


ADMM is a powerful optimization method [9] suitable for

distributed optimization and control. There exist some works

that have employed ADMM in multi-agent control problems

[13, 19, 23, 24, 29, 32]. One of the main advantages of several

ADMM variations is that they allow for large-scale multi-

agent optimization problems to be handled in a decentralized

fashion, yielding significantly faster solutions compared to a

centralized approach. Therefore, we believe that ADMM is

very suitable for multi-agent stochastic optimal control where

the computational effort must be distributed properly between

the available processing units so that we achieve scalability to

large-scale systems.

In this paper, we propose a distributed algorithm for multi-

agent covariance steering based on a variation of ADMM for

consensus optimization. Our main contribution can be seen

from two perspectives. First, to the best of our knowledge,

the multi-agent covariance steering problem has not been

addressed yet. For the reasons we have stated, we believe

that covariance steering fits well with problems where we

wish to establish probabilistic guarantees for safety and,

therefore, it is suitable for the control of multiple agents

in a common environment. Second, we address the issue of

increased computational complexity incurred by centralized

multi-agent covariance steering. To do so, we use a distributed

optimization architecture based on ADMM that is shown to

be both effective and scalable to a large number of agents.

Although this work specifically addresses covariance steering,

it also indicates the compatibility of the distributed nature of

ADMM with multi-agent stochastic optimal control in general

and can potentially lead to more powerful algorithms for this

class of problems.

The paper is structured as follows. Section II provides an

overview of single-agent covariance steering and ADMM. In

Section III, we formulate the multi-agent covariance control

problem. Our proposed distributed ADMM-based covariance

steering algorithm is presented in Section IV. In Section V,

we demonstrate simulation results that verify the effectiveness

and scalability of our approach. The conclusions of our work

and a discussion for future directions are provided in Section

VI.

II. PRELIMINARIES

In this section, we introduce some prerequisites on covari-

ance steering and ADMM. First, we define the notation that we

follow throughout the paper. Next, we present the single-agent

covariance steering problem for discrete-time stochastic linear

systems and demonstrate how it can be reduced to a convex

semi-definite program (SDP). Finally, we overview ADMM

and one of its variations for addressing consensus optimization

problems in a distributed fashion.

A. Notation

The mean and covariance of a random vector x are denoted

by E[x] and Cov[x], respectively, where Cov[x] := E[(x −
E[x])(x − E[x])>]. Let Sn be the space of real symmetric

n × n matrices, whereas S
+
n and S

++
n denote the convex

cone of n × n positive semi-definite and positive definite

matrices, respectively. Given a matrix A ∈ R
n×n, its trace

is denoted as tr(A). With diag(a1, . . . , a`) ∈ R
`×` we denote

the diagonal matrix made up by the scalars ai, i = 1, . . . , `,
while bdiag(A1, . . . , A`) is the block diagonal matrix made

up by the matrices Ai, i = 1, . . . , `. Given a sequence of

vectors X = {x(t) : t = 1, . . . ,m}, we denote the vertical

concatenation of its vectors as vertcat(X ). We also denote

the cardinality of X as |X |, where |X | = m. Finally, we

define the `2-norm of a vector x ∈ R
n as ‖x‖22 =

∑n
i=1 xi(t)

2.

B. Single-Agent Covariance Steering

The goal of covariance steering is to find a feedback control

policy that will steer the uncertain state from a given initial

mean and covariance to prescribed terminal ones. Here, we

show how to formulate the latter problem for linear dynamics

subject to white Gaussian process noise as a convex semi-

definite program.

1) Problem Formulation: Consider the following discrete-

time stochastic linear system:

x(t+ 1) = A(t)x(t) +B(t)u(t) + w(t), (1a)

x(0) = x0, x0 ∼ N (µ0,Σ0), (1b)

for t = 0, . . . , T − 1, where w(t) ∼ N (0,Wt) is the process

noise, µ0 ∈ R
n and Σ0 ∈ S

++
n are given and Wt ∈ S

+
n . This

system yields a random state process X0:t = {x(τ) ∈ R
n :

τ = 0, . . . , t}, for t = 0, . . . , T , that depends on the control

input process U0:t−1 = {u(τ) : τ = 0, . . . , t − 1}, the noise

process W0:t−1 = {w(τ) : τ = 0, . . . , t − 1}, and the initial

(random) state x0.

In addition, consider admissible control policies $ :=
{π(t, ·) : t = 0, . . . , T − 1} that are affine functions of the

elements of the uncertain state process:

π(t,X0:t) = v(t) +

t
∑

τ=0

K(t, τ)x(τ), (2)

where v(t) ∈ R
m and K(t, τ) ∈ R

m×n for all τ = 0, . . . , T −
1. The admissible control policies are completely defined by

the sequence of vectors V = {v(t) : t = 0, . . . , T−1} and the

collection of matrix gains K = {K(t, τ) : t, τ = 0, . . . , T −
1, t ≥ τ}.

Among all admissible control policies $ = $(V ,K ), we

seek the sequences V and K that minimize the following

performance index:

J(V ,K ) =

T−1
∑

t=0

E

[

u(t)>u(t)
]

(3)

subject to the dynamic constraints (1a) and the boundary

conditions

E[x(0)] = µ0, Cov[x(0)] = Σ0, (4a)

E[x(T )] = µf ,
(

Σf − Cov[x(T )]
)

∈ S
+
n . (4b)



The performance index (3) ensures that the goal will be

reached without excessive actuation, while the positive semi-

definite terminal constraint (4b) is a relaxation of the non-

convex equality constraint Cov[x(T )] = Σf that sets an upper

bound on the uncertainty with which the terminal mean, µf ,

will be reached [4, 6].

2) Reduction to a Convex Semi-Definite Program: The

above covariance steering problem can be reduced to and

solved as a convex SDP (for details, see [4, 6]). First, the

discrete-time dynamics (1a) are compactly written as:

x = G0x0 +Guu+Gww, (5)

where x = vertcat(X0:T ) ∈ R
(T+1)n, u =

vertcat(U0:T−1) ∈ R
Tm, and w = vertcat(W0:T−1) ∈ R

Tn.

In addition, G0, Gu, and Gw are defined as follows:

G0 :=
[

I Φ(1, 0)> · · · Φ(T, 0)>
]>

,

Gu :=















0 0 . . . 0
B(0) 0 · · · 0

Φ(2, 1)B(0) B(1) · · · 0
...

...
. . .

...

Φ(T, 1)B(0) Φ(T, 2)B(1) · · · B(T−1)















,

Gw :=















0 0 . . . 0
I 0 · · · 0

Φ(2, 1) I · · · 0
...

...
. . .

...

Φ(T, 1) Φ(T, 2) · · · I















,

where Φ(k,m) = A(k − 1) · · ·A(m) and Φ(k, k) = I , for

k ≥ m. In view of (2), an admissible control sequence can be

written as:

u = v +Kx

where v := vertcat(V ) and

K :=











K(0, 0) 0 . . . 0 0
K(1, 0) K(1, 1) . . . 0 0

...
...

. . .
...

...

K(T−1, 0) K(T−1, 1) . . . K(T−1, T−1) 0











.

In order to formulate a convex program, we need to define

the decision variables L and ν:

L := K(I −GuK)
−1

, ν := (I + LGu)v (6)

where L is a block lower-triangular matrix and (I −GuK) is

well defined, as explained in [4].

The performance index (3) can now be written with respect

to the new decision variables as:

J (ν,L) := tr
(

LG0(Σ0 + µ0µ
>
0 )G

>
0 L

>

+ 2LG0µ0ν
> + νν> + LGwWG

>
wL

>
)

(7)

where W := bdiag(W0, . . . ,WT−1). The mean and covari-

ance of the random vector x are given by:

E[x] = f(ν,L), Cov[x] = g(ν,L) (8)

where

f(ν,L) : = T0µ0 +Guν, (9a)

g(ν,L) : = T0(Σ0 + µ0µ
>
0 )T

>
0 +T0µ0ν

>
G

>
u

+Guνµ
>
0 T

>
0 +Guνν

>
G

>
u

+TwWT
>
w , (9b)

with T0 := (I +GuL)G0, and Tw := (I +GuL)Gw.

In addition, x(t) can be extracted from x with x(t) =
Pt+1x where Pt+1 ∈ R

n×(T+1)n is a block matrix whose

blocks are all equal to the zero matrix except from the (t+1)-
th one which is equal to the n× n identity matrix.

As a result, the terminal mean and covariance constraints

can be expressed as:

F(ν,L) := PT f(ν,L)− µf = 0 (10a)

G(ν,L) := Σf + µfµ
>
f −PT g(ν,L)P

>
T ∈ S

+
n (10b)

Now, the covariance steering problem can be formulated

as follows: find a pair (ν,L) that minimizes the performance

index (7) subject to the equality constraint (10a) and the semi-

definite constraint (10b). The above is a convex semi-definite

program and can be solved efficiently using any available conic

solver. Note that the semi-definite constraint (10b) can be

converted to a linear matrix inequality (LMI) convex constraint

using the Schur complement.

The variables of interest, namely v and K, can be computed

from the optimal solution (ν∗,L∗) by inverting the transfor-

mation (6):

K := (I + LGu)
−1

L, v := (I + LGu)
−1

ν (11)

where (I + LGu) is also well defined, i.e. invertible.

C. Alternating Direction Method of Multipliers (ADMM)

1) Classical ADMM: In the standard ADMM formulation

[9], we have a separable objective function with respect to

two variables x ∈ R
n and z ∈ R

m and a linear coupling

constraint between them. The optimization problem has the

following form:

min
x,z

f(x) + g(z) s.t. Ax+Bz = c (12)

where f : Rn → R, g : Rm → R, A ∈ R
p×n, B ∈ R

p×m and

c ∈ R
p. The augmented Lagrangian (AL) for problem (12) is:

Lρ(x, z,y) = f(x) + g(z) + y>(Ax+Bz − c)

+
ρ

2
‖Ax+Bz − c‖22

where y ∈ R
p is the dual variable and ρ > 0 is the penalty

parameter. The classical ADMM algorithm consists of the

following sequential updates for the primal and dual variables:

xk+1 := argmin
x

Lρ(x, z
k,yk)

zk+1 := argmin
z

Lρ(x
k+1, z,yk)

yk+1 := yk + ρ(Axk+1 +Bzk+1 − c).



The problem formulation (12) can be extended to a multi-

block variation with N optimization variables x1, . . . ,xN ,

obtaining the following form:

min
x1,...,xN

N
∑

i=1

fi(xi) s.t.

N
∑

i=1

Aixi = b (13)

with xi ∈ R
ni , fi : Rni → R, Ai ∈ R

m×ni and b ∈ R
m.

The resulting multi-block ADMM algorithm consists of the

following sequential updates:

xk+1
1 := argmin

x1

Lρ(x1,x
k
2 , . . . ,x

k
N ,yk)

. . .

xk+1
N := argmin

xN

Lρ(x
k+1
1 , . . . ,xk+1

N−1,xN ,yk)

yk+1 := yk +
ρ

2

(

N
∑

i=1

Aix
k+1
i − b

)

.

2) Consensus ADMM: Next, we present an ADMM vari-

ation for general form consensus optimization problems [9].

Let us consider a set of local optimization variables xi ∈
R

ni , i = 1, . . . , N and the following problem where the

objective function is separable with respect to xi:

min
x1,...,xN

N
∑

i=1

fi(xi) (14)

where fi : R
ni → R ∪{+∞}. Constraints can be incorporated

in each term by assigning the value fi(xi) = +∞ when a

constraint is violated. Let us also define the global variable

z ∈ R
n with n ≥ ni, ∀i = 1, . . . , N . Each local variable xi

corresponds to a specific selection of components of the global

variable z. In other words, each local variable component

(xi)j corresponds to a component zg of z. By expressing this

linking with the mapping g = G(i, j), the occurring consensus

constraints can be written as:

(xi)j = zG(i,j), j = 1, . . . , ni, i = 1, . . . , N.

Let us now also define z̃i ∈ Rni , with (z̃i)j = zG(i,j).

Essentially, z̃i expresses the global variable’s idea of what

the local variable xi should be. The optimization problem can

now be expressed in the following general consensus form:

min
x1,...,xN

N
∑

i=1

fi(xi) (15a)

s.t. xi − z̃i = 0, i = 1, . . . , N. (15b)

By formulating the AL for (15), the following ADMM

algorithm can be derived:

xk+1
i := argmin

xi

(

fi(xi) + yk>

i xi +
ρ

2
‖xi − z̃k

i ‖
2
2

)

(16a)

zk+1
g :=

1

kg

∑

g=G(i,j)

(

(xk+1
i )j +

1

ρ
(yk

i )j

)

(16b)

yk+1
i := yk

i + ρ(xk+1
i − z̃k+1

i ) (16c)

where kg is the number of local variable entries that corre-

spond to the global variable entry zg . Note that the primal

(16a) and dual (16c) updates can be carried out in parallel by

each processing element i.

III. MULTI-AGENT COVARIANCE STEERING PROBLEM

FORMULATION

In this section, we present our formulation for the multi-

agent covariance control problem. Our goal is to steer a

team of agents under stochastic linear dynamics to prescribed

final state means and covariances while minimizing their

control effort and taking into account additional inter-agent

constraints.

A. Problem Setup

We consider a team of N agents. Each agent i = 1, . . . , N
has a set of neighbors Ni. We denote the number of neighbors

of each agent with mi, i.e. |Ni| = mi. We can allow for each

agent to have a different number of neighbors. Therefore, our

approach is flexible in terms of how one defines each agent’s

vicinity. Moreover, if agent i considers agent j as a neighbor, it

is not necessary that agent j should consider i as its neighbor

as well. In other words, we do not require that j ∈ Ni ⇔
i ∈ Nj . Here, we assume that the sets Ni, i = 1, . . . , N are

fixed throughout the time horizon t = 0, . . . , T . Further, we

define the set of agents that contain agent i as a neighbor with

Pi = {j : i ∈ Nj}. In terms of communication requirements,

we only assume that each agent should be able to communicate

with the agents belonging in Ni ∪ Pi.

B. Agent Dynamics, Cost and Constraints

Each agent i is subject to the following discrete-time linear

stochastic dynamics:

xi(t+ 1) = Ai(t)xi(t) +Bi(t)ui(t) + wi(t), (17a)

xi(0) = xi,0, xi,0 ∼ N (µi,0,Σi,0). (17b)

Our goal is to propagate the team of agents from a set of

initial state Gaussian distributions xi,0 ∼ N (µi,0,Σi,0), i =
1, . . . , N to a set of prescribed final ones xi,f ∼
N (µi,f ,Σi,f ), i = 1, . . . , N while minimizing the expected

value of the control effort of each agent. Therefore, similar to

(3), the objective function of each agent is formulated as:

Ji(Vi,Ki) =

T−1
∑

t=0

E

[

ui(t)
>ui(t)

]

. (18)

The terminal constraints on the final state mean and covariance

of each agent are also expressed similar to (4b) as:

E[xi(T )] = µi,f ,
(

Σi,f − Cov[xi(T )]
)

∈ S
+
n . (19)

In a multi-agent control setting, it is critical to also account

for inter-agent constraints. We can incorporate a variety of

constraints that can include the mean and the covariance of

the state of each agent. In general, we formulate the inter-

agent constraints between a pair of agents (i, j) as:

Dij(E[xi(t)],E[xj(t)],Cov[xi(t)],Cov[xj(t)]) ≤ 0. (20)



One example could be collision avoidance constraints between

the mean positions of the agents. Alternatively, one could place

a lower bound on the expected value of the distance (which

depends on both the means and the covariances) between the

agents. Another inter-agent constraint could be to enforce a

team of agents to remain in a circle of a given radius with

a virtual agent center, in order to maintain communication

connectivity.

C. Centralized Multi-Agent Covariance Steering Problem

We will now formulate the multi-agent covariance steer-

ing problem in its centralized version. The problem can be

expressed as follows: compute the control policy variables

(Vi,Ki) for all agents i = 1, . . . , N that solve:

min

N
∑

i=1

Ji(Vi,Ki) =

N
∑

i=1

T−1
∑

t=0

E

[

ui(t)
>ui(t)

]

(21a)

s.t. E[xi(T )] = µi,f , i = 1, . . . , N (21b)
(

Σi,f − Cov[xi(T )]
)

∈ S
+
n , i = 1, . . . , N (21c)

Dij(E[xi(t)],E[xj(t)],Cov[xi(t)],Cov[xj(t)]) ≤ 0

j ∈ Ni, i = 1, . . . , N. (21d)

Note that the inter-agent constraints only involve the neighbors

of each agent i.

IV. DISTRIBUTED COVARIANCE STEERING WITH

CONSENSUS ADMM

In this section, we propose our new distributed covariance

steering method based on ADMM for consensus optimization.

A. Transformation to General Consensus Problem

In order for each agent to be capable of handling inter-agent

constraints, it will need to also contain information about its

neighbors j ∈ Ni. Therefore, for each agent i, we define the

augmented state and control vectors x̃i(t) and ũi(t) as:

x̃i(t) = vertcat
(

xi(t), {x
(i)
j (t)}j∈Ni

)

(22a)

ũi(t) = vertcat
(

ui(t), {u
(i)
j (t)}j∈Ni

)

(22b)

where x
(i)
j (t) and u

(i)
j (t) are copy variables computed by agent

i for agent j. In the distributed control setting, the actual

variables xj(t), uj(t) of agent j will be different from the

copy variables of agent i concerning agent j, since the control

executed by agent j is based on its own neighbors, measure-

ments and control computations. The inter-agent constraints

(21d) can now be written from each agent’s perspective as:

Dij(E[xi(t)],E[x
(i)
j (t)],Cov[xi(t)],Cov[x

(i)
j (t)]) ≤ 0

j ∈ Ni, i = 1, . . . , N

or more compactly with respect to the local variables x̃i(t) as:

Di(E[x̃i(t)],Cov[x̃i(t)]) ≤ 0, i = 1, . . . , N. (23)

The inclusion of the copy variables makes it necessary to

enforce a consensus between the copy variables that each

agent uses for its neighbors and the original variables of its

neighbors. If we do not enforce this consensus, then two

neighboring agents may compute control policies that are not

in agreement with each other, causing significant difficulties.

For instance, imagine a multi-vehicle scenario where agent i
has decided for itself to move and for agent j to stop, while

agent j has decided for itself to move and for its neighbor

i to stop. In the absence of consensus, this would result

to an undesirable collision. Such issues can be resolved by

incorporating consensus constraints.

Our proposed strategy is to enforce this consensus through

the control policy decision variables (6) of each agent. We also

define the augmented decision variables:

ν̃i = vertcat
(

νi, {ν
(i)
j }j∈Ni

)

, (24a)

L̃i = vertcat
(

Li, {L
(i)
j }j∈Ni

)

(24b)

where (νi,Li) correspond to the actual policy that agent i will

apply for itself, while (ν
(i)
j ,L

(i)
j ) are copy decision variables

calculated by agent i for its neighbors so that the inter-agent

constraints will be satisfied. Note that through the expressions

(8), the inter-agent constraints (23) can now be written as:

Di(ν̃i, L̃i) ≤ 0, i = 1, . . . , N. (25)

Let us now define the global variables z and W which

contain the decision variables νi and Li, respectively, of all

N agents:

z = vertcat
(

ν1, . . . ,νN

)

, W = vertcat
(

L1, . . . ,LN

)

.

Each local variable ν̃i and L̃i will consist of a selection of

the components of the global variables z and W, respectively.

Let g = G(i, j) be the mapping from local variable indices

i = 1, . . . , N, j ∈ {i ∪ Ni} to a global variable index

g = 1, . . . , N , i.e. the local variable component ν
(i)
j (or L

(i)
j )

corresponds to the global variable component zg (or Wg).

Therefore, the consensus constraints can be expressed as:

ν
(i)
j = zG(i,j), j ∈ {i ∪Ni}, i = 1, . . . , N (26a)

L
(i)
j = WG(i,j), j ∈ {i ∪Ni}, i = 1, . . . , N. (26b)

By using the notation (24), the consensus constraints (26) can

be written in a more compact form as:

ν̃i − z̃i = 0, i = 1, . . . , N (27a)

L̃i − W̃i = 0, i = 1, . . . , N (27b)

where z̃i and W̃i are defined with (z̃i)j = zG(i,j) and

(W̃i)j = WG(i,j) respectively. The connection between the

local and global variable components is illustrated in Fig. 2

for a particular 4-agent example.

Therefore, we can now reformulate the multi-agent covari-

ance steering problem (21) to a general consensus optimization

problem where we wish to compute the optimal local agent



ν̃1, L̃1

ν̃2, L̃2

ν̃3, L̃3

ν̃4, L̃4

z1,W1

z2,W2

z3,W3

z4,W4

Local Variables

Global Variables

Fig. 2: The connections (consensus constraints) between the

local variable of each agent and the global variable compo-

nents. In this figure, we demonstrate a 4-agent example with

N1 = {2}, N2 = {1, 3}, N3 = {2, 4}, N4 = {3}.

variables ν̃i and L̃i such that:

{ν̃i, L̃i}i=1,...,N = argmin

N
∑

i=1

Ji(νi,Li) (28a)

s.t. Fi(νi,Li) = 0, (28b)

Gi(νi,Li) ∈ S
+
n , (28c)

Di(ν̃i, L̃i) ≤ 0, (28d)

ν̃i − z̃i = 0, L̃i − W̃i = 0, (28e)

i = 1, . . . , N

where for (28a), (28b) and (28c), we are using the notation

introduced through (7) and (10). By defining the indicator

functions IFi
(νi,Li), IGi

(νi,Li) and IDi
(ν̃i, L̃i) which take

a zero value if the constraints (28b), (28c) and (28d) respec-

tively are satisfied and an infinite value if they are violated,

and by formulating the new objective function:

Ĵi(ν̃i, L̃i) = Ji(νi,Li) + IFi
(νi,Li) + IGi

(νi,Li)

+ IDi
(ν̃i, L̃i)

the problem (28) can finally be written as:

{ν̃i, L̃i}i=1,...,N = argmin

N
∑

i=1

Ĵi(ν̃i, L̃i) (29a)

s.t. ν̃i − z̃i = 0, L̃i − W̃i = 0, (29b)

i = 1, . . . , N.

Consequently, we have now transformed the multi-agent co-

variance steering problem to a general consensus optimization

problem form (15).

B. Distributed Covariance Steering with ADMM

After transforming the initial problem to a consensus opti-

mization one, we can proceed with deriving an ADMM dis-

tributed algorithm for solving it. The AL for (29) is formulated

as follows:

Lρ =

N
∑

i=1

[

Ĵi(ν̃i, L̃i) + λ>
i (ν̃i − z̃i) + tr

(

M
>
i (L̃i − W̃i)

)

+
ρ

2
‖ν̃i − z̃i‖

2
2 +

µ

2
‖L̃i − W̃i‖

2
2

]

where λi and Mi are the dual variables that correspond to

the consensus constraints (27a) and (27b), respectively, and

ρ and µ are the penalty parameters. Given the AL, we can

now derive the following ADMM algorithm consisting of the

updates:

{ν̃i, L̃i}
l+1 = argmin

ν̃i,L̃i

(

Ĵi(ν̃i, L̃i) + λl>

i ν̃i + tr(Ml>

i L̃i)

+
ρ

2
‖ν̃i − z̃l

i‖
2
2 +

µ

2
‖L̃i − W̃

l
i‖

2
2

)

(30a)

zl+1
g =

1

kg

∑

g=G(i,j)

(

(ν̃l+1
i )j +

1

ρ
(λl

i)j

)

(30b)

W
l+1
g =

1

kg

∑

g=G(i,j)

(

(L̃l+1
i )j +

1

µ
(Ml

i)j

)

(30c)

λl+1
i = λl

i + ρ(ν̃l+1
i − z̃l+1

i ) (30d)

M
l+1
i = M

l
i + µ(L̃l+1

i − W̃
l+1
i ) (30e)

where l indicates the iteration number. Clearly, the primal

(30a) and dual (30d-30e) updates can be executed in parallel

and independently by each agent i. In addition, based on the

assumption that each agent can communicate with the agents

belonging in Ni∪Pi, then it can also perform the global vari-

able component updates (30b-30c) that correspond to itself, i.e.

zi and Wi, independently. To achieve this, after the primal

updates, each agent that belongs in Pi must send its local

(primal and dual) variables to agent i. After the global updates,

the neighbors of agent i, i.e. the ones that belong in Ni, must

send the global variable components that they just computed

to agent i so that it can construct the variables z̃i and W̃i.

This parallelizability of the updates (30a-30e) characterizes the

distributed nature of our method. Furthermore, to warmstart

the algorithm, we initialize the global variable components by

solving the single-agent covariance steering problems of every

agent - without copy variables and inter-agent constraints -

once before initiating the ADMM updates. The dual variables

can be initialized with zero values. The primal update of each

agent i can also be written as:

{ν̃i, L̃i} = argmin
(

Ji(νi,Li) + λl>

i ν̃i +M
l>

i L̃i

+
ρ

2
‖ν̃i − z̃l

i‖
2
2 +

µ

2
‖L̃i − W̃

l
i‖

2
2

)

(31a)

s.t. Fi(νi,Li) = 0, (31b)

Gi(νi,Li) ∈ S
+
n , (31c)

Di(ν̃i, L̃i) ≤ 0. (31d)

This local optimization problem that each agent has to solve

can be seen as the single-agent covariance steering problem

that was initially introduced in Section II but with three funda-

mental modifications. First, each agent now also optimizes for
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Fig. 3: Case 1. A two-agent scenario that demonstrates the

effectiveness of the inter-agent collision avoidance constraints.

a) After 1st ADMM iteration. b) After 31st ADMM iteration.

c) Sum of consensus constraints residual norms.

the copy variables it contains regarding its neighbors. Second,

through these copy variables, the agent can account for the

satisfaction of inter-agent constraints. Finally, the performance

index now also contains some additional terms for reaching

consensus with the other agents. Moreover, if the constraint

(31d) is convex, then the problem (31) remains a convex SDP.

After the first ADMM iteration, the global updates (30b)

and (30c) can be further simplified [9] to the following form:

zl+1
g =

1

kg

∑

g=G(i,j)

(ν̃l+1
i )j (32a)

W
l+1
g =

1

kg

∑

g=G(i,j)

(L̃l+1
i )j . (32b)

Intuitively, one can interpret the global updates as an averaging

between the local variable components that correspond to

zg and Wg . The algorithm terminates when the sum of the
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Fig. 4: Case 2. A team of 10 agents reaches a particular

circle formation specified by the prescribed terminal state

distributions. a) The trajectories of the distribution of each

agent. b-d) Snapshots of the distributions of the agents at

time instants t = 4, 6, 8, respectively. e) Sum of consensus

constraints residual norms.

consensus constraints residual norms divided by the number

of all local variable components - so that we get a normalized

criterion irrespective of the number of agents and neighbors -

gets below a prespecified threshold ε:

S =

N
∑

i=1

(

‖ν̃i − z̃i‖
2
2 + ‖L̃i − W̃i‖

2
2

)

N
∑

i=1

(mi + 1)

≤ ε. (33)

The satisfaction of this criterion indicates that the agents have

reached a sufficient consensus.



V. SIMULATION RESULTS

We apply our distributed covariance steering method on a

multi-vehicle scenario, where the goal is to propagate each ve-

hicle from an initial state Gaussian distribution to a prescribed

one. The vehicles operate under double integrator dynamics on

a plane with xi(t) =
[

xi(t) yi(t) ẋi(t) ẏi(t)
]>

, where

xi(t), yi(t) are the coordinates of the i-th agent at time step t.
Inter-agent collision avoidance constraints between the mean

positions of the vehicles are also imposed. Note that this type

of constraints will be non-convex, but we can overcome this

issue by taking a first-order Taylor approximation around the

previous mean state trajectories at each ADMM iteration as

in [24]. In particular, for the local problem of each agent, the

linearization is performed about the mean state trajectories

that occur from its actual and copy control policy variables

regarding its neighbors.

We examine two cases. In the first one, we present a scenario

with two agents reaching a goal distribution while the anti-

collision constraints are guaranteed to be satisfied after a

sufficient number of ADMM iterations. In the second one, we

show a formation example with 10 agents. In all examples,

the time horizon is T = 10 and the process noise covariance

is W = diag(0.02, 0.02, 0.2, 0.2)2. The minimum allowed

distance between the mean positions of the agents is d = 1.5.

The AL penalty parameters are tuned to ρ, µ = 103 and the

stopping criterion tolerance is assigned to be ε = 0.05.

Case 1: In the first case, the two agents start from initial

state distributions with means µ1,0 =
[

0 2 0 −25
]>

,

µ2,0 =
[

0 −2 0 25
]>

and covariances Σ1,0 = Σ2,0 =
diag(0.2, 0.2, 0.5, 0.5)2. These initial mean velocities will

drive the agents into a collision course that our method will

have to handle. The prescribed terminal means and covari-

ances are µ1,f =
[

5 1 0 0
]>

, µ2,f =
[

5 −1 0 0
]>

, Σ1,f = R(−π/4)diag(0.2, 0.05, 0.5, 0.5)2R(−π/4)> and

Σ2,f = R(π/4)diag(0.2, 0.05, 0.5, 0.5)2R(π/4)> where R(θ)
is the rotation matrix. Figure 3a shows 100 realizations of the

trajectory of each agent after the first ADMM iteration where

consensus has not been reached, resulting to a high probability

of collision. We also demonstrate the trajectories that would

occur for each agent if the copy control policy variables of

its neighbor were applied on it. After the first iteration, each

agent has computed their actual and copy variables so that

they would satisfy the collision avoidance constraints (from

its perspective), while solving its own covariance steering

problem and not taking into account the one of its neighbor.

It is through the soft consensus constraints that the actual and

copy control policies concerning the same agent will start

converging to the same one during the following ADMM

iterations. In Fig. 3b, the agents have reached consensus after

15 ADMM iterations and successfully handle the collision

avoidance constraints. In each figure, the 99.7% confidence

regions of the initial and target distributions are displayed with

a black ellipsoid.

Case 2: Next, we consider a team of 10 agents that start

from the initial position distributions shown in Fig. 4a with
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Fig. 5: Comparison of computational times between our dis-

tributed and a centralized approach.

zero mean initial velocities. More specifically, the initial

state covariances are Σi,0 = diag(0.2, 0.2, 0.5, 0.5)2, ∀i =
1, . . . , N and the final target state covariances are Σi,f =
R(−φi)diag(0.2, 0.05, 0.5, 0.5)

2R(−φi), ∀i = 1, . . . , N
where φi = (2i−1)2π/N . Each agent has mi = 4 neighbors.

As demonstrated, the agents reach the desired circle formation

defined by the prescribed terminal distributions. Note that as

in Case 1, the terminal distributions are within the prescribed

ones, placing an upper bound on the uncertainty of the final

state. Moreover, as shown in Figs. 4b-d, where some snapshots

of the distributions are provided for t = 4, 6, 8, the agents

achieve the formation while successfully avoiding collisions.

Scalability to large-scale systems: Next, we demonstrate the

applicability of our method on large-scale stochastic multi-

agent systems in terms of computational demands. In par-

ticular, we repeat Case 2 with a varying number of agents

and we compare the computational times of our distributed

method and an equivalent centralized approach. For N ≤ 20,

we suppose that mi = N/2, while for N > 20, we fix the

number of neighbors to mi = 10. The computational times

for both approaches are shown in Fig. 5. The simulations

were performed in Matlab R2020b using CVX [14] as the

modeling software, MOSEK 9.1.9 [1] as the solver and an Intel

Core i5-8279U CPU @ 2.40GHz. The increased computational

efficiency of our ADMM-based approach is mainly due to the

fact that each agent solves in parallel a local covariance steer-

ing (SDP) problem where the terminal semidefinite covariance

constraint only involves its own covariance. On the other hand,

a centralized scheme would result to an SDP where the size

of the terminal semidefinite constraint increases with the total

number of agents.

VI. CONCLUSIONS

In this work, we proposed multi-agent covariance steering

as a method that can provide probabilistic safety guarantees

and an upper bound on the uncertainty of the terminal states of

the agents. To deal with the excessive computational demands

of centralized multi-agent covariance control, we suggested

an ADMM-based approach that solves the problem in a



distributed fashion. This framework leads to each agent solving

a modified version of the single-agent covariance steering

problem in parallel. Simulation results on teams of vehicles

verify the effectiveness of our approach and, most importantly,

demonstrate its scalability to large-scale stochastic multi-agent

systems.

In future works, we aim to address the multi-agent co-

variance control problem for agents with nonlinear dynamics.

Furthermore, we plan to explore how distributed optimization

architectures, such as ADMM, can be used in other stochas-

tic control problems beyond covariance steering, leading to

scalable multi-agent control algorithms. Finally, we will also

consider problems with multi-agent systems under partial state

information and time-varying topologies.

ACKNOWLEDGMENTS

The work of the first and fourth author was supported by

awards NSF CMMI-1936079 and ARO W911NF2010151. The

work of the second and third author was supported in part by

NSF awards ECCS-1924790 and CMMI-1937957. Alexandros

Tsolovikos acknowledges support by the A. Onassis Founda-

tion scholarship.

REFERENCES

[1] MOSEK ApS. The MOSEK optimization toolbox for

MATLAB manual. Version 9.0., 2019. URL http://docs.

mosek.com/9.0/toolbox/index.html.

[2] Efstathios Bakolas. Optimal covariance control for

stochastic linear systems subject to integral quadratic

state constraints. In 2016 American Control Conference

(ACC), pages 7231–7236. IEEE, 2016.

[3] Efstathios Bakolas. Optimal covariance control for

discrete-time stochastic linear systems subject to con-

straints. In 2016 IEEE 55th Conference on Decision and

Control (CDC), pages 1153–1158. IEEE, 2016.

[4] Efstathios Bakolas. Finite-horizon covariance control for

discrete-time stochastic linear systems subject to input

constraints. Automatica, 91:61–68, 2018.

[5] Efstathios Bakolas. Dynamic output feedback control

of the Liouville equation for discrete-time SISO linear

systems. IEEE Transactions on Automatic Control, 64

(10):4268–4275, 2019.

[6] Efstathios Bakolas. Minimum variance and covariance

steering based on affine disturbance feedback control pa-

rameterization. arXiv preprint arXiv:2011.05394, 2020.

[7] Isin M Balci and Efstathios Bakolas. Covariance steer-

ing of discrete-time stochastic linear systems based on

Wasserstein distance terminal cost. IEEE Control Sys-

tems Letters, 2020.

[8] Isin M Balci and Efstathios Bakolas. Covariance control

of discrete-time Gaussian linear systems using affine

disturbance feedback control policies. arXiv preprint

arXiv:2103.14428, 2021.

[9] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed

optimization and statistical learning via the alternating

direction method of multipliers. Now Publishers Inc,

2011.

[10] Yongxin Chen, Tryphon T Georgiou, and Michele Pavon.

Optimal steering of a linear stochastic system to a final

probability distribution, Part I. IEEE Transactions on

Automatic Control, 61(5):1158–1169, 2015.

[11] Yongxin Chen, Tryphon T Georgiou, and Michele Pavon.

Optimal steering of a linear stochastic system to a final

probability distribution, Part II. IEEE Transactions on

Automatic Control, 61(5):1170–1180, 2015.

[12] Yongxin Chen, Tryphon T Georgiou, and Michele Pavon.

Optimal steering of a linear stochastic system to a final

probability distribution, Part III. IEEE Transactions on

Automatic Control, 63(9):3112–3118, 2018.

[13] Zilong Cheng, Jun Ma, Xiaoxue Zhang, Clarence W

de Silva, and Tong Heng Lee. Admm-based parallel op-

timization for multi-agent collision-free model predictive

control. arXiv preprint arXiv:2101.09894, 2021.

[14] Michael Grant and Stephen Boyd. CVX: Matlab software

for disciplined convex programming, version 2.1, 2014.

[15] Karolos M Grigoriadis and Robert E Skelton. Minimum-

energy covariance controllers. Automatica, 33(4):569–

578, 1997.

[16] Abhishek Halder and Eric DB Wendel. Finite horizon lin-

ear quadratic Gaussian density regulator with Wasserstein

terminal cost. In 2016 American Control Conference

(ACC), pages 7249–7254. IEEE, 2016.

[17] Anthony Hotz and Robert E Skelton. Covariance control

theory. International Journal of Control, 46(1):13–32,

1987.

[18] Georgios Kotsalis, Guanghui Lan, and Arkadi S Ne-

mirovski. Convex optimization for finite-horizon robust

covariance control of linear stochastic systems. SIAM

Journal on Control and Optimization, 59(1):296–319,

2021.

[19] Viet-Anh Le and Truong X Nghiem. Gaussian process

based distributed model predictive control for multi-

agent systems using sequential convex programming and

ADMM. In 2020 IEEE Conference on Control Technol-

ogy and Applications (CCTA), pages 31–36. IEEE, 2020.

[20] Wei Li and Christos G Cassandras. Distributed coopera-

tive coverage control of sensor networks. In Proceedings

of the 44th IEEE Conference on Decision and Control,

pages 2542–2547. IEEE, 2005.

[21] Kazuhide Okamoto and Panagiotis Tsiotras. Optimal

stochastic vehicle path planning using covariance steer-

ing. IEEE Robotics and Automation Letters, 4(3):2276–

2281, 2019.
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