


be planned. Due to the sampling nature of this planner, it
is difficult to implement in real-time. However, there are
approaches that have tried to overcome the limitations of
RRT such as Kuffner and LaValle (2000) with RRT* or
Naderi et al. (2015) with RT-RRT*. The former is still not
considered real-time, but it can handle dynamic obstacles.
The latter is real-time and can handle dynamic obstacles,
but it requires large amounts of memory and relatively
simple environments. Both approaches still require near-
perfect knowledge of the environment which is something
that cannot always be guaranteed in the real-world. An-
other popular method for collision avoidance is artificial
potential fields (APF) Khansari-Zadeh and Billard (2012)
Marchidan and Bakolas (2020). APF approaches rely on
an artificial flow running through a given environment.
Obstacles interrupt the artificial flow and cause free par-
ticles around them to move away. Therefore, an agent’s
position can be treated as a free-floating particle in the
environment, and it should move within the flow of the
system. Because of the path being passive to the environ-
ment, the agent has the potential of getting stuck in a
stable-point or vortex that is not the goal state Janabi-
Sharifi and Vinke (1993). An additional drawback of the
approach is the artificial flow must be discretized for real-
world applications. If the discretization is too coarse, the
planned path could run into an obstacle.

Optimization-based approaches in path / motion plan-
ning do not suffer from the aforementioned drawbacks
and have shown promising results in recent years. These
methods involve a path planner minimizing a cost function
associated with completing a task subject to constraints
and other mission specifications. Unlike machine learning,
optimization does not need to be retrained for different
environments, and it is easier to diagnose for its decision
making process. Furthermore, the optimization-based ap-
proach can provide guarantees in terms of performance
and maintaining safety. However, the resulting trajecto-
ries through optimization are highly dependent on the
cost function and constraints, so the formulation of these
statements is critical to the success or failure of the path
planner. As in Lin et al. (2020), researchers have tried
to create a search space of valid trajectories by intersect-
ing half-spaces generated by obstacles. Another approach
attempted to use disjunctive programming for a collision
avoidance constraint Castillo-Lopez et al. (2020). Both
of these approaches rely on ellipsoidal approximations of
obstacles which produce undesirable results in scenarios
where an agent must get close to an obstacle or even in-
teract with its environment. Our motivation for this paper
is to address the issues associated with coarse ellipsoidal
approximations. With SH estimation of the collision-free
space, our optimization-based path planner can produce
less conservative trajectories than other state-of-the-art
planners.

Outline of the paper: In Section 2, we formulate our
optimization-based collision avoidance problem for local
motion planning and compare our approach with other
state-of-the-art methods in the field. The fundamental con-
cepts of our approach are explained in Section 3. In Section
4, we showcase our contribution and explain in detail how
we implement the approach for a general system. Section
5 demonstrates the efficacy of our approach in some defin-

ing examples via numerical simulations and also presents
comparisons of our approach to other methods. Finally,
Section 6 presents concluding remarks and directions for
future research.

2. PROBLEM STATEMENT

2.1 Optimization for Trajectory Planning

We assume that the motion of the agent is described by
the following discrete-time state space model:

xt+1 = f(xt, ut) + wt, (1)

where xt ∈ R
p denotes the state of the robot agent at time

t, ut ∈ R
m is the control input at time t, the function f

represents the dynamics (vector field) of the agent, and
wt ∈ R

p is the process noise that acts upon the agent at
time t.

The main goal of an optimization-based trajectory planner
is to minimize a cost function while satisfying various
equality and inequality constraints. The cost function can
be the amount fuel used, time traveled, and/or distance
from goal. Examples of inequality constraints include
maximum accelerations, maximum velocities, and valid
orientations. A popular methodology for optimization-
based trajectory planning is model predictive control. It
works by inducing a constraint on the planner to abide
by the dynamics of the system. The benefit of model
predictive control is the planner can determine multiple
inputs at subsequent time steps within a given time
horizon in a single optimization problem. The constrained
optimization can be formulated as follows:

min
u0,...,uN−1

J(u0, . . . , uN−1, x0, . . . , xN ) (2a)

xt+1 = f(xt, ut) + wt (2b)

glb ≤ g(xt) ≤ gub ∀t ∈ [0, N ] (2c)

xi ∈ X, ui−1 ∈ U ∀t ∈ [1, N ] (2d)

The cost function, J , takes in the input arguments of the
state and control input at discrete time steps along the
(discrete) time intervals [0, N ] and [0, N − 1], respectively
(here, by [0, N ] we denote the discrete set {0, . . . , N}).
Equation (2b) is the constraint for the previously men-
tioned model predictive control formulation for path plan-
ning. The next constraint, Equation (2c), is defined as
the collision avoidance constraint. It states that the state
at time t must satisfy the collision avoidance constraint.
Equation (2d) states that the state and control input
must take values in sets X and U respectively. This is
equivalent to, for instance, enforcing min-max acceleration
and velocity values as well as defining invalid orientations
of an agent.

2.2 Obstacle Representation

As mentioned in Section 2.1, optimization-based trajec-
tory planning requires the inclusion of a collision avoidance
constraint to avoid obstacles within a given environment. If
an obstacle is represented as a convex set, its complement
space, or the solution space for trajectory planning, is non-
convex. To make the solution space convex, a common
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