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Abstract
We study the topology of the link �2,n of the moduli spaces of n-marked, genus 2
tropical curves. As an application, we calculate the top-weight rational homology of
the moduli spaces M2,n of n-marked algebraic curves of genus 2 for n ≤ 8.
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1 Introduction

The tropical moduli spaces of curves M trop
g,n are topological spaces that parametrize

isomorphism classes of n-marked stable abstract tropical curves of genus g. These
spaces were introduced in tropical geometry by Brannetti–Melo–Viviani (2011) and
Caporaso (2013), building on earlier work of Mikhalkin (2006, §5.4). They have
antecedents in related constructions of Gathmann–Markwig (Gathmann andMarkwig
2007; Markwig 2006) and, even further back, in the work of Culler–Vogtmann on
Outer Space (Culler andVogtmann 1986). They have played an important role inmany
advances in tropical geometry; see for example (Abramovich et al. 2015; Brannetti
et al. 2011; Caporaso 2012, 2013, 2014; Chan 2012, 2013; Len 2014; Viviani 2013).
Moreover, tropical moduli spaces have already arisen very naturally in other kinds of
geometry. For example,M trop

0,n is the Billera–Holmes–Vogtmann space of phylogenetic

trees (Billera et al. 2001), while M trop
g,0 is an infinite cone over a compactified quotient

of Culler–Vogtmann Outer Space Xg of rank g, with the property that the Torelli map
on M trop

g,0 is compatible with a period map on Xg (Baker 2011; Chan et al. 2013).

Recently the space M trop
g,n has been realized as a stack over the category of rational
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polyhedral cones (Cavalieri et al. 2020), but for the current applications it suffices to
consider M trop

g,n as a topological space, albeit with some combinatorial structure.

While M trop
g,n itself is contractible, since it is a generalized cone complex, the

link of M trop
g,n , which we will denote �g,n , has interesting topology. The space �g,n

has real dimension 3g − 4 + n, and can be regarded as the cross-section of M trop
g,n

that parametrizes tropical curves of total edge length 1. The work of Abramovich–
Caporaso–Payne (Abramovich et al. 2015), extending the work of (Thuillier 2007),
identifies

�g,n = �(Mg,n ⊂ Mg,n),

where �(Mg,n ⊂ Mg,n) denotes the boundary complex of the Deligne-Mumford-
Knudsen compactification by stable curves.

Boundary complexes, first studied by Danilov (1975), encode the intersections of
the components of a normal crossings compactification. Furthermore, over C, recall
that they encode the top-weight rational cohomology of the space being compactified.
The work of Deligne (1971, 1974) implies that for any compactification X ⊂ X of
smooth, separated Deligne–Mumford stacks of dimension d with normal crossings
boundary,

GrW2d H2d−i (X ;Q) ∼= ˜Hi−1(�(X ⊂ X );Q), (1)

where �(X ⊂ X ) denotes the boundary complex (see Chan et al. 2021). We refer to
the cohomology GrW2d H j as top-weight, since cohomology does not appear in weights
above 2d.

In fact, the homotopy type of�(X ⊂ X ), even its simple homotopy type, is known
to be an invariant of X itself (Payne 2013; Harper 2017). This means that homotopy
invariants, e.g., torsion in the integral homology of �(X ⊂ X ), gain interest as
invariants ofX itself—even while we currently may not have a direct interpretation of
what they mean about X . These are our main motivations for studying the topology
of �g,n .

The cases g = 0 and g = 1 are known. When g = 0 and n ≥ 4, the space �0,n has
the homotopy type of a wedge of (n − 2)! spheres of dimension n − 4 (Billera et al.
2001). The case g = 1 and n ≥ 1 is settled in [CGP], where we prove that �1,n is a
wedge of (n − 1)!/2 spheres of dimension n − 1. The goal of this paper is to study
the topology of �2,n . These spaces are not fully understood and already exhibit more
complicated behavior than in the lower genus cases.

The first main theorem is on the connectivity of �2,n .

Theorem 1.1 We have

˜Hi (�2,n;Z) = 0

for i = 0, . . . , n.
In fact, �2,n is an n-connected space.
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Table 1 The rational homology
of �2,n for n ≤ 8

n 0 1 2 3 4 5 6 7 8

dim Hn+2(�2,n ,Q) 0 0 1 0 3 15 86 575 4426

dim Hn+1(�2,n ,Q) 0 0 0 0 1 5 26 155 1066

Thus, the reduced Z-homology of �2,n is concentrated in the top two degrees. The
fact that the rational reduced homology of �2,n is concentrated in top two degrees
can be deduced, using the comparison theorem (1), from known vanishing of rational
cohomology on Mg,n in appropriate degrees: we have ˜Hk(�g,n;Q) = 0 for k <

max{2g − 1, 2g − 3 + n}, see (Chan et al. 2019b, §6.2). Note also that the statement
on the connectivity of �2,n strengthens, for g = 2, the connectivity bound obtained
for all (g, n) in (Chan et al. 2016, Theorem 1.3) that �g,n is (n − 5g + 4)-connected.

Interestingly, �2,n has 2-torsion in its integral homology, at least when n is odd
and n ≥ 5; this is a new phenomenon. See Proposition 4.9 for the proof. As remarked
earlier, I do not have a direct interpretation for this torsion in terms of M2,n .

Second, we present computational results for n up to 8.

Theorem 1.2 For n = 0, . . . , 8, the Q-homology of �2,n in the top two degrees is
given in Table 1. Therefore, the top-weight Q-cohomology of M2,n, for n ≤ 8 is
concentrated in degrees n + 3 and n + 4 with ranks given in the table.

The computations obtained in Theorem 1.2 were done in sage (The Sage Developers
2020). They are explained at the end of Sect. 5. Recently, Yun reproved Theorem 1.2
and in fact promoted the calculations to be Sn-equivariant; see Yun (2020). Note
agreement of Table 1 with the fact that the top-weight Euler characteristic ofM2,n is
(−1)n+1 n!/12. More generally, in Chan et al. (2019a) a formula for the top-weight
Euler characteristic of Mg,n , as a virtual Sn-representation, was recently proved; the
calculations for all g ≤ 9 were known to Faber prior to that work. The factorial growth
in n precludes representation stability on the nose, but it would be interesting to know
if some other stability phenomenon can be established. See the discussion in Chan
et al. (2019b), §7) for further comments.

This paper, on the case g = 2, is a side dish for the series of papers (Chan et al.
2019a, b, 2021, as well as the earlier preprint (Chan et al. 2016), on tropical moduli
spaces, graph complexes, and the cohomology of Mg,n . It was drafted before that
series of papers appeared, and initially included some results for g = 2 that have been
superceded since. For example, contractibility of the bridge locus for all g ≥ 1 is
now proved in Chan et al. (2019b) and the top-weight Euler characteristic ofMg,n is
established in Chan et al. (2019a). The spaces �2,n are still not fully understood and
exhibit new phenomena: the first instances of reduced homology below top degree,
torsion in integral homology, and new computations up to 8 marked points. So I have
revised this paper to catch up with the state of the art presented in those papers.

Before diving in, we refer to the preprint (Allcock et al. 2019) which studies �g,n

using computations with symmetric �-complexes (in the sense of Chan et al. (2021)).
There it is proven that �g,n is simply connected for g ≥ 1, that �3,0 is homotopy
equivalent to a 5-sphere, and that there are instances of 2- and 3-torsion in the integral
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homology of �4,0. We also refer the reader to previous work by Kozlov, who studied
a different but highly related space: the moduli space of tropical curves of genus g
with n marked points and with no vertex weights (Kozlov 2009, 2011). These have
been called pure tropical moduli spaces elsewhere. These results seem to be essen-
tially independent. Basically, allowing nontrivial vertex-weights changes the spaces
significantly: see (Chan et al. 2019b, §7.1) for more discussion and references.

Finally, I refer to work of Tommasi and Petersen, in progress, studying the top-
weight cohomology ofM2,n via a different approach using local systems, as reported
by Tommasi at the MSRI “Recent progress on moduli theory” workshop in 2019.

2 The tropical moduli spacesMtrop
g,n

In this section we review the general theory of tropical curves, of any genus, and their
moduli spaces. In subsequent sections, we specialize to the case of genus 2.

2.1 Graph theory

In this paper, all graphs will be finite and connected multigraphs, that is, loops and
multiple edges are allowed. We write V (G) and E(G) for the vertex set and the edge
multiset of G, respectively.

Edges e, f ∈ E(G) are called parallel if they are distinct nonloop edges incident to
the same pair of vertices; we write e‖ f if so. If e ∈ E(G) is not parallel to any edge,
we will say that e is a singleton. A bridge in G is an edge whose deletion disconnects
G.

The valenceof a vertex v, denoted val(v), is the number of half-edges at v; thus loops
based at v contribute twice to this sum. A cut vertex in G is a vertex v ∈ V (G) whose
removal disconnects the graph G, considered now as a 1-dimensional CW complex.
In other words, deleting a vertex does not delete the points on incident edges. Our
definition of a cut vertex differs slightly from the standard one in graph theory. As an
example, let Rg denote the graph consisting of g loops based at a single vertex v. Then
v is a cut vertex if and only if g ≥ 2.

A vertex-weighted graph is a pair (G, w)whereG is a graph andw : V (G) → Z≥0
is an arbitrary weight function. Following (Amini and Caporaso 2013), we define
the virtual graph Gw to be the (unweighted) graph obtained from G by adding w(v)

distinct loops to each vertex v. We say that a vertex of v is a virtual cut vertex of
(G, w) if v is a cut vertex of Gw. Thus v is a virtual cut vertex of (G, w) if and only
if v is a cut vertex of G, or w(v) > 0 and Gw has at least two edges. For example, of
the seven vertex-weighted graphs in Fig. 1, all but the first have a virtual cut vertex.

2.2 Tropical curves withmarked points

Definition 2.1 (Brannetti et al. 2011; Caporaso 2013; Mikhalkin 2006) A stable trop-
ical curve with n marked points is a quadruple � = (G, l,m, w) where:

• G is a graph (as in §2.1),
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Fig. 1 The seven combinatorial types in T2,0. The vertices have weight zero unless otherwise indicated

• l : E(G) → R>0 is any function, called a length function, on the edges,
• m : {1, . . . , n} → V (G) is any function, called a marking function, and
• w : V (G) → Z≥0 is any function;

such that the following condition, called the stability condition, holds: for every vertex
v ∈ V (G), we have

2w(v) − 2 + val(v) + |m−1(v)| > 0. (2)

We remark that our marking function m is combinatorially equivalent to the more
common setup of attaching infinite rays to a graph, labeled {1, . . . , n}, and we use m
just for convenience. We will sometimes refer to a stable tropical curve as simply a
tropical curve.

The genus of a tropical curve � is

g(�) := |E(G)| − |V (G)| + 1 +
∑

v∈V (G)

w(v). (3)

The total length of� is the sum of its edge lengths. The total length is called theweight
of the tropical curve elsewhere, but we won’t use this terminology since we already
have weights on vertices.

Definition 2.2 Let � = (G, l,m, w) be a stable tropical curve of genus g.

1. The combinatorial type of � is the triple (G,m, w). We will writeG = (G,m, w)

for short, and we define the genus of a combinatorial type as in Eq. (3). Let Tg,n
denote the set of combinatorial types of tropical curves of genus g with n marked
points. In principle, there are infinitely many distinct combinatorial types, e.g., by
renaming vertices of graphs; but there are only finitely many up to isomorphism.
We shall choose one for each isomorphism class, making Tg,n is a finite set.

2. If g ≥ 2, we define the unmarked type or underlying type of � to be the combina-
torial type (G ′, w′) ∈ Tg,0 obtained as follows: (G ′, w′) is the smallest connected,
vertex-weighted subgraph of (G, w) that contains all cycles of G and all vertices
of positive weight. Here, we assume that we have suppressed all vertices of valence
2, so that (G ′, w′) is stable of genus g.

Example 2.3 There are exactly seven possible unmarked types of tropical curves of
genus 2; they are shown in Fig. 1.
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Remark 2.4 There is an obvious notion of isomorphism of combinatorial types
(G1,m1, w1) ∼= (G2,m2, w2), i.e. a multigraph isomorphism between G1 and G2
carrying m1 to m2 and w1 to w2. Then there are only finitely many types in Tg,n up
to isomorphism. Furthermore, Tg,n is nonempty if and only if 2g − 2+ n > 0, due to
the stability condition in Eq. (2).

Let G = (G,m, w) ∈ Tg,n , and let e be any edge of G. The contraction G/e is
defined to be the combinatorial type G′ = (G ′,m′, w′) ∈ Tg,n obtained as follows: if
e is a loop based at v ∈ V (G), then G′ is obtained by deleting e and increasing w(v)

by 1. Otherwise, if e has endpoints v1 and v2, then G′ is obtained by deleting e and
identifying v1 and v2 into a new vertex v. We set w′(v) = w(v1) + w(v2).

Now for any subset S ⊆ E(G), we define G/S to be the contraction of all edges
in S. It is well-known that they can be contracted in any order. Note that the new type
(G,m, w)/S also lies in Tg,n .

2.3 Construction ofMtrop
g,n

Suppose 2g − 2 + n > 0. Given G = (G,m, w) ∈ Tg,n , write

C(G) := R
E(G)
≥0 ,

�(G) :=
{

l : E(G) → R≥0} |
∑

l(e) = 1
}

⊂ C(G).

So �(G) is a simplex of dimension |E(G)|−1 and C(G) is an infinite cone over it.
Now for types G,G′ ∈ Tg,n and an isomorphism

α : G′ ∼=−→ G/S

for some S ⊆ E(G), we associate the linear map

Lα : C(G′) → C(G)

that identifies C(G′)with the face of C(G) consisting of those l ∈ R
E(G)
≥0 that are zero

on S. That is, it sends l ′ : E(G ′) → R≥0 to l : E(G) → R≥0 with

l(e) =
{

0 if e ∈ S,

l ′(α−1(e)) otherwise.

Call such a linear map Lα a face identification. Note that we specifically allow S
to be empty, in which case an automorphism of G produces a map C(G) → C(G).

Definition 2.5 (Brannetti et al. 2011; Caporaso 2013) The tropical moduli space of
curves, denoted M trop

g,n , is the colimit in the category of topological spaces

lim−→({C(G)}, {Lα})
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as G ranges over Tg,n and {Lα} is the set of all face identifications.
Note that the points of M trop

g,n are in bijection with isomorphism classes of tropical
curves of genus g and n marked points.

Definition 2.6 Let �g,n denote the subset of M trop
g,n parametrizing tropical curves of

total length 1. Thus

�g,n = lim−→({�(G)}, {Lα}),

where by abuse of notation we write Lα for the restrictions of the maps Lα to the
simplices �(G).

Thus M trop
g,n is an infinite cone over �g,n ; the cone point is the unique tropical curve

in M trop
g,n that is a single vertex of weight g and n markings.

Let Mbr
g,n to be the closure in M trop

g,n of the set of tropical curves containing a bridge.
We let �br

g,n be the closed subset of M
br
g,n of curves of total length 1, called the bridge

locus. Then recall:

Theorem 2.7 (Chan et al. 2016, Theorem 1.1(3)) For all g > 0, �br
g,n is contractible.

Note (Allcock et al. 2019, Theorem 6.1) proves that a larger locus, consisting of �br
g,n

together with the locus of tropical curves whose underlying graph has multiedges (i.e.,
parallel edges), is also contractible.

It will be useful to characterize the set of combinatorial types of curves occurring
in the bridge locus. That is, let T br

g,n be the closure under the contraction operation
of the combinatorial types that have bridges. Call a type nonrepeating if the marking
function m is injective, and repeating otherwise.

Lemma 2.8 Fix g, n ≥ 0 with 2g− 2+ n > 0. A typeG ∈ Tg,n lies in T br
g,n if and only

if

1. G is repeating, or
2. G has a virtual cut vertex (see §2.1).

Proof SupposeH ∈ T br
g,n . ThenH is a contraction of some typeG = (G,m, w) ∈ T br

g,n
that has a bridge, say e = v1v2 ∈ E(G). We will show that (1) or (2) holds for H
by analyzing G. Basically, if e separates two subcurves of positive genus, then G and
hence H must have a virtual cut vertex. If instead one subcurve has genus 0 then G
and hence H must be repeating.

More formally: consider the following operation on G. We delete e and add a new
marked point to each of v1 and v2, obtaining two types G1 = (G1,m1, w1) and
G2 = (G2,m2, w2), which are each stable by the stability condition (2).

Now, if g(Gi ) > 0 for both i , then e must have been a bridge in the unmarked
type for G. Then any contraction of G has a virtual cut vertex. Otherwise, one of the
graphs, say G1, is a tree. If G1 = {v1} then it supports at least three markings, of
which at least two are original to G. Consider any leaf of G1 other than v1; then it
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supports at least two markings in G. So G was repeating, and any contraction of G
must be repeating. This proves that if H ∈ T br

g,n then (1) or (2) holds.
For the converse, suppose that H has a virtual cut vertex. Then this vertex can be

expanded into a bridge that separates two types whose genera sum to g. (For example,
the cut vertex in the third graph of Fig. 1 can be expanded to obtain the second graph in
Fig. 1.) Similarly, ifH is repeating, thenH has a vertex v supporting markings i �= j .
So the vertex v can be expanded into a bridge that separates markings i and j from
the rest of the curve. �


3 A CW structure on the quotient by the bridge locus

Throughout the rest of this paper, set g = 2. We now study the quotient

�′
2,n := �2,n/�

br
2,n .

The space �2,n can certainly be given a CW complex structure in which �br
2,n is a

subcomplex. For example, one can first take a barycentric subdivision of the simplices
�(G). Then�2,n is in fact a�-complex on the barycentric cells. (It is not a simplicial
complex on the barycentric cells unless n = 0. For an example, consider the triangle
corresponding to the graph with vertices {x, y}, edges {xy, xy, yy}, no vertex weights,
and a single marking at x .) In any case, �′

2,n is a CW complex which is homotopy

equivalent to �2,n since �br
2,n is contractible.

Wewill immediately dispense with the barycentric cell structure on�2,n , because it
is impractical. (Note, however, that baryenctric subdivisions on tropical moduli spaces
are used successfully in computations in Allcock et al. (2019).) Instead, in this section
we will equip �′

2,n with a simpler CW structure. It will take advantage of the fact that
the tropical curves in the part of �2,n that has not been collapsed have very limited
automorphisms, namely, as long as n ≥ 4, at most a single transposition of two parallel
edges. So, in what follows, we take n ≥ 4. The cases n ≤ 3 are small enough to be
handled directly, as in Sect. 5.

Write T�
2,n for those nonrepeating types G ∈ T2,n whose underlying type is a theta

graph, i.e. of type I in Fig. 1.We call these theta types. We emphasize that by definition
they must be nonrepeating. See Fig. 2 for some examples.

Lemma 3.1 We have

T2,n = T br
2,n � T�

2,n .

Proof This is immediate fromLemma 2.8, noting that of the seven types in T2,0, shown
in Fig. 1, all but type I have a virtual cut vertex. �


Now we characterize the automorphisms of theta types. Note that every vertex of a
theta type must have weight zero, so we write G = (G,m, 0) = (G,m) for short.

Lemma 3.2 Let n ≥ 4 and let G = (G,m) ∈ T�
2,n. Then Aut(G) is either trivial or is

generated by a single transposition of parallel edges.
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Proof Consider first an unmarked graph of type I, which we will henceforth call � as
a memory aid. Let e1, e2, e3 denote the three edges of�. Now think of constructingG
by adding n markings at distinct points anywhere on �, i.e., either on the two vertices
of � or in the interiors of the three edges. Formally, of course, adding a marked point
to the interior of an edge should be viewed as subdividing the edge and then marking
the new vertex.

First suppose some ei had its interior marked twice. Then any automorphism of G
must fix pointwise the path corresponding to ei , including its endpoints. Then G has
at most an automorphism swapping parallel edges: this automorphism would occur
precisely if all n markings were to lie on a single ei .

Now suppose instead that each ei has its interior marked at most once. Then n ≥ 4
implies that one or both of the vertices of � were marked. Thus any automorphism of
G must fix its two 3-valent vertices. Furthermore, at least two of the edges of �, say
e1 and e2, have their interiors marked; so any automorphism of G must fix the two
paths corresponding to e1 and e2. Hence all ofG must be fixed. So in this case,G has
trivial automorphism group. �

Definition 3.3 Let G = (G,m) ∈ T�

2,n with n ≥ 4.

1. A decoration δ on G is a choice, for any pair of parallel edges e and e′ in G, of a
formal relation

e ≤δ e
′ or e =δ e

′ or e ≥δ e
′.

2. A decorated type is a pair (G, δ). If Aut(G) is trivial, then G has no pairs of
parallel edges, and we may simply write G instead of (G, δ). An isomorphism of
decorated types (G, δ) and (G′, δ′) is an isomorphism G ∼= G′ carrying δ to δ′.
Write DT�

2,n for the set of (isomorphism classes of) decorated types.

3. For each (G, δ) ∈ DT�
2,n , we let

�(G, δ) ⊂ R
E(G)

be the polytope parametrizing those l : E(G) → R≥0 ∈ �(G) such that if e and
e′ are parallel then l(e) and l(e′) satisfy the relation given by δ.

For any e ∈ E(G), write le for the indicator length function for e, i.e. le(e) = 1
and le(e′) = 0 for e′ �= e.

Lemma 3.4 Let (G, δ) ∈ DT�
2,n be any decorated type.

1. �(G, δ) is a simplex of dimension |E(G)| − 1− #equal signs in δ.

2. The vertices of �(G, δ) are

{

le | e is a singleton or e ≥δ e
′} ∪

{

1

2
(le + le′) | e =δ e

′ or e ≤δ e
′
}

.

3. The codimension-1 faces of �(G, δ) are cut out by equations
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• l(e) = 0, where e is a singleton or e ≤δ e′, or
• l(e) = l(e′) = 0, where e =δ e′, or
• l(e) = l(e′), where e ≥δ e′.

4. A point l : E(G) → R≥0 is in the relative interior of�(G, δ) if and only if l(e) �= 0
for each e ∈ E(G), and further

l(e) < l(e′) if e ≤δ e
′ and l(e) = l(e′) if e =δ e

′.

Proof From Definition 3.3, it follows that the points in �(G, δ) are exactly those that
can be expressed as a convex combination of the finitely many points listed in part
(2), and that this expression is unique if it exists. Thus �(G, δ) is a simplex. It has a
vertex for every singleton e, two vertices for every e ‖ e′ with e ≤δ e′ or e ≥δ e′, and
a single vertex for every e ‖ e′ with e =δ e′. Thus the number of vertices in �(G, δ)

is |E(G)| − #equal signs in δ. Next, one may check that each of the linear slices of
�(G, δ) listed in (3) contains all vertices but one, and that they are all distinct. Finally,
the points described in (4) are precisely those points of �(G, δ) not contained in any
facet. �


Let n ≥ 4. We now describe a CW structure on �′
2,n = �2,n/�

br
2,n . We will give a

finite number ofmaps of simplices into�′
2,n , and then prove that they are characteristic

maps.
First, let •br be a 0-simplex, i.e. a point, and consider the map φbr : •br → �′

2,n

sending •br to the collapse of �br
2,n . Next, for each (G, δ) ∈ DT�

g,n , consider the map

φG,δ : �(G, δ) −→ �(G) −→ �2,n −→ �′
2,n

that factors through the inclusion of polytopes �(G, δ) ⊆ �(G) and the canonical
map ιG : �(G) → �2,n .

Proposition 3.5 Let n ≥ 4. The maps φbr and {φG,δ | (G, δ) ∈ DT�
2,n} are the

characteristic maps for a CW complex structure on �′
2,n.

Proof We will show two claims:

1. themaps φbr and {φG,δ}, restricted to the interiors of their domains, are homeomor-
phisms onto their images. We call the images of these interiors cells and denote
them εbr and εG,δ . Furthermore, we have

�′
2,n =

(
∐

εG,δ

)

� (εbr) (4)

as an equality of sets.
2. For each (G, δ), we have that φG,δ(∂�(G, δ)) is contained in a union of cells of

smaller dimension.

Then the proposition follows immediately. Actually wewill provemore in the process:
wewill analyze the contribution that each facet of a cell�(G, δ)makes to the boundary
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Fig. 2 Two examples of cyclic theta types in T σ
2,4 for σ = (1 2 3 4), of form

(3
1
)

and
(3
0
)

- respectively.
Our convention is that the edges are ordered in reading order, as shown on the left. The type on the right is
obtained by contracting edge e6; note that this operation creates a new pair of parallel edges

maps in the cellular chain complex. In order to talk about the chain maps, we shall
assume that the vertices of each simplex �(G, δ) are equipped with a total ordering,
and the faces of �(G, δ) are given the corresponding orientation.

Let us start by proving (1). The point •br is mapped in �′
2,n to the collapse of �br

2,n .
Next, if (G, l,m, w) is a tropical curve in �2,n of theta type, then by Lemma 3.4(4),
there is a unique decoration δ ofG = (G,m, w) for which l lies in the relative interior
of �(G, δ). So equation (4) holds. Now for any (G, δ) ∈ DT�

2,n , consider the map

�(G, δ)/∼ −→ �′
2,n

induced from identifying points in�(G, δ) in the same fiber of φG,δ . Note that�′
2,n is

Hausdorff, as it is the quotient of a CW complex by a subcomplex. Thus this map is an
injection with compact domain and Hausdorff codomain, so it is a homeomorphism
onto its image. We already argued that ∼ is trivial on the interior of �(G, δ), so φG,δ

restricts to a homeomorphism on the interior of �(G, δ). This proves (1).
For part (2), let (G = (G,m, w), δ) ∈ DT�

2,n and let F be a facet of �(G, δ). By
Lemma 3.4 we have the following three cases.

Case 1: F is defined by l(e) = 0 for some e ∈ E(G).
First, ifG/e ∈ T br

2,n , then in�′
2,n , we have that F is collapsed to the 0-cell εbr. Note

that F does not contribute to the boundary map, because the codimension of εbr is too
large.

So suppose that G/e /∈ T br
2,n . Then G/e ∈ T�

2,n by Lemma 3.1. We have two
possibilities. The first possibility is that G had no parallel edges, but G/e does, say
edges f1, f2 ∈ E(G/e). See Fig. 2.

By abuse of notation, the edge in G giving rise to fi will also be called fi . Now F
obviously decomposes as the union of the two closed simplices

F ∩ {l( f1) ≤ l( f2)} and F ∩ {l( f1) ≥ l( f2)}.

In �′
2,n , each of these halves is identified with �(G/e, f1 ≤ f2), but with opposite

signs, since the two identifications differ by a flip of parallel edges. Thus F is sent
to the image of �(G/e, f1 ≤δ f2) in �′

2,n , which does indeed have codimension 1;
however, its total contribution to the cellular boundary map is zero due to cancellation.

The other possibility is that contracting e did not create new parallel edges. Then
F is identified with �(G/e, δ|G/e) with a contribution of ±1 to the boundary map.
The sign simply depends on our choice of vertex-ordering for the two simplices.
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Case 2: F is defined by l(e) = l(e′) = 0, for e =δ e′. Then F is sent to εbr in �′
2,n ,

because contracting e and e′ produces a vertex of positive weight.
Case 3: F is defined by l(e) = l(e′), for e ≤δ e′. Then F is identified with

�(G, e =δ e′) and the contribution to the boundary map is again ±1.
In each case, F was identified with the closure of a cell of smaller dimension, so

Proposition 3.5(2) is proved. �


4 Homology of the cyclic theta complex

Let G = (G,m, w) ∈ T�
2,n . We say G is a cyclic theta if there is a cycle in G passing

through all the marked points. If not, we say G is a full theta. We let T cyc
2,n and T full

2,n
denote the set of all cyclic theta types and the set of all full theta types, respectively. In
this section, we compute the integral homology of the subcomplex of �2,n supported
on cyclic theta types. In the next section, we will study the remaining full types, which
will allow us to prove Theorems 1.1 and 1.2.

Definition 4.1 Let C2,n denote the subcomplex of �′
2,n

C2,n = εbr ∪
⋃

G∈T cyc
2,n

εG,δ,

called the cyclic theta complex.

This is a subcomplex of �′
2,n because every contraction of a cyclic theta either is

in the bridge locus or is again a cyclic theta type. The next theorem computes the
integral homology of C2,n , and we will prove it in the rest of the section. Our proof
also explicitly constructs representatives for the nonzero homology classes in degree
n + 1.

Theorem 4.2 For all i ≥ 0,

˜Hi (C2,n,Z) =
{

(Z/2Z)
(n−1)!

2 if i = n + 1,

0 else.

Proof Consider the (n − 1)!/2 possible unoriented cyclic orderings of the set
{1, . . . , n}, i.e. ways to place n numbers around a circle in either direction. For
example, when n = 4 the three cyclic orderings are (1234), (1243), (1324). Sup-
pose G = (G,m, w) ∈ T cyc

2,n . Notice that G determines a unique cyclic ordering on

{1, . . . , n}. Given a cyclic ordering σ , write T σ
2,n for the types in T cyc

2,n inducing σ.

Now suppose e ∈ E(G). As noted above, either G/e ∈ T br
2,n or G/e is again a

cyclic theta. The crucial observation is that in the latter case, G and G/e determine
the same cyclic ordering on {1, . . . , n}. Thus, for any cyclic ordering σ of {1, . . . , n},
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we may define Cσ
2,n to be the subcomplex on cells

Cσ
2,n = εbr ∪

⋃

G∈T σ
2,n

εG,δ.

Then we have

C2,n =
∨

σ

Cσ
2,n,

where the wedge is over all cyclic orderings of {1, . . . , n} and the identification is at
the 0-cell εbr. Therefore

˜Hi (C2,n,Z) ∼=
⊕

σ

˜Hi (C
σ
2,n,Z).

Therefore the following claim implies the theorem.

Claim 4.3 For any cyclic ordering σ of {1, . . . , n}, we have

˜Hi (C
σ
2,n,Z) =

{

Z/2Z if i = n + 1,

0 else.

Now we prove the claim. Clearly the choice of σ does not matter; choose σ =
(1 · · · n) once and for all. Write Cσ,d

2,n for the d-skeleton of Cσ
2,n . For simplicity write

Vi = Hi (C
σ,i
2,n,C

σ,i−1
2,n ;Z) (5)

Consider the cells ofCσ
2,n . A typeG = (G,m) ∈ T σ

2,n is obtained from an unmarked
graph of type I in Fig. 1, which we will once again call�, by marking n distinct points
on it. (If the interior of an edge is marked then we consider it to be subdivided there.)
Thus, G has n + 1, n + 2, or n + 3 edges, depending on whether 0, 1, or 2 of the
vertices of � are marked.

Then by Lemma 3.4 (1), the cell εG,δ has dimension n − 1, n, n + 1, or n + 2.
This already shows that ˜Hi (Cσ

2,n,Z) = 0 for i < n − 1. We are left to compute the
homology of the complex of Z-modules

0 −→ Vn+2
∂n+2−→ Vn+1

∂n+1−→ Vn
∂n−→ Vn−1 −→ 0 (6)

with the modules Vi as in (5).
We need to set some notation for the types G involved, and set a convention for

ordering the vertices of the relevant simplices�(G) and�(G, δ). Choose, once and for
all, one of the two possible orientations of σ , say the oriented cyclic order 1, . . . , n.
We will say that G is of the form (ε1, k1, ε2, k2), with εi ∈ {0, 1} and ε1 + k1 +
ε2 + k2 = n, if G is obtained by adding markings to a � graph such that, in the
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(oriented) cyclic order, there are ε1 marked points on a vertex of �, then k1 marked
points on an edge, then ε2 marked points on the other vertex of �, then k2 marked
points on another edge. Obviously we have an equivalence of such forms via cyclic
reordering: (ε1, k1, ε2, k2) ∼ (ε2, k2, ε1, k1). For example, the types in Fig. 2 have
forms (0, 3, 0, 1) and (0, 3, 1, 0) respectively.

We adopt the convention that the edges of a type G of form (ε1, k1, ε2, k2) are
ordered as follows: we place the k1 marked points in order, left to right, on the top
edge of �, and the k2 marked points right to left on the bottom edge of �; then we
put the edges in reading order. See Fig. 2 for an example. Note that our choice of
ordering of the edges of G induces an order on the vertices of �(G), when G is an
automorphism-free type. We will take this ordering throughout.

In keeping with the above convention, we will sometimes notate the forms

(0, k1, 0, k2) (1, k1, 0, k2) (0, k1, 1, k2) (1, k1, 1, k2)

as

(k1
k2

)

-
(k1
k2

) (k1
k2

)

- -
(k1
k2

)

-

respectively, simply as a visual aid. Furthermore we notate a specific type in the same
way. For example the type on the left in Fig. 2 will be written

(123
4

)

and it has form
(3
1

)

.
Suppose G has a nontrivial automorphism. That is, G has form (ε1, k1, ε2, k2) and

k1 = 0 or k2 = 0. Without loss of generality, suppose k2 = 0. Then G has a pair
of parallel edges e and e′, and G thus admits two possible decorations δ, namely
e = e′ or e ≤ e′. Then by slight abuse of notation we will write (G, δ) as having form
(ε1, k1, ε2,=) or (ε1, k1, ε2,≤). We extend this notation to the shorthand above. For
example (1, k1, 0,≤) will be written -

(k1≤
)

.
Furthermore, we adopt the following convention on the order of the vertices of

�(G, δ) in this case. Write e0, . . . , en′ for the edges E(G) − {e, e′} taken as they
appear in the directed path compatible with the chosen orientation of σ . See Fig. 3.
So n′ = n − ε1 − ε2. If the decoration δ is e = e′ then the vertices of �(G, δ) are

{

1

2
(le + le′), le0 , . . . , len′

}

by Lemma 3.4(2), and we take them in that order. If the decoration is e ≥ e′ then the
vertices of �(G, δ) are

{le, 1
2
(le + le′), le0 , . . . , len′ }

and we take them in that order. We use analogous conventions if G has the form
(ε1, 0, ε2, k2).

In this way, we have chosen orientations for each of the cells of Cσ
2,n . We will write

down the boundary maps ∂i in (6) explicitly in terms of them. Of course, they are just
conventions chosen for the sake of explicit computation; they do not affect the Smith
normal forms of ∂i . �
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Fig. 3 The edges e0, . . . , en′ in
the ordering compatible with the
oriented cyclic order
σ = (1234). Here
n′ = n − 1 = 3

3 1
4

2
e0

e1 e2

e3e

e

Lemma 4.4 Suppose (G, δ) is a decorated type that is a cyclic theta, with cyclic order
σ. Then we have the following case analysis for the possible forms of (G, δ):

1. (G, δ) has one of the forms

(n
≤
) (n−1

1

) · · · (�n/2�
�n/2�

)

and in these cases εG,δ has dimension n + 2;
2. (G, δ) has one of the forms

(n
=
)

-
(n−1

≤
)

-
(n−2

1

) · · · -( 1
n−2

)

-
( ≤
n−1

)

,

and in these cases εG,δ has dimension n + 1;
3. (G, δ) has one of the forms

-
(n−1

=
)

-
( =
n−1

)

-
(n−2

≤
)

- -
(n−3

1

)

- · · · -(�n/2�−1
�n/2�−1

)

-,

and in these cases εG,δ has dimension n;
4. (G, δ) has the form

-
(n−2

=
)

-

and in this case εG,δ has dimension n − 1.

Proof This is a straightforward case analysis; the dimensions of the cells were com-
puted in Lemma 3.4(1). �

By counting we deduce the following.

Lemma 4.5 The modules Vi in (5) have ranks:

1. rank Vn+2 = (n+1
2

)

,

2. rank Vn+1 = 2
(n+1

2

)

,

3. rank Vn = (n+1
2

) + n,
4. rank Vn−1 = n.

In this lemma,
(n+1

2

)

has its usual meaning “n+1 choose 2,” not to be confused with
the previous notation.

Proof of Lemma 4.5 This is a routine count in each case. For example, part (1) is true
because there are

(n+1
2

) = n(n + 1)/2 ways to cut the numbers 1, . . . , n, arranged
around a circle, into two segments (with length zero segments permitted). Alterna-
tively, the counts can be derived directly from Lemma 4.4. �
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We can now compute the homology of (6). The proof is by direct computation. We
compute the Smith normal forms over Z of each boundary map ∂n+2, ∂n+1, and ∂n .
The boundary maps themselves are computed using the case analysis in the proof of
Proposition 3.5. We compute them with respect to the choices of orientations estab-
lished earlier in the section. The homology computations then immediately follow
from the Smith normal forms. From here on, SNF denotes Smith normal form, and 1
and 0 denote identity and zero matrices respectively.

Claim 4.6 The normal form of ∂n+2 is

SNF(∂n+2) =

n(n+1)/2
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

1
. . . n(n+1)/2

1
2

0 n(n+1)/2

(7)

Claim 4.7 The normal form of ∂n+1 is

SNF(∂n+1) =

n(n+1)/2 n(n+1)/2
⎛

⎜

⎝

⎞

⎟

⎠

1 0 n(n+1)/2

0 0 n

(8)

Claim 4.8 The normal form of ∂n is

SNF(∂n) =
n n(n+1)/2

( )

1 0 n (9)

Now we prove Claims 4.6, 4.7, 4.8. The boundary maps look different according
to the parity of n, so we split our analysis into cases.

Proof (Proof of Claim 4.6 for n odd) Let n = 2k + 1. First, consider the n × n square
submatrix of ∂n+2 whose columns are indexed by all types of the form

(k+1
k

)

and

whose rows are indexed by all types of the form -
(k
k

)

. Call this submatrix A. We now
show that det(A) �= 0, indeed, that A is an n × n double diagonal matrix, with two
entries 1 in each column, corresponding to two permutations in Sn of the same sign.
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For example, when n = 5, we have

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(123
54

) (234
15

) (345
21

) (451
32

) (512
43

)

1
(23
54

)

1 1

2
(34
15

)

1 1

3
(45
21

)

1 1

4
(51
32

)

1 1

5
(12
43

)

1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

More generally, for each i ∈ {1, . . . , n}, write

Gi = ( i ··· k+i
i−1 ··· k+i+1

)

, Hi = i
( i+1 ··· k+i
i−1 ··· k+i+1

)

.

Then the column of A indexed by Gi has an entry 1 in row Hi and in row Hk+i (with
indices modulo n), and no other nonzero entries. This is because Hi is obtained by
contracting edge e0 of Gi , i.e. �(Hi ) is identified with facet 0 of �(Gi ). Similarly,
Hk+i is obtained by contracting edge ek+1 ofGi , which gives sign (−1)k+1; and then
reversing the order of the n + 2 = 2k + 3 edges. This reversal is a product of k + 1
transpositions. Hence the total contribution is (−1)2(k+1) = 1. Then it follows that

det(A) = 1 + sgn τ = 2 �= 0, (10)

where τ ∈ Sn is the n-cycle τ(i) = i + k mod n.

Then ∂n+2 has the following form, for suitable orderings of rows and columns:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(k+1
k

) (k+2
k−1

) · · · (2k
1

) (2k+1
≤

)

-
(k
k

)

A · · · 0

-
(k+1
k−1

) ∗ 1
...

... ∗ 1

-
(2k−1

1

) ... ∗ 1
-
(2k
≤

)

0 · · · 0 1

(k+1
k−1

)

- −1 ∗ · · · 0
(k+2
k−2

)

- −1 ∗ ...

... −1 ∗
(2k
≤

)

-
... −1

(2k+1
=

)

0 · · · 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (11)

Here, each block represents an n × n submatrix whose rows and columns are indexed
by types of the indicated forms. The blocks notated ∗ are in fact n×n identity matrices
up to row/column permutation and up to multiplication by −1.
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As a brief example of how to compute the entries in ∂n+2, we explain why the
n × n submatrix with columns of form

(2k
1

)

and rows of form
(2k
≤

)

- is 0. Indeed, it

is possible to contract an edge of a type of form
(2k
1

)

to obtain a type of form
(2k
≤

)

-
with two parallel edges e and e′. An example is shown in Fig. 2. (In the figure, n is
even, but the essential point is the same.) However, there are two possible choices of
decoration for the new type: e ≥ e′ and e′ ≥ e. So the corresponding codimension
1 cell occurs once with each orientations, and the total contribution is zero. This was
already argued in the proof of Proposition 3.5, and all of the other claimed entries of
∂n+2 similarly follow from the case analysis in that proof.

Now we compute SNF(∂n+2). Consider the upper (n + 1)n/2× (n + 1)n/2 square
submatrix of ∂n+2. It is the submatrix above the line in (7). It is invertible since A is,
and by (10) its Smith normal form is diag(1, . . . , 1, 2). Therefore either SNF(∂n+2)

is as claimed in (7), or it is instead a (n + 1)n/2 square identity matrix, padded with
zeroes. We show that the latter is not possible by exhibiting a torsion element in
Vn+1/ im(∂n+2). Let v be the sum of the first (n − 1)n/2 columns of ∂n+2 in (11).
That is, v is sum the column vectors corresponding to all types except those of the form
(2k+1

≤
)

. By inspecting (11), we see v ≡ 0 mod 2. The columns of ∂n+2 are linearly
independent over Q, from which it follows that v/2 ∈ Vn+1 is not in the image of
∂n+2 considered as a Z-module map. This shows Claim 4.6 for n odd, and gives an
explicit representative for the nonzero homology class of Cσ

2,n in degree n + 1. �


Proof (Proof of Claim 4.6 for n even) Let n = 2k. First, some temporary notation:
write -

( k
k−1

)′
, respectively -

( k
k−1

)′′
, for the types of the form -

( k
k−1

)

in which themarking
on the left vertex of � is in {1, . . . , k}, respectively in {k+1, . . . , n}. For example,
when n = 4 the types of form -

(2
1

)′
are 1

(23
4

)

and 2
(34
1

)

, and the types of form -
(2
1

)′′
are

3
(41
2

)

and 4
(12
3

)

.
Now let A be the (3n/2)× (3n/2) square submatrix of ∂n+2 with columns indexed

by all types of the form
(k+1
k−1

)

or
(k
k

)

and rows indexed by all types of the form
( k
k−1

)

-

or -
( k
k−1

)′
. For example, when n = 4, we have

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(123
4

) (234
1

) (341
2

) (412
3

) (12
43

) (23
14

)

(12
4

)

3 −1 1
(23
1

)

4 −1 1
(34
2

)

1 −1 −1
(41
3

)

2 −1 −1

1
(23
4

)

1 1

2
(34
1

)

1 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (12)

We claim that det A = ±2. First, consider the k types

(k+1 ··· 1
k ··· 2

) · · · ( n 1 ··· k
n−1 ··· k+1

)

.
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Each of the columns they index has a single nonzero entry which is ±1, i.e. in the k
rows defined by

(k+1 ··· n
k ··· 2

)

1 · · · (n 1 ··· k−1
n−1 ··· k+1

)

k.

So we may delete these k rows and k columns to obtain a matrix A′ with det A′ =
± det A.

Now we may check that A′ has the form

(1 ··· k+1
n ··· k+2

) · · · ( k ··· n
k−1 ··· 1

) ( 1 ··· k
n ··· k+1

) · · · (k ··· n−1
k−1 ··· n

)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

( 1 ··· k
n ··· k+2

)

k+1
...

(k ··· n−1
k−1 ··· 1

)

n
(−1)k+1 1

1
(2 ··· k+1
n ··· k+2

)

...

k
(k+1 ··· n
k−1 ··· 1

)

1

(−1)k

. . .

(−1)k

−1

For example, when n = 4, A′ is the 4 × 4 matrix obtained from (12) by deleting the
middle two rows and columns. The computations of each entry follow directly from
our choice of ordering of the edges for each type. Then we have

det A′ = (−1)k(k+1)+(k−1)k+1 sgn(τ1) + sgn(τ2)

= (−1)k + (−1)k = ±2,
(13)

where τ1 = (n n−1 · · · k+1) is a k-cycle, and τ2 = (1 k+1)(2 k+2) · · · (k n) is a
product of k disjoint transpositions.

Next, we can see that ∂n+2 has a square submatrix of the following form, again for
suitable orderings of rows and columns:

(2k
≤

) (2k−1
1

) · · · (k+2
k−2

) (k+1
k−1

) (k
k

)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

-
(2k−1

≤
)

1 · · · 0

-
(2k−2

1

)

1 ∗ ...
... 1 ∗

-
(k+1
k−2

)

1 ∗
( k
k−1

)

-

-
( k
k−1

)′
...

0 . . .
A

(14)
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Note that the submatrix (14) uses all columns of ∂n+2, andmoreover by (13) its normal
form is a diagonal matrix with entries (1, . . . , 1, 2). It follows that SNF(∂n+2) is either
of the form claimed in (7), or it is an

(n+1
2

)×(n+1
2

)

identity matrix, padded with zeroes.
Again we argue that the latter is not possible by exhibiting a nontrivial torsion element
of Vn+1/ im(∂n+2). Consider the vector v that is the sum of all of the columns of ∂n+2
except those indexed by types of the form

(2k
≤

)

. Note v ≡ 0 mod 2. This is because v

does not involve any rows indexed by -
(2k−1

≤
)

,
(2k−1

≤
)

-, or
(2k
=

)

, and every row other than
these 3n rows has exactly two ±1 nonzero entries. So we have produced a nontrivial
torsion element of Vn+1/ im(∂n+2), namely v/2. This constructs a representative for
a nonzero homology class in degree n + 1, and proves the claim. �

Proof (Proof of Claim 4.7 for n odd) Let n = 2k + 1. The matrix for ∂n+1 has the
following form. Again, each symbol represents an n × n submatrix, with rows and
columns indexed by the types of the indicated forms.

-
(k
k

)

-
(k+1
k−1

) · · · -
(2k−1

1

) (k+1
k−1

)

- · · · (2k−1
1

)

- -
(2k
≤

) (2k
≤

)

-
(2k+1

=
)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

-
( k
k−1

)

- B ∗ 1
.
.
. ∗ ∗ ∗ 1

-
(2k−2

1

)

- ∗ ∗ ∗ 1

-
(2k−1

≤
)

- 1 1
-
(2k
=

)

1 −1
(2k
=

)

- 1 1

Here B is a double diagonal matrix and the matrices ∗ are signed identity matrices up
to row/column permutation. After column operations preserving Smith normal form,
we may assume instead that B and all the matrices ∗ are zero. Moreover the lower
right 3n × 3n submatrix has Smith normal form

⎛

⎝

1
1
0

⎞

⎠ .

This shows Claim 4.7 for n odd. �

Proof (Proof of Claim 4.7 for n even) Let n = 2k. The matrix for ∂n+1 has the
following form:
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-
( k
k−1

) · · · -
(2k−2

1
) ( k

k−1
)

- · · · (2k−2
1

)

- -
(2k−1

≤
) (2k−1

≤
)

-
(2k
=

)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

-
(k−1
k−1

)

- B′ B′′
... ∗ ∗ ∗ 1

-
(2k−3

1
)

- ∗ ∗ ∗ 1

-
(2k−2

≤
)

- −1 1

-
(2k−1

=
)

1 −1
(2k−1

=
)

- 1 −1

where B ′ and B ′′ are the k × n matrices
⎛

⎝ (−1)k 1

⎞

⎠ and

⎛

⎝ 1 (−1)k

⎞

⎠

and the matrices ∗ are signed n × n identity matrices up to row/column permutation.
After column operations preserving Smith normal form, we may assume instead that
B ′ and all the matrices ∗ are zero, and that

B ′′ =
⎛

⎝ 0 (−1)k

⎞

⎠ .

Moreover the lower right 3n × 3n submatrix has Smith normal form

⎛

⎝

1
1
0

⎞

⎠ .

Putting these statements together shows Claim 4.7 for n even. �

Proof (Proof of Claim 4.8 for all n) This claim is clear from the fact that ∂n restricted
to types of the form -

(n−2
≤

)

- is Idn×n . �

Claims 4.6, 4.7, and 4.8 , which we just proved, imply Claim 4.3 immediately, and

Claim 4.3 proves Theorem 4.2. �

We remark that using the proof of Theorem 4.2, we can also exhibit torsion in the

integral homology of �2,n .

Proposition 4.9 For n ≥ 5 odd, there exists 0 �= α ∈ Hn+1(�2,n,Z) with 2α = 0.

Proof We continue to use the CW structure on �′
2,n � �2,n in Proposition 3.5. Let

α := v/2 be the 2-torsion element of Hn+1(C2,n;Z) constructed in the proof of
Claim 4.6. We claim that it is still nonzero in Hn+1(�

′
2,n;Z). Indeed, the sum of

coefficients of α attached to types of the form

-
(k
k

)

,
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over all (n−1)!/2 cyclic orders, is±n. This follows by inspecting (11). In particular the
sum is odd. On the other hand, for any decorated type (G, δ), consider the boundary of
the cell corresponding to (G, δ). The sum of all coefficients of this boundary attached
to types of form -

(k
k

)

is even: in particular, ifG has k, k, and 1marked points decorating
the interiors of the three edges of �, then G has exactly two edge-contractions of the
form -

(k
k

)

, with respect to two distinct cyclic orders. �


5 The Z-homology of12,n vanishes in codimension > 1

In this section, we will study the final piece of the complex�′
2,n , the locus of full theta

types. Recall that a type G ∈ T�
2,n is full if its marked vertices do not lie on a single

cycle. Equivalently, G is obtained from the unmarked graph � by adding markings
such that at least one marked point lands on the interior of each of the three edges of
�.

SupposeG is a theta type. Let us say it has form (ε1, ε2, k1, k2, k3), with 1 ≥ ε1 ≥
ε2 ≥ 0 and k1 ≥ k2 ≥ k3 ≥ 0, if it is obtained from the unmarked graph � by placing
ε1 and ε2 markings on each of the two vertices and k1, k2, and k3 markings on the
interiors of the three edges. Thus ε1 + ε2 + k1 + k2 + k3 = n.

Let F2,n be the closure in �′
2,n of the locus of full thetas, i.e.

F2,n =
⋃

G∈T full
2,n

εG.

Thus F2,n is the subcomplex of �′
2,n whose cells are all possible contractions of full

theta types, and it inherits a CW structure from �′
2,n . Then C2,n ∪ F2,n = �′

2,n . Now

Theorem 4.2 implies that ˜Hi (C2,n;Q) = 0 for all i and that ˜Hi (C2,n;Z) = 0 for all
i ≤ n. Then we have

H̃∗(�′
2,n;Q) ∼= H̃∗(�′

2,n/C2,n;Q) ∼= H̃∗(F2,n/(F2,n ∩ C2,n);Q). (15)

and, for 0 ≤ i ≤ n,

H̃i (�
′
2,n;Z) ∼= H̃i (�

′
2,n/C2,n;Z) ∼= H̃i (F2,n/(F2,n ∩ C2,n);Z). (16)

So we study F2,n and F2,n/(F2,n ∩ C2,n) now. The next lemma describes the cells
in F2,n .

Lemma 5.1 Suppose εG,δ is a cell in F2,n other than εbr. Then we have the following
case analysis for the possible forms of (G, δ):

1. (G, δ) is a full theta of the form (0, 0, k1, k2, k3), and in this case εG has dimension
n + 2;

2. (G, δ) is a full theta of the form (1, 0, k1, k2, k3) or a cyclic theta of the form -
(k1
k2

)

for k1, k2 > 0, and in these cases εG has dimension n + 1;
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3. (G, δ) is a full theta of the form (1, 1, k1, k2, k3) or is a cyclic theta of the form
-
(k1
k2

)

- with k1, k2 > 0, or is a cyclic theta of the form -
(n−2

≤
)

-, and in these cases εG
has dimension n;

4. (G, δ) is a cyclic theta of the form -
(n−2

=
)

-, and in this case εG has dimension n−1.

Proof The cells in the aforementioned CW complex structure on F2,n , apart from the
unique 0-cell εbr, are indexed by decorated types εG,δ whereG ∈ T�

2,n is obtained from

a full theta by contraction (see Lemma 3.1). Recall that anyG ∈ T�
2,n may be obtained

from an unmarked graph � by adding markings. Let i ∈ {0, 1, 2, 3} be the number of
edges of � whose interiors remain unmarked in this process; let j ∈ {0, 1, 2} be the
number of vertices of � that are marked. ThenG ∈ T�

2,n is a contraction of a full theta

type if and only if j ≥ i . For example, a cyclic type of the form -
(n−1

≤
)

has i = 2 and
j = 1 and hence fails the criterion above; the point is that even if the single marking
on the 3-valent vertex is moved onto an edge, the resulting type is still not full.

The lemma follows from the observation above by a straightforward case analysis.
The dimensions were computed in Lemma 3.4. �


Proposition 5.2 For all i ≤ n, we have

˜Hi (F2,n/(F2,n ∩ C2,n);Z) = 0.

Proof Write ∂i for the boundary maps of the cellular chain complex for F2,n/(F2,n ∩
C2,n). From Lemma 5.1(4), we see that F2,n/(F2,n ∩ C2,n) has no cells of dimension
less than n. So we are reduced to proving the statement for i = n. Furthermore, by
Lemma 5.1(3), the n-cells of F2,n/(F2,n ∩C2,n) correspond to all types obtained from
� by marking both vertices once and marking the three edges with k1 ≥ k2 ≥ k3 ≥ 1
markings. Then k1+k2+k3 = n−2 and k1 ≤ n−4. Now supposeG is of the formwe
just described. To show the Proposition for i = n, we want to show that εG ∈ im ∂n+1.
We induct downward on k1. Suppose k1 = n − 4. Then k2 = k3 = 1. Consider the
typeG′ obtained fromG by moving either of the two marked points on the vertices of
� to the interior of the k1-marked edge of �. We claim that ∂n+1(εG′) = ±εG. This
is because starting with G′ and moving the single marking on the interior of either
once-marked edge of� to the unmarked vertex of� produces a cyclic type and hence
no contribution to the boundary map. Of course, any other edge contraction produces
a repeating type and again no contribution to the boundary map.

Next, suppose inductively we have already shown that εH ∈ im ∂n+1 for any type
H of the form (1, 1,m1,m2,m3) such that m1 ≥ m2 ≥ m3 ≥ 1 and m1 > k1. Again,
we want to show εG ∈ im ∂n+1. Consider the type G′ gotten by moving either one of
the marked points on the 3-valent vertices of G to the interior of the first edge of �,
i.e. the one supporting k1 markings. ThenG′ has the form (1, 0, k1 + 1, k2, k3). Then

∂n+1(εG′) = ±εG ± εG2 ± εG3

for typesG2 andG3 of the forms (1, 1, k1+1, k2−1, k3) and (1, 1, k1+1, k2, k3−1).
But by the inductive hypothesis, both εG2 , εG3 ∈ im ∂n+1, so εG ∈ im ∂n+1 as well. �
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Now we prove Theorems 1.1 and 1.2. Recall that a path-connected space is called
k-connected if its homotopy groups πi vanish for all 1 ≤ i ≤ k.

Proof of Theorem 1.1 From (16), Proposition 5.2, and the fact that �2,n and �′
2,n have

the same homotopy type, it follows that the reducedZ-homology of�2,n also vanishes
in degrees up to n. Furthermore �2,n is clearly 1-connected, since it is homotopy
equivalent to a CW complex �′

2,n with one 0-cell and no 1-cells. Hurewicz’s theorem
implies that �2,n is n-connected. �

Proof of Theorem 1.2 This is a computational result. We carried out the computations
in sage (The Sage Developers 2020) and the code is embedded in the TeX file on
arXiv. If n ≤ 3, the theorem follows from a direct computation in sage. The spaces
�2,n for n ≤ 3 are small enough that no reductions are necessary. For n ≥ 4, the
computations rely on the identification ofQ-homology (15) which is computationally
very significant. We start by building the top boundary matrix ∂n+2 for the cellular
homology of F/(F ∩ C). The rows and columns of ∂n+2 are indexed by full theta
types of dimensions n + 1 and n + 2, respectively. Then we use sage to compute the
rank of ∂n+2. The computation is carried out over Q as opposed to Z because it is
much faster. The data of the rank of ∂n+2, along with counts of the full theta types of
codimension 0, 1, and 2, give the results in Table 1. �
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