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In this work, we revisit some general results on the dynamics of circular fronts between homogeneous

states and the formation of localized structures in two dimensions (2D). We show how the bifurcation

diagram of axisymmetric structures localized in radius fits within the framework of collapsed homoclinic

snaking. In 2D, owing to curvature effects, the collapse of the snaking structure follows a different

scaling that is determined by the so-called nucleation radius. Moreover, in the case of fronts between

two symmetry-related states, the precise point in parameter space to which radial snaking collapses

is not a ‘Maxwell’ point but is determined by the curvature-driven dynamics only. In this case, the

snaking collapses to a ‘zero surface tension’ point. Near this point, the breaking of symmetry between

the homogeneous states tilts the snaking diagram. A different scaling law is found for the collapse

of the snaking curve in each case. Curvature effects on axisymmetric localized states with internal

structure are also discussed, as are cellular structures separated from a homogeneous state by a circular

front. While some of these results are well understood in terms of curvature-driven dynamics and front

interactions, a proper mathematical description in terms of homoclinic trajectories in a radial spatial

dynamics description is lacking.

Keywords: collapsed homoclinic snaking; localized structures; curvature-driven front dynamics.

1. Introduction

The formation of spatially localized structures (LSs) is ubiquitous in systems driven out of equilibrium.

Such structures have been observed in a large variety of physical, chemical and biological systems

(Akhmediev & Ankiewicz, 2008; Purwins et al., 2010). As a highly nonlinear phenomenon, they are

difficult to tackle from a mathematical point of view. Physicists often approach this type of problem

by focusing on the linear and nonlinear mechanisms at play, whose interaction leads to a self-sustained

localized nonlinear state called an LS or, more generally, a dissipative soliton. While this approach

has provided a compelling explanation for the existence and stability of LSs in many systems, it was

the proper mathematical analysis of the spatial dynamical systems describing stationary solutions of

partial differential equations (PDEs) (Coullet et al., 2000; Woods & Champneys, 1999) that revealed

the bifurcation structure of LSs and led to the notion of what is now known as homoclinic snaking

(Woods & Champneys, 1999). In this phenomenon, homoclinic states representing LSs embedded in

a background state accumulate on a heteroclinic cycle corresponding to back-to-back fronts between

a homogeneous state and, typically, a spatially periodic state, as exemplified by the Swift–Hohenberg

equation (Burke & Knobloch, 2007). When the two states involved in the heteroclinic cycle are both

© The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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D. GOMILA AND E. KNOBLOCH 1095

homogeneous, the resulting LS bifurcation diagram may still snake, provided the spatial eigenvalues of

one or both of the competing states are complex, but the parameter region where LSs exist shrinks as

they become broader, tending to a single point as their width diverges. The resulting bifurcation diagram

is known as collapsed snaking (Burke & Knobloch, 2007).

In the spatial dynamical system describing stationary solutions of a PDE, spatially extended

coordinates play the role of ‘time’, in what is known as a spatial dynamics description. Such a

theory is well established in one spatial dimension (1D) but becomes problematic in 2D. However, for

axisymmetric states, the radial coordinate remains a good time-like coordinate although the resulting

dynamical system is now non-autonomous. This approach has been used to describe axisymmetric

solutions resulting from the coexistence between homogeneous and periodic solutions (Avitabile et al.,

2010; Bramburger et al., 2019; Faye et al., 2013; Glasner & Lindsay, 2013; Lloyd & Sandstede, 2009;

Ma & Knobloch, 2016; McCalla & Sandstede, 2010). In 2D, the possibility that an interface between

two states can bend changes the dynamical properties substantially with respect to the dynamics of

a flat interface. This is the case, for instance, of the Gibbs–Thomson or Kelvin effects, whereby the

vapour pressure or chemical potential of a solid–liquid or liquid–gas interface changes according to its

curvature. As a result, the melting point of small particles occurs, typically, at lower temperatures than

the bulk (Perez, 2005). In contrast, the Kelvin effect describes the reduction of the surface tension of a

liquid with increasing curvature of the surface. As a result, the evaporation rate increases for small drops

(Lewis, 2006). Such effects are well known in equilibrium thermodynamics and lead to curvature-driven

minimization of surface tension energy as described by the Allen–Cahn equation (Allen & Cahn, 1979).

In systems driven out of equilibrium, curvature-driven dynamics does not necessarily minimize any

obvious quantity. In general, in systems with two coexisting homogeneous solutions, the curvature

typically generates an inward velocity of a circular domain wall, thereby progressively reducing its

radius. If the inward driving is not too strong, the interaction between opposite parts of a circular

domain through the tails of the front may halt the inwards motion leading to the formation of LSs.

This phenomenon has been studied in the Swift–Hohenberg equation (Ouchi & Fujisaka, 1996), as

well as in different nonlinear optical systems (Gallego et al., 2000; Oppo et al., 1999, 2001; Staliunas

& Sanchez-Morcillo, 1998), where it is responsible for the presence of dark-ring cavity solitons.

The curvature-driven force may interact with other driving mechanisms, leading to modified snaking

scenarios, as in the forced complex Ginzburg–Landau (FCGL) equation with 1:1 (Ma & Knobloch,

2016) and 2:1 temporal resonance (Gomila et al., 2001, 2004). In the present work, we revisit some

results from the physics literature on axisymmetric LSs in 2D in systems with bistability between two

homogeneous or structured states from the point of view of radial spatial dynamics and discuss some of

their properties together with a number of open questions.

The paper is organized as follows: in Section 2, we review the general theory of front motion and

pinning. In Section 3, we describe the dynamical regimes and LSs predicted by the general theory and

compare the results with specific models. In Section 4, we discuss curvature effects in localized states

with internal structure. The paper ends in Section 5 with some concluding remarks.

2. Dynamics of circular fronts between homogeneous states

Following Gomila et al. (2001), we consider a system described by N real fields Ψi, with i = 1, 2..., N,

whose dynamical evolution in two spatial dimensions follows a set of PDEs which read, in vectorial

form,

∂t
�Ψ = D · ∇2 �Ψ + �W( �Ψ , p) , (2.1)
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1096 RADIAL COLLAPSED SNAKING

where the matrix D describes the spatial coupling, ∇2 ≡ ∂2
x + ∂2

y , �W is a local nonlinear function

of the fields and p is a control parameter. Equation (2.1) is posed in the plane and invariant under

translations. This description includes any N-field reaction–diffusion system but also purely diffractive

optical systems. In the latter case, the complex amplitude field is written in its real and imaginary parts,

and the diffractive coupling leads to a matrix D with non-zero terms only in off-diagonal positions. Both

types of system are well known for supporting localized states (Akhmediev & Ankiewicz, 2008). If �Ψ
is a scalar and W can be derived from an energy potential, (2.1) corresponds to the well-known Allen–

Cahn equation describing curvature-driven minimization of surface tension, leading to a t1/2 power law

for the domain size growth (Allen & Cahn, 1979; Shen & Yang, 2010).

In this section, we assume that, for certain values of p, (2.1) has two stable homogeneous solutions

and that in 1D these solutions are connected by a stable front �Ψ0(x, p) moving at velocity c(p). A 1D

front (equivalently a flat front in 2D) is stationary in a reference frame moving at velocity c in the

direction transverse to the front if [c(p)I∂x + D∂2
x ] · �Ψ0 + �W( �Ψ0, p) = 0, where I is the identity matrix.

Let �X(s, t) represent the instantaneous position vector of the front in the �x ≡ (x, y) plane, where s

is the coordinate along the front. It is convenient to define a second coordinate system (r, s) that moves

with the front such that �x = �X(s, t) + rr̂(s, t), where r̂ is a unit vector normal to the curve �X and the

coordinate r is the distance of the point �x to the front (Meron, 1992). In the moving reference frame,

(2.1) becomes

D · ∂2
r

�Ψ +
[

(v + c)I + κ

1 + rκ
D

]

· ∂r
�Ψ + κ2

(1 + rκ)2
D · ∂2

θ
�Ψ + �W( �Ψ , p) = ∂t

�Ψ , (2.2)

where v = ∂t
�X · r̂ − c is the (normal) front velocity in excess of c due to the curvature of the front,

κ = ∇ · r̂ is the curvature and θ = κs is the azimuthal angle. We analyse the dynamics of slightly curved

fronts as a perturbation of the flat front �Ψ (r, s, t) = �Ψ0(r) + �Ψ1(r, s, t). We assume mild curvature

(κw ≪ 1, where w is the front width), that the fronts are circular (∂2
θ

�Ψ = 0) and that they move largely

without changing their profile (|∂t
�Ψ | ≪ |κD · ∂r

�Ψ |). Linearizing around �Ψ0, we have

M · �Ψ1 = −(vI + κD) · ∂r
�Ψ0 , (2.3)

where Mi,j = c(p)Ii,j∂r + Di,j∂
2
r + δWi

δΨj
| �Ψ0,p is the Jacobian of (2.1) evaluated at the flat front �Ψ0 in

the moving reference frame. Owing to the translational invariance of (2.1), the matrix M is singular,

M · �e0 = 0, where �e0 ≡ ∂r
�Ψ0 is the Goldstone mode. The solvability condition applied to (2.3) leads to

v = −γ (p)κ , where

γ (p) ≡ 1

Γ

∫ ∞

−∞
�a0 · D · �e0 dr , (2.4)

with Γ ≡
∫ ∞
−∞ �a0 · �e0 dr and �a0 the null mode of M†. For a circular structure, κ is the inverse of the

radius of curvature R and Ṙ = c + v:

Ṙ = c(p) − γ (p)/R . (2.5)
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D. GOMILA AND E. KNOBLOCH 1097

In systems with two different stable homogeneous states the speed c(p) is in general non-zero and

its sign depends on the relative stability of the two asymptotic states. Close to the point where the front

between the two states is stationary, a point referred to in general as the ‘Maxwell point’ by analogy with

equilibrium phase transitions, the speed c can be approximated to leading order as c ≈ c0(p−pM), where

c0 is a constant. Farther away from this point c depends on p nonlinearly but generally takes an O(1)

value. In systems with two equivalent competing states, c = 0 for all values of p, and the radial velocity

is determined by curvature-driven dynamics only. Here, by equivalent, we mean two symmetry-related

states of a potential system with identical energy or more generally non-potential systems in which a

symmetry forces the front to be always at rest (Ophaus et al., 2021).

In systems with no cross-diffusion and where all fields have the same diffusion constant, D = dI and

the coefficient γ (p) takes the constant value d. This situation excludes effects like the Turing instability

in reaction–diffusion systems. For a single complex field, no cross-diffusion means that the parameter in

front of the Laplacian term is real and, therefore, that diffractive coupling is absent. More generally, in

potential systems, γ is related to the strength of the surface tension. In non-potential systems, however,

γ cannot be related to a surface energy, although it still plays the role of an effective surface tension.

In systems with different diffusion constants for different fields or off-diagonal terms in D, γ depends

in general on p and can in some cases change sign at a critical point p = pc. For positive values

of γ (positive surface tension), circular domains shrink to reduce the length of the interface, while

for negative values of γ circular domains grow. The latter is typically associated with a modulational

instability of the front, as the system tends to increase the length of the interface, leading to labyrinthine

patterns. Near this transition, γ = γ0(p − pc) to leading order. Very close to pc, γ is small and higher

order terms in 1/R must be taken into account. A weakly nonlinear analysis (Gomila et al., 2001)

leads to:

Ṙ = c(p) − γ0(p − pc)/R + a/R2 − b/R3 . (2.6)

In systems with equivalent states, for symmetry reasons, a = 0.

While (2.6) is strictly valid for large R only, as the radius decreases, an interaction between

oscillatory tails from opposite parts of the circular front may come into play. Although the resulting

interaction force has not been systematically derived, by analogy with the 1D case, one can expect, at

least for large R, that the radial force due to the radial oscillations of the front profile as it approaches

the homogeneous solution at the center of the domain has the form f (R) = g cos(2βR)e2αR (Coullet et

al., 1987), where α and β are the real and imaginary parts, respectively, of the leading eigenvalue of the

radial spatial dynamics description of the homogeneous solution at the center of the circular domain.

Thus,

Ṙ = c(p) − γ (p)/R + a/R2 − b/R3 + g cos(2βR)e2αR , (2.7)

where c = c0(p − pM) around p = pM and γ = γ0(p − pc) around p = pc.

Beyond the usual (local) spatial coupling described by spatial derivatives, some processes are best

described by a non-local spatial coupling, described in the models by an integral term. Such non-

local interactions can modify some of the terms in (2.7). For instance, in Gelens et al. (2010), a large

amplification in the interaction strength between two opposite 1D fronts was observed in a non-local

version of the Ginzburg–Landau equation, affecting mainly the values of α, β and g. In that work,

kernels decaying exponentially or faster with the distance were considered. For a Lorentzian kernel,

the non-local effects have an even longer range, introducing modifications in γ0 or b depending on the
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1098 RADIAL COLLAPSED SNAKING

Fig. 1. Stationary distance R0 as a function of p according (2.7) for the 1D case. Here R0 must be interpreted as half the distance

between back-to-back fronts, i.e. as half the width of the LSs. We take c0 = 1, γ0 = 0, a = 0, b = 0, g = 10, β = 1 and

α = −0.25.

dimensionality of the system (Fernandez-Oto et al., 2013). In 1D, γ0 becomes non-zero, leading to the

formation of a distinct type of LS. In 2D, non-locality increases considerably the value of b making

it O(1).

Equation (2.7) incorporates in a single equation all the mechanisms driving the dynamics of fronts

in 2D, and it is the key to interpreting a number of the results found in the literature within the same

framework. In particular, in the next section, we analyse different scenarios leading to the formation of

LSs depending on the prevailing driving mechanism.

3. Collapsed snaking

Equation (2.7) captures a number of scenarios observed in different physical systems. In this section,

we study the main cases.

3.1 1D collapsed snaking

For flat fronts, (2.7) reproduces the usual 1D collapsed snaking (Burke & Knobloch, 2007). In this case,

R must be interpreted as half the distance between two back-to-back fronts and there are no curvature

effects (γ0 = a = b = 0). Figure 1 shows a typical collapsed snaking curve. The sections of the curve

with positive (negative) slope correspond to stable (unstable) equilibrium points of (2.7).

In the spatial dynamics description, a ‘Maxwell point’ corresponds to the formation of a heteroclinic

cycle between the two competing homogeneous solutions (fixed points of the spatial dynamics). Because

of the reversibility property and the fact that the spatial eigenvalues of the fixed points are in general

complex, homoclinic orbits corresponding to localized states are created in a series of saddle-node

bifurcations that accumulate exponentially at the ‘Maxwell point’ pM .

This scenario has been identified in many different physical systems (Lo Jacono et al., 2017; Oza

et al., 2014; Parra-Rivas & Fernandez-Oto, 2020; Tseluiko et al., 2014; Tzou et al., 2013). Parra-Rivas

et al. (2020) show an example in nonlinear optical Kerr resonators. In the latter system collapsed snaking

has been observed experimentally by Li et al. (2020).

3.2 Collapsed radial snaking

In two spatial dimensions, curvature-driven dynamics come into play. Close to the Maxwell point and

away from pc, one can take γ to be positive and O(1) and suppose that it is approximately constant
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D. GOMILA AND E. KNOBLOCH 1099

Fig. 2. Stationary radius R0 as a function of p according (2.7). The inset shows a zoom of the crossover region. Here c0 = 1,

γ = 1, a = 1, b = −1, g = 10, β = 1 and α = −0.25.

for small changes of p around pM . Since the strength of the interaction between the tails of the fronts

decreases exponentially with increasing radius while the curvature effects do so algebraically as 1/R,

for sufficiently large radius the tail interaction becomes negligible with respect to the other terms in

(2.7). Moreover, as γ 	= 0, nonlinear curvature effects do not play a crucial role either. In this case,

the outward velocity driven by the distance from pM (p > pM) can be counteracted by the curvature

(γ > 0), leading to a large stationary radius, known as the nucleation radius, that diverges at p = pM:

R0 = γ

c0(p − pM)
. (3.1)

Therefore, in contrast to the 1D case, the bifurcation diagram of the LSs collapses ‘algebraically’ to pM

instead of ‘exponentially’ (Fig. 2). Note that the resulting equilibrium radius is unstable, as for slightly

larger radius the constant outward velocity term leads to growth of the LSs while for slightly smaller

radii curvature dominates and circular LSs shrink.

As the control parameter is changed away from pM , the nucleation radius is reduced until the tail

interactions become of comparable importance, leading to the typical snaking behaviour of the solution

branch. Note that depending on the relative importance of the tail interaction and the curvature, the

LSs may or may not extend all the way to pM . Typically, γ is large, however, and the curvature has to

be partially compensated by an outward velocity due to the relative stability of the two homogeneous

solutions before the tail interactions stabilize the LSs. This is the case in Figs 2 and 3.

The interpretation of this collapse in the spatial dynamics picture is now necessarily different from

that in the 1D case. A tangency between the stable and unstable manifolds of both fixed points must still

occur at pM with R0 → ∞ but because the vector field is now non-autonomous there are no associated

homoclinics. Thus, the heteroclinic does not oscillate as it approaches the domain center. Away from

pM , the heteroclinic turns continuously into a homoclinic. Further out there is a regime crossover and

spatial oscillations induce further crossings of the stable and unstable manifolds of the fixed point at

infinity (cf. Lloyd & Sandstede, 2009), creating new localized states with small radius via saddle-node

bifurcations, leading to the observed characteristic snaking.

This case has been studied in detail in the forced complex Ginzburg–Landau (FCGL1) equation with

1:1 temporal resonance (Ma & Knobloch, 2016):

At = (1 + iα)∇2A + (μ + iν)A − (1 + iβ)|A|2A + p. (3.2)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
m

a
t/a

rtic
le

/8
6
/5

/1
0
9
4
/6

3
5
2
3
8
1
 b

y
 U

n
iv

e
rs

ity
 o

f E
x
e
te

r u
s
e
r o

n
 1

6
 J

u
n
e
 2

0
2
2



1100 RADIAL COLLAPSED SNAKING

Fig. 3. Axisymmetric localized states in the FCGL1 equation (3.2). (a) Branch of steady axisymmetric states (blue line) followed

from the lower right fold when ν = 5 showing the transition from collapsed snaking to non-snaking, monotonic behaviour. (b)

Sample solution profile Im[A(x, y)] at p = 1.844 in the monotonic regime, location as indicated in (a). Reprinted from Ma &

Knobloch (2016), Copyright (2016), with permission from Elsevier.

Here A(x, y, t) is a complex amplitude, ν represents the detuning between the natural frequency of the

system and the frequency of the forcing and p is the strength of the forcing. The remaining parameters

take the values μ = −1, α = −1.5, β = 6. For ν = 5, this system exhibits bistability between two

homogeneous states phase-locked to the drive. As usual, localized states bifurcate from the vicinity of

the folds of these states, and this is so in both 1D and 2D. Figure 3 shows the collapsed snaking of an

axisymmetric localized state that bifurcates from the lower right fold and the transition from collapsed

snaking to the predicted monotonic approach to the Maxwell point, together with a sample solution

profile in the latter regime.

3.3 Collapsed radial snaking of circular fronts between equivalent states

In the case of equivalent states (c0 = a = 0), the dynamics of large circular domains is determined by

curvature terms only, but for small radii the tail interactions come into play and may lead to stationary

LSs with a small radius, much as in the previous case. If the coefficient γ is too large as compared to the

tail interaction strength g, curvature may prevent the formation of LSs altogether. For p ≃ pc, however, γ

takes very small values and LSs can form. Moreover, around that point nonlinear curvature effects have

to be taken into account. Nonlinear curvature effects and tail interactions allow then for the formation of

two distinct types of stationary radially symmetric LSs belonging to the same homoclinic snaking curve

(Fig. 4). If b < 0 and for large R, nonlinear curvature effects counteract the linear contribution creating

stable large-radius localized states, named stable droplets (SDs), as described by Gomila et al. (2001).

The equilibrium radius is given by

R0 =
√

−b

γ0

1√
p − pc

. (3.3)

The branch of SDs does not snake when approaching pc, but the scaling of the collapse differs from the

previous case. Here the change of sign of the coefficient γ plays a similar role to the ‘Maxwell point’ in

the previous two cases.
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D. GOMILA AND E. KNOBLOCH 1101

Fig. 4. Stationary radius R0 of stable droplets (SDs) as a function of p according (2.7). The inset shows the crossover region where

the equilibrium radius goes from being determined by the interaction of the oscillatory tails of the profile to being dominated by

nonlinear curvature effects. Here c = 0, γ0 = 1, a = 0, b = −1, g = 10, β = 1 and α = −0.25.

Fig. 5. Dependence of the surface tension γ (left) and equilibrium radius R0 (right) on the amplitude p of the forcing in FCGL2.

The bifurcation diagram on the right shows the predicted transition from collapsed snaking to monotonic behaviour; the solid

(dashed) lines indicate stable (unstable) solutions. Here α = 2, β = 0, μ = 0 and ν = 2. For these values of the parameters

pc = 2.56629.

For smaller radii, tail interaction prevails over nonlinear curvature effects leading to characteristic

snaking in the LS bifurcation diagram. As usual, sections with positive (negative) slopes correspond to

stable (unstable) LSs.

This scenario is quite general and applies to 2D systems displaying bistability between two

equivalent homogeneous solutions, i.e. states arising from a pitchfork bifurcation, and has been studied

theoretically, for instance, in the forced complex Ginzburg–Landau (FCGL2) equation with 2:1 temporal

resonance (Gomila et al., 2001):

At = (1 + iα)∇2A + (μ + iν)A − (1 + iβ)|A|2A + pA∗. (3.4)

This system exhibits bistability between two equivalent homogeneous states phase-locked to the driving

with a π phase difference. Figure 5 shows the dependence of the surface tension γ on the control

parameter p and the corresponding equilibrium radius R0 of circular LSs in the FCGL2, while Fig. 6

shows examples of LSs and SDs in the FCGL2. In Fig. 6, the right panels show the radial spatial

trajectory of LS and SD in phase space. Note that the smaller the radius the larger the departure from

the heteroclinic trajectory corresponding to the flat front.

The same behaviour has been observed in the mean field equations for a self-defocusing Kerr

resonator and in degenerate optical parametric oscillators (DOPOs) (Gomila et al., 2003). Figure 7

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
m

a
t/a

rtic
le

/8
6
/5

/1
0
9
4
/6

3
5
2
3
8
1
 b

y
 U

n
iv

e
rs

ity
 o

f E
x
e
te

r u
s
e
r o

n
 1

6
 J

u
n
e
 2

0
2
2



1102 RADIAL COLLAPSED SNAKING

Fig. 6. Localized state (top) for p = 2.7 and stable droplet (bottom) for p = 2.569 in FCGL2. Left: 3D rendering and transverse

section of LS and SD (black line). Right: plot of Im[A] against Re[A] along the radial coordinate. The dotted curve shows the

corresponding 1D front for comparison.

Fig. 7. Dependence of the surface tension γ (left) and equilibrium radius R0 (right) on the amplitude E0 of the external pump field

in DOPO. The bifurcation diagram on the right shows the predicted transition from collapsed snaking to monotonic behaviour;

the solid (dashed) lines indicate stable (unstable) solutions.

shows the dependence of the surface tension γ on the amplitude of the input field E0 and the

corresponding equilibrium radius R0 of circular LSs in the DOPO.

Experimental evidence of this type of behaviour has been found in a nonlinear optical system

consisting of a sodium vapour cell with a single-mirror feedback (Pesch et al., 2007), although in that

experiment the condition γ = 0 was not in an experimentally accessible parameter range. The change

of sign of the γ coefficient has, however, been observed in a temporally forced bistable oscillatory
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D. GOMILA AND E. KNOBLOCH 1103

Fig. 8. Stationary radius R0 as a function of p according (2.7) for c < 0 (left) and c > 0 (right). The inset shows the transition

from LS to the nucleation radius with a linear dependence on p. The slanted straight line indicates the nucleation radius according

(3.5). Here c = ±0.001, γ0 = 1, b = −1, g = 10, β = 1 and α = −0.25.

Belousov–Zhabotinsky chemical reaction (Marts et al., 2004), where both growing and shrinking high

curvature fronts were observed upon changing the frequency of the forcing.

3.4 Slanted radial collapsed snaking

In systems with two non-equivalent states, the velocity c is in general non-zero and vanishes only at the

‘Maxwell point’ (p = pM). Away from this point and close to pc, one can consider c to be constant and

O(1) for small changes of p. In this case, the LS bifurcation diagram is similar to the previous case but

slanted towards larger or smaller values of p depending on the sign of c (Fig. 8). For c 	= 0, nonlinear

curvature effects do not play a crucial role and the large stationary radius corresponds to the nucleation

radius, where the inwards or outwards velocity due to the relative stability of the homogeneous solutions

is balanced by the curvature:

R0 = γ0

c
(p − pc) . (3.5)

If c > 0, meaning that the inner solution overruns the outer solution, a stationary radius exists for

positive γ , i.e. p > pc. If c < 0, the opposite is the case. In both cases, the nucleation radius is unstable,

although for different reasons. When c > 0, the stationary radius is unstable, as increasing R leads to

a decrease in the inward force and the circular domain therefore expands forever. On the other hand,

decreasing R leads to the opposite behaviour and the circular LS shrinks. In contrast, if c < 0, the

nucleation radius is radially stable, but as γ is then negative, the interface is modulationaly unstable

leading to the formation of labyrinthine patterns (Gomila et al., 2001, 2004). Close to pc γ is always

small enough for the oscillatory tails to lead to small-radius LSs.

Such behaviour has been studied in FCGL2 with a constant term ǫ breaking the symmetry between

the two homogeneous solutions (Gomila et al., 2004). The velocity c of a 1D front is then proportional

to ǫ. Figure 9 shows the bifurcation diagram of localized states in asymmetric FCGL2 for positive and

negative ǫ.

4. Localized states with internal structure

It is tempting to think that the notion of an effective surface tension applies quite generally and that it

helps explain the existence of all localized states in 2D. However, this appears not to be the case.
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1104 RADIAL COLLAPSED SNAKING

Fig. 9. Dependence of the stationary radius R0 on the amplitude p of the forcing in the asymmetric FCGL2 for ǫ < 0 (left) and

ǫ > 0 (right). Solid (dashed) lines indicate stable (unstable) solutions. The dotted straight line indicates the nucleation radius

according to (3.5). Parameters are as in Fig. 5 with ǫ = ±0.05.

The simplest localized states in 2D with internal structures are axisymmetric states such as those

studied by Lloyd & Sandstede (2009) and McCalla & Sandstede (2010). In particular, in the latter

work, McCalla and Sandstede carry out extensive numerical continuation of axisymmetric states in the

quadratic-cubic Swift–Hohenberg equation starting from small amplitude states referred to as Spot A

and Spot B. Associated with these are structures referred to as Ring A and Ring B. Spots A and B

differ in whether they have a maximum or a minimum at r = 0 with a similar distinction between

the ring states whose envelope peaks away from r = 0, however. The computations show that with

increasing norm (i.e. larger radius of the localized state) the snaking structure emerging from Spot B

connects with the corresponding structure arising from Ring B, thereby breaking up the structure into

a stack of isolas. At yet larger amplitude these isolas reconnect again, forming a disconnected snaking

structure that extends to infinite norm in both directions. Similar structures associated with Spot A and

Ring A also reconnect but do not break up into isolas (McCalla & Sandstede, 2010). This intricate

behaviour cannot be captured by the techniques described in the preceding section which are based

on an expansion procedure valid in the limit of small curvature. These techniques, suitably modified

by the inclusion of the pinning effect (cf. (2.7) but with α = 0) should, however, be able to capture

the snaking properties of large axisymmetric structures, i.e. those present beyond the isola states. It is

important to realize that the steady state problem in the radial coordinate r is non-autonomous, a fact

that is responsible in finite domains for the observed continuous transition from small amplitude spot

states to radially confined rings and ultimately to domain-filling target states. This is in contrast to the

corresponding behaviour on a periodic domain in 1D (Burke & Knobloch, 2007) where LS are created

in a secondary bifurcation from a small amplitude periodic state and destroyed in another secondary

bifurcation near the fold of the latter. We mention that in finite but large circular domains these snaking

structures interact with analogous states confined to the domain boundary, leading to yet more complex

behaviour (Verschueren et al., 2021).

Additional issues arise when one considers non-axisymmetric structures. In Figs. 10 and 11, we

show two stationary 2D structures found in the cubic-quintic Swift–Hohenberg equation (Avitabile et al.,

2010). Both snake as one might expect from a system with a preferred intrinsic wavenumber, a fact that

distinguishes the Swift–Hohenberg equation from the Ginzburg–Landau equation considered thus far.

The barrel-shaped structure shown in Fig. 10 presents an example of the role played by the intrinsic

wavenumber. The straight fronts on either side of the structure are pinned to the oscillations behind
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D. GOMILA AND E. KNOBLOCH 1105

Fig. 10. Time-independent barrel states of the subcritical cubic-quintic Swift–Hohenberg equation. The left panel contains two

disjoint branches of fully localized planar stripe patterns and shows the Maxwell point μM = 1.0560 of 1D stripes as a vertical

dashed line. The blue curve corresponds to barrel states with 9 stripes (panel 1) and approaches the vertical asymptote μ = 1.0228.

The red curve corresponds to states with 11 stripes (panels 2 and 3): its limiting asymptotes are μ = 1.0290 and μ = 1.0314. The

red curve has been rescaled linearly in the vertical direction to fit on the same graph. For additional details, see Avitabile et al.

(2010). Copyright ©2010 Society for Industrial and Applied Mathematics. Reprinted with permission. All rights reserved.

Fig. 11. Time-independent worm states of the subcritical cubic-quintic Swift–Hohenberg equation. The Maxwell point of 1D

stripes occurs at μ = 0.6753 (vertical dashed line). For additional details, see Avitabile et al. (2010). Copyright ©2010 Society

for Industrial and Applied Mathematics. Reprinted with permission. All rights reserved.

them, thereby explaining why the structure does not expand in the x direction. It is less clear why

it does not expand in the perpendicular or y direction: if one cuts off the regions that bow out, the

straight fronts that result will see a homogeneous state behind them and hence no pinning will take

place and the fronts will travel in the y direction whenever the parameters depart from the Maxwell

point, i.e. for all but isolated parameter values. In this case, one might expect that the structure will

grow into a state extended in the y direction, with vertically extended stripes in the interior. States of this

type are a trivial extension of 1D states into 2D and their stability properties were studied by Burke &

Knobloch (2006), where it was shown that instabilities of the lateral fronts via the so-called wall modes,

coupled with possible interior or bulk instabilities, both serve to reduce the pinning region where states

of this type are stable. In fact, because of differential growth due to the presence of corners in the initial
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1106 RADIAL COLLAPSED SNAKING

condition, the state does not evolve into such a localized stripe pattern and instead forms a growing worm

(Lloyd, 2019).

It follows that the bowed or curved fronts in Fig. 10 are stationary for another reason and we

conjecture that this is due to a combination of the pinning that arises from the wavenumber gradient

normal to the curved front, i.e. from the fact that the wavenumber along the front is smaller than that in

the interior of the structure, and the curvature-driven behaviour of the previous section. In particular, we

believe that the pinning effect just described affects the surface tension due to the front curvature and

that the two together determine the effective surface tension that holds the structure together.

Figure 11 shows the more extreme example of a so-called worm state. These states also exhibit

stationary bowed or curved fronts that hold the structure together, and the confining mechanism is likely

the same. Here, however, one finds that while the fronts are in general convex, close to the tips they

become in some cases concave (panel 2). This may be because of the sharp tip (which cannot represent

a singularity of the equations, however) but it does imply that the pinning and curvature effects are not

purely additive. In particular, the notion of surface tension is a property of the envelope of the front, and

it breaks down as soon as the front acquires spatial structure comparable to its width, as is the case near

the tip of these worm structures. These questions merit further study.

The intrinsic wavenumber also plays a role in the depinning process that takes place outside the

snaking or pinning region where no stationary localized states are present. In 1D, one finds that the LSs

either grow (beyond the right boundary of the pinning region) or shrink (below the left boundary of the

pinning region), as exemplified by the 1D Swift–Hohenberg equation (Burke & Knobloch, 2006). In

this case, the structures grow (shrink) by nucleating new (suppressing old) wavelengths on either side

of the structure, while its interior remains at rest. However, this is not the only way that LSs grow after

depinning.

The FCGL1 equation (3.2) provides an example of the new behaviour. In this system, one finds

a distinct growth mechanism whereby the LS grows from the middle. Here the middle cell splits into

two which are then ‘pushed’ aside while a new cell regrows in the middle. Thus, the two halves of the

structure are continuously pushed aside. Note that in this case the structure grows as a result of a phase

slip that takes place in the center and that the growth of the structure is a consequence of repeated phase

slips, in contrast to the growth of LSs in the 1D Swift–Hohenberg equation which does not require

or depend on phase slips (Ma & Knobloch, 2012). When the structure is large enough the preferred

location of the phase slips shifts from the center of the structure to a pair of locations, one on either side,

where new cells continue to be injected, as required by the presence of a preferred wavenumber. Ma &

Knobloch (2012) show some examples of this behaviour which remains poorly understood. Note that

for full understanding one needs to have a theory of the Eckhaus instability for time-dependent patterns,

and incorporate the fact that the Eckhaus instability that triggers phase slips sets in through a delayed

bifurcation (Knobloch & Krechetnikov, 2014).

In 2D, similar behaviour is found. Figure 12 shows that target states exhibit a more complex form

of snaking that resembles the collapsed snaking in Fig. 3 but no longer collapses to a point. This is a

consequence of the internal structure which pins the circular front to the structure within. Moreover,

and in contrast to the 1D case, the asymptotic location of the folds converges algebraically, as observed

already by McCalla & Sandstede (2010) for the Swift–Hohenberg equation. Outside this pinning region

axisymmetric states depin and the structure either grows or shrinks, as shown in Fig. 13. Depending on

parameters, one sees that the structure may shrink via phase slips in the center or via additional phase

slips on either side of the center, just as in the 1D case.

The above results were obtained by imposing axisymmetry on the structure. If this constraint is

relaxed, however, the target pattern breaks up into hexagons, the preferred state of a Turing-unstable
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D. GOMILA AND E. KNOBLOCH 1107

Fig. 12. Localized target states in the FCGL1 equation (3.2) when ν = 7. (a) The branch of steady axisymmetric target states

followed from the lower right fold snakes but does not become monotonic. (b) Sample solution profile Im[A(x, y)] at the location

indicated in (a). Reprinted from Ma & Knobloch (2016), Copyright (2016), with permission from Elsevier.

Fig. 13. Collapsing localized states in the axisymmetric FCGL1 equation (3.2) showing the transition from (a) on-center phase

slips to (b) additional off-center phase slips. In each case, the plot has been reflected in r = 0 to obtain a complete cross-section.

Reprinted from Ma & Knobloch (2016), Copyright (2016), with permission from Elsevier.

homogeneous state in this system (Fig. 14). However, a hexagonal pattern does not fit into the interior

of a circular front, inevitably leading to spatial modulation of the pattern close to the boundary. This

geometrical mismatch in turn triggers Eckhaus instabilities which inject new cells in the interior or

that annihilate existing cells. These phase slips occur intermittently and in different locations in the

interior leading to irregular evolution of the radius of the structure. Different outcomes are possible. If

the parameters are far from the ‘Maxwell point’ the evolution of the radius is primarily ‘energy’ driven,

with phase slips occurring as required to maintain an approximately constant wavenumber in the interior

as the radius of the structure increases (or decreases). However, a particularly interesting situation arises

close to the ‘Maxwell point’. Here the growth of the structure, i.e. the motion of the circular front, no

longer relies on an ‘energy’ difference (equivalently, distance from a ‘Maxwell point’) between the two

competing states (the homogeneous state and the hexagonal Turing state) and is instead the result of

persistent ‘random’ phase slips in the interior as the cells inside try to (but are unable to) adjust to the
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1108 RADIAL COLLAPSED SNAKING

Fig. 14. Snapshots of LSs in the FCGL1 equation (3.2) in 2D showing Im[A(x, y)] for ν = 7 and (a) p = 2.8978 and (b)

p = 2.8989. Reprinted from Ma & Knobloch (2016), Copyright (2016), with permission from Elsevier.

constraint imposed by the circular boundary (Ma & Knobloch, 2016). The resulting long time evolution

of the circular front resembles a random walk but remains to be studied.

For all the examples shown in this section, the usefulness of the notion of surface tension as a

physically motivated mechanism responsible for radial confinement remains an open question. This is

fundamentally a consequence of the fact that the systems examined above are open systems. In closed

systems, the notion of surface tension can be defined more precisely and surface tension is indeed found

to play a significant role in axisymmetric structures (drops and bubbles). As explained in greater detail

by Thiele et al. (2019), this is so even when the system is finite, i.e. away from the thermodynamic limit.

5. Conclusions

We have reviewed the dynamics of circular fronts between two homogeneous solutions. We have

explained in what sense the bifurcation diagrams of axisymmetric localized states both resemble and

differ from the collapsed homoclinic snaking familiar from 1D systems. First, in systems with two

non-equivalent homogeneous solutions the scenario resembles that familiar from the 1D case, but the

snaking collapses algebraically, with R0 ∝ 1/|p−pM| asymptotically close to the Maxwell point, instead

of exponentially, and no snaking takes place asymptotically. The asymptotic equilibrium radius R0 then

corresponds to the so-called nucleation radius in phase decomposition.

In cases where the system has a symmetry that relates the two competing homogeneous states, the

collapse of the snaking curve is determined by curvature effects and not the ‘Maxwell point’ between

the competing states. The bifurcation curve then collapses to the critical point where γ , the ‘surface

tension’ that determines the strength of the curvature-driven dynamics, vanishes. Very close to this point,

stationary states with large radius (SDs) correspond to an equilibrium between linear and nonlinear

curvature terms. In this case, the bifurcation curve approaches the vertical asymptote monotonically,

with R0 ∝ 1/|p−pc|1/2, and no snaking takes place. For smaller radii, the interaction between oscillatory

tails comes into play, introducing oscillations in the bifurcation diagram characteristic of homoclinic

snaking. This indicates that, despite the equivalence of the two competing states, the radial spatial
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D. GOMILA AND E. KNOBLOCH 1109

dynamics formulation admits a heteroclinic connection between the corresponding fixed points but does

so at p = pc only (collapsed snaking).

In systems with two non-equivalent homogeneous states far from the Maxwell point the scenario

remains similar, but the associated bifurcation diagram becomes slanted. The asymptote for the large

radius equilibrium state corresponds to a nucleation radius where the curvature is balanced by the

constant velocity of the 1D front. In this case, R0 ∝ |p − pc|. Such states are always unstable, radially

for positive c and positive γ , and azimuthally for negative c and negative γ , as the latter induces

modulational instability of the front, leading to labyrinthine structures.

We have also examined the effects of the curvature on LSs with internal structure. Here the situation

is less clear since surface tension now competes with pinning. For this reason, it is essential to distinguish

between axisymmetric structures in which the local wavevector points radially and pinning is strong, and

structures in which the local wavevector is almost parallel to the front, with weaker pinning effects as a

result. In general, curvature and pinning act on different scales, with pinning effects occurring at smaller

scales, beyond the validity of effective eikonal equations for the front envelope but this may not be the

case for the worm states in Fig. 11. In contrast, we have seen that axisymmetric states continue to snake

in the asymptotic limit of large R but that the approach of the folds to the boundary of the snaking interval

is now algebraic and not exponential, thereby combining the key characteristics of both homoclinic and

collapsed snaking. The depinning of circular LSs with internal structure also shows unusual behaviour

that highlights the importance of phase slips in the interior of the structure and suggests that persistent

phase-slip driven front propagation is a distinct possibility.

While we have presented evidence for collapsed radial snaking and discussed some of its characteris-

tics, a rigorous description of this behaviour in terms of radial spatial dynamics is lacking. The different

regimes and scaling behaviour described in this work must be organized by the codimension-2 point

pM = pc, whose universal unfolding remains an open question. We hope some of the ideas presented

here will help in the development of a rigorous mathematical theory for collapsed radial snaking.
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