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AbstractÐ This letter presents a new control paradigm
applicable to nonlinear systems such as robots subject to
chance and covariance assignment constraints which we
refer to as hierarchical optimal covariance control. To the
best of our knowledge, this is the first study to formulate the
hierarchical optimal covariance control problem involving
multiple operational tasks. The framework is defined as a
multi-stage optimization problem considering multiple hier-
archical tasks specified in lexicographic order. Towards this
goal, we first approximate the nonlinear dynamic model of a
robot into multiple linear stochastic systems by linearizing
the model along given trajectories. We then project these
stochastic models onto the null-space of the previous task
models for efficiently solving lexicographical optimization.
In addition, we specify probability functions to account
for chance constraints using the Whittacker M function.
We formulate the chance constraints as a positive semi-
definite matrix constraint and solve the hierarchical optimal
covariance control problem using sequential semi-definite
programming. We demonstrate that this procedure yields
higher accuracy for multiple hierarchical tasks than em-
ploying deterministic operational space control models.

Index TermsÐ Stochastic Control, Hierarchical Task-
Space Control, Robotics

I. INTRODUCTION

THIS letter presents a control paradigm, which we refer
to as hierarchical covariance control (HCC), to control

highly articulated nonlinear robotic systems when executing
multiple operational tasks [1]. We formulate HCC using
lexicographic optimization to solve for the task hierarchy in
redundant robots [2]. The main purpose of this work is to
steer all tasks’ states to the desired Gaussian distributions,
while optimizing the objective functions of the tasks in their
order of importance. In addition to the mean and covariance
constraints associated with the terminal states, we consider
equality constraints enforcing the task hierarchy and chance
constraints restricting the probability that the state exceeds the
tunnel defined by a Euclidean distance on the states.

State-of-the-art control of redundant robotic systems uses
task hierarchies to synthesize complex task behaviors [2]±
[5]. For instance, Operational Space Control (OSC) [1], and
Task-Space Inverse Dynamics Control (TSIDC) [6] have been
developed to track accurately given task trajectories based on
deterministic models. However, most robotic systems such as
legged robots, aerial manipulators, and underwater robots con-
tain high degree of uncertainty due to sensor noise, structural
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deformations, complex mechanical transmissions, and external
perturbations [7]. Tracking performance of robots with uncer-
tain kinematics, dynamics and sensing can be improved using
adaptive control [8], [9]. At the joint torque level, Gaussian
stochastic models are employed to enhance the robustness of
task-space controllers [10]. Although the above studies have
shown improved performance under uncertainty, the use of
covariance constraints on the terminal states has not been
previously studied as a way to substantially decrease task
errors when uncertainty is high.

Optimal covariance control (OCC) has been broadly studied
to control stochastic systems subject to covariance constraints.
Recently, linear stochastic systems have been controlled over a
finite-time horizon considering not only covariance constraints
but also state means and control input constraints [11]±[13]. In
addition to covariance constraints, chance constraints can be
incorporated to restrict the probability of constraint violation
[14], [15]. OCC researchers have extended their studies to non-
linear dynamical systems by linearizing the system dynamics
along a reference trajectory [16], or at the current state of the
system [17]. An iterative covariance control problem has been
proposed to steer nonlinear uncertainty by iteratively solving
an approximated, and linearized problem [16]. Also, stochastic
differential dynamic programming has been used to solve the
nonlinear OCC problem [18].

The above OCC studies only consider the problem of
steering the state of a single task or output. For instance,
an autonomous vehicle is controlled using OCC using the
location of the vehicle as the state [19], [20]. Our work, in
contrast, deals with multiple prioritized tasks defined by using
the nonlinear kinematics and dynamics of a robot. The authors
in [21] formulate an OCC problem for multi-agent systems.
Although the inter-agent constraints are considered, the ap-
proach mentioned above does not consider shared dynamic
properties or a hierarchy among the agents. To the best of our
knowledge, OCC has not been studied for nonlinear systems
executing multiple hierarchical tasks on a shared dynamical
model to date.

The main contribution of this study is to formulate and
solve an HCC problem for nonlinear robotic systems with
uncertainty represented as Gaussian white noise. We deal with
the task hierarchy by solving a lexicographic optimization
problem in a similar way to Hierarchical Quadratic Pro-
gramming (HQP) in [2]. HQP solves an instantaneous-time
optimization problem. In contrast, our formulation provides
the means to control multiple tasks enforcing a hierarchy
over a finite horizon. Our solution efficiently provides for
an operational task hierarchy for stochastic systems. In ad-
dition, we incorporate chance constraints thus determining
the probability that the states remain in the trust tubes. Our
task hierarchies impose that the tubes of higher prioritized



tasks are narrower than those of lower prioritized ones. Our
formulation also incorporates task space equality constraints.
These techniques reduce the computation burden of the op-
timization. Chance constraints are described explicitly using
the Whittacker M function however they are nonlinear. If we
directly employ Nonlinear Programming (NLP) to solve the
proposed problem, a significant amount of computation time
will be required and the final result will be highly sensitive
to initial guesses. Recently, constrained nonlinear optimization
problems can be solved using collocation methods. However,
these methods are still costly because they formulate large
optimization problems over all control variables. By using
convex relaxation techniques [12], we solve the proposed HCC
problem via sequential Semi-Definite Programming (SDP).
SDP is capable of solving the problem much faster than
NLP problems. Numerical simulations clearly show that the
proposed approach improves the control accuracy compared
to operational space control.

II. PROBLEM STATEMENT

A. Preliminaries

In general, with a configuration space Q ⊂ R
n and an input

space U ⊂ R
n, the rigid-body dynamics of a robotic system

is described as

M(q)q̈ + b(q̇, q) = u (1)

where q ∈ Q and u ∈ U denote the joint variable and control
torque input, respectively. M(q) ∈ S

n
++ and b : Q×R

n 7→ R
n

represent the mass/inertia matrix and the functional mapping
for the sum of Coriolis/centrifugal and gravitational forces.
Given m hierarchical tasks, we transform the above dynamic
equation into the operational space dynamic equation for the
i-th task, ϑi = gi(q) ∈ R

ni where gi : Q 7→ R
ni is a C1

function, as follows:

ϑ̈i + pi(q̇, q) = Ji(q)M(q)−1u (2)

where Ji(q) = ∂ϑi

∂q and pi(q̇, q) = Ji(q)M(q)−1b(q̇, q) −

J̇i(q̇, q)q̇. In turn we represent the i-th task-space subsystems

in state-space form with xi = [ϑ⊤
i , ϑ̇

⊤
i ]

⊤ ∈ R
2ni :

dxi = fi(xi, u)dt+ C(t)dw (3)

where w(t) is a standard Brownian motion, C(t) is a C1

function, and

fi(xi, u) =

[

ϑ̇i

Ji(q)M(q)−1u− pi(q̇, q)

]

. (4)

Using the discretization and linearization techniques described
in, for instance, Section II of [16], we can obtain the following
discrete-time linear stochastic system:

xi,τ+1 = Ai,τxi,τ +Bi,τui,τ + ri,τ + Ci,τwτ (5)

where τ ∈ [0, N − 1]d and N is a positive integer. Ai,τ , Bi,τ ,

Ci,τ , and ri,τ are defined as in [16]. In addition, E
[

wτw
⊤
s

]

=
δ(τ, s)Wτ , and Wτ ∈ S

2n
+ . δ denotes the Kronecker function

computed as follows: δ(τ, s) = 1 when τ = s and δ(τ, s) = 0,
otherwise. Furthermore, we assume that E

[

xi,τw
⊤
s

]

= 0 and

E
[

wsx
⊤
i,τ

]

= 0 where s ∈ [τ,N − 1]d. We will consider this
state-space model in (5) to formulate the HCC problem.

B. Hierarchical Covariance Control Problem

The objective of HCC is to steer all task trajectories of
the robotic system to a desired terminal (N -th) Gaussian
distribution. We denote by µi,τ ∈ R

2ni and Σi,τ ∈ S
2ni

+
the mean vector and covariance matrix for the i-th task’s
Gaussian distribution at the τ -th stage and by µd

i,N and Σd
i,N

the corresponding desired quantities at the N -th stage, while
optimizing multiple performance indices in a lexicographic
order

lexmin I(J1, · · · ,Ji, · · · Jm) (6)

where Ji denotes the performance index for the i-th task.
In addition, we incorporate chance constraints which require
that the probability of the state remaining within a given trust
region is equal or greater than a pre-defined threshold. Since
in most cases task-space (operational space) is defined as
a subspace of the Euclidean space to control the positions
of robot body parts [1]±[5], we use the Euclidean distance
between task states, xi,τ , and their state mean to formulate
the chance constraint, i.e.:

P[di,τ ≤ εi] ≥ η, d2i,τ = ∥xi,τ − µi,τ∥
2 (7)

with εi > 0, 0 ≤ η ≤ 1, i ∈ {1, · · · , m}, and τ ∈
{0, · · · , N}. We employ chance constraints to control the
effect of uncertainty while steering the robotic system. The
chance constraints ensure that the probability of keeping the
Euclidean distance between the task states small is above
a certain level over the interval [0, N ]. Based on these
descriptions, we formulate the following optimal covariance
control problem to satisfy the given terminal conditions.

Problem 1. Let N ∈ Z++, initial conditions, µi,0, Σi,0,

and terminal conditions, µd
i,N , Σd

i,N be known a priori. The
optimal covariance control problem for a linear stochastic
system is formulated as follows:

min Ji := E

[

N−1
∑

τ=0

x⊤
i,τRxi

xi,τ + u⊤
i,τRui

ui,τ

]

s.t. xi,τ+1 = Ai,τxi,τ +Bi,τui,τ + ri,τ + Ci,τwτ (8a)

µi,N = E[xi,N ] = µd
i,N , (8b)

Σi,N = Σd
i,N , (8c)

P [di,τ ≤ εi] ≥ ηi, (8d)

E [Bk,τui,τ ] = 0, ∀k ∈ {1, · · · , i− 1} (8e)

where Rxi
∈ S

2ni

+ , and Rui
∈ S

ni

+ are given and εk(τ) ≤
εi(τ) where τ ∈ [0, N ]. The constraint (8e) enforces the
hierarchy and vanishes when i = 1.

The constraint (8e) aims to perturb less the optimal tra-
jectory of the k-th task due to the control command ui,τ .
Therefore, the constraint (8e) ensures that the k-th task error
stays smaller than the error of the i-th task. The initial state
xq,0 = [q⊤0 , q̇⊤0 ]

⊤ is a random vector; in particular, q0 ∼
N (µq,0,Σq,0) and q̇0 = 0, which corresponds to a static
configuration. Then, it is possible to transform xq,0, µq,0, and
Σq,0 into xi,0, µi,0, and Σi,0 for the i-th task space using the
functional mapping gi. To solve the lexicographic optimization
in (6), we sequentially solve Problem 1 for all i ∈ {1, · · · , m}.

III. THE PROPOSED METHOD

In this section, we properly modify the cost function and
define the constraints which include the task-space dynamics,



the task hierarchy, and the mean and covariance terminal
conditions. The resulting problem is turned into a Semi-
Definite Program (SDP).

A. Linear Model with a Decision Variable

We define a finite-horizon covariance control prob-
lem for discrete-time stochastic linear systems [12]. Con-
sider the concatenated state and control input vectors:
xi := [x⊤

i,0, · · · , x
⊤
i,N ]⊤, ui := [u⊤

i,0, · · · , u
⊤
i,N−1]

⊤, ri :=

[r⊤i,0, · · · , r
⊤
i,N−1]

⊤, and w := [w⊤
i,0, · · · , w

⊤
i,N−1]. In addition,

the control torque input is computed as uτ =
∑m

i=1 ui,τ , or
u =

∑m
i=1 ui when considering the concatenated vectors.

We formulate a linear stochastic system on the concatenated
vectors in a similar form to [12]:

xi = Aixi,0 +Biu+ Ciw +Diri (9)

where Ai = Ωi(0) and

Bi =[Ωi(1)Bi,0, · · · , Ωi(N)Bi,N−1],

Ci =[Ωi(1)Ci,0, · · · , Ωi(N)Ci,N−1],

Di =[Ωi(1), · · · , Ωi(N)],

Ωi(s) =[Φi(0, s)
⊤, · · · , Φi(N, s)⊤]⊤.

(10)

In addition, Φi(τ, s) = Ai,τ−1 · · ·Ai,s and Φi(s, s) = I when
τ ≥ s and Φi(τ, s) = 0, otherwise.

Let us formulate an admissible control policy. In principle,
the control policy consists of feedback and feedforward terms.
However, when the terminal state mean is close to zero or the
feedforward terms are considered in the joint space dynamics,
it suffices to consider control policies that can be represented
as follows:

πi(xi,0, · · · , xi,τ ; τ) =

τ
∑

s=0

Ki(τ, s)xi,s (11)

where Ki(τ, s) ∈ R
ni×2ni for all τ ∈ [0, N − 1]d with s ≤ τ .

In the general case, an additional feedforward term should be
included in (11) (in other words, the control policy should be
an affine function of past and current states rather than a linear
one as in (11)). The loss of generality is, however, minimal
and one can easily re-derive the subsequent formulas for the
more general case after making the necessary minor changes.
The control input can therefore be computed using ui = Kixi

where

Ki :=









Ki(0, 0) 0 · · · 0

Ki(1, 0) Ki(1, 1) · · · 0

...
...

...
...

Ki(N − 1, 0) Ki(N − 1, 1) · · · 0









. (12)

Then, we obtain the expression of the closed loop dynamics
for each state as follows:

xi = (I−BiKi)
−1(Xi +Biu

⋆
i−1) (13)

where (I − BiKi) is invertible. In addition, Xi = Aixi,0 +

Ciw +Diri and u
⋆
i−1 =

∑i−1
k=1 u

⋆
k where u

⋆
k is the optimal

control input for the k-th operational task and u
⋆
0 = 0. It is

noted that (.)⋆ denotes the optimal properties. Let us define
the decision variable, Ψi := Ki(I − BiKi)

−1. Therefore we
can express xi with respect to Ψi as follows:

xi = (I+BiΨi)(Xi +Biu
⋆
i−1). (14)

Proposition 1. (I−BiKi) is invertible and its inverse matrix
is I+BiΨi.

Proof. Since BiKi is a strict block lower triangular matrix,
which is nilpotent: i.e., (BiKi)

n = 0 for some n ∈ N:

(I−BiKi)(I+BiKi+ · · ·+(BiKi)
n−1) = I− (BiKi)

n = I

After simple algebraic manipulation, it follows

(I−BiKi)
−1 =(I−BiKi +BiKi)(I−BiKi)

−1

=I+BiKi(I−BiKi)
−1 = I+BiΨi.

It is noted that Ψi is a block lower triangular matrix, since
Bi and Ki are block lower triangular matrices.

B. Constraints Determining the Task Hierarchy

By using the concatenated model in (9), we next show that
the optimal values of the objective functions of previous tasks
J ⋆
1 , · · · ,J

⋆
i−1 will not be affected by the control input u

⋆
i

minimizing the objective function Ji.

Proposition 2. If E [Bk,τui,τ ] = 0 for all k ∈ {1, · · · , i−1},
u
⋆
i does not affect J ⋆

1 , · · · ,J
⋆
i−1.

Proof. Assume that Rxk
and Ruk

are specified a priori. Also
assume that u

⋆
k are computed by solving prior optimization

problems defined in Problem 1 for i = {1, · · · , k}. Next,
we will show that E

[

trace(xkx
⊤
k )

]

= E
[

trace(x⋆
kx

⋆⊤
k )

]

.
Since adding an additional task ui is equivalent to adding
a perturbation to the optimal trajectory, i.e. xk = x

⋆
k +Bkui,

we have

E
[

xkx
⊤
k

]

=E
[

(x⋆
k +Bkui)(x

⋆
k +Bkui)

⊤
]

=E
[

x
⋆
kx

⋆⊤
k

]

+ E
[

Bkuix
⋆⊤
k

]

+ E
[

x
⋆
ku

⊤
i B

⊤
k

]

+ E

[

Bkuiu
⊤
i B

⊤
k

]

= E
[

x
⋆
kx

⋆⊤
k

]

where E [Bkui] = E

[

∑N−1
j=0 Ωk(j + 1)Bk,jui,j

]

= 0. In ad-

dition, E
[

Bkuix
⋆⊤
k

]

= E

[

∑N−1
j=0 Ωk(j + 1)Bk,jui,jx

⋆⊤
k,j

]

=

0 implies that E[x⋆
ku

⊤
i B

⊤
k ] = 0. Therefore, ui does not affect

J ⋆
1 , · · · ,J

⋆
i−1.

The above term E [Bk,τui,τ ] is expressed in terms of Ψi as
follows:

E [Bk,τui,τ ] =Bk,τSτΨi

(

E[Xi] +BiE[u
⋆
i−1]

)

(15)

E[Xi] =Aiµi,0 +Diri (16)

where Sτ = [0, · · · , I, · · · ,0] ∈ R
n×(N+1)n is a block

matrix whose τ + 1-th sub-matrix is identity. For instance,
S0 = [I, · · · ,0] and SN = [0, · · · , I]. We concatenate these
constraints to enforce the task hierarchy for the i-th task in
the following manner:







B
bdiag
1,N
...

B
bdiag
i−1,N






Ψi(E[Xi] +BiE[u

⋆
i−1]) = 0 (17)

where B
bdiag

k,N = bdiag(Bk,1, · · · , Bk,N ). Lower priority tasks
contain more constraints in (17) since the i-th index is higher,
which means that the size of the constraint matrix becomes
larger, (size =

∑i−1
k=1 2nkN × nN ) resulting in a significant

increase of the computational time.



Instead of explicitly considering the above equality con-
straint matrix, we employ a null-space projection matrix onto
higher prioritized tasks as follows:

Bnull
k,τ =

[

0

Jk|null(q
d
τ )M(qdτ )

−1

]

, (18)

where Jk|null(q) = Jk(q)Nk−1(q), J1|null(q) = J1(q), and

Nk(q) = I − Jk|null(q)
†Jk|null(q). Since Nk(q)M(q)−1 =

M(q)−1
Nk(q)

⊤, we can write that Bnull
k,τ = Bk,τNk−1(q

d
τ )

⊤.
Then, the perturbed task-space dynamics fulfilling the con-
straint (17) becomes

xi =Aixi,0 +BNi
(ui + u

⋆
i−1) + Ciw +Diri (19)

where BNi
= [Ωi(1)B

null
i,0 , · · · , Ωi(N)Bnull

i,N−1]. We now
express the decision variable Ψi with the respect to the
constrained matrix BNi

: Ψi = Ki(I − BNi
Ki)

−1. Since
BNi

Ki is a strict block lower triangular matrix, (I−BNi
Ki)

is invertible and (I−BNi
Ki)

−1 = I+BNi
Ψi. The detailed

proof is identical to Proposition 1 and therefore is omitted.
We modify xi using the decision variable Ψi as follows:

xi = (I+BNi
Ψi)(Xi +BNi

u
⋆
i−1) (20)

where Bkui = 0 for all k < i as is shown in the proposition
that follows.

Proposition 3. Bkui = 0 where ui is obtained via equation
(20) for all k < i.

Proof. The matrix BNi
can be expressed as BNi

= BiN
⊤
i

where N i = bdiag(Ni−1,0, · · · ,Ni−1,N−1) and the simpli-

fied notation Ni−1,τ = Ni−1(q
d
τ ) has been used. Then, we

can express Bkui as follows:

Bkui = BkKixi = Bk(I+ΨiBNi
)−1

Ψixi

= Bk(Ψi −ΨiBNi
Ki)xi = Bk(Ψi −ΨiBiK

N

i )xi

where K
N

i = N
⊤
i−1Ki. Since ΨiBiK

N

i = K
N

i BiΨi and

BkN
⊤
i−1 = 0, we can write that BkKixi = BkΨixi.

Because Ki and Ψi are block lower triangular matrices, we
determine that either Ki = Ψi = Ki(I − BiKi)

−1 or
BkKi = BkΨi = 0 to satisfy the above equation. When
BiKi ̸= 0, i.e., ui ̸= 0, Ki cannot be identical to Ψi. In
that case BkKi = BkΨi = 0. Therefore, Bkui is zero for all
k < i.

Using the formulation in (20), avoids the need to include
the matrix equality constraint (17). As such, the computational
complexity of the SDP problem does not change significantly
when incorporating task hierarchy constraints.

C. Performance Index

In this section, we express the performance index defined in
Problem 1 in terms of the decision variable Ψi. Based on the
constrained state-space model defined in (20), the performance
index takes the following form:

Ji(Ψi) = E
[

trace
(

xix
⊤
i Rxi

+ uiu
⊤
i Rui

)]

(21)

with Rxi
:= bdiag(Rxi

, · · · , Rxi
) ∈ S

2(N+1)ni

+ and Rui
:=

bdiag(Rui
, · · · , Rui

) ∈ S
Nn
+ . We express the following ex-

pectations to represent the performance index in terms of Ψi.

E[xix
⊤
i ] =(I+BNi

Ψi)Ei(I+BNi
Ψi)

⊤, (22)

E[uiu
⊤
i ] =ΨiEiΨ

⊤
i (23)

where Ei = Ai(Σi,0 + µi,0µ
⊤
i,0)A

⊤
i + CiE

[

ww
⊤
]

C
⊤
i +

Dirir
⊤
i D

⊤
i + E[Xi]E[u

⋆
i−1]

⊤B
⊤
Ni

+ BNi
E[u⋆

i−1]E[Xi]
⊤ +

BNi
E[u⋆

i−1]E[u
⋆
i−1]

⊤B
⊤
Ni

+ Aiµi,0r
⊤
i D

⊤
i + Diriµ

⊤
i,0A

⊤
i .

The above performance index, Ji(Ψi), is convex. The proof
is similar to that of Proposition 1 in [12] and therefore is
omitted. Using the optimal decision variables of the previous
task problems, we compute E[u⋆

i ]. It is possible to generalize
the formulation of the mean as follows:

E [u⋆
i ] = Ψ

⋆
i (E[Xi] +BNi

E[u⋆
i−1]) (24)

where i ≥ 1 and E[u⋆
0] = 0. Since Ei ∈ S

2ni(N+1)
+ , we

calculate the value Ei using the following decomposition,

EiE
⊤
i = Ei. Finally, we express the performance index as

follows:

Ji(Ψi) = ∥R1/2
xi

(I+BNi
Ψi)Ei∥

2
F + ∥R1/2

ui
ΨiEi∥

2
F (25)

where ∥ · ∥F denotes the Frobenius norm.

D. Mean, Covariance, and Chance Constraints

We represent the constraints in terms of the variable Ψi. To
do that, we express E [xi] and Σi using Φi as follows:

E[xi] =(I+BNi
Ψi)(E[Xi] +BNi

E[u⋆
i−1]), (26)

Σi =(I+BNi
Ψi)Φi(I+BNi

Ψi)
⊤, (27)

Φi =Ei +BNi
E[u⋆

i−1]E[Xi]
⊤ + E[Xi]E[u

⋆
i−1]

⊤B
⊤
Ni

+BNi
E[u⋆

i−1]E[u
⋆
i−1]

⊤B
⊤
Ni

+ E[Xi]E[Xi]
⊤. (28)

First, the terminal mean constraint (8b) is written as the
equality constraint using (26): Π

eq
i (Ψi) = 0 where

Π
eq
i (Ψi) =SNE [xi]− µd

i,N (29)

=SN (I+BNi
Ψi)(E[Xi] +BNi

E[u⋆
i−1])− µd

i,N .

Second, the terminal covariance condition (8c) can be formu-
lated as a Positive Semi-Definite (PSD) matrix constraint. In
particular, equation (8c) corresponds to the following matrix
equality constraint in terms of Ψi using (27):

Σd
i,N =SNΣiS

⊤
N

=SN (I+BNi
Ψi)Φi(I+BNi

Ψi)
⊤
S
⊤
N . (30)

However, to avoid solving a complicated NLP, we employ a
simple convex relaxation technique by replacing the matrix
equality constraint with a PSD matrix inequality constraint:
Pi(Ψi) ⪰ 0 where

Pi(Ψi) =

[

Σd
i,N O

O
⊤

I

]

. (31)

and OO
⊤ = SN (I+BNi

Ψi)Φi(I+BNi
Ψi)

⊤
S
⊤
N .

We consider the chance constraints in Problem 1 using the
Euclidean distance of a point xi,τ from µi,τ . The chance con-
straints correspond to the following inequalities [22]: P(di ≤
εi) = H(εi) where

H(εi) =
1

2m−1(m− 1)!

∫ εi

0

y2m−1e−
y2

2 dy

=
ε2mi e−

ε2
i
4 M (1−m)

2 ,m2
(− ε2i

2 )

2m−1(m− 1)!(2m(−
ε2
i

2 )
(m+1)

2 )

(32)



an Ma,b(z) denotes the Whittacker M function defined as
follows:

Ma,b(z) = e−
z
2 z

b+1
2 M

(

b− a+
1

2
, 1 + 2b, z

)

(33)

with the Kummer’s confluent hypergeometric function M
explained in [23]. Given ηi, we define the upper bound of the
Euclidean distance as εi = H−1(ηi), which can be numerically
obtained. We change the bound of the Euclidean distance,
εi, to make the optimization problem feasible as follows:
εi = max

(

H−1(ηi), εi−1

)

. The Euclidean distance of xi to
the mean at time step τ is rewritten as follows:

d2i,τ =(xi,τ − µi,τ )
⊤(xi,τ − µi,τ ) ≤ ε2i . (34)

The above inequality constraint is considered as the PSD
constraint based on the following Proposition 4.

Proposition 4. The chance constraints (8d) can be formulated
as the following PSD constraint: Li,τ ⪰ 0, where

Li,τ :=

[

ε2i v
⊤
i,τ

vi,τ I

]

where vi,τ = Sτ (I + BNi
Ψi)(Ai(xi,0 − µi,0) + Ciw +

B
N

i (u⋆
i−1 − E[u⋆

i−1])).

Proof. This proof uses d2i,τ in (34), xi in (14), and E[xi] in
(26). We express xi,τ − µi,τ as follows:

xi,τ − µi,τ =Sτ (I+BNi
Ψi)(Ai(xi,0 − µi,0)

+ Ciw +BNi
(u⋆

i−1 − E[u⋆
i−1]))

(35)

Then the inequality constraints become d2i,τ = v
⊤
i,τvi,τ ≤ ε2i .

Therefore, we can express the above inequality constraint as
a PSD constraint using Schur complements.

Considering the above matrix constraints for all time steps
τ ∈ [1, N − 1], we define the following matrix including the
terminal covariance constraint in (31) as follows:

Π
PSD
i (Ψi) := bdiag(Pi(Ψi),Li,1, · · · ,Li,N−1) (36)

where Π
PSD
i (Ψi) ⪰ 0 is equivalent to holdng Pi(Ψi) ⪰ 0

and Li,τ ⪰ 0 for all τ ∈ [1, N − 1] by Theorem 4.3 in [24].
Finally, we formulate Problem 1 as a semi-definite program:

min
Ψi

∥R1/2
xi

(I+B
N

i Ψi)Ei∥
2
F + ∥R1/2

ui
ΨiEi∥

2
F

s.t. Π
PSD
i (Ψi) ⪰ 0,

Π
eq
i (Ψi) = 0,

(37)

where Π
PSD
i (Ψi) and Π

eq
i (Ψi) are defined in (36) and (29),

respectively. After obtaining the optimal decision variables for
all tasks, we can compute the optimal control input as

u
⋆ =

m
∑

i=1

Ψ
⋆
i

(

Xi +BNi
u
⋆
i−1

)

. (38)

IV. NUMERICAL SIMULATION

In this section, we show numerical simulation results to
validate the proposed hierarchical optimal covariance control
approach. A simple mobile manipulator model, i.e., double
inverted pendulum on a cart (DIPC), is used to demonstrate
the simulations. Also, we run all simulations and computations
on a laptop with 3.4 GHz Intel Core i7 and utilize software
such as MATLAB, and CVX [25] with Mosek. We compare

TABLE I
RESULTS OF THE NUMERICAL SIMULATIONS

SDP Iterations Time (seconds) Optimal Cost
1st Task 12 809.4 6557.8
2nd Task 10 188.4 14099.5

Results OSC w/o OSC w/ HCC w/ Ratio

1st Task

mean
x 4.919 6.261 4.925
y -0.003 -0.033 -0.011

error L2 0.419 1.761 0.425

variance
x - 1.236 0.021 1.70%
y - 0.708 0.008 1.13%

2nd Task
mean x 6.551 7.326 6.580
error L2 0.449 0.326 0.420

variance x - 0.632 0.019 3.01%

the behavior of the DIPC model using the proposed optimal
covariance control approach against a control method using
operational space control. The mass and length of each link
are 1 kg and 1m. The mass of the cart is 5 kg.

We define two hierarchical tasks. The higher and lower
prioritized tasks are defined to control the position of the end-
effector (ϑ1 ∈ R

2) and the position of the cart (ϑ2 ∈ R),
respectively. The mean and variance at the initial configuration
q0 are [0, 1.0472, −0.5236] and 0.1. The goal positions of
the end effector and cart are defined as [4.5, 0.0] m and 7.0
m, respectively. The terminal covariance constraints for these
two tasks are specified a priori as Σd

1,N = diag(0.02, 0.01)

and Σd
2,N = 0.02 with horizon N = 30 and ∆t = 0.033

s. We also introduce a white noise process with Wτ =
diag(0.03, 0.03, 0.03) that adds to the two pendulum joint
positions and the cart position. The reference trajectory for
HCC is generated based on the OSC method without noise.
We generate references using cubic splines in the task space.
We then obtain the joint position and velocity by updating
the robot’s dynamics with the command computed via OSC
as described in [3] (which we call OSC w/o). Also, we
employ the same OSC with the noise process (which we
call OSC w/) to compare results with our proposed approach.
The terminal mean constraints for the two tasks are obtained
by running an OSC controller without noise and turn out to
be: µ1,N = [4.9193,−0.0034]⊤ and µ2,N = 6.5506. The
probabilistic threshold of the chance constraint is specified
as η2 = 0.99. The weight matrices for the objective functions
are Rx1

= diag(20, 20, 1, 1), Rx2
= diag(20, 1), and Ru1

=
Ru2

= 0.1I.
Two sequential SDPs for the defined tasks are successfully

solved, with the results shown in Table I. The computation
time for solving the secondary SDP is significantly reduced
because the dimension of the secondary task state is smaller
than the first task. Figure 1 represents the simulation results of
OSC and HCC over the defined time horizon. Compared with
OSC, HCC steers the DIPC model more accurately towards
the goal and with reduced distance from the mean trajectories
(i.e. narrower tubes). In addition, the L2-norm for each task
error is given in Table I. The results show that the 1st task
error is larger than the 2nd task error when controlling the
system using OSC with uncertainty, which means the task
hierarchy is violated. By contrast, our proposed HCC attains
the task hierarchy, i.e., the 1st task error is less than the 2nd
task error as shown in Table I. The terminal states of the
tasks are depicted in Figure 2. The terminal states controlled
by OSC are considerably scattered from the desired means.
However, the final states of the tasks steered by HCC are much
closer to the desired mean with smaller variance. We verify
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Fig. 1. Execution results of the tasks: (a) x position of the end-effector
(b) y position of the end-effector (c) x position of the cart. The dotted
lines are the desired values generated by cubic splines. Notice that the
terminal error is much smaller for HCC which is the main goal of the
method.
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Fig. 2. Terminal states of the tasks: (a) end-effector positions of the
terminal states, (b) cart x position of the terminal states controlled by
OSC (c) cart x position of the terminal states driven by the proposed
covariance controller.

the effectiveness of the proposed approach by comparing the
numerical results in Table I. The ratios of the results in Table
I are computed as Ratio = |variance of HCC w/|

|variance of OSC w/| × 100(%). We

perform simulations with significant noise levels to make
obvious and visible the noise levels in the result figures. In
more practical applications, the contributions of this paper still
remain by significantly reducing the tracking noise levels.

V. CONCLUSION

This letter proposes a novel hierarchical optimal covariance
controller that executes multiple tasks for robotic systems
to ensure accuracy of their terminal states. The proposed
approach is used as an alternative to operational space control
for robotic systems operating in the presence of uncertainties
and noise. One significant limitation of operational space
control is that it cannot control the state covariance of the
system. Consequently, its performance in steering systems to
their desired goals with high accuracy is significantly worsened
due to noise and uncertainties. By contrast, our method can
directly control the state covariance while considering a task
hierarchy often used in high dimensional robots and thus
achieve much better performance on achieving the terminal
state. In the future, we will extend the proposed approach
to nonlinear robotic systems without linearization while en-
forcing probabilistic constraints using stochastic Differential
Dynamic Programming. In addition, HCC will be extended for
floating-based and contact-constrained robotic systems with
complex nonlinear constraints such as humanoid robots.

REFERENCES

[1] O. Khatib, ªA unified approach for motion and force control of robot
manipulators: The operational space formulation,º IEEE Journal on
Robotics and Automation, vol. 3, no. 1, pp. 43±53, 1987.

[2] A. Escande, N. Mansard, and P.-B. Wieber, ªHierarchical quadratic
programming: Fast online humanoid-robot motion generation,º Inter-
national Journal of Robotics Research, vol. 33, no. 7, pp. 1006±1028,
2014.

[3] L. Sentis and O. Khatib, ªSynthesis of whole-body behaviors through
hierarchical control of behavioral primitives,º International Journal of
Humanoid Robotics, vol. 2, no. 04, pp. 505±518, 2005.

[4] F. Romano, A. Del Prete, N. Mansard, and F. Nori, ªPrioritized optimal
control: A hierarchical differential dynamic programming approach,º
in Proceedings of the IEEE International Conference on Robotics and
Automation, 2015, pp. 3590±3595.

[5] J. Lee, N. Mansard, and J. Park, ªIntermediate desired value approach
for task transition of robots in kinematic control,º IEEE Transactions
on Robotics, vol. 28, no. 6, pp. 1260±1277, 2012.

[6] L. Righetti, J. Buchli, M. Mistry, and S. Schaal, ªInverse dynamics
control of floating-base robots with external constraints: A unified view,º
in Proceedings of the IEEE International Conference on Robotics and
Automation, 2011, pp. 1085±1090.

[7] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, ªOperational
space control: A theoretical and empirical comparison,º International
Journal of Robotics Research, vol. 27, no. 6, pp. 737±757, 2008.

[8] H. Wang, ªAdaptive control of robot manipulators with uncertain kine-
matics and dynamics,º IEEE Transactions on Automatic Control, vol. 62,
no. 2, pp. 948±954, 2016.

[9] J. Lee, H. Dallali, M. Jin, D. G. Caldwell, and N. G. Tsagarakis, ªRobust
and adaptive dynamic controller for fully-actuated robots in operational
space under uncertainties,º Autonomous Robots, vol. 43, no. 4, pp. 1023±
1040, 2019.

[10] A. Del Prete and N. Mansard, ªRobustness to joint-torque-tracking errors
in task-space inverse dynamics,º IEEE Transactions on Robotics, vol. 32,
no. 5, pp. 1091±1105, 2016.

[11] E. Bakolas, ªOptimal covariance control for discrete-time stochastic
linear systems subject to constraints,º in Proceedings of the IEEE
Conference on Decision and Control, 2016, pp. 1153±1158.

[12] ÐÐ, ªFinite-horizon covariance control for discrete-time stochastic
linear systems subject to input constraints,º Automatica, vol. 91, pp.
61±68, 2018.

[13] K. Okamoto and P. Tsiotras, ªInput hard constrained optimal covariance
steering,º in Proceedings of the IEEE Conference on Decision and
Control, 2019, pp. 3497±3502.

[14] K. Okamoto, M. Goldshtein, and P. Tsiotras, ªOptimal covariance
control for stochastic systems under chance constraints,º IEEE Control
Systems Letters, vol. 2, no. 2, pp. 266±271, 2018.

[15] J. A. Paulson and A. Mesbah, ªAn efficient method for stochastic optimal
control with joint chance constraints for nonlinear systems,º Int. J.
Robust Nonlinear Control, vol. 29, no. 15, pp. 5017±5037, 2019.

[16] J. Ridderhof, K. Okamoto, and P. Tsiotras, ªNonlinear uncertainty
control with iterative covariance steering,º in Proceedings of the IEEE
Conference on Decision and Control, 2019, pp. 3484±3490.

[17] E. Bakolas and A. Tsolovikos, ªGreedy finite-horizon covariance steer-
ing for discrete-time stochastic nonlinear systems based on the unscented
transform,º in Proceedings of the American Control Conference, 2020,
pp. 3595±3600.

[18] Z. Yi, Z. Cao, E. Theodorou, and Y. Chen, ªNonlinear covariance control
via differential dynamic programming,º in Proceedings of the American
Control Conference, 2020, pp. 3571±3576.

[19] K. Okamoto and P. Tsiotras, ªOptimal stochastic vehicle path planning
using covariance steering,º IEEE Robotics and Automation Letters,
vol. 4, no. 3, pp. 2276±2281, 2019.

[20] N. Chohan, M. A. Nazari, H. Wymeersch, and T. Charalambous,
ªRobust trajectory planning of autonomous vehicles at intersections with
communication impairments,º in Annual Allerton Conference, 2019, pp.
832±839.

[21] A. D. Saravanos, A. G. Tsolovikos, E. Bakolas, and E. A. Theodorou,
ªDistributed covariance steering with consensus admm for stochastic
multi-agent systems,º in Robotics: Science and Systems, 2021.

[22] M. Bensimhoun, ªN-dimensional cumulative function, and other useful
facts about gaussians and normal densities,º Jerusalem, Israel, Tech.
Rep, pp. 1±8, 2009.

[23] M. Abramowitz, I. A. Stegun, and R. H. Romer, ªHandbook of mathe-
matical functions with formulas, graphs, and mathematical tables,º 1988.

[24] J. Gallier et al., ªThe Schur complement and symmetric positive
semidefinite (and definite) matrices,º Penn Engineering, pp. 1±12, 2010.

[25] M. Grant and S. Boyd, ªCVX: Matlab software for disciplined convex
programming, version 2.1,º http://cvxr.com/cvx, Mar. 2014.


