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ABSTRACT

Virtual Reality (VR) is an emerging technique that attracts inter-

est from various application domains such as training, education,

remote communication, gaming, and navigation. Despite the ever

growing number of VR software projects, the quality assurance

techniques for VR software has not been well studied. Therefore,

the validation of VR software largely rely on pure manual testing.

In this paper, we present a novel testing framework called VRTest

to automate the testing of scenes in VR software. In particular,

VRTest extracts information from a VR scene and controls the user

camera to explore the scene and interact with the virtual objects

with certain testing strategies. VRTest currently supports two built-

in testing strategies: VRMonkey and VRGreed, which use pure

random exploration and greedy algorithm to explore interact-able

objects in VR scenes. The video of our tool is available on Youtube

at https://www.youtube.com/watch?v=TARqTEaa7_Q
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1 INTRODUCTION

Virtual Reality (VR) is an emerging technique [10] which has many

different application scenarios, such as gaming, virtual exhibition

and tour, training, education, product design, and remote communi-

cation. A recent market report [3] estimates that the total value of

VR market has reached 11.52 billion dollars in 2019, including 1.9

billion dollars of VR software market [5]. Furthermore, the market

value is expected to grow at a high growth rate of 48.7% per year in

the following five years. The pandemic of COVID-19 virus further

accelerated the adoption of VR techniques. In 2020, Thousands of

apps are uploaded to Google Play [2], Apple Store [1], and Ocu-

lus Market [4]. These apps have been downloaded by more than
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171 million users from all over the world [9]. Like all other types

of software, virtual reality software also needs testing to validate

and enhance its quality. However, unlike in many other software

domains (e.g., software libraries, server software, GUI software)

where many automatic and semi-automatic testing techniques have

been developed and partially adopted, automatic testing techniques

for VR software are not well studied.

VR software typically consists one or several VR scenes. Each VR

scene represents a three dimensional space in which virtual objects

(comparable to icons/controls in GUI software [22]) are placed and

moved. Users can operate the software by interacting with the

virtual objects typically through pointer clicking (i.e., keeping a

white point at the center of the camera view pointing to an interact-

able object for a short amount of time).

In this paper, we present an automatic testing framework VRTest

to test VR scenes in VR software, with two built-in testing strategies

VRMonkey and VRGreed. In particular, VRTest automatically and

periodically (to handle object movement) locates all virtual objects

in the virtual space, and move / rotate the camera according to the

testing strategy. It should be noted that VRTest needs to track both

interact-able objects and non-interact-able objects because the latter

may block the route of camera movement and occlude interact-able

objects. Based on VRTest, VRMonkey is a pure random exploration

testing strategy which mirrors Monkey for Android platform and

we use it as a baseline technique. VRGreed uses a greedy algorithm

to have the camera visit and trigger all interact-able virtual objects,

starting from the closest object.

We evaluated VRTest with two testing strategies on five top VR

software projects (based on scores) from UnityList, which is a large

repository of Unity-based VR/AR open source software projects.

Although our evaluation focuses on Unity-based software, we be-

lieve this scope of subject selection is reasonable because Unity

dominates VR software development with over 60% market share

according to multiple sources [6, 7]. The evaluation results show

that VRTest framework is flexible enough to incorporate different

testing strategies. Furthermore, VRGreed enhanced interact-able

object coverage by 55 percentage points over VRMonkey.

To sum up, this paper makes the following contributions.

• We explore and summarize the major challenges in automat-

ically testing VR scenes.

• We develop a framework to automatically testing VR scenes

which can be incorporated with different testing strategies.

• We develop two built-in testing strategies based on purely

random exploration (VRMonkey) and greedy exploration

(VRGreed).

• We prepare a dataset with five top VR software projects that

can be reused in future research in this area.
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• We perform an initial evaluation of VRTest on five top VR

software projects.

2 FRAMEWORK

In this section, we describe our VRTest framework which automat-

ically explores a virtual scene in a VR software. VRTest provides a

set of basic operations to control and configure the testing process.

The overview of VRTest framework is presented in Figure 1. From

the figure, we can see that the VRTest Framework consists of five

major components: the VR Scene Monitor to fetch information (i.e.,

run-time state) of the VR scene, the Virtual Object Instrumenter

which instruments interact-able virtual objects with state reporters,

the Exploration Controller which controls all the information trans-

mission and the pace of the exploration, the Test Configuration

Interface, and the Testing Technique Interface which provides scene

information feedback and three basic actions (move, rotate, and

trigger) for the testing technique to implement.

2.1 VR Scene Monitor

The VR Scene Monitor component extracts information about vir-

tual objects in the VR scene. Since virtual objects can be created

and destroyed at run time, and moving from one location to an-

other, the information extraction process is periodic. In particular,

this component extracts the following major types of information

because they can be useful for various testing techniques.

• Bounding Boxes of Virtual Objects. The monitor extracts

the bounding boxes (the smallest rectangular cuboid enclos-

ing the object) of all virtual objects that have a renderer

(so that it is visible and will block eye sight). The monitor

further separates virtual objects with colliders from others

because these objects may block the user (and the camera)

from moving through it. It should be noted that the bound-

ing box (See Figure 2) is just an approximation of the virtual

object’s shape to simplify following computation. Also, we

do not handle objects with transparent renderers separately

although they may not block sight. We believe these are

proper approximations due to the large variety in virtual

objects’ shape and transparency, and because such approx-

imations do not cause false positives / negatives in testing

but may just slow down the exploration process (e.g., when

an object is considered blocked by another object but it is

actually visible with current camera location and angle).

• Position of Virtual Objects. Themonitor extracts the three

dimensional coordinates of all virtual objects with render-

ers. It provides both an object’s registered coordinates (its

position attribute), and the center coordinates of its bound-

ing box. For virtual objects with irregular shapes, the test

framework may need to try both positions to reach them.

• Interact-able Properties of Virtual Objects: The monitor

further identifies the interact-able virtual objects from the

others. These interact-able objects are provided to the testing

techniques as their exploration targets.

• Type Information of Interact-able Virtual Objects: In

Unity-based VR software, many virtual objects can be pro-

grammatically created from a single template called prefabs.

A virtual object can also be created by cloning another ex-

isting object. Since these object copies typically have the

same behavior and the same set scripts attached to them,

triggering events on them may cover exact the same object

behavior and code portions. So it can be inefficient to trigger

events on them multiple times, and the monitor provides

such information to the testing strategies for them to do

optimizations.

2.2 VR Object Instrumenter

There are a lot of uncertainties when VRTest tries to trigger a

pointer click event on a virtual object. For example, the object may

be of irregular shape so targeting the user camera at its position

may not trigger the event. Also, some renderers may be transparent

so the user camera may accidentally triggered some other events.

To make sure VRTest always have precise and updated information

about which virtual objects have already been covered, we design an

instrumenter component in VRTest. In particular, the instrumenter

will instrument all interact-able virtual objects by adding a state-

change reporter (an additional reporting event handler method)

for each of their registered events. The state-change reporter will

report to VRTest once the corresponding event is triggered so that

VRTest always knows which objects and events have been already

triggered. The code we use to insert the state-change reporter is

shown as follows.

...

EventTrigger r = go.GetComponent<EventTrigger>();

EventTrigger .Entry entry = new EventTrigger.Entry ();

entry . callback .AddListener (( eventData) => { UpdateTrigger ();});

r . triggers .Add(entry);

...

Listing 1: The Code to Insert State-Change Reporter

In particular, we first fetch the EventTrigger component r from
an interact-able virtual object go, and then insert a pointer to our

reporting event handler function (i.e., UpdateTrigger) into the list
of triggers in r.

2.3 Exploration Controller

The exploration controller is the core component of VRTest and it

controls the whole testing process. It receives updated information

from VR Scene Monitor and State-Change Reporters, and provides

the information to the testing strategies it incorporates. It should

be noted that the Unity framework periodically calls Update (every
frame) and FixedUpdate (every 0.02 second) methods to refresh

the VR scene. VRTest embeds its exploration controller into the

FixedUpdate method so that exploration process is synchronized

with the frame refresh of the VR scene. We choose FixedUpdate
instead of Update because the former has a fixed invocation gap

not affected by run-time fps (frame per second) and thus it provides

better control of physical movement.

If the action has been finished, VRTest will first extract VR scene

information from the monitor, call the instrumenter to instrument

any newly found virtual objects that has not been instrumented,

and then ask the testing technique to decide what actions to be

performed next (i.e., trigger, rotate, move, or any combination of
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Figure 1: The Overview of VRTest Framework

Figure 2: Bounding Boxes of Virtual Objects from developer.mozilla.org

them). After the action is determined, the controller will perform

the action step by step in the following cycles of FixedUpdate.

2.4 Testing Configuration

VRTest allows developers to configure VRTest based on the require-

ment and characteristics of the VR scene to be tested. Some major

configuration items are listed as follows.

• Moving Scope. The moving scope defines the range of po-

sitions the user camera can move to, and it needs to be

taken into account when a testing strategy calculates fea-

sible routes between two positions. The scope can be very

different according to the feature of the VR software. For

example, a flying simulation software application may allow

the user camera to move in all three dimensions to a large

extent, but a driving / walking simulation software appli-

cation may allow only movement on the 𝑋 and 𝑌 axes, but

does not allow any 𝑍 -Axis movement. Some other software

may have more fixed moving pattern (e.g., along a line or

route) or even do not allow any movement (e.g., some shoot-

ing games). The VRTest framework allows a developer to

manually specify the moving scope.

• Rotation Scope. Similar to moving scope that limits the

user camera’s position, the rotation scope limits the user

camera’s watching angle. This is more consistent among

different VR applications. Typically, Y-axis rotation (turning

head to the left and right) can go up to 180 degree on both

sides, and X-axis rotation (turning head up and down) can

go up to 90 degrees. The reason is that this rotation scope is

roughly the same with that of a human being’s head. So in

our framework we also set the rotation scope accordingly

by default. Z-axis rotation (tilting head to the left or right) is

often allowed to a small degree, but since it does not affect

the testing process (tilting your head will not allow you to

see more than not tilting), we simply do not allow Z-axis

rotation for simplicity. By default, we set the rotation scope

with 𝑋 -axis rotation between -90 degree and 90 degree, 𝑌 -
axis rotation between -180 degree and 180 degree, and no

rotation for 𝑍 -axis.
• Moving / Rotation Speed.Moving and rotation speed limits

the speed of moving and rotating the user camera. By default,

we use 1 meter per second (1 unit in Unity-based VR scene

represents 1 meter) as the moving speed because it is the

normal walking speed. We use 10 degree per second as the

rotation speed as it is the maximal rotation speed to avoid

motion sickness [12]. It should be noted that, if there is no

need to video record the testing process for further analysis,

a developer can increase such speeds to reduce testing time.
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Table 1: Basic Information of Evaluation Subjects

Name #Source LOC #Virtual

Files Objects

UnityVR 129 25.6K 36

UnityVREscapeRoom 207 31.2K 109

unity-vr-maze 7 503 26

VRND_Night_at_the_Museum 173 30.5K 32

unity-vr-cave-puzzler 7 8.0K 27

However, this configuration value does not affect the testing

efficiency comparison among testing strategies because it

will accelerate or slow down all strategies with a same rate.

This mainly a balance between testing efficiency (the higher

the speed, the higher the efficiency) and user experience.

2.5 Testing Strategy Interface

VRTest provides an interface for any testing technique to implement.

The interface includes three methods: Rotate, Move, and Trigger.
Different testing techniques can implement these three methods to

explore the VR scene with different strategies. VRTest provides a

default Trigger implementation for pointer click events, but it can

be easily extended with new types of events and different ways to

trigger the events. Furthermore, VRTest provide interfaces for the

testing technique to acquire information about the VR scene (i.e.,

all the information collected from VR Scene Monitor, State-Change

Reporter, and Testing Configuration Interface), in case it is needed

when implementing the testing strategy.

3 EVALUATION

To evaluate our framework and testing strategies, we apply VRTest

with two testing strategies on five top VR software projects from

UnityList1.

We collected our subject projects from UnityList [8] because

it is the largest repository of open source VR software projects.

From UnityList, we followed the ranking of featured scores, and

considered only projects with at least one virtual object with at least

one event triggers. The basic information of five subject projects in

our evaluation is presented in Table 1. In the able, we present the

number of source files, the number of lines of code, and the number

of static virtual objects / prefabs (dynamic virtual objects are typi-

cally created by cloning static virtual objects / prefabs), respectively.

To perform the evaluation, we use Unity version 2019.4.2f1 with

Visual Studio 2017 (for compilation of C# source code) and run the

experiment on a computer with Intel Core i7-6500U CPU, 8GB of

memory, and Intel HD 520 Graphics card. We set a timeout of 100

seconds.

We measure the effectiveness of testing by the interact-able ob-

ject coverage (i.e., the proportion of triggered interact-able objects

among all interact-able objects). For interact-able object coverage,

we count objects of the same type as one. The results are shown in

Table 2. In the table, Column 2 and 3 present the coverage of VR-

Monkey and VRGreed, respectively. From the table we can see that

1The implementation of VRTest and the evaluation dataset can be downloaded from
https://sites.google.com/view/vrtest2021

Table 2: Interact-able Object Coverage of VRMonkey and

VRGreed

Name VRMonkey VRGreed

UnityVR 25% 75%

UnityVREscapeRoom 22% 55%

unity-vr-maze 0% 55%

VRND_Night_at_the_Museum 0% 100%

unity-vr-cave-puzzler 0% 100%

both VRMonkey and VRGreed can cover interact-able objects at

run time, but VRGreed has much higher coverage than VRMonkey,

which is as expected.

4 DISCUSSION

Our testing framework and testing techniques currently focus on

the pointer click event type as it is the most commonly supported

event type. There are some other event types supported by certain

devices, such as the grabbing event which allows a user to grab

certain virtual object with their virtual hand, and the colliding event

that allows a user to push or collect certain virtual objects when the

user camera is at the same position or close to an existing virtual

object. Since these events are mainly contact-based events (i.e., the

user camera needs to be very close to the virtual object to trigger

the event), they are less complicated to trigger compared with

pointer clicks as we do not need to consider scenarios such as object

occluding. A more complicated case is when the virtual objects

must be interacted in certain order to lead to an outcome. None of

our three testing techniques intentionally handle such interaction

orders, so whether the outcome can be triggered may largely rely on

repetitive triggering of events on interact-able virtual objects when

the methods associated with them are still not covered. In the future,

we plan to use static analysis to identify the dependencies between

event handlers. Based on the dependencies, VRTest would be able

to trigger events in more proper order to expose more software

behaviors.

5 RELATEDWORKS

We are not aware of existing efforts in the area of VR software

testing, but there are some research on game testing. Wuji [25] is a

framework to automatically test games based on evolutionary algo-

rithms and reinforcement learning. It explores the game spaces and

branches as well as making progress by passing stages. Testmig [19]

migrate test cases across mobile devices but their approach cannot

be extended directly to VR devices. Zhao et al. [24] proposed an

approach to enhancing playing tactics in game testing by learn-

ing from player action sequences. Bergdahl et al. [11] proposed an

approach to augment existing manually written test scripts with

reinforcement learning. Molina et al. [15] proposed VRDepend, an

automatic approach to extract dependency among virtual objects,

which may used for analysis and testing of VR software. However,

all of the above approaches mainly focus on game tactics and are

designed for 2D games, so when applied to 3D software they still

face the challenge of flexible camera movement/rotation and ac-

cessing out-of-view and occluded objects, which are the focus of

this paper.
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There also have been some empirical studies on VR software and

video game software. Murphy-Hill et al. [16] performed a study on

video game developers to understand the challenges in video game

development and how they are different from traditional software

development. Washburn et al. [21] studied failed game projects

to find out the major pitfalls in game development. Lin et al. [14]

studied the common updates in steam platform to understand the

priority of game updates. Rodriguez and Wang. [20] performed an

empirical study on open source virtual reality software projects to

understand their popularity and common structures. Pascarella et

al. [18] studied open source video game projects to understand their

characteristics and the difference between game and non-game de-

velopment. Zhang et al. [23] studied possible solutions to detect po-

tential privacy leaks in mobile augmented reality apps. Li et al. [13]

studied the characteristics of bugs in web-based extended reality

apps. Nusrat et al. [17] studied the performance optimizations from

version history of real-world VR projects and summarized major

performance issues that new VR developers should avoid.

6 CONCLUSION

VR software is gaining more and more usage scenarios, but its

quality assurance techniques still fall behind. In this paper, we

propose a novel framework called VRTest to automatically test

VR software. VRTest extracts information from the VR scene and

controls the user camera to explore the scene and interact with

the virtual objects. Based on VRTest, we further developed two

testing strategies: VRMonkey and VRGreed, which use pure random

strategy and greedy algorithm, respectively. We also performed

an initial evaluation of the testing strategies on five VR software

projects from UnityList. New testing strategies can be easily added

by extending VRTest with new implementations of Move, Turn, and
Trigger functions.

In the future, we plan to work on the following directions. First

of all, for the VRTest framework, we plan to extend it to support

more types of events such as grabbing events and colliding events.

Second, we plan to extend testing strategies to consider more global

information in the VR scene, and we plan to further enhance our

strategies by using AI-based or search-based techniques which have

been shown effective in GUI testing to acquire a globally optimized

route. Third, we plan to evaluate our framework with more subjects

and software projects that are not based on Unity. Fourth, certain

software behavior may be exposed only when events are triggered

in certain order, so we plan to use static analysis to identify the

dependencies between event handlers. Based on the dependencies,

VRTest would be able to trigger events in a certain order to expose

more software behaviors.
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