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Abstract

Professor C.R.Rao’s Linear Statistical Inference is a classic that has motivated several gen-
erations of statisticians in their pursuit of theoretical research. This paper looks into some of
the fundamental problems associated with linear models, but in a scenario where the dimen-
sionality of the observations is comparable to the sample size. This perspective, largely driven
by contemporary advancements in random matrix theory, brings new insights and results that
can be helpful even for solving relatively low-dimensional problems. This overview also brings
into focus the fundamental roles played by the eigenvalues of large covariance-type matrices in
the theory of high-dimensional multivariate statistics.

1 Introduction

Professor C. R. Rao’s seminal contributions to all areas of statistics spanning over seven decades
have inspired developments of many modern statistical techniques. Two of his books Rao (1952,
1965) are classics in statistical methods and their applications. Statistical inference techniques in
linear models, and more broadly, multivariate statistical analysis from a linear models perspective,
have been some of the most influential contributions of Rao. His works on testing hypotheses
in multivariate analysis and in linear models (Rao, 1948, 1959), on statistical inference for factor
analysis (Rao, 1955), on applications of principal components analysis (Rao, 1964), on estimation
of variance components (Rao, 1972), and his 1975 Wald Memorial Lectures on estimation theory
for linear models (Rao, 1976) are some of the most well-cited works in the statistical literature. In
view of this, in this paper we focus our attention to modern theoretical developments in these areas
of multivariate statistics with the additional feature that the dimensions of the observation vectors
are not fixed, but are allowed to increases with the sample size.

One of the striking features of much of Rao’s work in the context of linear statistical inference
is the broad generality of the conclusions, and hence their applicability to a multitude of practical
problems. In this regard, modern high-dimensional statistics has evolved in broadly two distinct
trajectories. One of these branches has utilized the idea of imposing meaningful and interpretable,
though not always testable, structural assumptions on the parameters associated with a statistical
model — such as sparsity, or low-rankedness — while the other branch attempted to generalize conclu-
sions derived in classical multivariate analysis typically under the Gaussian distribution framework
to broader classes, without imposing too many structural constraints on the parameter. The first
branch has seen an explosive growth in the literature, driven largely by concurrent development
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in analytical tools for dealing with large-dimensional convex and non-convex optimization prob-
lems, and has contributed immensely to the popularity of modern machine learning techniques.
Excellent overviews of these developments can be found in the monographs Biithlmann and van
de Geer (2011), Hastie, Tibshirani and Wainwright (2015) and Wainwright (2019), among others.
Theoretical and methodological developments in the other branch has relied more on the geometric
aspects of the data cloud in terms of developing mathematical intuitions and techniques, espe-
cially on probabilistic concentration phenomena associated with low-dimensional smooth functions
of large-dimensional random vectors, and much less on restrictive model assumptions. However,
these developments, greatly influenced by developments in random matrix theory, consequently
have been mostly been restricted to settings where the dimensionality of the observations are either
comparable or of smaller order than the sample sizes. This is unlike in the first branch where the
structural assumptions, such as sparsity, serve to effectively reduce the complexity of the estimation
and inference problems, so that nominally the dimensionality of the observations can be orders of
magnitude larger than sample size, and yet valid inference is possible. In view of the divergent
nature of the current state of high-dimensional statistics, and in order to keep the presentation
coherent and focused, in this paper, we present a review of modern multivariate analysis with an
emphasis on linear models and related statistical problems, from the perspective of random matrix
theory.

Classical multivariate analysis texts, most notably Anderson (2003), Mardia, Kent and Bibby
(1980) and Muirhead (1982) have emphasized the use of analysis of fixed dimensional random
matrices in analyzing the behavior of various statistics that naturally arise in inference problems.
A majority of these problems are naturally formulated in terms of the eigen-decomposition of
certain symmetric matrices. These problems can be broadly categorized into two groups. The
first group involves the eigen-analysis of a single random symmetric matrix, namely, the sample
covariance matrix associated with a set of i.i.d. multidimensional observations. This problem is
often referred to as a single Wishart problem, after the characterization of such matrices as the
multivariate generalization of Chi-square random variables due to Wishart (1928). The second
group of inference problems involves analyses of statistics that can be characterized in terms of
the eigenvalues of the “ratio” of two independent symmetric covariance-type matrices of the same
dimension, and is often referred to as a double Wishart problem. This problem is also closely
related to the generalized eigenvalue problem associated with a pair of Wishart matrices with same
the scale matrix. Multivariate analysis methods that fall within the first group include principal
component analysis (PCA) and tests for population covariance matrices in an one-sample problems.
Methods falling under the second group include multivariate analysis of variance (MANOVA),
canonical correlation analysis (CCA), tests for equality of covariance matrices, and tests for linear
hypotheses in multivariate linear regression. In addition, random matrices play a natural role in
defining and characterizing estimates in multivariate linear regression problems and in classification
and clustering problems. Clearly, most of these problems, including classification (or discriminant
analysis) problems under the idealized Gaussian populations framework, are directly or indirectly
related to the broader statistical methodology associated with linear models. In view of this, in this
paper we give an overview of the theoretical developments dealing with various questions within
the context of high-dimensional linear models through the analytical framework of random matriz
theory (RMT) that is particularly well-suited for the “large dimension and comparable sample size”
regime.

In this paper, we spend most of our efforts into dealing with a subset of the topics, namely high-
dimensional linear regression (Section 4), MANOVA (Section 5), hypothesis tests on covariances



(Section 6), discriminant analysis (Section 7) and linear time series (Section 8). We also leave out a
couple of important topics. One of them pertains to high-dimensional principal components anal-
ysis, mainly because there are comprehensive reviews on this topic from the RMT perspective (see
for example, (Johnstone and Paul, 2018) and the references therein). The other topic is covariance
estimation, and especially estimation of the spectrum of the population covariance matrix within
the RMT framework. The latter topic, though important in its own right, does not fit in very well
with the rest of the topics, and is hence omitted from the discussion here. Interested readers may
look into the following papers to familiarize themselves with some of the distinct approaches to
this problem: Donoho, Gavish and Johnstone (2018), El Karoui (2008), Bai, Chen and Yao (2010),
Ledoit and Wolf (2012) and Ledoit and Wolf (2015).

2 Ingredients of theoretical analysis

In this section, we summarize some of the fundamental theoretical constructs and objects of study
in RMT and a few main technical tools needed to analyze their theoretical properties. In the
process, we also give a brief overview of some fundamental results about the behavior of large
symmetric random matrices. The reader may refer to the monograph Bai and Silverstein (2010) or
the review paper Paul and Aue (2014) for further details.

2.1 Empirical Spectral Distribution (ESD)

Suppose that X is an N x N symmetric matrix so that all the eigenvalues Ay, ..., Ay of X are real.
The empirical distribution of the eigenvalues of X, usually referred to as the Empirical Spectral
Distribution (ESD) of X, is the distribution function N—! Zf\; 10y, where 9, denotes the Dirac
mass at y. We can thus define the empirical spectral (cumulative) distribution function of X as
FX(r) = N1 Z;Vﬂ 1(;<z} for z € R. In RMT, the ESD of a random matrix plays a central
role in studying the properties of the spectrum. One motivation is that many statistics associated
with a random matrix X can be expressed as a linear functional of its ESD, or a linear spectral
statistic (LSD), i.e., a function of the form [ g(z)dF*(x) for some suitably regular function g.
Many classical hypothesis testing procedures in multivariate statistics use traces of polynomials or
logarithms of the determinants of sample covariance-type matrices, or Fisher-type matrices (to be
defined below). These statistics thus can be recognized as LSS associated with appropriate random
matrices, which facilitates their intricate theoretical analysis in the large dimensional regimes.

An important question about the ESD that is studied in the RMT literature is whether, after
appropriate normalization of the random matrix, this random distribution converges to any specific
probability distribution (in an appropriate sense) as the dimension of the matrix grows. The
celebrated semicircle law provides a first answer to this in the context of Wigner matrices, i.e.,
square Hermitian or real symmetric matrices with independent entries on and above the diagonal
with zero mean and unit variance. Wigner (1958) showed that the expected ESD of an n xn Wigner
matrix with Gaussian entries, multiplied by 1/+/n, converges in distribution to the semicircle law
that has the p.d.f.
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An analogous result was derived for the sample covariance matrix by Marcenko and Pastur
Marcenko and Pastur (1967) assuming that the fourth moments of the entries of the data matrix
are finite. The important facet of this result is the dependence of the limiting distribution on the



limiting ratio ¢ = limy, 5,00 p/n. Theorem 1 below states Marcenko-Pastur limit law under minimal
moment conditions.

We first introduce some basic notations. Henceforth, we use X* and and X’ to denote the
conjugate transpose (resp., transpose) for a complex-valued (resp., real-valued) matrix X. Occa-
sionally, for brevity, we use X* to mean transpose even when the matrix is real-valued. Also, we
use i to denote the complex number \/—1, Iy to denote the N x N identity matrix, and $(z) and
3(z) to denote the real and imaginary parts of a complex number z.

Theorem 1. Suppose that X is a p X n matriz with i.i.d. real- or complex-valued entries with
mean 0 and variance 1. Suppose also that p,n — oo such that p/n — ¢ € (0,00). Then, with
probability one, the ESD of S = n~!XX* converges weakly to a nonrandom distribution, known as
the Marcenko-Pastur law, denoted by F.. If ¢ € (0,1], then F. has a p.d.f.
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where by (c) = (1 £+/c)%. If c € (1,00), then F. is a mizture of a point mass 0 and the p.d.f. fi/e
with weights 1 — 1/c¢ and 1/c, respectively.

Theorem 1 is a formal way of quantifying the spreading of the eigenvalues of the sample co-
variance matrix around their population counterpart. Notice that this spreading of eigenvalues
increases as the limiting dimension-to-sample-size ratio ¢ increases from 0 to 1. When p/n — 0,
both the largest and the smallest eigenvalue of S converge to 1 and thus the Marcenko-Pastur law
does not hold for the ESD of S.

2.2 Stieltjes transform

The Stieltjes transform plays a central role in RMT in terms of characterizing the asymptotic
behavior of eigenvalues of a symmetric random matrix. The Stieltjes transform of a measure p on
the real line is defined as the function

s#(z):/ L dz), zect (3)
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where C* := {x +iy: z € R,y > 0}. Note that S, is analytic on C* and maps into C*. The
following inversion formula allows one to reconstruct the distribution function from its Stieltjes
transform.

Lemma 1. Let P be a probability measure on the real line. If a < b are points of continuity of the
associated distribution function, then

1 b
P((a,b)) = — lim I(Sp(u + iv))du. (4)
™ v—=0+ J,
The following lemma (Geronimo and Hill, 2003) gives a necessary and sufficient condition for
the limit of Stieltjes transforms of a sequence of probability measures to be the Stieltjes transform
of a probability measure.

Lemma 2. Suppose that {P,} is a sequence of Borel probability measures on the real line with
Stieltjes transforms {s,}. If lim, o0 sp(2) = s(2) for all z € C*, then there exists a Borel proba-
bility measure P with Stieltjes transform Sp = s if and only if

lim ivs(iv) = —1, (5)
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in which case P, converges to P in distribution.

To see more clearly the usefulness of Stieltjes transform in the study of the asymptotic behavior
of ESDs, suppose that for each N > 1, Wy is an N x N Hermitian random matrix, so that its
eigenvalues are all real, with ESD FW~ . Then, the Stieltjes transform of FWN | say sy, is given by
sn(2) = N~ tr((Wy —2In)71). Notice that (W —2Ix) ! is the resolvent of the matrix W and
its points of singularity are at the eigenvalues of W . In view of Lemma 2, in order to prove that
the sequence of ESDs FW~ converges to a distribution F, say (in probability or almost surely), one
needs to check that {sy} satisfies the conditions of the lemma (in probability or almost surely).

For problems involving random matrices that are a Wigner or Wishart-type matrix, it is rela-
tively easy to derive an approximate iterative equation for the Stieltjes transform of its ESD. This is
typically by using a rank one matrix perturbation technique and an appropriate inversion formulas
for block matrices. The reader may see, for example, Sec. 3.1 of Paul and Aue (2014) for a brief
overview of this approach.

The following generalization of Theorem 1 due to Silverstein and Bai (1995), especially for the
case of real-valued random variables, is of fundamental importance in high-dimensional multivariate
analysis.

Theorem 2. Suppose that the entries of the p x n matriz X,, are complex random variables that
are independent for each n and identically distributed for all n and satisfy E[| X11 — E(X11)|]? = 1.
Also, assume that A, = diag(t1,...,7p), where 7; € R and the empirical distribution function
of {T1,...,7p} converges almost surely to a probability distribution function H as n — oo. Let
Wn =B, +n_1X:§Aan where By, is an n x n Hermitian matriz satisfying that FB» converges to
FB almost surely, where FB is a distribution function on R. Assume further that X,,, A, and B,

are independent. Then as n,p — oo such that p/n — c € (0,00), the ESD FWn of Wn converges to
a nonrandom distribution F., where, for any z € CT, its Stieltjes transform s = s(z) is the unique

solution in CT of the equation
TdH (1)
S—SB<Z—C/1+ST>7 (6)

where sp(z) is the Stieltjes transform of FB.

When B,, is the zero matrix, (6) reduces to

:_1+/1df<> (7)

which gives an explicit inverse function for s(z). Assume further that A,, is positive definite.
Defining s(z) = (1/¢)(s(z) + (1 — ¢)/z) and noticing that the nonzero eigenvalues of

1
W, = EA},/QX,LX*;LA}/Q (8)

coincide with those of n_lX;;Aan, it can be easily deduced that, under the assumptions of
Theorem 2, the ESD FWn of W,, converges to a nonrandom distribution F, almost surely, where
the Stieltjes transform s = s(z) of F, is the unique solution in the set {s € C: —(1—c)/z+cs € C*}
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Equations (7) and (9) are variously referred to as the Maréenko-Pastur equations or Silverstein
equations. These form the building blocks for downstream analyses about the analytic behavior
of the Limiting Spectral Distribution (LSD) of covariance matrices. Notably, Silverstein and Choi
(1995) characterized the analytic properties of the limiting distribution Fg, in particular, proving
the existence of a continuous density on R for F, when ¢ € (0, 1), and determining the support of
F. in terms of the zeros of the derivative, with respect to s (restricted to R), of z satisfying (7).

2.3 Linear Spectral Statistics (LSS)

Let F}, be the ESD of a p x p symmetric or Hermitian random matrix with eigenvalues A1,..., ;.
We define a linear spectral statistics (LSS) corresponding to the function g defined on the real line
to be the quantity

P
[ s@dbuta) = 3" a00). (10)
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If, as n — oo, p — oo and F), converges to a limiting distribution F' (in probability or almost
surely) and g is a continuous function, then [ g(x)dF,(z) — [ g(z)dF(z) (in probability or almost
surely, respectively). Moreover, it is of interest to study the fluctuations of [ g(z)dF,(z) around
[ g(x)dF(z). The process Gp(x) = an(Fy(x) — F(z)) can be viewed as a random element in
D[0, 00) (the metric space of functions with discontinuities of the first kind along with the Skorohod
metric), for an appropriate normalizing sequence «;,, — co. However, this process in general does
not converge to a limiting process (Bai and Silverstein, 2004).

However, it may still be possible to find an appropriate sequence «, such that the random
variables

Gulg) = o / 9(2)(dFy (x) — dF () (11)

may converge to some limit law for a suitably regular class of functions g. If F}, is the ESD of a
Wishart(p, n; I,) matrix and p,n — oo such that p/n — ¢ € (0, 1), this is indeed the case for “nice”
functions such as g(z) = z" for a positive integer r. The result holds in much greater generality.

Bai and Silverstein (2004) proved a CLT for the random vector (Gn(¢1),...,Gn(g9k)) with
ay, = n under the p/n — ¢ > 0 setting, when the following assumptions hold.

(i) F, = FW» is the ESD of W,, = nilAzl,/QXnX;iAzl/Q, where A, is a p X p random positive
definite matrix whose ESD converges to a nonrandom distribution F#, and is independent
of the p x n matrix X,, with i.i.d. real- or complex-valued entries X, satisfying E[X11] = 0,
E[[X11/%] = 1, E[|X11]Y] < oo; and E[X{}] = 3 if X1; and A,, are real, while E[X%] = 0 and
E[|X{]] = 2 if X711 is complex;

(i) g1,...,9x are analytic functions on an open interval containing [lim inf )\ﬁinl(o,l)(c)(l —
Ve)?2 limsup A2 (1 +,/¢)?], where A& and A\

max min max
values of A, respectively.

denote the smallest and the largest eigen-

A central idea in the proof is the following representation which uses the Cauchy integral formula:

1
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where C is a positively oriented contour enclosing the support of F' and F,, and s and s,, are the
Stieltjes transforms of F' and F,,, respectively. So, the problem of finding the limit distribution



of G, (g) reduces to studying the asymptotic behavior of the process of M, (2) = n(s,(z) — s(2)).
Bai and Silverstein (2004) constructed a truncated version of M,(z) on a suitably chosen contour,
and applied martingale decomposition techniques on the latter process to derive the final result.
In contrast to the Stieltjes transform-based approaches, Lytova and Pastur (2009) used the Fourier
transform of the LSS as the basic building block. They first proved the results for matrices with
Gaussian entries and then used an interpolation between the random matrix ensemble of interest
and a conveniently chosen Gaussian matrix, and then used a version of Stein’s Lemma, for proving
the result.

CLTs for certain special classes of linear spectral statistics, for example the log-determinant of
the sample covariance matrix, have been proved in many different contexts. Zheng (2012) proved a
CLT for the LSS of Fisher-type matrices (or F-type, or double Wishart matices). Specifically, she
considered asymptotic behavior of the ESD of matrices of the form M,, = (n; 'XX")(ny, 'YYT)™1,
with X = [X.q:...: Xy, Y =[Yq:...:Y,,] representing independent samples of sizes n; and
ne from two p-dimensional populations with i.i.d. zero mean, unit variance entries. In this case, by
making use of the Marcenko-Pastur equation, it is possible to show the existence of an LSD F, .,
for the matrix M,,, assuming that p/n; — ¢; € (0,00), and p/ny — ¢2 € (0,1). For an integrable
function g, let F,,, c.,(9) = [g(x)dF.,, cn.(x), where ¢p1 = p/ni and cpo = p/ng, and Fe | ¢
is the c.d.f. F¢, ., with (c1,¢2) replaced by (cn1,cn2). Under the stated framework, Zheng (2012)
derived the joint asymptotic normality for functionals of the type X,,(g;) = p(g;(Mp)—Ft,.1 cn2(95))s
j=1,...,J, where {g; }3-7:1 is a collection of functions analytic on an open interval containing the
support of Fy, ,.

CLTs for linear spectral statistics, involving both Wishart-type and F-type matrices, have been
extensively used to study the asymptotic behavior of commonly used statistics such as the likelihood
ratio statistic, or statistics based on traces of powers of respective matrices in the “large dimension,
comparable sample size” settings. In particular, these analyses demonstrate three different features:

(i) Classical asymptotic approximations of the test statistics based on the “fixed dimension,
large sample size” regime are inadequate in capturing the effect of dimensionality in the
RMT regimes. Also, the distributional approximations become invalid in such set up.

(ii) The approximations based on the RMT framework (almost exclusively built around either
CLT for LSS involving these matrices, or based on approximations to distributions of extreme
eigen-values) quite accurately capture the bias in measures of goodness-of-fit arising due to
dimensionality over a fairly wide range of dimension-to-sample size ratio.

(iii) Moreover, many of these phenomena depend primarily on the geometry of the data cloud
and concentration phenomena associated with quadratic forms of large-dimensional random
vectors, and so are somewhat robust to distributional assumptions.

2.4 Extreme eigenvalues and Tracy-Widom laws

Following up on the work of Wigner (1958), in the process of analyzing the behavior of mathematical
models for heavy nuclei, Tracy and Widom (Tracy and Widom, 1994a),Tracy and Widom (1994b),
Widom (1999)) derived the limiting distributions of the largest eigenvalue of a Wigner matrix,
and derived a class of distributions as limit laws that came to be known as the Tracy-Widom
distributions. Johnstone (2001) showed that the largest eigenvalues for real and complex-valued
Wishart matrices, after appropriate normalization, as p/n — ¢ € (0,1), also converge to the



corresponding Tracy- Widom laws, as p,n — oo such that p/n — v € (0,1] (and so for v € [1,00),
by interchanging the role of n and p).

Below we summarize the results describing the distributional limits of the extreme eigenvalues of
various classical random matrix ensembles. We first give a very brief description of these ensembles
in terms of the joint distribution of their eigenvalues.

The Gaussian Orthogonal Ensemble (GOE) (resp., Gaussian Unitary Ensemble (GUE)) in di-
mension N is defined as a probability density function on the space of NV x N symmetric matrices
(resp., Hermitian matrices), given by

hN,B(H) — KN7BefﬁtI'(H2)/47

where K 3 is constant of proportionality, with # = 1 corresponding to the GOE and 8 = 2
corresponds to the GUE. Using standard arguments (Muirhead, 1982), and the orthogonal (resp.
unitary) invariance of the corresponding matrix variates, these ensembles, as well as the associated
Laguerre and Jacobi ensembles described below, are also equivalently expressed in terms of the
joint densities of their eigenvalues. A general form of the joint density of the eigenvalues x1, ...,z
of H is given by

N pw(@y, e zn) = enpw [ [ 1o —anl® [ [ (w(z;)??, (12)

i<k J

where ¢y g, is a proportionality constant and w(z) is a nonnegative weight function, and § =1
and 8 = 2 correspond to the symmetric (orthogonal) and Hermitian (unitary) matrix ensembles,
respectively. For GOE (corresponding to § = 1) and GUE (corresponding to § = 2), the weight
function w(z) = exp(—22/2).

Laguerre Orthogonal Ensemble (LOE) and Laguerre Unitary Ensemble (LUE) refer to the joint
density of eigenvalues of the (unnormalized) sample covariance matrix associated with an N x (N +
«) data matrix with i.i.d. real or complex standard Gaussian entries. This joint density has the
form (12), (with LOE corresponding to # = 1 and LUE corresponding to 8 = 2), where the index
o appears in the expression for the corresponding weight function w(x) = r® exp(—)1(y>0)-

With parameters N = p, « = m — p and v = n — p, and assuming min{m,n} > p, the
Jacobi Orthogonal Ensemble (JOE) and Jacobi Unitary Ensemble (JUE) refer to the joint density
of eigenvalues of the matrix T = U(U + V)~! where U = XX* and V = YY*, where X and
Y are independent p x m and p X n matrices, with i.i.d. real (corresponding to orthogonal) or
complex (corresponding to unitary) standard Gaussian entries. For this reason, these ensembles
are also referred to as “double Wishart” ensembles. Notice that the p.d.f. given by (12) for the
JOE (8 =1)/JUE (8 = 2), with the weight function w(x) = (1 —2)*(1+ )71 (_1<5<1), is actually
the joint density of eigenvalues of the transformed matrix 2T — Iy (Johnstone, 2008).

The c.d.f. of the Tracy-Widom distribution associated with the Gaussian Unitary Ensemble
(GUE) and Laguerre Unitary Ensemble (LUE), denoted by Fj, is given by

Fy(s) = exp <— /:o(:z — s)q2(x)dx> , seER; (13)

while the c.d.f. of the Tracy-Widom distribution corresponding to the Gaussian Orthogonal En-
semble (GOE) and Laguerre Orthogonal Ensemble (LOE), denoted by F, is given by

A =ew (-5 [ 0@ + @ - 9f@)s),  sek (14)



where q(r) satisfies the Painlevé II differential equation ¢”(z) = zq(z) + 2¢3(z) with the feature
that g(z) — A(z) — 0 as © — oo, where A(x) denotes the Airy function. The main results of
Johnstone (2001) can now be stated as follows.

Theorem 3. Suppose that the entries of the p x n matriz X are i.i.d. compler Gaussian with mean
zero and variance one. Let 1y, denote the largest eigenvalue of XX*. If p/n — v € (0,1], as
n — oo, then

= Wy, (15)

where

B 9 _ L i 1/3
Nn,p—(\/ﬁ+\/13)7 Un,p—(\/ﬁ‘i‘\/];)(\/ﬁ"i‘\/ﬁ) .

If the the entries of X are i.i.d. real Gaussian with mean zero and variance one, and ly, denotes
the largest eigenvalue of XX, then as n — oo, so that p/n — (0,1],

/
lLP - Mn,p

/
Onp

— Wl, (16)

where

/ , 1 1 1/3
:U’n,p:(\/m+\/]>9)2, o'mp:(\/ﬁ%»\/]»?)( n_1+\/]3> .

Here the random variables W1 and Wy are distributed with c.d.f. Fy and Fy, respectively.

Johnstone (2008) proved similar scaling limits for the largest eigenvalues of Jacobi Orthogonal
Ensemble (JOE) and Jacobi Unitary Ensemble (JUE). Denote by 6, the largest eigenvalue of
U(U+ V)l where U= XX*and V = YY* with X (p x m) and Y (p x n) being independent
matrices with i.i.d. real or complex standard Gaussian entries. Then under the assumption that

m = m(p) — 0o, n =n(p) — oo asp — oo such that lim min{p, n} >0 and lim £ < 1, (17)
p—oo M+ n p—oo M,

the normalized quantity [log(6; ,/(1—61,)) — tp]/0p, converges in distribution to the Tracy-Widom

laws Fy and F7i, in the complex and real settings, respectively, where p, and o, are appropriate

centering and scaling sequences,

Various generalizations of these results, in particular statements that these results are universal,
i.e., do not depend heavily on the distribution of the observations, have appeared in the literature,
especially due to the work of Terence Tao, Van Vu, Horng-Tzer Yau and coworkers, a brief summary
of which can be found in Johnstone and Paul (2018).

3 Inference problems in high-dimensional linear models

A fundamental problem in statistics, not just restricted to linear models, is to compare two or
more populations of multivariate observations based on samples drawn from these populations.
An idealization of this problem, when the measurements are continuous, is to assume that we
have independent observations from k£ > 2 p-variate normal distributions such that [-th population
has mean p; and covariance matrix ;. If furthermore, these populations potentially differ only
due to differences in the locations, while having a common scale, i.e., ¥; = --- = X, then the



resulting statistical problem of comparing these k& populations becomes a Multivariate Analysis of
Variance (MANOVA) problem, where the primary objective is to distinguish among the k different
populations based on formulating and testing hypotheses about the means p1,..., g, or some
contrasts involving these parameters.

A generalization of this MANOVA problem can be formulated in terms of testing hypothe-
ses about pre-specified linear functionals of the regression parameter B in a multivariate linear
regression model

Y =BX +¢ (18)

where Y is a p X n matrix whose columns consist of measurements on p response variables, B is a
p X k matrix of regression coefficients, X is a k x n fized design matrix, and € is a p X n matrix of
noise terms, whose columns are assumed to be of the form €.; = I'Z ;, where Z;;’s may be taken
to be i.i.d. random variables with zero mean and unit variance. Then the covariance of the noise
is ITT = ¥, say. In this framework, the pre-specified linear hypotheses involving the regression
parameter B can be collectively formulated as a single hypothesis of the form Hy : BC = O where
C is a k x g matrix (may be referred to as a “contrast matrix”) and O is a p X ¢ matrix of zeros.

Even in the standard set up of univariate linear regression, when the number of predictor
variables is large compared to the sample size, some commonly accepted phenomena associated
with classical multivariate analysis, such as consistency of the least squares estimator, consistency
of inference procedures on the regression coefficient, etc., fail to hold. Such phenomena can also
be explained by utilizing the theoretical framework of RMT. At the same time, commonly used
regularization procedures for taking into account the effects of large dimensionality, such as ridge
regression, can be understood from a more precise geometric perspective, by making use of such an
analytical approach.

Another exciting theoretical development in recent times has been the use of RMT framework to
understand robust multivariate procedures in high-dimensional settings. These developments merge
two different core principles, one based on a representation of solutions of complex optimization
procedures, and the other based on the concentration phenomena associated with large-dimensional
random vectors, to provide sophisticated, yet more interpretable, description of the behavior of
robust estimators of the regression coefficients and their risk properties.

In the following two sections, we shall study various facets of high-dimensional phenomena asso-
ciated with commonly used multivariate statistical techniques for linear regression and MANOVA
problems. We also review some of the solutions proposed to address the limitations of the exist-
ing inferential techniques whose validity rests upon classical “fixed dimension, large sample size”
asymptotic regime. In the context of the linear regression model (18), which is our first topic of
discussion, beyond inference on the regression coefficient, we shall also look into some associated
statistical problems, such as measures of fit and effects of ridge-type regularization schemes. We
shall address the MANOVA problems in the high-dimensional setting, namely, when p is compa-
rable to n, the total sample size, while the number of different populations can be either fixed,
or growing proportionately to the sample size. Apart from describing the dimension-dependent
correction procedures needed by some well-known inference techniques, we shall also review some
modern developments involving spectral regularization techniques. Some of the materials present
here follow the overall descriptions of the problems in Yao, Zheng and Bai (2015). Other resources
include the monographs of Bai and Silverstein (2010) and Fujikoshi, Ulyanov and Shimazu (2011).
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4 Linear regression

Over last two decades, there has been a very substantial enhancement in our understanding of the
univariate and multivariate linear regression problems within the RMT framework of dimensions
comparable to sample sizes. There are many facets to this broad framework. To give a glimpse
of the multitude of developments we provide representative summaries of four separate problems
involving linear regression. They illustrate high-dimensional phenomena associated with some key
statistical problems associated with linear models, namely, (i) behavior of quantitative measures
of goodness of fit; (ii) inference on the regression coefficient from the point of view of determining
adequacy of submodels; (iii) regularization schemes to account for dimensionality effects and their
implications to estimation and prediction performance; (iv) behavior of robust estimators of the
regression coefficient; and (v) behavior of estimators of variance components in high-dimensional
random and mixed effects models.

4.1 Multiple correlation coefficient

Consider a random regression model where we have i.i.d. realizations of p-dimensional random
vector X with population covariance matrix ¥, which is assumed to be positive definite. Then
the squared multiple correlation coefficient p? between the variable X; and all the other variables
(X2,...,X,) is given by

2= ol o1 _B"S»B _ (19)
o11 011

Here, 011 = Var(X;) is the (1,1) element of 3, Y99 is (p — 1) x (p — 1) dimensional covariance
matrix of (Xo,...,X,), o1 is the (p — 1) x 1 vector of covariances Cov(X1,X;), j = 2,...,p, and
8 = 22_210'1. If, without loss of generality, we assume E(X) is zero, then (3 is the population
regression coefficient for the regression of X7 on X_1 := (Xo,..., X,)T, i.e,, B =E(X1/X_1). Note
that p? € [0,1] and has the interpretation as the proportion of variability in X; explained by X_;
through a linear regression model.

Now suppose that we have sample observations X ;, j = 1,...,n from the p-variate normal
distribution A, (0, ). Then, defining & = n~? D (X = X)(X —X)T, where X =n~! i1 X
is the sample mean, and correspondingly defining 011, o1 and B = 25215'1 (estimate of 3), the
sample squared multiple correlation coefficient between variables X1 and X_; is defined as

B2 _ o135, 01 _ BTEnp ‘ (20)

011 011

Traditionally, R? has been used a simple and effective measure of the strength of linear association
in linear regression models. A more widely used statistic for comparison across models, that adjusts
for the number of variables, is the adjusted R?, defined as Ridj = Z—:;RQ. Under Gaussianity of
observations, it is well-known that the transformed statistic {R?/(p — 1)}/{(1 — R?)/(n — p)} has
a central F' distribution with (p — 1,n — p) degrees of freedom if p = 0 (i.e., there is no linear
association between X7 and the rest of the variables). Indeed, the invariance of this distribution
with respect to ¥ under the setting p = 0 is one of the reasons as to why R2, or some transformed
version of it, has traditionally been used for testing the presence of linear association between the
response and predictor variables.

In the traditional “fixed p, large n” asymptotic regime, as n — oo, both R? and R?

adj are

consistent estimators of p?, which follows trivially from the consistency of $ as an estimator of .
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However, this is not the case when p and n are of comparable sizes. In particular, when p,n — oo
such that p/n — ¢ € (0,1), we have the following result due to Yao, Zheng and Bai (2015) about
the pointwise and distributional limits of R2.

Theorem 4. Suppose that X.1,..., X, ~ Np(0,X), with a positive definite . Suppose further
that p.n — oo such that ¢, :=p/n — c € (0,1). Then

R* %% c4 (1 —c)p?, (21)

and

VIR? = en = (1= en)p?) = N(0,0%(c, 7)) (22)
where 02(c,t) = 2(c+ (1 — ¢e)t) — 2(2c + 4(1 — c)t — 2(1 — ¢)t?)(c+ (1 — )t — 1/2).

Notice that (21) quantifies the asymptotic bias in R? as an estimator of p?, while (22) can be
used to perform tests for the hypothesis p = pg for any pre-specified pg € [0, 1), and such a test can
then be inverted to find a confidence interval for p.

4.2 Inference in multivariate linear regression

Testing for the presence of submodels of lower complexity is one of the fundamentals problems in
linear models. In the context of linear regression, typically we are interested to see if a subset of
the predictors is adequate in terms of describing the variability in the response. Bai et al. (2013)
considered the problem of testing linear constraints associated with the regression coefficient matrix
B in the high-dimensional multivariate linear regression model (18) under Gaussianity. Specifically,
they proposed appropriate corrections to the likelihood ratio test (LRT) for hypotheses of the form
Hj : BC = Dy, where C is a matrix of full column rank (constraints matrix), and Dy denotes a
pre-specified matrix. Below, we give a simplified description of this problem and the associated
theoretical analysis when the constraint simply sets a subset of the columns of B to a fixed value.

Suppose we partition the k x n design matrix X into two parts, X; and Xo, consisting of
first k1 and last ko = (k — k1) rows of X, respectively. Let the corresponding partition of B be
B = [B; : By| where By is p x k;, | = 1,2. Suppose we are interested in testing the null hypothesis:
Hy : B; = Bqg, where the latter is a pre-specified matrix. If By is a matrix of zero entries, then
the hypothesis testing problem can be seen as a model selection problem, where the submodel
Y = BsX5 + ¢ is being tested for its adequacy.

Under the assumption that columns e.; of the noise matrix e are i.i.d. from N,(0,%) where
Y is a positive definite matrix, the likelihood ratio test (LRT) for Hy : By = Byg rejects the null
hypothesis for small values of the statistic

_ nZ|
|”§ + (ﬁl —Big)A11.2(B1 — Byg)7|

(23)

reg

where B is the submatrix with first k1 columns of ]§, the least squares estimator of B, given by
YXTA_l, i = ’I’L_l(Y — ﬁX)(Y — ﬁX)T, A9 = A1 — A12A521A21, where A = XX7' and
Ay = Xleq; for 1 < 1,1’ < 2. It is well-known that, under the stated distributional assumptions,
G = nZ has a Wishart(p,n — k; X) distribution. Also, under the null hypothesis, H = (]§1 -
Blo)An.g(ﬁl — Bi1o)? has a Wishart(p, k1; ¥) distribution, and G and H are independent. Thus,
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by expressing the statistic Lyey as 1/|I, + HG™!|, we notice that the LRT is equivalent to rejecting
Hy for large values of the statistic

Lyeg = log|I, + HG™Y|. (24)

The latter object can be identified as a linear spectral statistic (LSS) in the Fisher matriz HG™!,
under Hy, i.e., a function of M = HG™! of the form Z?Zl g(A;(M)), with X\;(M)’s denoting the
eigenvalues of M (all real), and g(z) = log(1 + x).

The last observation is the cornerstone for much of the theoretical developments of such inference
problems in the RMT framework. In particular, Bai et al. (2013) utilized this representation, and
a CLT for LSS of F-matrices, to derive the asymptotic null distribution of the LRT statistic under
the assumptions that p/k; — k1 € (0,00) and p/(n — k) — ¢ € (0,1). Using this, they proposed a
correction term in the LRT test to account for large dimensionality of the predictors and the linear
constraints (see Sec. 7.6 of Yao, Zheng and Bai (2015) for details). They also conjectured that such
results may actually hold for non-Gaussian observations, under the generative model (18) where
e = Y27 where Z is a p X n matrix with i.i.d. coordinates with zero mean, unit variance and finite
fourth moments. Such a result and its generalizations for a class of spectrally regularized tests of
linear hypotheses, under appropriate regularity conditions, have recently been derived by Li, Aue
and Paul (2020), which we discuss later in Section 5.3.

4.3 Ridge regression

Ridge regression or Tikhonov regularization of the sample covariance matrix (or the Gram matrix)
of the predictors has been one of the preferred approaches to dealing with the multicollinearity
problem in linear regression involving many predictor variables. Such regularization schemes are
known to reduce the variability of the estimator, in comparison with the standard least squares
estimator, at the cost of introducing some bias, resulting in the classic bias-variance trade-off issue
in terms of the choice of the regularization parameter. Until recently, theoretical analyses of such
schemes have only been done in the fixed p, or p growing slowly with n, regimes. Much of these
analyses have focused on the risk behavior of the ridge estimator of the regression coefficient and
cross-validation or AIC-type criteria have been used, with asymptotic justification under fixed p
regime, for selection of the ridge regularization parameter.

More recently, such regularization schemes have been analyzed within the RMT framework, i.e.,
when p is comparable to, or even larger than n, and assuming that predictors are random. To be
specific, suppose we are dealing with the univariate regression model

Y, = X8 +¢, i=1,...,n, (25)

with i.i.d., noise ¢;’s with zero mean, and p dimensional predictors X;.. In vector form, the model
can be expressed as
Y =X"8 +e¢,

where Y = (Y;),, € = (&)}, and X is a p X n matrix, with i-th row equal to X;., a p x 1 vector.
Note that, our notation here is unconventional, but we use it to be consistent with the rest of
the manuscript in terms of the fundamental structure of the theoretical analyses. Then, the ridge
regression estimator of 3 based on model (25), with regularization parameter A > 0, is given by
B\A = (XXT + A,)7IXY, where the inverse always exists as long as A > 0. In this formalism,
assuming that the columns of X are independent random realization from some p-dimensional
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distribution, it is easy to see that ridge regression actually imposes a shrinkage, determined by
the parameter )\, on the eigenvalues of the empirical covariance matrix n ' XX” of the predictor
variables (we are assuming for conveniences that the predictors are centered, or have zero mean).

One of the first comprehensive theoretical analyses of the risk characteristics of ridge regression
estimators, and the dependence of this behavior on the geometry of the high-dimensional data
cloud corresponding to the predictor variables, under model (25) and when p/n — ¢ > 0, was
carried out by El Karoui and Kosters (2011). Dobriban and Wager (2018) derived the predictive
risk characteristics of ridge regression under the same asymptotic framework, while assuming that
the coefficient vector is random. Other works analyzing the risk characteristics of ridge regression
in large dimensions include Hsu, Kakade, and Zhang (2014) and Dicker (2013).

Dobriban and Liu (2019) gave a fundamental representation for high-dimensional ridge estimator
in the p/n — ¢ > 0 setting. Specifically, assuming that the design matrix X is of the form »1/2yU,
where U is a p X n matrix with i.i.d. zero mean, unit variance entries, and /2 is the square-root
of a positive definite matrix, the noise ;s are i.i.d. with zero mean and variance o2, independent
of X, and that limsup ||3]2 < oo, they showed that the ridge estimator (3, corresponding to
regularization parameter A\, has the following asymptotic representation:

(2

By = A\(D)B + BA(D) NG

Z (26)

where Z ~ N,(0, I,,) stochastically depends on e, and
ANE) = (V) + W) (WNE+AL) TS, ANE) = %N (NS + AL) 'S,

where 7,(A) € (0,1) is the unique solution to the equation

1) = 22X [5, 008 + 1) ]

The equivalence in (26) holds in the sense that the inner product of the difference between the
vectors on both sides with any arbitrary /2.-bounded deterministic weight vector (i.e., an arbitrary
linear combination of the difference vector) is asymptotically negligible. Notice that (26) effectively
quantifies the asymptotic bias and variability of the ridge estimator. Dobriban and Liu (2019)
also studied the bias of the K-fold cross-validation (CV) procedure for choosing the regulariza-
tion parameter, based on which they proposed a simple bias-correction method for the CV score.
Moreover, they also analyzed the accuracy of primal and dual sketching estimators based on ridge
regression. The latter method is designed to reduce the computational burden associated with the
estimation procedure, especially in the context of massive data sets.

4.4 Robust regression

Robust regression has drawn considerably attention in decades. Consider a design matrix X € R"*P,
as well as a vector of univariate responses Y € R”. Assume that the univariate linear regression
model (25) is satisfied. Under this set up, a robust estimator of 3, say an M-estimator, is defined
as

By = arg min Z} p(Yi— XI'8). (27)

In the classical framework, when p is fixed and n — oo, Huber (1973) derived that if the design
matrix X is full rank, under additional regularity conditions on X, p and “score function” 1) = p’,
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the estimator Bp is asymptotically Gaussian with mean 3* (true value of 3) and

_1 E(W?*(e)) '_ T

Ew@)p ~ (PO X 2%)
where ¢ has the same distribution as the i.i.d. noise g;’s. Huber and Ronchetti (2009) derived
that for p fixed (later generalized in Huber (1973) to a regime of larger p such that p?/n — 0 and
p3/n — 0 (Portnoy, 1985)), the optimal loss function p, when seeking to minimizing (28), is of the
form popr = —log f., where f; is the density function of error distribution €. In other words, this
implies that maximum likelihood estimator is optimal.

Var(B,) = (X'X)

High dimensional case

When p,n both go to infinity such that p/n — ¢ € (0,1), the asymptotic behaviors of estimator

,ép and the risk E|| Bp — B*||? are qualitatively different from the low-dimensional case. Indeed ép

is no longer a consistent estimator of By in the L? norm. In the classical framework, for any fixed

sequence a, € R", R
EB, -8 b,

vars,a,

where ¥, = Var(,ap). Even for the least squares estimators, Huber (1973) showed that (29) is

impossible for every a,, when p/n — ¢ € (0,1).

El Karoui (2018) gave rigorous results on the asymptotic behavior for both unregularized and
ridge-regularized high dimensional robust regression estimators under a more general setting, where
the predictors are independent realizations from an elliptically symmetric distribution. It should
be noted that there exists no universality in this result with respect to the sampling design, and
the results were derived for data X; = M\A; where X;’s have i.i.d. coordinates with bounded
support, zero mean and unit variance, and the scalar quantities \;’s are i.i.d with bounded support
that are independent of AX;’s. The influence of A;’s is very nonlinear and hence not only the
covariance of X;., but indeed the geometry of the data cloud, has an impact on the result. Results
given in this paper essentially yield the fact that the regression coefficient vector estimated by a
robust regression procedure contains an extra Gaussian noise component which is not informed by
canonical conception such as the Fisher information matrix. Another perspective on this result
is provided by Donoho and Montanari (2016) by making use of an Approzimate Message Passing
(AMP) algorithm, even though their formulation requires the entries of the design matrix to be
i.i.d. Gaussian, which was not assumed in El Karoui et al. (2013).

In the setting that p/n — ¢ < 1 and Gaussian covariates, El Karoui et al. (2013) gave an
explicit stochastic representation for the distribution of Bp and the limit of || Bp — B*||, defined as
rp(c), can be expressed through two highly non-linear equations in terms the parameter ¢ (equation
(30)), design matrix, error distribution as well as the form of the objective function p. El Karoui et
al. (2013) formulated the problem of extracting information about 8, from the “normal equation”

(0,1) (29)

Yo X (Y — xF Bp) = 0 where score function ¥ = p', as a random matrix problem, and made
use of a “leave-one-out” perturbation argument for both the responses and predictors.
The following result (Corollary 1 in El Karoui et al. (2013)) gives the representation of the

estimator under a special case when X;. Y (0,%), with nonsingular X.

Theorem 5. Under regularity conditions on {e;} and p (a convez function),

By — ﬁoH is asymp-

totically deterministic, where || - || denotes the L? norm. Let r,(c) be its deterministic limit as
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n,p — oo and let z: be a random variable defined as z. = € + r,(c)Z where Z ~ N(0,1) is in-
dependent of €, and the latter has the same distribution as €;’s. Then r,(c) is determined by the
following coupled equations.

2 2 (30)

E ([prox(cp)]' (22)) =1-c
E ([EE — proz(cp) (Z:)] ) = crj(c)

where by definition (Moreau, 1965), for a convex function f : R — R, the corresponding proximal
function proz(f) is defined as

prost1)(a) = avg iy (1) + 3o~ )?).

yeR

Lei, Bickel and El Karoui (2018) established the coordinate-wise asymptotic normality of re-
gression M estimates assuming a fixed design matrix X under appropriate regularity conditions
when p/n — ¢ € (0,1). With the assumptions on boundedness of first and second derivative of
score function 1, some technical assumptions on ¢; to derive Poincaré inequality for non-Gaussian
generalization as well as regularity condition on design matrix X, the results of coordinate-wise
asymptotic normality of regression M estimates was achieved though introducing a metric, e.g.
Kolmogorov distance and total variation distance inducing the weak convergence topology. The
proofs relied “leave-one-out” arguments generalized from the techniques used in El Karoui et al.
(2013) as well as second-order Poincaré inequality developed in Chatterjee (2009). In the fixed
design settings, the inference only involve the randomness of error, some experimental designs as
well as survey sampling with moderately large p,n can be carried out.

For extremely large datasets, distributed computation is increasingly used by practitioners.
Dobriban and Sheng (2019) worked on one-step and iteratively weighted parameter averaging in
general linear models under data parallelism, by implementing linear regression on several inde-
pendent machines and taking a weighted average of the estimated parameters. Dobriban and
Liu (2018) considered “sketch-and-solve” methods and study the asymptotic behaviors of several
quantities measuring the performance of currently existing sketching methods such as random
projection methods (Gaussian and i.i.d. projections, uniform orthogonal- Haar - projections, sub-
sample randomized Hadamard transforms) as well as random sampling methods (including uniform,
randomized leverage-based, and greedy leverage sampling) for unregularized linear regression. A
“large data” asymptotic regime was considered, they firstly reduce the data (X,Y’) by sketching,
say multiplying a 7 x n matrix S that the sketched data is got by (X,Y) = (SX,SY). In this
setting, both the dimension and sample size goes to infinity that p/n — k € (0,1) and the size r
of sketched data is also proportional to n such that r/n — ¢ € (k,1). The performance of variance

A~ 2. A2

efficiency (VE) VE(Ss, 8) = % and other quantities including relative prediction efficiency
(PE), residual efficiency (RE) and out-of-sample efficiency (OF) can be expressed in terms of traces
of some appropriated matrices, which limit implicitly involved in certain fixed-point equations from

the Marchénko-Pastur law by using RMT techniques.

Analysis of robust regression under the Huber loss function

One particular example of p most commonly used in the context of robust statistics is Huber loss
function, given as

12/2 if ]a:\ <,
priz) = { Tlo| —72/2  if |z > T (31)
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in which p takes to grow linearly at infinity and the score function ¢ = sgn(x) min(|z|, 7). In Huber
(1981), Huber proposed 7 = 1.3450 (fixed) to retain 95% asymptotic efficiency of the estimator for
the normally distributed data, and meanwhile to guarantee the estimator’s performance towards
arbitrary contamination in a neighborhood of the true model. This default setting has found its
use in high dimensional statistics even though the asymptotic efficiency is no longer well defined.

One interesting finding is that in the absence of symmetry of error distribution, the bias induced
by the Huber loss is not negligible, and these bias on mostly on intercept. The following proposition
(Proposition 3.1 in Wang et al. (2018)) provides an explicit bound on the bias, which complements
results in Section 4.9.2 in Maronna et al. (2018).

Proposition 1. Suppose that the observations Y;’s follow the univariate linear regression model
with intercept
Yi=Bo+ X! B+e=20+¢ (32)

holds where 87 = (Bo,BY) is a 1 x (p + 1) vector, ZI' = (1, X}), and ¢; are i.i.d., zero mean
noise. Assume that € = (¢;)1, and X = (X;.)I, are independent, and X;;’s are i.i.d. with mean
w and variance . Suppose further that the function o — E{p,(e — )} has a unique minimizer
ar = argminger E{p; (¢ — )}, which satisfies

P(le —ar| <7)>0. (33)
Assume further that B(ZZ™T) is positive definite. Then we have
Bor=B5+ar and B =p" (34)

where (B85 ., 87) is defined as argmin g, g) S Ep-(Yi— Bo— XIB), i.e., the population analog of

the Huber estimator (EO,T,BT). Moreover, o, for T > o, satisfies the bound

o? —E{y7(e)} 1

< .
lor| < 1—7"202 r

(35)

4.5 Random effects models

There have been comparatively little theoretical developments in terms of analyzing high-dimensional
random effects models from the RMT perspective, although this is changing in recent times. Jiang
et al. (2016) considered a class of misspecified linear mixed effects models that is motivated by
applications to genome-wide association studies. In particular, they established consistency of the
REML estimator of the error variance, and convergence (in probability) of the REML estimator of
the variance of the random effects to a limit, that depends on the true variance of the random effects
and the proportion of the true nonzero random effects present in the linear mixed model. Dicker
and Erdogdu (2017) derived uniform concentration bounds and finite sample multivariate normal
approximation results for quadratic forms of large dimensional random vectors, used them in the
context of variance components estimation in linear random-effects models. Fan and Johnstone
(2019) considered the problems of estimation of high-dimensional variance components under the
general multivariate mixed effects model

k
Y:X,B—i—ZUlal, o~ N, I, @Y%), 1=1,...,k, (36)
=1
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where Y € R™*P denotes the p-dimensional responses, X denotes the design matrix corresponding
to the fixed effect 3, U;, denotes the n x m; design matrix associated with the random effects «,
and 3; denotes the covariance p X p covariance matrix of the [-th variance component «;. They
studied the eigenvalue distribution of standard MANOVA estimators for the variance component
covariance matrices {El}le, when the dimensionality of the observations is large and comparable to
the number of realizations of each random effect. By making use of operator-valued free probability
theory, they established that the ESD of such estimators are well approximated by deterministic
limit laws whose Stieltjes transforms are characterized by systems of fixed-point equations. In a
subsequent work, Fan, Sun and Wang (2019) showed that the eigenvalues and eigenvectors of the
estimators of the variance components will exhibit quantifiable asymptotic bias in the same asymp-
totic framework, when the population covariance matrices associated with the variance components
have spiked eigenvalue structures.

5 MANOVA and generalizations

In this section we consider the MANOVA problem in the high-dimensional setting within the RMT
framework, i.e., when the dimensionality of the observations are comparable to the sample sizes.
We start with the simplest possible version of these problems, often referred to as the two sample
test for equality of means, and then discuss some generalizations. We also look into related methods
that deal with settings where p could even be an order of magnitude larger than n. We end the
section with an overview of some recent developments on using spectral regularization procedures
for dealing with the inference problems in MANOVA, and more generally, to perform tests for linear
hypotheses in high-dimensional linear models.

5.1 Two sample problems

A classical formulation of the two sample problem is to assume that we have i.i.d. samples from
two populations of p-dimensional observations N (p,%;), | = 1,2, and the goal is to test whether
these two populations are really the same. In the case where ¥; and o are both unknown and
not necessarily equal, the corresponding hypothesis testing problem for equality of means, viz.,
Hy : py = po against H 4 @ pq # o is traditionally referred to as the multivariate Berhens-Fisher
problem. In the special case, when ¥; = Y5 = ¥, say, the testing problem becomes a special case
of the MANOVA problem described above. A lot of work have gone into solving this special and
more general versions of the two sample problems, including through modern machine learning
techniques such as use of random projections and kernel-based formulations.

Here, for clarity and in keeping with the overall theme of this, we shall restrict attention to
the setting stated above, while allowing the following generalization in terms of distributional
assumptions:

Al X.(;) = I‘lZ.(;) 4+, j=1,...,ng for all [, where Zi(]l-) are i.i.d. with zero mean, unit variance
and finite fourth moment, for p x p matrices I'; so that FlI‘lT =.

A2 nij/n— k€ (0,1) asn=mn; +ng — 0.

A3 p,n — oo such that p/n — ¢ € (0,00).
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Assuming 31 = X9, Hotelling (1931) proposed the following generalization of the univariate ¢ test,
which rejects Hy for large values of the T2-statistic:
LI (Y(l) _ Y(z))TS—l(Y(l) _ 7(2))
n1 + N2

where S is the pooled sample covariance matrix

2 ng
1 O O\ O O\
S=—_ - xO_xx®_X
ny +mng — 2 ;;( J ) J )

Notice that, with n = nj + ng, we have S = n/(n — 2)S,, where S, is the within group sam-
ple covariance. Under Gaussianity, the distribution of (n — p — 1)T?/p(n — 2) is a non-central
F distribution with degrees of freedom p and (n — p — 1) and noncentrality parameter A =
(ning/n)(p1 — p2) ™S (1 — pa).

Hotelling’s T2 test has many pleasing statistical properties. For example, this is equivalent to
the likelihood ratio test for Hp : 1 = po (Anderson, 2003). Also, the test is invariant under scaling
of the variables through a nonsingular matrix multiplication. However, it was observed that this
exact test displays poor power characteristics when p is large, mainly owing to the spreading of
sample eigenvalues, and the resultant inaccuracy in using S™! as a substitute for the population-
level scaling matrix ¥~! in the definition of 72 statistic. Various remedies have been suggested
in the literature, starting with Dempster’s non-ezact tests (Dempster, 1958, 1960) that bypassed
the estimation of ¥~! by directly focusing on the euclidean distance between the sample means.
A comprehensive theoretical analysis of the Hotelling’s T2 test, as well as Dempster’s proposals
under the RMT framework of p o n was first carried out by Bai and Saranadasa (1996). They also
proposed a new test that essentially ignored the data-driven scaling inherent in the Hotelling’s T2

procedure. Specifically, the test by Bai and Saranadasa (1996) is based on the statistic HY(I) -

x? 12— (1/n1+1/n2)tr(S). By consistently estimating the variance of this statistic, they obtained
the final, normalized form of the test statistic as

(mng/m)[ XY — X2 — t(8)
V2(n+1)/nBy,

where B2 = n?(tr(S?) — n=1(tr(S))?)/(n + 2)(n — 1) is an unbiased and consistent estimator of

tr(X2). Under Hy : g1 = po, and assuming A1-A3, they proved that BS, L N(0,1). Thus an
asymptotic level « test rejects the null if BS,, > z,, where z, is the (1 — «) quantile of N(0,1).
Further assuming that u?Yp = o(n='tr(X?)), with g = p1 — p2, and Apax(X) = o(tr$?), they

established that
nk(1 — k)| pl?
- —zp+—F——=———1]—0,
Pos (k) ( “ 2tr(%?)

BS, =

where Sps(p) denotes the power function of the asymptotic level-a test based on the statistic BS,,
and & is the standard normal c.d.f.

Both Dempster’s proposals and the Bai-Saranadasa procedure (henceforth, BS) are somewhat
restricted in terms their scope of applicability since the theoretical validation only exists when
p is comparable to n. Chen and Qin (2010) greatly improved the domain of applicability by
making a modification to BS procedure. Specifically, they observed that in the BS test statistic,
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controlling the “diagonal” terms > 7!, ||X_(;)H2, for I = 1,2, in the expansion of ||Y(1) - Y(Z)HQ

becomes critical and therefore requires restrictive assumptions, even though they do not help in
distinguishing between the populations. This observation led them to modify the BS statistic by
using the statistic

1 x0T 0, @7 - <@
M= —— S x xW 3 x@ x0 x" x¢
" ni (n1 — 1) ; " J (n2 — 1 ; nlng ;; '

as an unbiased estimator of ||p1 — p2||?>. Further, under mild additional conditions on the distri-
bution of the observations,

Var(T},) = [nl( 2 () +

L. )+ —n(2i5a)] (14 o),
ny —1)

712(7”L2 — 1) ning

which led to the test statistic CQ,, = T,/ Va/r(\), where Vg(\n) is a consistent estimator of
Var(T,,) that is obtained by replacing tr(%%), tr(X2) and tr(X1X2) in the leading factor of Var(T;,) by
their ratio-consistent estimates obtained from the data. Notice that, this also means that this test
is applicable even if ¥ # X3. Moreover, Chen and Qin (2010) established asymptotic consistency
of their test, and power under local alternatives, even when p > n or n > p, as long as n,p — oo
and certain regularity conditions are satisfied. It should be noted that, when ¥; = X5, and p is
comparable to n, the performances of the statistics CQ,, and B.S,, for testing Hy : p1 = po are quite
similar under both null and alternatives (Li et al., 2020). Some generalizations of CQ procedure
were proposed by Hu et al. (2017).

One interesting observation is that, Hotelling’s T statistic is based on a form of Mahalanobis
distance between the sample means where S™! is used as a surrogate for the population-level scaling
matrix X!, while BS procedure (and its modification due to Chen and Qin (2010)) effectively
replaces the scaling matrix by the identity matrix. This suggests that there may be a potential
gain in power if one replaces the scaling factor by some modification to S™!, for example a ridge-
type matrix (S + Al,)~! for some A > 0. Such a regularization scheme effectively involves a
transformation of the eigenvalues of S. In Section 5.3, we discuss a general class of regularized tests
based on transforming the spectrum of the (pooled) sample covariance matrix S within the RMT
framework.

5.2 MANOVA when the number of populations is fixed

We now give overview of the general high-dimensional MANOVA problem. The classical formulation
of MANOVA is in terms of testing equality of means of k£ normal populations N, (p;, X), Il =1,...,p
with a common covariance matrix Y. As we see below, all the classical solutions of this hypothesis
testing problem relied on the behavior of the eigenvalues of a matrix of the form S,S; ! where Sy is
the between-group sample covariance matrix and S, is the within-group sample covariance matrix.

This problem has a long history in statistics. Under the classical fixed p regime, the large-
sample asymptotic distribution of the eigenvalues of M := S;S; !, which is a Fisher matriz or
an F-matrix in the terminology introduced earlier, was derived under normality by Hsu (1941).
Suigura (1976) gave asymptotic expansions of the distribution of eigenvalues of the F-matrix. As
p becomes larger, as in the two sample problem (Bai and Saranadasa, 1996), the accuracy of large
sample approximations deteriorates. High-dimensional asymptotic results about the behavior of the
eigenvalues pf F, when p/n — ¢ € (0,1) were obtained by Fujikoshi, Himeno and Wakaki (2008)
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who assumed that the population eigenvalues are simple, by assuming normality of the populations.
Many other tests have been proposed in the framework in which both p and n are large including the
possibility that p > n. When p > n, S, is singular, and so the classical invariant tests are not well-
defined. Among approaches to address this problem, Srivastava and Fujikoshi (2006) modified the
classical tests using generalized MoorePenrose inverse, Srivastava and Kubokawa (2013) introduced
a test that is invariant under change of measurement units, and Ullah and Jones (2015) compared
performances of different regularized tests for the MANOVA problem. Hu and Bai (2016) provided
a comprehensive review of the development of tests of significance under the MANOVA framework.

Bai, Choi and Fujikoshi (2018) dealt with a high-dimensional MANOVA problem in the frame-
work of k (> 2) independent populations of p-dimensional observations with a common unknown
covariance matrix Y, assuming that the dimension p is comparable to the sample sizes, but not
requiring normality of the populations. They derived the asymptotic joint distributions of the
eigenvalues of S;S-! under the null case of equality of population means and also under a se-
quence of local alternatives. The important feature of their result is that the null and and non-null
distributions of the eigenvalues and invariant test statistics are asymptotically robust against de-
parture from normality in high-dimensional situations. Their results also imply that the standard
tests for the null hypothesis of equality of populations, such as the likelihood ratio (LR) criterion,
Lawley—Hotelling (LH) criterion or Bartlett-Nanda—Pillai (BNP) criterion, that are derived under
the normality of the populations, can also be applied under the non-normal setting described there.
Under a sequence of local alternatives, the asymptotic distributions of the eigenvalues are shown
to be that of the eigenvalues of a weighted sum of a Gaussian Orthogonal Ensemble and a fixed
positive definite matrix, the latter determined by the local alternatives. Based on these results,
Bai, Choi and Fujikoshi (2018) derived the asymptotic powers of the above multivariate tests in
closed form. To give a glimpse of these results, and to set up the discussion for the follow-up works
involving regularized test procedures, we describe below the set up and state the main results.

The key technical result of Bai, Choi and Fujikoshi (2018) is stated as follows. Let ¢ = k — 1.
Let Z = ((Z;;)) denote the p x n matrix consisting of i.i.d. entries with zero mean, unit variance
and finite fourth moment. Let V = ((v;;)) be an n x ¢ matrix satisfying: (i) VIV = I;_1; (ii)
VT1, = 0; and max; ; |v;j| = O(n~1/2).

Theorem 6. Suppose ¢ > 1 is fized, p,n — oo with p/n — ¢ € (0,1). Let 'V satisfy (i)—(iii) above.
Then
Jn <VTZT (zz") "' ZV - qu) L. /2c(1— )W (37)
n

where W is a ¢ x ¢ Gaussian Orthogonal Ensemble (GOE). Also, with Z = n~" 2?21 Z.j, we have

S 1 —
NG <VTZT (zz" -nZZ") zv V7" (22")" zv) -~ 0, (38)

where Oy denotes the q X q matriz of zeros.

Bai, Choi and Fujikoshi (2018) assumed the following generative model for the observations.

With [ denoting the population index, and XZ(;) denoting a measurement corresponding to the i-th
coordinate of the j-th sample observation from the I-th population,

Xgl)zzl/2Zgl)+ﬂl, j:]-u“-vnl) lzlv"‘7k7 (39)
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where ijl.) are i.i.d. with zero mean, unit variance and finite fourth moment, and /2 is a non-
negative definite square-root of 3. Then
_ = 0] 0 sA\T
Sy=—>» mX" -X)X" -X) (40)
=1

where

<0 _ 1< B X IR R )

X :EZXJ and X:ﬁz > X ==Y mx",

j=1 =1 j=1 =1

and

s~ L33 (3 - X) (x5 )

In order to establish the asymptotic results, they also assumed the following balance condition for
the sample sizes

an1::@—>ale(0,1), asn—oo, forl=1,... k. (42)
n

The main result on the behavior of the eigenvalues of M = S;S_! under the null hypothesis,
ie., w1 =...= p, is as follows.

Theorem 7. With q =k — 1, let {1 > --- > £, > 0 be the ordered nonzero eigenvalues of S,S. L.
Then, with the normalization

b= /n(l—c)3/2cl; —p/(n—p), i=1,....q

under the null hypothesis, and the assumptions stated above, the joint asymptotic joint distribution
of (1,...,4,) is the same as the joint distribution of the ordered eigenvalues of the GOE W.

We skip the details about the result under the local alternatives, except to refer the reader to
Sec. 5 of Bai, Choi and Fujikoshi (2018). We shall revisit the question of power under localized
alternatives for a class of regularized test procedures in Section 5.3.

The above description of high-dimensional phenomena associated with MANOVA pertains to
the case when the number of populations is fixed, even as the dimensionality of the observations and
the sample sizes grow proportionately. There is a different asymptotic regime where the number of
populations is also assumed to grow with the dimensionality and sample sizes. This regime, perhaps
less commonly encountered in standard statistical practices, can still be dealt with by embedding
the problem in the high-dimensional linear regression model analyzed by Bai et al. (2013). Details
can be found in Sec. 7.5 of Yao, Zheng and Bai (2015).

5.3 Spectral regularization for tests of linear hypotheses

We now discuss some of the recent approaches based on regularization of the spectrum of the
sample covariance matrix of the observations (in case of MANOVA), or noise (in case of multivariate
regression) to address the issue of loss of power of standard hypothesis tests for linear hypotheses
in these problems, such as the likelihood ratio test, when dimensionality and sample sizes are
comparable. Recall that in the simplest setting of two sample test (under assumed equal covariance
for the two populations), the test proposed by Bai and Saranadasa (1996) replaced the quadratic
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form involving the inverse sample covariance matrix in the Hotelling’s 72 statistic with the identity
matrix, while other approaches (Srivastava and Du, 2008; Lopes, Jacob and Wainwright, 2011)
have sought to use different estimates of the squared Euclidean distance between (appropriately
rescaled) population means. Chen et al. (2011) took a different approach in which they replaced
the inverse of S (pooled sample covariance matrix) in Hotelling’s T statistic, which only exists if
p <n— 1, where n = nj + ns is the total sample size, by (S + Al,) ! for a positive regularization
parameter A. Li et al. (2020) carried out detailed theoretical analysis of this regularized Hotelling’s
T? (RHT) statistic when p,nj,ng — oo such that n;/n — x € (0,1) and p/n — ¢ € (0,00). In
particular they established asymptotic normality of the normalized RHT statistic:

~“IRHT()\) — ©1(), ¢
Vol RETO) = €10 en) - oy prrp(n) =
2@2(A7 Cn) " + "2

ninz

Tn,p(>\) = (X(l) _Y(Q))T(S_‘_)\Ip)—l(y(l)_Y(Q))’

where ¢, = p/n, and ©1(\, ¢,,) and O,(A, ¢,) are centering and scaling statistics that depend only
on the eigenvalues of S and A, under subGaussianty of the observations. Moreover, supposing
that under the alternative the population mean difference p = 1 — po, which can be either fixed
or random, behaves in such a way that /nu’D(\u — q()\ c) as n,p — oo, (in probability,
for stochastic alternatives) then under this sequence of local alternatives, the RHT test has a
nontrivial limiting power function. Here, D(\) = (1 + ¢O1(\,¢) 71X + AI,) ™! where ©;(), ¢) (the
limiting version of @1()\, ¢)) depends on the limiting spectral distribution of S. Based on this, they
proposed a data-driven method for selecting the regularization parameter, based on a broad class
of stochastic alternatives. They also formulated an adaptive test that combines several values of
the regularization parameters together through a maximal statistic.

Li, Aue and Paul (2020) extended the work of Li et al. (2020) even further by considering the
problem of testing general linear hypothesis Hy : BC = O where B is the p x k regression coefficient
matrix, and C is a k X ¢ constraints matrix (with ¢ < k), within the multivariate linear regression
model (18) when the dimensionality of the response grows with the sample size, while the number
of predictor variables remains fixed. This set up also includes MANOVA with a fixed number of
populations as special case, and so the results apply to that setting as well. In particular, they
considered the matrix-valued statistic M(f) = H f(3), where 3 = n~lY (I, - XT(XXT)"1X)Y is
the least squares estimate of the noise covariance ¥, and H = U(CT(XX)~!C)~'U”, where U =
n~12YyXT(XXT)~1C. Finally, for a user-specified function, f : Ry — R, f(f]) equals Ef(L)ET
where ELE” is the spectral decomposition of Y and for the diagonal matrix L = diag(4;)?_;
consisting of eigenvalues of EA], f(L) = diag(f(¢;))t_,. Thus, f may be viewed as a shrinkage
operator applied to the eigenvalues of f], a special case of which is the ridge-type regularization,
which corresponds to f(z) = 1/(x + X). The main result in Li, Aue and Paul (2020) is to show
that after appropriate normalization (with /n scaling), under the null hypothesis, the matrix
M(f) converges in distribution to a k x k Gaussian Orthogonal Ensemble, as p,n — oo with
p/n — ¢ € (0,00). Based on this fact, they derive regularized versions of the likelihood ratio
test, Bartlett—Nanda—Pillai test and Lawley—Hotelling test, determined by the shrinkage function
f, by replacing the F-matrix HY ! appearing in those tests by the matrix M(f), followed by
a corresponding normalization. They also determined powers of these tests under appropriate
sequences of local probabilistic alternatives. This work also requires less restrictive distributional
assumptions on the observations, and in that respect it also generalizes the smooth regularization
scheme for Hotelling’s T2 statistic studied by Pan and Zhou (2011).
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6 Inference on covariance matrices

Classical multivariate analysis related to the inference on the structure of covariance matrices has
broadly focused on addressing the following idealized problems, formulated under Gaussianity of
the observations.

e Test for sphericity of a multivariate distribution.
e Testing equality of covariance matrices of two (or more) populations.
e Test of independence between two (or more) multi-dimensional populations.

We shall give a brief overview of the random matrix approach to dealing with these classical
problems and their solutions. We shall also briefly review some modern developments in high-
dimensional settings that do not strictly utilize the random matrix perspective. In each of these
problems, we first look at some classical inferential procedures, and then look at their RMT exten-
sions. The classical solutions that we focus on here are of two kinds: (i) likelihood ratio (LR) tests,
(ii) tests based on the largest eigenvalue of a suitable matrix (often referred to as Roy’s largest root
test). The fundamental difference between these two types of tests lies in the fact that, behavior
of the LR test statistic, under the null hypothesis, depends on the distribution of the Empirical
Spectral Distribution of a Wishart-type or a Fisher-type matrix, while as the name “largest root
test” suggests, the latter class of tests rely only on the extreme eigenvalue(s) of corresponding
matrices. We now elaborate on these problems.

6.1 Test of sphericity

Suppose have i.i.d. observations Xy, ..., X, from N,(u,X), and we are interested in testing ¥ = 3,
where Yg is a specified positive definite matrix. This problem can be equivalently formulated as
testing Hyg : ¥ = I,,, by rescaling the observations by 3, /2 The likelihood ratio test (LRT)
statistic for testing this null hypothesis rejects for small values of the statistic

Lig = (e/n)P™?|A|"/? exp(—tr(A)/2) (43)

where A = >0, (X, — X)(X; — X)T is the unnormalized sample covariance matrix, which has the
Wishart(n — 1, p; ) distribution, and |A| denotes the determinant of A. Notice that the LRT is
equivalent to rejecting Hy for large values of the statistic

Lig = tr(S) —log |S| —p (44)

where S = (n — 1)7'A is the sample covariance matrix of the observations. The latter expression
shows that the LRT statistic is equivalent to a linear spectral statistic (LSS): trg(S) where g(x) =
—x+logx+1. This observation forms the basis of the analysis of asymptotic behavior and necessary
corrections of the LRT test for Hy : ¥ = I, when p/n — ¢ € (0,1), since CLT for LSS involving
the sample covariance matrix S can be used to approximate the sampling distribution of Eid.

A more general testing problem, in which the null hypothesis is of the form Hy : ¥ = 02Ip,
where 02 > 0 is unknown, is referred to as the test of sphericity. The likelihood ratio test (LRT)
for this problem (Anderson, 2003) rejects Hy for small values of

‘A‘n/2

Lo = oAy fpyre 43)
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Thus the test is equivalent to rejecting the null for large values of the statistic

Ly, = tr(S) — log [S| (46)

which is easily recognized as an LSS involving S.

John (1971) proposed and analyzed a different test for sphericity that is invariant under rotation
of the coordinates. John’s test rejects Hy : ¥ = oI, for large values of the statistic tr(S?)/(tr(S))>.
This test statistic can be thus be recognized as a smooth function of the bivariate LSS (tr(S), tr(S?)).
This enables usage of CLT for LSS of sample covariances to be used for asymptotic analysis of the
criterion under the RMT framework.

6.2 Test of equality of covariance matrices

We present this problem only in the context involving two Gaussian populations, Ny (p, %), | =
1,2, for simplicity. This problem is formulated as testing the null hypothesis Hy : X7 = Xo.
Assuming we have n; observations {X ;l)}?l: | from the [-th population, the likelihood ratio test
(LRT) statistic for this problem rejects Hy for small values of the statistic

818, ! |M/2

Loy = 47
"= (N /N)S1S, T + Na/ NV 47

where Ny = my — 1, N = N; + Np, and §; = N, 2 (x —- Xy x - X, for 1 = 1,2,
Notice that the LRT statistic is equivalent to the statistic

Leg = —(N1/N)log [S1S; | + log [(N1/N2)S1S5 ! + 1 (48)

which can be recognized as an LSS involving the F-matrix M := S;S, L. Therefore, CLT for LSS
of F-matrices (Zheng, 2012) can be applied to study the asymptotic properties of the LRT statistic
under the regime that p,n1,n2 — oo such that p/ny — ¢; € (0,1) and p/ny — c2 € (0,1).

6.3 Test of independence of two multivariate populations

Suppose we have p+ ¢ dimensional observations X;, j = 1,...,n, from the N,1,(p, X) distribution
that are partitioned as

X ptV Y X2
| - =

SRl R B B
where XJ(-l) ispx1and XJ@) is ¢ x 1, with corresponding dimensions for p; = IE(XJ(-l)), l=1,2 and
Sim = Cov(X](.l),X](.m)), 1 <I,m < 2. By the characterization of Gaussianity, the two subvectors
are independently distributed if and only if the null hypothesis Hy : 312 = O holds, where O is a

p X ¢ matrix of zero entries.

In this case, define A = Z?:l(Xj — X)(X; — X)T with a corresponding partitioning having
components Ay, 1 < [,m < 2. Then, assuming n — 1 > p + ¢ and Y11 and Yoo to be positive

definite, so that Aj; and Ao are nonsingular with probability 1, the LRT test reduces to rejecting
Hj for small values of the statistic

|A| _ A — Ay AT A |
|A11] - [Age] | Aga

Lind = = |1, — A A A Ay . (49)
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Notice that the last expression implies that the test statistic can be expressed in terms of eigenvalues
of the symmetric M = A2_21/ 2A21A1_11A12A2_21/ 2 Also note that these eigenvalues are the squared
empirical canonical correlation coefficients between variables XM and X®@. Under Hy : X9 =
O, the squared population canonical correlation coefficients, i.e., the eigenvalues of the matrix
22_21/ 22212f1121222_21/ ? are all zero. So, indeed under Gaussianity, the test of independence of the
two components of the vectors X can be equivalently seen as a test for the presence of nonzero

canonical correlation coefficients.

6.4 Behavior of the likelihood ratio tests in high dimensions

Bai et al. (2009) studied the problem of inference on the covariance matrices of Gaussian populations
under one sample (covariance equals to a specified matrix) and two sample framework (equality
of two population covariances), and explained the failure of the corresponding likelihood ratio test
procedures when the dimension p is large compared to the sample size n. Using central limit
theorems for linear spectral statistics of sample covariance matrices and of random F-matrices,
they proposed necessary corrections for these LR tests that account for high-dimensional effects.
They derived asymptotic distributions of these corrected tests under the null hypotheses.

Wang and Yao (2013) extended the analysis of Bai et al. (2009) for test of sphericity by relaxing
the distributional assumptions. In particular, they proposed corrections to the likelihood ratio
test and Johns invariant test (John, 1971, 1972) in large dimensions, and derived the asymptotic
distribution of these test statistics under the null hypothesis. These results are valid for general
population, i.e. not necessarily Gaussian, provided a finite fourth-moment condition on the ob-
servations is met. Very precise corrections to the LR statistics for both the test of sphericity and
the test of equality of two population covariances, termed a substitution principle, that mimics the
Gaussian setting, but works even under non-Gaussian observations, was established in Zheng, Bai
and Yao (2015). Their proposal substitutes the adjusted sample size N = n1 for the actual sample
size n in the centering terms of the modified statistics, which results in non-negligible performance
improvement for the tests. It may be mentioned that John’s test for sphericity has been extended
to deal with even in the setting p/n — oo by Birke and Dette (2005).

For the test of independence of two sets of variables, the LRT statistic L;,q in (49) is equivalent
to the statistic

Ling =log |anly| —log |F + aply|
where a, = (n—p—1)/p and

1 1
= IXOPp(xOYT (—x® — P (XNT
F=_ Py (X)) (n—p—l (In-1 —P1)(X'¥) )

where X is the matrix with columns Xj(l), j=1,...,n, and P; = (XM)T(XO(XO)T)=1x(1D) j5
a projection matrix of rank p. Notice that, under Hy, X3 and P are independently distributed.
Also, using Gaussianity, X2 P (X®)T and X (I,,_; — P1)(X®)T are distributed as independent
g-dimensional Wishart distributions with degrees of freedom p and n — p — 1, and the same scaling
matrix 9o. Thus, F can be recognized as an F-matrix under the null hypothesis. Based on
this observation, and using a CLT for F-matrices, Jiang, Bai and Zheng (2013) established the
asymptotic null distribution of the LRT statistic L;,q in the asymptotic regime where n,p,q — oo
such that ¢/p — ¢5 € (0,00) and g/(n —p — 1) = ¢, € (0,1).
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Among other notable approaches to the problem of testing equality of variances of two popu-
lation, Li and Chen (2012) proposed an approach that does not depend on the distribution of the
observations and is applicable even when p/n — occ.

6.5 Tests based on the largest eigenvalue

Roys largest root (Roy, 1957) is a common test statistic in multivariate analysis, statistical signal
processing and allied fields. Classical tests for linear hypotheses in MANOVA problems use the
eigenvalues of the F-matrix M = S;S_ ! where S, and S, denote the between- and within-group
sample covariances. Roys largest root test is based on the largest eigenvalue of M, while the
likelihood ratio test, Bartely-Nanda—Pillai test and Lawley—Hotelling test depend on the entire
set of eigenvalues. Similarly, for dealing with the problem of testing linear hypotheses in large
dimensional linear models, one can use Roy’s largest root test where the corresponding F-matrix
M is a “ratio” of the matrix representing the contribution from the regression model fit under the
null hypothesis, and a matrix estimating the covariance of the noise. A closely version of Roy’s
largest root test also appears in the context of canonical correlation analysis between two sets of
variables with a joint Gaussian distribution, as alluded to in Section 6.3. In large dimensions,
different variants of the Tracy-Widom limit laws associated with the Jacobi Orthogonal Ensemble
(JOE) can be used to approximate the null distribution of Roy’s largest root statistic, an overview
of which can be found in Johnstone and Nadler (2008). Furthermore, Roy’s largest root test,
associated with a sample covariance matrix, has been used to test the sphericity hypothesis that
¥ = I, for a one sample problem. Again, the null distribution of the statistic can be approximated
by the Tracy-Widom law associated with the Laguerre Orthogonal Ensemble (LOE) Johnstone
(2001).

In these contexts, Roys test is most powerful among the common tests when the alternative
is of rank one. For fixed dimension and increasing sample sizes, Kritchman and Nadler (2009)
showed asymptotic optimality of Roy’s test against rank one alternatives, i.e., when X is of the
form I, + wvv? for a unit p x 1 vector v and w > 0 denoting the signal strength. The latter
can be seen as a special case of a “spiked covariance matrix”, that has been analyzed extensively
in the context of high-dimensional principal component analysis (see, for example, Paul and Aue
(2014), Johnstone and Paul (2018) and the references therein). Onatski, Moreira and Hallin (2013)
analyzed the power of the likelihood ratio test of sphericity under rank one alternatives, in the
p/n — ¢ € (0,1) regime, and established the convergence, under the null hypothesis and contiguous
alternatives, to a Gaussian process indexed by the norm of the perturbation.

For MANOVA and general linear hypothesis testing problems, Johnstone and Nadler (2008)
derived accurate approximations for the distribution of Roy’s test statistic under a rank-one al-
ternative. Their formulation assumes that under the alternative, the noncentrality matrix (the
population version of M in the MANOVA problem) has the form wvv? with w > 0, and v € RP is
an arbitrary and unknown unit norm vector.

7 Discriminant analysis

The classical version of the discriminant analysis problem assumes that we have a p-dimensional
observation from one of k possible multivariate Gaussian populations, and the task of discriminant
analysis (a.k.a. classification problem) is to decide which population (or class) this observation
belongs to. To be more specific, suppose that [-th population has N, (p, ;) distribution, for
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[ =1,...,k. Suppose further that the prior probabilities associated with these classes are mq,..., T
with m; > 0 for all [ and Zle m = 1. Then, the optimal Bayes classifier reduces to a Quadratic
Discriminant Analysis that establishes class boundaries that are piecewise quadratic surfaces as a
function of the observation.

For simplicity of exposition of the high-dimensional phenomena associated with the classification
problem, we shall restrict attention to the simpler problem, where the different classes have the
same variance, i.e., X; = X for all [. In that case, the optimal Bayes classifier reduces to a Linear
Discriminant Analysis, with hyperplane boundaries between classes. In that case, supposing for
the time being that the population parameters are known, the Bayes classification rule, or LDA
criterion, classifies an observation x into class j if

1 T
wji(z) > log(m/m;) for all 1 <1 # j <k, where uj(x)= (w - §(Mj + M)) Y (g — ). (50)

Notice that u;(x) is simply the log of the likelihood ratio between classes j and .

In practice, we need to estimate p;’s and X. It is common to use the estimates p; = xW =
n M X.(Z-l) and & = n~! S Z?Q(X.(il) - Y(l))(X.(il) - Y(l))T (MLE for X, also equal to
the within-group sample covariance S.), where n = Zle ny, and then plug-in these estimates to
obtain estimated wj(z) and then use the LDA rule (50) with uj(x) replaced by @j(z). As in
similar problems elsewhere, $1is a poor estimate of ¥ when p is relatively large so that p/n
is a non-negligible fraction. This has some implication on the performance of the plug-in rule,
often referred to as the “Fisher linear discriminant rule”. In a highly influential work, Bickel and
Levina (2004) established that the when the number of variables grows faster than the number of
observations, a “naive Bayes classifier” which assumes independent covariates greatly outperforms
the Fisher linear discriminant rule under broad conditions. This important observation left open
the question of possible improvements over the plug-in LDA rule in the RMT regime.

Even though Serdobolskii (1983) is credited with an initial analysis of LDA in the p comparable
to n setting, to the best of our knowledge, the first systematic theoretical analysis of the LDA
scheme, and a regularized version, proposed by Friedman (1989) and referred to as RDA (Reg-
ularized Discriminant Analysis), within the RMT framework, was carried out by El Karoui and
Kosters (2011). They established that in the RMT regime, under Gaussianity and for the two-
class discrimination problem, the plug-in LDA in general has suboptimal misclassification rate, and
suggested modifications to the decision boundary to achieve optimal asymptotic misclassification
rate. They also studied geometric sensitivity of the results with respect to the generative model
for the data, e.g., when the Gaussianity of the distribution is replace by ellipticity. El Karoui and
Kosters (2011) also carried out an analysis of the risk of the RDA procedure proposed by Friedman
(1989). RDA simply replaces 3 by a ridge regularized estimate 2(\) = (1 — A\)S + AC, where C
is a pre-specified matrix (typically identity, more generally a diagonal matrix, e.g., the diagonal of
5), so that depending on the weight A € (0,1), () linearly shrinks towards C. They determined
the shrinkage factor A needed to attain the optimal misclassification rate based on RDA. Using
a slightly different approach, Dobriban and Wager (2018) carried out a predictive risk analysis of
RDA within the RMT framework.

To understand the characteristics of the high-dimensional phenomena associated with a clas-
sification problem, let us consider the 2-class discriminant analysis problem under the standard
framework of two normal populations that differ only through their means. We demonstrate the
phenomena through an analysis of the D-rule and T-rule proposed by Saranadasa (1993), as pre-
sented in Yao, Zheng and Bai (2015). The basic idea behind these formulations is to first note
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that, the unnormalized within-group (or pooled) covariance matrix A for this 2-class problem
equals A = (n —2)X = (n — 2)S.. If observation x is classified in class [, then the unnormalized
within-group covariance will be updated to

ny

_ Oy O _
Al=A+qz—X")(z-X")", where o ———r

1=1,2.
The T-rule classifies  in class j if tr(A;) = min; tr(A;), while the D-rule classifies z in class j if
det(A ;) = min; det(A;). These rules simplify to the following:

T —rule : classify in class j if oj(x — Y(j))T($ - Y(j)) = mlin a(x — Y(l))T(:U - Y(l))
D — rule : classify in class j if oj(x — Y(j))TAfl(x - Y(j)) = mlin a(x — Y(l))TAfl(x - Y(l)).

Thus, notice that, up to a multiplicative factor, D-rule classifies according to the Mahalanobis
distance of the observation z from the class centroids (estimates of class means p;), where the
scaling is provided by an estimate of the population covariance matrix ¥. Thus, D-rule has the
same invariance property with respect to nonsingular linear transformation enjoyed by the Fisher’s
linear discriminant rule. In contrast, up to a weighting factor, the T-rule classifies observations
according to their Euclidean distance from the class centroids, thereby ignoring the scale determined
by ¥. Moreover, D-rule requires non-singularity of ¥ and p > n—2 so that A~! exists, while T-rule
can be generally applied.

Implications of these differences are apparent in the behavior of the associated misclassification
probabilities. To state the corresponding result, we introduce two quantities: with g = p; — po,

define
A=plS 1y and A= ||pl?/VpTSp.

Theorem 8. Suppose that in the 2-class classification problem, where the populations are Np(p;, ),
[ =1,2, we have p,ni,n2 — oo such thatp/n — ¢ € (0,1) andni/n — k € (0,1), where n = ny+no.
Let Pp(2|1) and Pr(2|1), denote the probability of classifying an observation belonging to class 1
into class 2, based on the D-rule and T-rule, respectively. Then

lim  (Pp(2]1) — ®(—AV1 —¢/2)) =0,

p,m1,n2—00

and
lim (PT(2|1) - <1>(4/2)> =0.
p,nl,nQ—)OO

To compare performances of these two procedures in this RMT asymptotic framework, Yao,
Zheng and Bai (2015) introduced a quantity p = A/A, which can be seen as bounded by 1, by
Cauchy-Schwarz inequality. By making use of Theorem 8 the argued that if p/n < 1 — p? — ¢,
for some small fixed e, for all p,n, then D-rule is preferable to T-rule (in terms of having smaller
misclassification error rate), while the reverse is true if p/n > 1 — p? + e. This result is intuitive
since for comparatively larger sample sizes (smaller p/n ratio), the benefit of scaling the coordinates
through A~! outweighs the cost associated with the extra randomness, while the benefit of scaling
dissipates with increasing dimensions compared to sample sizes. This analysis also points to the
potential gain in terms of classification accuracy that can be obtained by considering a ridge-type
scaling of the coordinates, as in RDA, i.e., where the scaling factor is of the form Y (\)~! with $(\)
as described earlier. It should be noted that the phenomena observed here are not limited to the
Gaussian case only, and in particular qualitatively similar results about the behavior of the T-rule
and D-rule were derived under general populations by Li and Yao (2016).
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8 Linear time series

Stationary linear time series, or linear processes, can be viewed as class of linear models with random
effects. This is a very popular model to for describing time series data. In classical multivariate time
series analysis, autocovariance matrices play an important role in characertizing the behavior of
the process. Therefore, significant amount of information can be gained by analyzing their sample
counterparts. Because of this, much of the work related to linear processes in high-dimensional
settings has focused on understanding the behavior of eigenvalues of the sample covariance and
autocovariance matrices. To fix notations, let X,, = [X1,...,X,] be our data matrix such that
(X; :t € Z) is a p-dimensional linear process, i.e.,

oo
Xy = ZAZZt—Za t€Z, (51)
/=0

where (Z;),t € Z is p-dimensional i.i.d. real or complex-valued process. Here, we assume that the
dimension p can grow with the sample size such that p/n — ¢, were ¢ is a non-negative constant.
The two asymptotic regimes that that been studied are (i) ¢ > 0 and (ii) ¢ = 0. We first focus on
the case that ¢ > 0 and review the results concerning the sample covariance matrix of the process,
ie.

1 1<
§=-X,X] = n;XtXt.

Recall that spectral analysis of sample covariance matrices in the case of i.i.d. entries has been
developed extensively since the pioneering work of Maréenko and Pastur (1967).

Many attempts have been made to relax the independence assumption across rows and columns
of the data matrix in high-dimensional settings. Among the earliest efforts, Yin and Krishnaiah
(1986) established the existence of the LSD of sample covariance matrices were the columns of X,,
are distributed isotropically. Extensions to products of a non-negative definite matrix T with a
sample covariance matrix when the underlying distribution is isotropic are given in Bai, Yin and
Krishnaiah (1986). Later, Bai and Zhou (2008) considered sample covariance matrices of samples
with more general dependence structure such that concentration of quadratic forms around their
means holds. More precisely, it was shown that, under the high dimensional settings considered
above, the Stieltjes transform of the LSD of the sample covariance matrix %XX*, sp(z),z € CT,
satisfies the Marcenko—Pastur equation

SF(Z):/T( ! dH(T), (52)

1—c—czsp(z)) — 2z

where for all &, EXijgk = ty; and for any nonrandom p x p matrix B = (b;;) with bounded norm,
E|X;BXj — tr(BT)|*> = o(n?) such that T = (t;,) has uniformly bounded norm and the ESD of
T, FT, tends to a non-random probability distribution H. As a consequence, they obtained the
LSD of Spearman‘s rank correlation matrices, sample correlation matrices, and sample covariance
matrices from causal AR(1) models. In particular, they showed that, if rows of the matrix X,, are
i.i.d. copies of an AR(1) process

Y, = @Y, 1+ Z;,  with |¢] < 1,

then the LSD of S,, exists and its Stieltjes transform is given by m = m/c+ (1 — ¢)/(cz), where m
is the unique solution in the upper complex plane to the 4-th degree polynomial equation

(zm + 1)%(m® + 2m(1 + ¢*) + (1 — $*)?) = *m?.
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They also showed that the LSD of S,, satisfies (52) when the rows of X,, are independent copies of
a linear process with absolutely summable coefficients. In that direction, Jin et al. (2009) obtained
explicit forms of the LSD of the uncentered sample covariance matrix generated by a first-order
vector autoregressive (VAR(1)) model and a first-order vector moving average (VMA(1)) model,
with parameters for these explicit forms being estimated. These results were also established
under weaker moments condition, finite second moment, for the innovation terms, by Wang, Jin
and Schlemm (2012a). In addition, they found the relationship between the LSDs of population
covariance matrices and the power spectral density function of the process, which can be understood
as an extensive version of Szego theorem (Gray, 2009).

These results were further extended by Pfaffel and Schlemm (2012a) to the case that the rows
of the data matrix are independent copies of a linear process such that the coefficients of the linear
process are decaying fast enough. More precisely, they assumed

Xig =Y ¥;iZis, i=1,...,p,t=1,...,n (53)
§=0

and considered processes such that Ja, and § s.t. [v;| < a(j + 1)717%,4 > 0, in addition to finite
forth moment and a Lindeberg-type condition for innovation terms. It should be mentioned that
these conditions hold for a large class of time series models including (fractionally integrated)
ARMA processes. Under the aforementioned conditions, they derived an equation for the Steiltjes
transform of the LSD of the sample covariance matrices of the process and showed that the Steiltjes
transform is the unique solution of the equation. Their results show that the E.S.D. of the sample
covariance matrices of the process considered in (53) converges to a non-random distribution which
only depends on ¢ and the spectral density of the process. They also presented a version of their
result that holds if the rows of the matrix X,, have a piecewise constant spectral density. Under
similar settings as Pfaffel and Schlemm (2012a), Yao (2012) presented the equation for the Stieltjes
transform of the LSD of the sample covariance matrices of of the linear process (53), where the
coefficients of linear process, 1j, are assumed to be absolutely summable. Extension of these
results were obtained by Banna and Merlevede (2015) where the rows of data matrix X,, were
considered to be independent copies of g(Z1,...,Z,) such that (Z; : t € Z) is a sequence of i.i.d.
real value random variables, g : R* — R is a measurable function, with E[g(Z1,...,Z,)] = 0.
The aforementioned framework is very general and it includes many linear and nonlinear processes.
More detailed discussion and examples of such processes are discussed in Wu (2005) and Wu (2011).
Further generalizations to stationary processes with variables that are not necessarily functions of
an i.i.d. sequence were achieved by Merlevede and Peligrad (2016).

Until recently, relatively little was known about the behavior of the sample covariance of large
data matrices when the entries are dependent across both rows and columns. Pfaffel and Schlemm
(2012Db) considered a special data matrix where they partitioned a long observation record of length
pn into p segments of length n and filled, consecutively, rows of X,, with obtained segments. They
characterized the LSD of p~ !X, X by an integral equation for its Stieltjes transform, where the
observed time series is considered to be a linear process satisfying the same conditions as in Pfaffel
and Schlemm (2012a). A broad class of spatio-temporal dependence across both rows and columns
can be formulated through the work Hachem, Loubaton and Najim (2006) who studied the LSD
of sample covariance matrices corresponding to a p X n data matrix X, whose entries are given by
Xij = 0(j/p,k/n)Z;j where Z;;’s are i.i.d. with zero mean and unit variance, and o : [0,1] x[0,1] —
(0, 00) is a continuous function which may be referred to as a variance profile. Utilizing these results
Hachem, Loubaton and Najim (2005) derived the LSD of sample covariance matrices associated
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with a rectangular data matrix X where entries are realizations of a properly rescaled bi-stationary
Gaussian random field, i.e., X, = Z(m,,)ezg Gr ' Ly—j i Where Z, . are i.i.d. complex Gaussian
random variables and g € ¢!(Z?) is a deterministic, complex-valued, summable sequence. An
extension to processes with non-Gaussian innovations Zj;, was achieved by Banna, Merlevede and
Peligrad (2015) who utilized a generalization of the Lindeberg principle (Chatterjee, 2006) to prove
their results.

In the context of multivariate linear processes with non-trivial dimensional and temporal corre-
lations, Liu, Aue and Paul (2015) established extensions of the Marcenko—Pastur-type limit laws for
ESDs of symmetrized sample autocovariance matrices for certain subclasses of linear time series. In
particular, they considered linear processes defined in (51), where (Z; : t € Z) denotes a sequence of
i.i.d. p-dimensional random vectors with mean zero unit second moment and finite fourth moment
such that the coefficient matrices are simultaneously diagonalizable. In other words, the assumed
conditions imply that up to an unknown rotation in the orthonormal /unitary basis U, (the eigen-
basis of the covariance matrix of X;), the rows of the time series {U*X;} are uncorrelated linear
processes (independent if the process {X;} is Gaussian). They also assumed a type of random

effects model for the coefficients, in that there exists a sequence of values Aq,..., A, € R™ (with
m > 1), continuous functions fy : R™ — R, such that U*A,U = diag{f,(\1),..., fe(A\p)}, and the
empirical distribution of {A1,..., Ay} converges weakly to a non-random probability distribution

FA. Under this setting, they established the existence of the LSD of symmetrized lag-7 sample
autocovariance matrices

1 n—r ) )
M(r) = on > (X X[, + X XP),  TEN,. (54)
t=1

and showed that the Stieltjes transform of the LSD of M(7) satisfies the following system of integral
equations.

ST(Z):/[1 /027r h()\’Q)COS(TG)dH—z]IdFA()\),

o 1+ cK;(2,0)
1 [ h(\v)cos(Tv) - A
Ki(z0) = [ |= [ D228, L0)dFA(N).
(2,0) /[%/O e =] h 0Pt )
where h(X,0) = |32, € fi(N)? is the spectral density of the univariate linear process with

coefficients { fo(A)}72, at frequency 6, ¢ = lim(p/n) as n,p — oo, and FA is the LSD of the joint
spectral distribution of the coefficient matrices of the linear process. The description of the joint
spectral distribution F4 entails that the model for {U*X;} can be thought of as a random effects
model, with the underlying random effects {\;}7_, determining the parameters ({f¢(Ax)}e>0) of
the k-th coordinate process of {U*X;} for each k = 1,...,p. Namdari (2018) utilized the framework
of Liu, Aue and Paul (2015), but used a weighted version of the sample periodogram estimators,
and an optimization strategy, to estimate the spectral distribution of the coefficients of multivariate
ARMA processes with symmetric and simultaneously diagonalizable coefficient matrices.
Existence of LSDs of symmetrized lag-7 sample autocovariance matrices were previously estab-
lished by Jin et al. (2014), in the special case that the entries of data matrix were assumed to be
i.i.d. random variables with bounded (2 + ¢) moments, for some § € (0,2]. The moment condition
was further relaxed to finite second moment by Bai and Wang (2014). Substantial extensions on
the results in Liu, Aue and Paul (2015) were achieved by Bhattacharjee and Bose (2016). They
relaxed the Hermitianness and simultaneous diagonalizablity of condition of the coefficient matrices
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assumed in Wang, Aue and Paul (2017), and instead assumed a weaker condition that A;’s are
norm bounded and “jointly convergent” in terms of their tracial mixed moments, in the sense of
Definition 8.13 in Nica and Speicher (2006) Bhattacharjee and Bose (2016) proved that the LSD
of any symmetric polynomial in matrices {I'y, T'#},>¢ exist where I'; = 1 LS (XeX[yr). Their
derivation was combinatorial in nature and relied upon the algebraic method of free probability
theory. Using this approach, they also provided a general description for the LSDs in terms of a
class of freely independent variables.

In the asymptotic regime that p,n — oo such that p/n — 0, Wang, Aue and Paul (2017)
established the existence of the LSD of the renormalized and symmetrized sample autocovariance
matrices of linear processes with simultaneous diagonalizable coefficient matrices. Bhattacharjee
and Bose (2019) developed further the spectral analysis of autocovariance matrices of linear pro-
cesses in this moderately high dimensional regime. Their proof techniques make use of the free
probability theory. For any finite degree symmetric matrix polynomial Iy, (.), they established
the almost sure existence of the LSD of

Vnpt (Hsym(ﬂ,f: :7 2 0) = gym (7, T2 0 7 > 0)) ) (55)

and gave a representation of the LSD in terms of polynomials of a class of freely independent vari-
ables. Bhattacharjee and Bose (2019) also proposed various statistical testing methods concerning
linear processes. In particular, they proposed both graphical methods and also more formal tests
of significance, for deciding on the order of MA processes. Their graphical method for determining
the order ¢ of an MA process is based on the fact that the LSDs of T, + F* are all the same at lag
7 if 7 > ¢, and are not so for 7 < g. Hence the histogram of eigenvalues of F + F* for first few
values of 7 can provide information on the model order gq.
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