) of 4x7
and 4x9 stochastic matrices and the associated thresholds L., and L i, for a heptamer and a nonamer,
a string-pair (heptamer, nonamer) is classified as a candidate RSS for a given signal type if both

heptamer and nonamer are candidate strings.

We say that a candidate RSSD,.; and a candidate RSSD,zi together form a paired candidate RSSD if
the RSSD,igns is located within at most MaxLengthp positions to the right from the RSSDy. The
condition is important for D genes since they are flanked by RSSD;; and RSSD,e and since the vast
majority of known D genes are short (maximum lengths are 37 nt and 29 nt in human and mouse
genomes, respectively). Since the longest currently known D gene is the 148 nt long D gene in cows,

we set the default value MaxLengthp =150.

Selection of the likelihood ratio threshold. We select the L., thresholds for heptamers or nonamers
based on the reference genome chosen. We launch IterativelGDetective on the reference species,
selecting the heptamer L,.;» and nonamer L ., thresholds for all signal types (RSSV, RSSDyes , RSSD, g,
and RSSJ) by performing a grid search within a range (0,0.8] in steps of 0.005. We compute the TPR
(the fraction of known RSSs in the target species detected by IGDetective), the FDR (the fraction of

erroneous RSSs among all RSSs reported by IGDetective), and the F1 score defined as:
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2TPR(1-FDR)

F1= TPR+(1-FDR)’

For any given reference, the heptamer L, and nonamer L, thresholds (determined through grid
search) that maximize the F1 score are selected as that references’ heptamer L., and nonamer L ;.
More details on parameter selection are described in Supplemental Method “Parameter selection for

identifying candidate RSSs''.

Identification of candidate IG genes. Details of procedures for identification of candidate V, D, and
J genes, including selection of parameters of alignments are described in Supplemental Methods
“Identification of candidate V and J genes”, “Identification of candidate D genes”, “Iterative
extension of the set of candidate IG genes”, “Parameter selection for identifying candidate I1G

genes”, “Aligning candidate IG genes”, and “Alternate similarity thresholds for detection of V

genes”.

Software  Availability. IGDetective is available as Supplemental Code and at

github.com/Immunotools/IgDetective. Sequences of identified IGHV, IGHD, and IGHJ genes are

available as Supplemental Tables S19-21 and at github.com/Immunotools/IgDetective results.
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