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A B S T R A C T   

All solid-state batteries are safe and potentially energy dense alternatives to conventional lithium ion batteries. 
However, current solid-state batteries are projected to costs well over $100/kWh. The high cost of solid-state 
batteries is attributed to both materials processing costs and low throughput manufacturing. Currently there 
are a range of solid electrolytes being examined and each material requires vastly different working environ
ments and processing conditions. The processing environment (pressure and temperature) and cell operating 
conditions (pressure and temperature) influence costs. The need for high pressure during manufacturing and/or 
cell operation will ultimately increase plant footprint, costs, and machine operating times. Long term, for solid 
state batteries to become economical, conventional manufacturing approaches need to be adapted. In this 
perspective we discuss how material selection, processing approach, and system architecture will influence 
lithium-based solid state battery manufacturing.   

1. Introduction 

Decreasing carbon emissions to address climate change challenges is 
dependent on the growth of low, zero or negative emission technologies. 
Transportation accounts for nearly 25% of CO2 emissions worldwide. 
[1] Thus, electrifying transportation systems is important for disen
tangling this sector from fossil fuels. Electric cars accounted for 2.6% of 
global car sales in 2020 and 9% in 2021, a substantial increase from 
2010 where only 0.2% of global sales were electric vehicles. Rapid EV 
adoption is due to coupled materials innovation and policy. Commer
cialization of energy dense cathodes LiNiMnCoO2 (NMC) and LiNi
CoAlO2 (NCA) has dramatically increased battery pack specific energy 
(≈220 Wh/kg) and vehicle range. [2] Despite these promising cathodes, 
there is continued interest in engineering batteries with energy densities 
exceeding 500 Wh/kg to meet future driving range requirements (>300 
miles per charge). [3] Conventional Li-ion battery systems that utilize 
graphite anodes (specific capacity 350 mAh/g) cannot achieve these 
energy density requirements. Replacing graphite anodes with Li metal 
(specific capacity 3860 mAh/g) is one potential path toward energy 
dense batteries. However, Li metal is highly reactive and prone to active 
material loss during cycling (e.g. dead lithium). Lithium can also form 
dendritic structures which short an electrochemical cell upon cycling. 

[4] Li metal batteries based on liquid electrolytes also pose considerable 
safety challenges due to coupled gas evolution and flammability chal
lenges. [5]. 

Recently, there has been renewed interest in all solid-state batteries 
to address these challenges. Ions move through a solid electrolyte rather 
than a liquid electrolyte in all solid-state batteries. [6–8] Many solid 
electrolyte materials are incompatible with high voltage cathodes and/ 
or energy dense anodes (Li metal) and suffer from poor rate performance 
(<2C). In addition, many solid electrolytes require inert manufacturing 
infrastructure which increases cell costs. Currently small scale electronic 
and radio-frequency identification applications utilize low power (2 Ah) 
solid-state batteries. [9–11] EVs and consumer electronics will require 
larger format cells with substantially higher energy densities. Further
more, scalability remains a major hurdle for the adoption of all solid- 
state batteries in applications like electric vehicles which have de
mands exceeding 150 GWh. [12–14] This scale is expected to grow by 3 
× to 450 GWh by 2024. [15] Widespread implementation of SSBs is 
reliant on establishing low-cost manufacturing pathways. Currently, 
time and technology-based forecasts have suggested that the minimum 
cost achievable for a solid-state battery based on an oxide and sulfide 
types of solid electrolyte are $157/kWh and $113/kWh. [16–17] These 
estimates exceed conventional LIBs costs ($101/kWh). [18] Closing the 
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cost-gap between conventional and SSBs is critical for adoption. 
The environmental footprint and technoeconomics of SSB 

manufacturing rely heavily on material supply chain, recycling, and 
repurposing opportunities. Simultaneous development of materials 
processing, cell design, and recycling strategies is important for rapid 
integration of solid-state batteries. There is growing attention on recy
cling conventional LIBs where materials (mostly cathodes) are recov
ered from several extractive metallurgical approaches (pyrometallurgy, 
hydrometallurgy) and direct recycling [19–21]. Direct recycling ap
proaches may be adopted in SSB because individual components can be 
directly separated. Supply chain (mining, processing, refining, shipping) 
for solid state batteries is anticipated to be more challenging than con
ventional LIBs, due to the use of critical elements (e.g.; Ge, Ta) and in
creases in lithium content (Fig. 1a,b). Both resource availability and 
materials processing costs will be critical for identification of key battery 
chemistries and architectures for adoption of next generation all solid- 
state batteries. 

1.1. Solid-state battery architectures 

Overcoming degradation processes at buried solid interfaces is 
necessary for realization of high rate, high-capacity solid state batteries 
(350 Wh/kg). This requires engineering architectures that can 
adequately address chemo-mechanical phenomena (dendrites, physical 
voids, chemically unstable interfaces, sluggish transport kinetics) and 
manufacturing challenges. [14,22–23] Stress gradients can occur during 

materials assembly and operations which impact degradation modes. 
[24] In addition, potential gradients can arise at interfacial in
homogeneities and drive dendrite formation and subsequent failure. 
[25–27] Chemo-mechanical degradation and material transformations 
are also exacerbated in solid state batteries that contain dense electrodes 
and electrolytes with high stiffness. This can lead to material fracture 
during dynamic operating conditions. [28] Composite solid-state cath
odes experience repeated expansion/contraction which contribute to 
loss of interfacial contact and cracking during cycling. [29] It is desir
able to have a composite cathode with a high density to ensure efficient 
ion transport. [30] Novel solid-state battery architectures are needed to 
address stress and potential gradients that arise due to chemo- 
mechanical dynamics within a solid-state battery. [12,31]. 

Cold-pressed powder processing produces thin film pellets (0.5–2 
mm diameter) and is widely used with research and development lab
oratories (Fig. 1b-i). [25,32–33] Pellet-based solid electrolytes typically 
operate under pressure which leads to further densification. [34] Full 
cells can be assembled via stacking the anode, solid electrolyte, and 
cathode on top of each other (Fig. 1c-ii). Stack pressure can impact full 
cell performance and has been shown to be an effective strategy for 
preventing unwanted void formation and delamination at the anode. 
[35–36] This approach is unlikely to scale for industrial production 
because thick solid electrolyte result in low energy densities. [37] 
Composite cathodes account for <7% of total cell weight in pellet-based 
architectures (Fig. 1b- i). Decreasing the solid electrolyte by an order of 
magnitude (<10 µm) and increasing the cathode content by 8 × is 

Fig. 1. Schematic of (a) battery-driven applications, (b) battery architecture from low to high energy density, corresponding weights of battery components (c) 
manufacturing processes of ASSBs with respect to scalability and (d) cell type with respect to production cost. 
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ultimately necessary for solid state batteries to compete with conven
tional batteries. 

Scalable SSB designs should mimic conventional LIBs where ions 
flow continuously between the anode and cathode via well percolated 
pores filled with a liquid electrolyte. Solid state batteries employ 
percolated regions of solid electrolyte materials instead of percolating 
pores. Thus, cathodes that contain both active material (cathode) and 
solid electrolyte materials are known as composite cathodes (Fig. 1b). 
Solid state cathodes can be processed by either direct mixing approaches 
or multi-step infiltration processes. The latter process requires infiltra
tion of the solid electrolyte either via solvent or melting directly onto a 
preformed cathode sheet. [38–39] Infiltrating cathode material into a 
porous framework has been widely explored within the solid oxide fuel 
cell community and utilizes facile processing approaches (tape casting) 
which enables high densities (>98%) and rigid electrolytes. Porous 
frame- works are known as bi-layer or tri-layer cells which are promising 
for large-format ASSB production (Fig. 1b-ii). [40–41] Bi/tri-layer ar
chitectures require the use of a colloidal precursor or slurry which 
combines a binder and pore former (Fig. 1c-iv). When the film is sintered 
the pore former will burn away leaving behind a porous structure. 
[42–43] Recent reports have shown that composite architectures with 
thin dense solid electrolytes can demonstrate higher energy densities 
(195 Wh kg−1) with 99% coulombic efficiency. [43] Higher active ma
terial density (>95%) and thicker electrodes (>5 mAh cm−2) can further 
increase the cell-level energy density [44] (Fig. 1b-iii). However, thick 
cathodes can be challenging to implement in practice because of me
chanical failure (cracking) and transport limitations. [45] Ineffective ion 
and electron transport within thicker electrodes can contribute to low- 
material utilization and poor rate performance. [30] Therefore, identi
fying cost-effective manufacturing processes which provide exquisite 
control over multi-material processing is critical for thick electrodes to 
be realized. [46]. 

1.2. Manufacturing approaches for solid-state batteries 

Materials selection and processing approach will dictate strategies 
for manufacturing large- format solid-state batteries. Currently available 
solid-state batteries are thin film and have low (<1 mAh) nominal ca
pacities. Most thin film architectures employ vacuum deposition 
methods which are difficult to scale-up for EV applications. In addition, 
many solid-state battery materials are air/moisture sensitive and require 
inert environments for processing. All of these considerations are critical 
for engineering low-cost solid state batteries (Fig. 1c,d). 

Recently, there have been promising commercial demonstrations 
which utilize roll-to- roll manufacturing to produce multi-layered solid- 
state batteries with 20 Ah cell capacity. Despite this progress there are 
three key manufacturing challenges to overcome: (1) thin defect-free 
solid electrolyte processing, (2) dense composite cathode fabrication 
and (3) thin lithium metal processing. A host of approaches are being 
considered to address these challenges including and not limited to tape 
casting, screen printing, extrusion, and aerosol deposition. Tape casting 
or screen-printing methods are widely examined for composite cathodes 
and solid electrolytes because it can enable high-throughput and scal
able production volumes. However, high-throughput coating processes 
may require an additional calendaring step to alter part density. 
Extrusion or melt processing is being examined for lithium metal and 
alloy materials. Processing of lithium metal is a significant challenge 
because any contamination can drastically impact performance. 
Furthermore, a lot is unknown regarding how shear- and stress- expe
rienced during processing can influence lithium metal properties. 
Finally, three-dimensional printing approaches are also being examined 
because they enable solid-state batteries with controlled meso- and 
microstructures. All 3D printed batteries can offer a wide range of form 
factors and low manufacturing cost with increased scalability. [47] 
Recently, Sakuu Inc. successfully employed their multi-material 3D 
printing technology to manufacture solid-state batteries in their 2.5 

MWh pilot facility. Three-dimensional printing strategies (e.g., inkjet 
printing) need to be further explored but are unlikely for large capacity 
applications. 

1.3. Manufacturing of solid electrolytes 

A wide range of inorganic (ceramic) and organic (polymer) Li-ion 
conductors are being examined for solid-state batteries. Tech
noeconomic analyses suggest that the solid electrolyte should be <35% 
of the total manufacturing cost. [14,48] Unfortunately, current solid 
electrolyte processing is estimated to be nearly 70% of the cost associ
ated with manufacturing a solid-state battery. One kilogram of LLZO, 
LGPS and Li6PS5Cl costs $2000, $69,500 and $36,000. [14,49] The cost 
of solid polymers such as PEO and Li-salt is $700/kg and $1,980/kg. 
Processing cost of polymer or polymer-composite electrolytes (e.g., PEO- 
LLZO, PEO-LGPS) can therefore vary from $7,000–50,000/kg. Due to 
simpler and cost-efficient processing, polymer or hybrid electrolyte 
based SSB manufacturing is anticipated to cost less than oxides or sul
fides (≈$110/kWh). Material selection and manufacturing choice will 
dictate this end cost. 

Garnet oxides (LLZO) are known for outstanding mechanical rigidity 
(Emodulus = 129 GPa), satisfactory ionic conductivity (10−4 S.cm−1) and 
good electrochemical stability. [31] While other inorganic electrolytes 
are known to form reactive interphases at the interfaces, LLZO only 
forms a slightly less ion-conducting (tetragonal) but stable interphase. 
Synthesis of LLZO requires mechanochemical milling (e.g., ball milling) 
and high temperature sintering. The sintering step generally requires 
additional sacrificial LLZO as “mother-powder” to prevent Li loss. [50] 
High temperature processing is critical for grain growth and densifica
tion of polycrystalline LLZO. High densities of LLZO (>90%) are 
attained through pelletization via external isostatic pressure (>300 
MPa). Rapid induction hot pressing (RIHP) has been shown to be an 
effective strategy for achieving higher densities (>98%). [32] These 
processing strategies, when transferred to the plant scale, require large 
footprints and high production costs. Freeze tape casting of porous 3D 
LLZO scaffolds (<100 µm) is one of the “pressure- free” scalable ap
proaches which can be implemented directly in solid-state batteries. 
[51–52] The 3D scaffolds were also featured in bi/tri-layer SSE archi
tectures, which can be scaled up via tape casting. [42] Another pathway 
for alleviating pressure during processing is to utilize aerosol and 
vacuum-based deposition processes. Pulsed layer deposition (PLD), 
magnetron sputtering and atomic layer deposition (ALD) are also 
effective in producing ultra-thin (<10 µm) solid electrolytes without 
stack pressure and at lower temperatures (≤650◦C) [53–58]. Processing 
conditions (e.g., temperature, gas flow rates and deposition rates) all 
influence material properties. [59–60] Currently, a significant gap still 
exists between thin film and bulk solid electrolytes in terms of transport 
properties (e.g. ionic conductivity). Loss of lithium during processing is 
a considerable challenge for developing resilient processing chains. 

Glassy amorphous sulfides (LPS, LGPS) and argyrodites (Li6PS5Cl) 
electrolytes display narrower voltage window but superior room tem
perature ionic conductivity when compared to oxides. Soft amorphous 
sulfide electrolytes offer several advantages including good inter- facial 
contact and low grain boundary resistance. [61–63] Sulfide solid elec
trolytes are typically synthesized using mechanochemical milling (>40 
h) and can be compressed into thin pellets (<200 µm) [64–66]. There 
are several on-going efforts to synthesize sulfide solid electrolyte via 
solution-processing approaches. [67–68] Solution-processing synthesis 
may enable high volume materials production and low costs. However, 
solution-processing conditions can have a significant impact on trans
port properties. [69] Stack pressure and heat treatment influences the 
densification, crystallinity, and ionic conductivity of both electrolytes (2 
mS.cm−1 for LPS, 5 mS.cm−1 for LGPS and 1 mS.cm−1 for Li6PS5Br) 
(Fig. 3a). [70–72] Halide based electrolytes (e.g., Li3−xM1−xZrxCl6) are 
also an attractive class of superionic conductors (>1.4 mS.cm−1) and 
demonstrate better electrochemical stability (>4V) due to incorporation 
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of halogens as anions (Fig. 3a) [73–74 75–77]. Unlike garnet oxides, 
sulfide solid electrolytes cannot be processed via vapor deposition ap
proaches and thus require hot-, warm-, or room temperature isostatic 
pressing to achieve viable thicknesses and densities. Furthermore, sul
fide solid electrolytes cannot form porous scaffolds and thus are incor
porated directly with the cathode material in composites. 

The last class of solid electrolytes being examined are organic solid 
polymer electrolytes (SPEs). These electrolytes combine a binary lithium 
salt with a bulk polymer material [78–81]. Lithium ions motion is 
governed by the polymer chain segmental mobility. The room- 
temperature ionic conductivity and mechanical stiffness of SPE are 
lower than most inorganic solid electrolytes (<10−4 mS.cm−1,2 MPa). 
[82] Hybrid solid electrolytes (HSEs) are a family of solid electrolytes 
which combine a polymer and inorganic ion conductor. This hybrid or 
composite approach can lead to improved mechanical and transport 
properties. [83–85] Oxide- based HSEs demonstrate ionic conductivity 
up to 0.4 mS.cm−1 and sulfide-based hybrid solid electrolytes demon
strated an ionic conductivity approaching 0.11 mS.cm−1 (Fig. 3a). 
[86–87] Hybrid and all organic solid electrolytes can be processed under 
low temperature and pressure conditions using traditional coating ap
proaches [88]. However, organic solid electrolytes can suffer from 
dendrite propagation, low ionic conductivity, mechanical and thermal 
stability. [89] High solid electrolyte market penetration is dependent on 
developing low temperature, low pressure, and low-cost manufacturing 
strategies. Traditional manufacturing steps include mixing, annealing, 
sintering, thinning/ and stacking. The quality of thin electrolytes pro
cessed via coating routes is highly dependent on coverage speed, vis
cosity, mixing parameters and volume flow (Fig. 2). Ultimately, there 
needs to be more work on understanding how processing conditions 
impact solid electrolyte performance before scaling up can be realized. 

2. Manufacturing of cathodes 

Composite cathodes contain an active material (CAM > 80 wt%), an 
electronic conductor (>10 wt%) and an ionic conductor (>10 wt%). 
Solid state cathodes are processed via traditional wet chemistry-based 
coating manufacturing approaches. There has been ongoing interest in 
highly viscous and dry processing of composite cathodes via extrusion 
and powder bed mixing in order to minimize solvent handling. [40] For 
further densification of composites, co-sintering approaches (>700◦C) 
are often employed which can lead to unwanted side reactions at 

interfaces due to cross-diffusion. [13,90] Composite cathodes rely on 
intimate contact between each constituent (e.g., cathode, electrolyte, 
and carbon). Many materials experience chemical decomposition at 
these triple points. [91] Active materials undergo frequent volume 
expansion/contraction during cycling, which causes gradual degrada
tion and interfacial cracking. Both ionic and electronic percolation in 
composites are dependent on the cathode-solid electrolyte particle size 
ratio. Numerous theoretical studies have investigated the impact of 
particle size and composition on the composite cathode energy density. 
[92–93] In practice, transport limitations in thick electrodes and 
chemical decomposition need to be resolved to achieve similar perfor
mances with conventional cathodes. This may require advanced 
manufacturing approaches that enable precise control over electrode 
microstructure during processing. [94]. 

Similar to solid electrolytes, a range of vacuum deposition tech
niques are being explored for ASSB cathodes. Electrodeposition of ad
ditive and binder-free cathodes is a promising approach that allows 
100% utilization of cathodes in solid-state batteries. [95] Pulsed layer 
deposition (PLD) and RF-magnetron sputtering can enable additive-free 
deposition of thin film cathodes (e.g., LCO, LFP) with precision control 
in nanoscale. [31,56] The fabricated battery architectures can poten
tially achieve highest relative fraction of active materials (>60% of cell 
weight) (Fig. 1b-iii). But due to slow processing speed and high main
tenance cost, these techniques are challenging to scale up and replace 
conventional slot-die/tape-casting based manufacturing. [96] Aerosol 
deposition enables room temperature fabrication of dense cathode films 
(LFP, NMC) via ejecting cathode particles from a source material. 
[97–98] Despite the advantages, vacuum deposition techniques lack 
scalability to m2/min levels. These are also challenging to apply in 
sulfur-based cathodes. Therefore, facile slurry-based and sintering- free 
coating of dense composite cathodes are considered to be industrially 
adaptable for ASSBs. The slurry-based processing is comprised of con
ventional LIB coating strategies: wet/dry mixing of composites, layer 
formation, stacking and lamination [48] (Fig. 2). For EV-compatible 
operation, cathodes must deliver a specific capacity of 500 Wh/kg−1 

and areal capacity of > 5 mAh/cm2, which requires a thicker (>100 µm) 
or denser cathode (>95% active loading). [99] Chemo-mechanical ef
fects dominate at the cathode|SE interface and within the bulk cathode 
which currently limits the lifetime of these thick cathodes. 
[29,100–101] Therefore, the slurry-based method for ASSB may require 
higher stack pressure to achieve higher relative density. [102] Tape 

Fig. 2. Prospects of available scaled up technologies and cell formats for solid-state battery manufacturing. Each technology requires three key steps to check: mixing 
of materials, annealing and thinning/calendering, followed by stacking cell assembly. The figure shows better opportunity for slurry/tape casting manufacturing for 
solid-electrolytes and cathodes. For metal anode processing, extrusion/pressure-assisted lamination is preferred. 
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casting or screen printing, followed by a calendering step will be a 
suitable approach for scaled-up production. 

2.1. Manufacturing of anodes 

There is a significant interest in using alkali metal-based anodes (e.g., 
Lithium) in solid state batteries because the absence of a liquid solvent 
can reduce irreversible active material loss. [103] Solid electrolytes, if 
engineered effectively with lithium metal, can regularize lithium 
deposition-dissolution dynamics, and enhance cycling efficiency of 
battery. Lab-scale and benchmarking studies typically employ an excess 
amount of Li metal (>200 µm) which is irrelevant for real applications. 
Li-metal thickness can be reduced to 10–20 µm by using stack pressure 
or extrusion [104–105]. However, excessive handling and processing of 
lithium can increase the probability of creep induced deformation and 
pulverization which greatly affects SSE|Li interfacial homogeneity. 
Surface defects and irregular morphologies in such at electrode in
terfaces can drive the formation of unwanted filaments and dendrites. 
[55] Lithium foil processing will require an energy-intensive purifica
tion process and an inert (Argon) working environment. Due to its ad
hesive nature, roll-to-roll processing for lithium is difficult to employ. 
Instead, a lamination process via extrusion can be implemented to 
secure the anode material on the current collectors or solid electrolytes 
(Fig. 2). [48] Surface passivation must be carried out in order to protect 
the anode during manufacturing steps that may occur in non-inert en
vironments. [106] A lithiophilic solid electrolyte surface is important for 
contiguous contact with the anode. The solid electrolyte surface can be 
modified via chemical or physical treatment. [25,107] Artificial coat
ings/interlayers are widely used for solid electrolytes to avoid electro
lyte decomposition when in contact with lithium metal. [77,108–109] 
These also improve lithium adhesion properties during battery cycling 

and prevent volume changes. The interlayers are employed by forming 
stable ion-conducting interphases, either by an insitu reaction or the 
addition of a surface coating. Another approach to processing lithium 
metal is melt-induced stacking and vacuum-based deposition. 
[32,55,110–111] Melt-induced infusion is a convenient approach which 
allows plastic flow of lithium to achieve better contact with electrolyte. 
[112] Both techniques enable thin lithium layers but are too costly for 
high throughput production. In addition, these techniques are generally 
applicable for solid electrolytes with high yield strength and thermal 
stability (e.g., LLZO). 

One of the most exciting and promising approaches is an anode-free 
architecture. [36] This approach can potentially eliminate the cost of 
anode manufacturing and increase gravimetric and volumetric energy 
density by 10%. [113] However, there are many challenges that need to 
be overcome until anode-less architectures are realized. A large volume 
change during the first charge coupled with rapid capacity loss are 
common with anode-free architectures. [114] Any lithium lost during 
discharging cannot be recovered (“dead Li”) which leads to low 
coulombic efficiencies. Interfacial chemo-mechanics within the anodic 
current collector and solid electrolyte becomes increasingly important 
as unstable charge transfer reactions can drive delamination. [115–117] 
Improper contact between the solid electrolyte and current collector can 
lead to failure via immediate shorting. [118] Electrodeposition 
(charging) and dissolution (discharging) can be altered via an applied 
pressure, controlled surface energy, controlled surface morphology, and 
variable temperatures. [119] While there are many technical challenges 
associated with attaining high performing anode-less geometries, there 
are significant gains in terms of manufacturing costs if achieved. 

Fig. 3. Role of pressure and temperature in different steps of manufacturing solid-state batteries with solid electrolytes: (a) electrolyte processing (ionic conductivity 
as a function of processing pressure and temperature), (b) cell manufacturing for good interfacial contact (<10 Ω.cm2), (c) operating range for batteries with oxide, 
sulfide, argyrodite and halide electrolytes. 
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2.2. Effect of pressure and temperature on battery manufacturing and 
performance 

External operating conditions during battery operating and battery 
manufacturing can play a large role on cell performance and plant 
design consideration. The conditions include working environment (e. 
g., inert or ambient conditions), stack pressure, and processing tem
perature. Pressure and temperature are two important cost and rate 
determining factors in all the aspects of SSB production (material syn
thesis, cell assembly and cycling). During cell assembly, stack pressure 
and heat treatment are frequently employed to improve interfacial 
contact. [107,109] Artificial coatings at the interfaces can also aid in 
improving interfacial resistances but result in an additional step in 
manufacturing line. [109] Overall, pressure and temperature can have 
significant impacts on the material properties. In particular, yield 
strength of both solid electrolyte and lithium is governed by the pressure 
dependent material density and calendaring. High temperatures can 
exacerbate chemical decomposition and lithium loss during processing 
but may increase packing density. Thus, processing pressure and tem
perature can have competing results in each component. 

Mechanically robust oxide materials (e.g.; LLZO) typically can 
withstand high pressure (>200 MPa) and temperature (300◦C). Opera
tion under elevated pressure and temperature has been shown to be 
effective way to lower the interfacial resistance between lithium metal 
and solid electrolytes (1–10 Ω/cm2) (Fig. 3b). [25,40] Thermal ap
proaches to improve the wettability between lithium metal and sulfides 
and argyrodites-types solid electrolytes are challenging because many 
solid electrolytes exhibit chemical decomposition against Li metal, 
which is severe at high temperature. Therefore, stack pressure is the only 
mean to improve contact and prevent delamination. [25,120] Excessive 
stack pressure can cause electrolyte fracture and shorting (extrusion of 
lithium metal). [28,34]. 

Unwanted failure due to delamination, void formation, and/or 
dendrite propagation can occur in cells with low interfacial resistance. 
[121] Degradation mechanisms are driven by material properties, 
interfacial interactions, and operating conditions. These degradation 
processes lead to capacity decay and limits rate performance. It is esti
mated that SSB will require <15% capacity loss over 1000 cycles to 
compete with conventional batteries. Therefore, pressure and temper
ature during electrochemical cycling should be monitored to benchmark 
cell testing protocols. A recent report on a solid-state Li-S batteries (lab- 
scale) demonstrated good charge–discharge capacity (>3 mAh/cm2 at 
60◦C) at an applied pressure of 30 MPa. [120] Solid state batteries 
require extensive pressure in material processing and operation. It is 
unclear how this pressure could be maintained in tradition battery ge
ometries (e.g., pouch, jelly roll, etc.). Rigid external casing may be a 
pathway to control pressure without external pressure control. Garnet 
oxides have a wider temperature range (beyond the melting point of Li) 
but a small pressure range due to low ductility (<40 MPa) (Fig. 3c). 
[122–123] Argyrodites and sulfides are recommended to operate below 
120◦C but can withstand large stack pressure (>50 MPa) [26,124] 
(Fig. 3C). Overall, material selection for SSBs is critical to design battery 
architectures and predict manufacturing strategies. Technoeconomic 
analyses should precede development because variably operating and 
manufacturing conditions may drive up the cost of the battery. 

2.3. Cell formats in battery manufacturing 

Conventional lithium-ion batteries utilize cylindrical (jelly-roll), 
prismatic or pouch cell formats. Each of these formats present specific 
advantages and disadvantages when implemented with solid state bat
tery materials. The most common form factor of currently produced 
SSBs is planar (prismatic or pouch cells). Planar cells retain the struc
tural integrity of the solid electrolytes (Fig. 1d) [125–126]. For EV ap
plications, this geometry offers a facile way for stacking batteries while 
maintaining uniform stress distributions on the cell. There is a 

significant interest in combining structural elements in a car with the 
battery pack. Planar cells are envisioned to enable this functionality via 
vertical stacking or Z-stacking of cells. [46,127] Pouch cell are currently 
the most widely used format in solid-state battery manufacturing and 
can be integrated with all types of solid electrolytes (Fig. 3). It is also 
very important to adopt bipolar packing strategies for more effective 
material utilization. [23] Cylindrical cells offer higher capacity and 
output voltage via assembling in series and parallel connection. These 
contain safer and stronger battery housing with well-defined production 
parameters. The cells consist of hard casing, winding format which 
provide excellent shock resistance in a module. [7] However, most of the 
solid electrolytes lack mechanical flexibility and thus cylindrical formats 
are only envisioned for system with high polymer content. [127–128] 
Hybrid solid electrolytes are also promising because they can be inte
grated with a range of existing manufacturing approaches (roll-to-roll or 
extrusion based) (Fig. 3). High required stack pressure requirements will 
require the addition of stacking components (e.g., springs) into a battery 
housing which can dramatically increase the battery space and pro
duction cost. Therefore, it is desirable that cells operated at or below 5 
MPa. Ultimately, the choice of architecture is going to depend on the 
application. There are range of applications from portable electronics to 
electric vehicles which use vastly different architectures and system 
design. 

3. Conclusion 

Scalable manufacturing and processing of solid-state batteries are an 
important component in decarbonizing transportation systems. There is 
considerable interest in solid electrolytes to integrate energy dense 
anode materials like lithium metal. Despite exciting progress in engi
neering solid materials with transport properties similar to liquid elec
trolytes, manufacturing at scale remains a looming challenge. The use of 
existing manufacturing infrastructure is necessary to meet cost goals (< 
$80/kWh). Similar to conventional battery systems, solid-state batteries 
require processing and manufacturing approaches for anodes, cathodes, 
and electrolytes. Unlike conventional battery systems, solid state bat
teries require unique materials processing conditions (temperature and 
pressure). Commercially available Li-ion batteries typically operate at 
0.1–1 MPa, whereas solid-state batteries require at least 10 MPa (or 
higher) of stack pressure to ensure stable cycling without contact losses 
or dendrites formation. This requires extensive modifications in product 
design and production line for Li-ion batteries, which will increase the 
overall costs. The manufacturing process of a solid-state battery depends 
on the type of solid electrolytes. Rigid or brittle solid electrolytes are 
challenging to employ in cylindrical or prismatic cells. More focus 
should be given to the development of compliant solid electrolytes. 
Meanwhile, it is also equally important to design composite cathode 
architecture with maximum packing density for improved volumetric 
energy density. Bi/tri-layer cell frameworks are promising approaches 
which can resolve these challenges, prevent delamination and material 
decomposition during battery cycling. Careful attention to system 
design and technoeconomic analyses are necessary to guide commer
cialization efforts and bridge lab-based research and development with 
technology adoption. 
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