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Localized coherent structures can form in externally driven dispersive optical cavities with a Kerr-type
non-linearity. Such systems are described by the Lugiato—Lefever (LL) equation, which supports a large
variety of dynamical states. Here, we review our current knowledge of the formation, stability and
bifurcation structure of localized structures in the one-dimensional LL equation. We do so by focusing
on two main regimes of operation: anomalous and normal second-order dispersion. In the anomalous
regime, localized patterns are organized in a homoclinic snaking scenario, which is eventually destroyed,
leading to a foliated snaking bifurcation structure. In the normal regime, localized structures undergo a
different type of bifurcation structure, known as collapsed snaking. The effects of third-order dispersion
and various dynamical regimes are also described.
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1. Introduction

Localized dissipative structures, hereafter referred to as LSs, emerge in a great variety of out of
thermo-dynamic equilibrium systems, ranging from plasma physics and non-linear optics to biology
and plant ecology (Akhmediev & Ankiewicz, 2008; Descalzi et al., 2011). The formation of such
states is associated with a double balance, between non-linearity and spatial coupling (e.g. diffusion,
dispersion and/or diffraction) on the one hand and energy dissipation and gain or driving on the other
(Akhmediev & Ankiewicz, 2008), and it is not related to the presence of intrinsic inhomogeneities in
the system. In non-linear optics, the confinement of light in optical cavities may lead to the formation
of LSs, which can be stationary or exhibit spatio-temporal dynamics including oscillations, excitability,
and chaos (Descalzi ef al., 2011). In these cavities, the role of spatial coupling is played by either
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beam diffraction or chromatic dispersion. In the first case, LSs have been studied in externally driven
diffractive non-linear Kerr cavities (Firth er al., 2002; Firth & Lord, 1996; Scroggie et al., 1994). In
this case, LSs consist of one-dimensional (1D) or two-dimensional (2D) spots of light embedded in
a homogeneous background and form in a plane transverse to the light propagation direction. These
LSs are therefore commonly known as ‘spatial cavity solitons’. In the second case, 1D LSs form in
wave-guided dispersive Kerr cavities, such as fibre cavities, whispering gallery mode resonators and
microresonators, where localization takes place along the propagation direction. In this context, LSs
are typically called ‘temporal cavity solitons’. Temporal LSs were experimentally demonstrated for
the first time by Leo er al. (2010) in the context of passive fibre cavities, and they were proposed as
key elements for all-optical information buffering. After this initial observation, interest in temporal
LSs has grown rapidly, in part due to their application in frequency comb generation (Del’Haye et
al., 2007; Kippenberg et al., 2011), which led in turn to the discovery of a wide range of different
types of stationary and dynamical LSs (Garbin et al., 2017; Herr et al., 2014; Leo et al., 2013a; Xue
etal.,2015).

Here, we review the origin, bifurcation structure and stability of the different types of temporal
LSs arising in passive Kerr dispersive cavities in both anomalous and normal dispersion regimes. In
the mean-field approximation, such cavities can be modelled by the well-known Lugiato—Lefever (LL)
equation (Chembo et al., 2017; Lugiato & Lefever, 1987)

d,A=—(1 +iA)A+iv83A+i|A|2A+S (1.1)
with periodic boundary conditions
A(l+x,0n=Ax1), AU+ x1) =0Ax1), Vx,t, (1.2)

corresponding to a periodic domain of (large) period /. Here, A represents the normalized slowly varying
amplitude of the electric field circulating in the cavity, A is the normalized intra-cavity phase detuning
and S > 0 is the normalized driving field amplitude or pump. The parameter v = 1, with v = 1 in the
anomalous dispersion regime and v = —1 in the normal regime. In the following, we focus on solutions
of (1.1) that respect the reflection symmetry x — —x of the equation but also study solutions that break
this symmetry. We use A and S as control parameters, once v is fixed, and take / = 160, solving (1.1)
on the domain —80 < x < 80.

In optics, the LL equation was first derived in the context of passive diffractive Kerr cavities (Lugiato
& Lefever, 1987) and later used to describe dispersive Kerr cavities, such as fibre cavities (Haelterman
et al., 1992), microresonators (Coen et al., 2013) and whispering gallery mode resonators (Chembo &
Menyuk, 2013). However, the LL equation had in fact appeared earlier in the context of plasma physics
and condensed matter physics (Kaup & Newell, 1978; Morales & Lee, 1974).

In one spatial dimension, the appearance of LSs is usually related to the presence of bistability
between two different, but coexisting, states and their formation is mediated by the locking or pinning
of fronts or domain walls (DWs) corresponding to heteroclinic orbits in a spatial dynamics description of
the system. One plausible situation is that a homogeneous state coexists with a subcritical Turing pattern
(Tlidi et al., 1994). In this case, the locking of the DWs between such states leads to the formation of
LSs consisting of a slug of the pattern embedded in a homogeneous background. Such structures are
known as ‘localized patterns’ (LPs). In the context of the LL equation (1.1), this scenario appears in the
anomalous dispersion regime, where LSs arise in the form of bright LPs. A second situation is related
to the presence of bistability between two different homogeneous states. An LS can then be seen as a
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portion of one homogeneous state embedded in the other (Coullet, 2002). This is the scenario that one
encounters in the normal dispersion regime, where the typical LSs are dark.

Owing to different DW locking processes, the LSs exhibit bifurcation structures with distinct
morphologies. In the anomalous regime, LPs are organized in a ‘snakes-and-ladders’ structure, whose
skeleton consists of two intertwined LP curves, which oscillate back-and-forth within a well-defined
parameter range as the LP grow in width. This bifurcation structure is referred to as ‘homoclinic
snaking’, a concept that goes back to the late ‘90s and the seminal paper ‘Heteroclinic tangles and
homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian Hopf bifurcation’, where
Woods & Champneys (1999) explain the formation of LPs through geometrical considerations, laying
the foundation for an important new field of study. In the normal regime, however, the dark LSs
are organized differently, in the so-called ‘collapsed homoclinic snaking’ structure, a structure that
is related to the presence of oscillatory tails in the DW profiles (Knobloch & Wagenknecht, 2005).
Our main concern in this article is to provide a detailed discussion of these two different bifurcation
structures in the context of passive dispersive Kerr cavities. To do so, we review the most relevant studies
regarding this topic, before presenting in Section 4 the new results that are essential to understanding
the emergence of these scenarios.

The paper is organized as follows. In Section 2, we introduce the stationary problem and review
the properties of homogeneous steady states (HSSs) and their linear stability in the main regimes
of operation (Section 2.1). We also present a spatial dynamical analysis of the system, where we
identify the bifurcations from which LSs may emerge and classify the different equilibria of the
equation (Section 2.2). Next, in Section 3, we use multiscale perturbation methods to reduce (1.1) to
different normal forms around each of the previously identified bifurcations and use these to find time-
independent small amplitude LS solutions. In Section 4, a similar reduction leads to the derivation
of the normal form associated with an essential codimension-two bifurcation of the system whose
unfolding contains both of the previous scenarios. Section 5 is then specifically devoted to the study of
the anomalous regime, the formation of bright LSs and the different bifurcation structures associated
with them. A similar study focusing on the normal regime, and on the formation and bifurcation
structure of dark LSs, is presented in Section 6. In Section 7, we present some of the oscillatory and
chaotic dynamics scenarios associated with both regimes. Section 8 demonstrates the impact of the loss
of spatial reversibility on these bifurcation structures. The paper concludes with a brief summary in
Section 9.

2. The stationary problem and spatial dynamics

In this work, we focus on the bifurcation structure and stability of steady states and therefore on the
solutions of the stationary LL equation

2

L d°A ) L0
wEL (14 iMA+ilAPA+S =0, .1
dx?

or in terms of the real and imaginary parts of A = U + iV,

con] Y [2]- )
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where the linear (£) and non-linear () operators are given by

_ -1 A 0 —v 2 _ 2 2 0 —1 U
£_[_A —1}4{1} O}ax, N_(UJFV)[1 OHV] (2.3)

This stationary equation supports different types of steady states, including spatially periodic, localized
and disordered states, as well as uniform or homogeneous states, which are characterized in detail in the
following section.

To fully understand the bifurcation structure of such states, it is essential to characterize their
temporal linear stability. If A is a stationary state of the system, i.e. a solution of (2.1), its temporal
stability can be computed by solving the eigenvalue problem

Ly =0, L=L+DN(@A,), (2.4)

obtained from the linearization of (1.1) about A, where DN (A,) is the functional derivative of N with
respect to A, evaluated at A, and o and ¢ are the eigenvalues and eigenfunctions of L, respectively.
Linear stability can only be determined analytically in the simplest case, i.e. when A, is a homogeneous
state. In other cases, the stability problem must be solved numerically by computing the eigenvalues of
the Jacobian matrix obtained from L after spatial discretization.

2.1 HSSs and linear stability analysis

The simplest steady state solution of (2.1) is obtained by setting d>A/dx* = 0 and leads to the uniform
or HSS solutions A, namely

. S I, — A)S
A/’L = U/’l + th, U/’L = T L7 a2 V/’l = T a2 (25)
1+, —4) 1+, —4)
where [}, = |Ah|2 satisfies the classic cubic equation for optical bistability
L —2AL + (1 + A%, = §2. (2.6)

For A < \/5, (2.6) is single valued and 7, is a monotone function of S, while for A > \/5, I, is triple
valued. In the latter case, I, undergoes a pair of folds or saddle-node bifurcations SN, , occurring at

24 1
L, =14, = == g\/A2 -3, I,<I, (2.7)

created through a cusp or hysteresis bifurcation that takes place at A = +/3. These saddle-node
bifurcations connect the three branches of HSS solutions, hereafter referred to as A;l, A;l” and AZ.

The temporal stability analysis of (1.1) around A, follows on considering small perturbations of the
form (U,V) = (U, V) + €(u;,v;) + O(€?), where (uy,vy) = (aq,bq)eiqx+"t + c.c., and |e| < 1.
Inserting this ansatz in (1.1) and keeping terms of O(¢), we obtain the perturbation growth rate

o(g)=—-1=% \/41,1A — 312 — A2+ (41, — 2A)vg? — ¢ (2.8)
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F1G. 1. HSSs and their linear stability. Panels (a)—(d) show the bifurcation diagram of A, in the anomalous regime (v = 1) for
A =1.5,1.75,2.0,2.5. Panels (e)-(h) show the same for the normal regime (v = —1). Solid and dashed lines represent temporally
stable and unstable states, respectively. The different pictograms show the corresponding spatial eigenvalue configurations from
Fig. 3 describing stability in space. The folds SNy, ; correspond to RTB or RTBH depending on the case. The spatial bifurcation
HH (see text) corresponds to the Turing instability and is marked with a purple dot. Adapted from Parra-Rivas et al. (2018a).

Thus, A, is stable against perturbations of a given wavenumber g if Re[o(g)] < 0 and unstable
otherwise. The instability threshold corresponds to Re[o (g)] . = 0 and dRe[o (g)] e /dq = 0. These
two conditions lead to the equations

gt — vl — 202 + 32 + A — AL A +1 =0, q.(¢> — v(2I, — A)) = 0. 2.9)

Equation (2.9)b shows there are two types of modes, uniform modes with g. = 0 responsible for the
saddle-nodes SN, , and those with g, # 0 that trigger a Turing instability (Turing, 1952) at I;, := 1.
In an infinite system ¢, = /v(2 — A) and I, = 1. In the context of non-linear optics this instability is
often referred to as a modulational instability. The Turing instability exists whenever v(2 — A) > 0, and
therefore exists for A <2 (A > 2)whenv =1 (v = —1).

In Fig. 1(a—d), we show how the stability of A, changes as A varies in the anomalous regime (v =
1). The solid (dashed) lines represent stable (unstable) states, and the purple dot indicates the Turing
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instability. Similarly, panels (e)—(h) in Fig. 1 show the stability of A, in the normal regime (v = —1)
for the same values of A. Note that in the anomalous regime, A;l is always unstable, but in the normal
regime, it is always stable. Thus, in the anomalous regime, only Afl can be (partially) stable, while in the
normal dispersion regime, AZ and Aj, can both be stable in certain ranges of parameters and the system is
then said to exhibit bistability. This fact is essential for understanding the different types of LSs arising
in each of these scenarios, as well as their bifurcation structure.

2.2 The spatial dynamics picture

To understand the formation and origin of the different types of steady states arising in the system, it is
convenient to recast the stationary equation (2.1) as a 4D dynamical system

dy

— =AY +NK:S), y= 02390 = U, V,U, V)T, (2.10)
with
0O 0 10 0
0 0 01 0
A(A) = s N@y;S) = s 2.11
(4) vA v 00 035) —v(ylyﬁ—i-y%) 211
—v VA O 0 —])(yzy% —|—y% — S)

and then analyse its phase-space dynamics. In the context of pattern-forming systems, this technique
is usually known as the ‘spatial dynamics’ approach, and it allows one to understand the emergence of
LSs from a dynamical systems perspective (Haragus & Iooss, 2011). Equation (1.1) is invariant under
the spatial reflection x — —x, which leads to the invariance of the dynamical system (2.10) under the
involution

R(X,y1,Y2:¥3:Y4) = (=X, Y1, Y2, =3, —Y4)-

When this symmetry holds, the system is said to be ‘spatially reversible’. The equivalence between
the spatial and temporal formulations permits one to establish a correspondence between the solutions
of (2.1) and those of the dynamical system (2.10). This duality is shown schematically in Fig. 2 for
the anomalous and normal regimes. For each regime, the left column shows a typical steady state
solution of (1.1), while the right column shows the equivalent orbit in the (y5,y;) phase plane projection
associated with (2.10). In this picture, the homogeneous solution Az corresponds to a fixed point
yZ = (U7, V}:,O, 0), while a spatially periodic state corresponds to a limit cycle y,. An interesting
situation arises when different types of states (e.g. a fixed point and a limit cycle) coexist for the same
set of parameters. Different types of ‘heteroclinic orbits’ can then arise, corresponding to DWs or front
solutions of (2.1), leading to the complex scenarios explained below.

In the anomalous regime, the Turing bifurcation is subcritical when A > 41/30, leading to bistability
between the periodic Turing state P and Az [Fig. 2(a)] and hence to the emergence of fronts like that
shown in Fig. 2(b), corresponding to a heteroclinic orbit connecting yZ and y, . These connections
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FIG. 2. Analogy between the stationary solutions of (1.1) and orbits of the spatial dynamical system (2.10) in the anomalous and
normal regime. For the solution of the LL equation, we plot U as a function of x, while in its spatial dynamics counterpart, we
show the projection on the (y3,y1) phase plane.

form as a result of a transverse or robust intersection between the unstable manifold of yZ (W”[yfl])
and the stable manifold of Yy (Ws[yy]); the robustness of this intersection is in turn a consequence
of the dimensions of these manifolds, as further explained in Knobloch (2015). Furthermore, spatial
reversibility implies a similar intersection between W*[y, ] and W* [yZ], and hence the presence of a
heteroclinic cycle; homoclinic orbits in W* [yZ] n w [yz] accumulate on this cycle. An example of such
an orbit is shown in Fig. 2(c), where the trajectory rotates several times around y,, before returning to

yz. Solutions of this type correspond to LPs containing a long plateau where the solution resembles the
spatially periodic pattern shown in Fig. 2(b). Each rotation around y,, generates an additional peak in the

profile of the LP. These orbits approach or leave AZ in an oscillatory manner, leading to the appearance
of oscillatory tails in the LP profile and correspond to Shilnikov or wild homoclinic orbits (Champneys
et al., 2007; Homburg & Sandstede, 2010). In contrast, orbits where the behaviour around the fixed
point is monotonic are known as ‘tame’ homoclinic orbits and correspond to ‘spikes’ (Verschueren &
Champneys, 2017).

The normal dispersion regime is very different as AZ and A}, can coexist in a stable way [Figs. 1
and 2(d)]. As a result, heteroclinic orbits can arise from the intersection between W¥ [yZ] and W* [y;l],
forming the DW shown in Fig. 2(e). As in the anomalous regime, spatial reversibility is responsible for
the formation of a variety of homoclinic orbits such as that shown in Fig. 2(f). The formation of such
LSs can be physically understood in terms of DWs that lock to one another, a mechanism that will be
discussed in Section 6.

The origin of the previous trajectories and their behaviour near the fixed point y, (i.e. A;) can be
understood by analysing the spectrum of the linear operator .4 + DN evaluated at y;,, which consists of
the four spatial eigenvalues

x:i\/m—yh)vi,/lfl— 1. (2.12)
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F1G. 3. Schematic unfolding of the QZ point in the (A, S)-parameter space. Below A = 2, the lower fold SNy, corresponds to
a RTBH bifurcation and the Turing instability to HH. At the QZ point (A = 2), these bifurcations collide, and for A > 2, SN,
becomes a RTB bifurcation and HH turns into a BD transition. These four lines organize the different type of equilibria of the
system. Adapted from Champneys (1998).

These eigenvalues lead to four different equilibrium configurations (regions A-D) depending on the
values of the parameters A and I, (or S). These four configurations are depicted in the phase diagram
shown in Fig. 3 and are defined as follows: in A, y, is a saddle (s) with eigenvalues A;, = =ay,
A3 4 = *a,; in B, y, is a bi-focus (bi-f) with the quartet of complex eigenvalues 4, , 34 = *ay =+ ib;
in C y, is a double-centre (dc) with imaginary eigenvalues A, , = +ib;, A3 4 = +iby;andin D, y, is a
saddle-centre (sc) with two real and two purely imaginary eigenvalues A; , = +a, A3 4 = =£iby.

The transition from one region to an adjacent one occurs via the following codimension-one
bifurcations or transitions.

e A Belyakov-Devaney (BD) transition occurs between regions A and B. At this point, the spatial
eigenvalues are real: A; , = +a, A3, = +a.

e The transition between region B and region C is via a Hamiltonian—Hopf (HH) bifurcation, with
purely imaginary eigenvalues: &, , = =%iq,, A3 4 = *iq,.

e The transition between region A and region D is via a reversible Takens—Bogdanov (RTB)
bifurcation with eigenvalues 4, , = +a, A3 =1, = 0.

e The transition between region C and region D is via a reversible Takens—Bogdanov—Hopf (RTBH)
bifurcation with eigenvalues A, , = %ib, A3 = A4, = 0.

Note that the spatial eigenvalues given by (2.12) can also be obtained from (2.8) by imposing o (—iL) =
0. As a result, the HH bifurcation corresponds to a Turing instability, while RTB and RTBH correspond
to SNbJ. This scenario is generic for reversible 4D dynamical systems (Champneys, 1998; Devaney,
1976; Haragus & Iooss, 2011), and is organized by a quadruple zero (QZ) codimension-two bifurcation
satisfying A; = A, = A3 = A4 = 0 (Iooss, 1995). Here, the QZ occurs at (A, S) = (2, ﬁ), and it
organizes the appearance of the different types of steady-state solutions in the anomalous and normal
regimes (Godey et al., 2014; Parra-Rivas et al., 2014b). The transition between these different scenarios
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is shown in Fig. 1(a—d) for the anomalous regime, where [}, is plotted as a function of S for different
representative values of A. Figure 1(e-h) shows the transition between the different regimes for the
normal regime and the same values of A.

3. Weakly non-linear localized states

Close to the different spatial bifurcations discussed in Section 2, one can compute weakly non-linear
states using different approaches. One method consists in deriving the normal form associated with
the dynamical system (2.10) around each of the spatial bifurcations and solving the truncated system
(Godey, 2017). However, one can also follow another approach where such weakly non-linear states are
obtained from multiscale perturbation theory applied to (2.2). In this section, we review the main results
that one obtains using the latter method and refer to Burke er al. (2008) and Parra-Rivas ef al. (2018a,
2016b) for a more detailed discussion.

Our two main bifurcation points of interest are the Turing bifurcation point (i.e. an HH spatial
bifurcation) and the fold points SNbJ (i.e. RTB or RTBH). In the neighbourhood of such bifurcations,
weakly non-linear time-independent states are captured by the ansatz:

A(x) — Ay ~ €Z(X)e* +c.c.,

where € < 1 measures the parameter distance from the bifurcation, g, is the characteristic wavenumber
of the marginal mode at the bifurcation (¢, = O for the fold and g, # 0 for HH) and Z is an
envelope function describing spatial modulation occurring at a larger scale X = €%x, where o depends

on the specific case. In the following, we split the stationary solutions as (U, V)T = (Uh, Vh)T +
(u(x, X), v(x, X)), to separate the homogeneous part of the problem from the space-dependent one.

3.1 Weakly non-linear states near the HH bifurcation

To compute the weakly non-linear states near HH, we fix A, consider S = S, + €% and propose the
expansions (U, V)" = (U, V)" + & (U, VS’)T + - and (4,07 = € ()" + €2 (upvy)" +
el (u3, v3)T + .-+, where (i, vi)T depend on both the short-scale x and the long-scale X = ex. Inserting
these expansions into (2.2), keeping the terms of the same order in € and solving the resulting linear

equations, we conclude that the asymptotic solution we are looking for can be written as

S-S, S-S,
U2 (U, Vo) + =55 Wy, V)T [ == (v, §—S,—0, 3.1)
where (U,,V,)T is given by (2.5) evaluated at I, = I,. Here (U,, V,)” represents the leading order

correction to the homogeneous solution, namely

8
(A2-24+42)(A-2)

(A2 - A2 - a)T, (3.2)

U, )" =
while the space-dependent correction reads

A T
(v’ =2 (m, 1) Z(X) cos(q.x + ¢). (3.3)
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The amplitude Z(X) is the solution of the time-independent normal form around HH,
VC Zyy +8CoZ + C32° = 0, (3.4)

with the coefficients

w

[S]

co_ 2(A%2-24+2) c _2(A*-24+2) _4(A2—2A+2)2(30A—41)
1= A-2 O TPT T At T 9(A—-2)° ’

(3.5)

with C, > 0 and C; > 0if A < 2, and negative otherwise.
When Z(X) = Z, (3.4) leads to the constant solution Z = ,/—8C,/C5, which corresponds to the
spatially periodic pattern state

T T A ! C2
W = UV *2( 575 1) [ 26— S eos(gx+9). (3.6)
- 3

where ¢ is an arbitrary phase. Note that these solutions exist whenever A < 2 and arise from HH sub-
or supercritically depending on the sign of C;. The case with C; > 0 corresponds to A > 41/30 and
leads to a subcritical emergence of the pattern from HH (i.e. the pattern bifurcates towards § < §..). In
contrast, for A < 41/30 the pattern arises supercritically, i.e. towards § > §... These results agree with
those obtained previously by different authors when studying the dynamics of periodic Turing patterns
near the HH point (Godey, 2017; Lugiato & Lefever, 1987; Miyaji et al., 2010; Périnet et al., 2017).

In the subcritical regime, solutions with large-scale modulation Z = Z(X) are present, and these are
given by

—28C e
Z(X) = 2 sech( 2 ) (3.7)
0 v(C,

corresponding to

A T _2c,(S—§ [—C,(S—S
(U,V)T_(Uh,Vh)T%Z(m,l) %sech( %X)COS(L]CX-FQD).

(3.8)

These solutions arise subcritically from S, whenever vC; > 0. Thus, in the anomalous regime (v = 1),
they emerge subcritically when A < 2, but in the normal regime (v = —1), they do so for A > 2.

The spatial phase ¢ of the background periodic pattern remains arbitrary, and there is no locking
with the envelope at any finite order in €. However, calculations beyond all orders predict that two
specific values of ¢, ¢ = 0,  are selected, both preserving the reversibility symmetry (x,A) — (—x,A)
of (1.1) (Burke & Knobloch, 2006; Chapman & Kozyreff, 2009; Kozyreff, 2012; Kozyreff & Chapman,
2006; Melbourne, 1998). Thus, there are two types of localized weakly non-linear solutions, one with a
maximum at the centre of the domain (x = 0), corresponding to ¢ = 0, and another with a minimum at
x = 0, associated with ¢ = 7. In the following, we label these families I, and I, respectively.

220z aunr 9| uo Jesn Jsjexd Jo AusisAlun Aq 202/ 1£9/958/S/98/3101e/1ewewl/woo dnooiwapese//:sdiy wolj papeojumoq



866 P. PARRA-RIVAS ET AL.

3.2 Weakly non-linear states near the saddle-node bifurcations SN, ,

Next, we look for weakly non-linear solutions around the saddle-node bifurcations SN, = SN, , and
focus on the case where they correspond to a RTB bifurcation. To do so, we again propose S ~ S,+’5,62,
with S, = S, 8, = 858 (8}, = —1,8; = 1, and § > 0) and the asymptotic expansions (U, Vh)T =
(U,, V,)T +€ (U{l, V{’)T 1 e? (Ué’, VQ)T +---,and (u,v)] =€ (1, vl)T +e2 (145, v2)T + ..., where this
time (u;, vl-)T depend only on the long scale X = /ex. Proceeding similarly as in the previous case, we
can compute asymptotic weakly nonlinear LSs, which take the leading order form

S-S, . i
W' =W, V)T + [==H U]+, Vi 4w, (3.9)
r

where (U, V,)T is given by (2.6) evaluated at [, = I, = I,,, and uh, V{’)T is the leading-order correction
to A, namely

W

Wy = ,
NG

where 7, = 312V, + 2n,U, + V,, i}, = —1, uf = 1. Moreover, , > 0 (n, < 0)if A <2 (A > 2).
The space-dependent contribution is given by (uy, v, y = (Uh, V{’)TZ (X), where the amplitude Z(X)
is a solution of the time-independent normal form

1
W, vint = Vs, (1,07, np=—5(A=1 - 207), (3.10)

VM

Zyy +2Z+ 2> =0. (3.11)
(Si\/g XX

This equation supports solutions of the form

~VAIT

Z(X) = —3 sech?
2vn,

: (3.12)

corresponding to tame weakly non-linear LSs,

U —w,, v ~-3us w(l, n,) sech? (,/Cr,/ag(s — S,)x) , (3.13)

17|

where the HSS term (U,,, V},)T contains the contribution of (U Vb’,)T and (U", Vf)T, provided

- > 0. (3.14)
2vn,

Thus, tame homoclinic orbits of the form (3.13) arise from the spatial RTB bifurcation at SN, in the
anomalous regime (v = 1) whenever 1, = 1, < 0, and therefore when A > 2, and in the normal regime
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(v = —1) whenever 5, = 5, > 0, a condition satisfied for V3<A<21n contrast, such states emerge
from SN, only in the normal regime (i.e. n, = n, > 0), but do so for any value of A > V3.

When the folds SN, , correspond to RTBH bifurcations the situation is rather more delicate
(Haragus & Iooss, 2011). In this case, new states, commonly known as ‘generalized solitary waves’,
may be present. These states are biasymptotic to a spatially periodic state of constant but arbitrarily
small amplitude. Embedded among these generalized solitary states are true homoclinic states, i.e.
exponentially localized states with no oscillations in their tail, as described by Kolossovski et al. (2002).
A proper computation of these states requires the application of a careful normal form approach to
(2.10), as done by Godey (2017) in the context of (1.1). However, as found by Gandhi ez al. (2018), the
weakly non-linear solution (3.13), obtained through formal multiscale perturbation analysis that ignores
the centre eigenvalues, may provide a good approximation to such states provided one replaces C, in
(3.13) by |C,|. As far as we know, these types of states have not been studied in detail in the present
context and are left for a future work.

4. The origin of all localized structures: the QZ point

To completely understand the origin of the LSs, the different bifurcation scenarios and the transitions
between them in both the anomalous and normal regimes, it is essential to unveil the dynamics emerging
nearby the QZ codimension-two bifurcation. The first systematic study of the dynamical features of this
point was carried out by Iooss (1995) in a scenario involving a trivial state. Here, however, the QZ does
not take place on a trivial state but on a non-trivial one. In this section, we reduce the LL equation
(1.1) to the unfolded normal form associated with the QZ bifurcation. We show that the latter equation
captures the main local features of the system about QZ. In the following, we focus on the anomalous
regime and therefore fix v = 1.

The HSS A, undergoes a QZ bifurcation at (UhQ, VhQ)T = (1/ V2, -1 / V2) at the parameter space
point (A,S) = (Ap.Sp) = (2, V2). To explore the dynamics of the system around QZ, we introduce
a small parameter ¢ measuring the distance from this point, A = AQ + 62,3 , and write S = SQ + 6477
and (U(x, 1), V(x,0)T = (UhQ, V}?)T + (u(x, 1), v(x,1))T. We also introduce the slow scales X = ex and
T = €*, and the scaling (u,v) — €*(u, v). Finally, we expand the deviation from QZ as a power series
ine,

@) = e, v)T + €y, v)T + 3z, v)T + € ugv) T+ -, (4.1)

with (;,v;) depending on X and 7. Inserting this expansion in (1.1) and keeping all terms of the same
order in €, one obtains at (’)(64) the required normal form about the QZ point,

Zy = —Zyyxx + BZxx + 2 + 1, 4.2)

where 8 o« A — AQ, noS— SQ are the two unfolding parameters, and (u4,v4)T = (él,éz)TZ(X, T,
with &; € R. This equation has gradient structure, and therefore temporal dynamical states are excluded.
The simplest steady state is the HSS Z,, given by Z;, = +.,/—n, composed of two solution branches fo
connected by a fold at n = 0 (Fig. 4). For 8 < 0, the HSS undergo a Turing bifurcation at Z, = — B%/8
that gives rise to spatially periodic states with wavenumber q% = —f/2, while the fold corresponds to
a saddle-node bifurcation. The stability of Z, against spatio-temporal perturbations is shown in Fig. 4
using solid (dashed) lines for stable (unstable) states.
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B <0 B=0 B>0
Z,*
= - z
T~ .sc z S~..sC Tt~l_sc z
=~ ~ = = ~ N =~ ~
~ N ~
Y (0'0) N QZ N
n L de RTBH 7 7 . /|RTB
e
bi-f bit bi-f BD
Zy

Fi1G. 4. HSS solutions of 4.2, and possible unfolding of the QZ bifurcation as a function of 8. The red line shows the two HSS
solution branches Zhi separated by a fold at n = 0. For 8 < 0, Z;” undergoes a HH bifurcation. At 8 = 0 HH collides with the
fold leading to the QZ point. For § > 0, HH becomes a BD and RTBH becomes RTB. Solid (dashed) lines correspond to stable
(unstable) states.

The time-independent version of (4.2) can be recast into the dynamical system

dZ T T
X AB)z+ N(z:n), 2=(21,20,23:24)" = (Z,Zy, Zyx, Zyxx) " » 4.3)
with
0100 0
0010 0
0080 2+

The linearization of this dynamical system about Z, leads to a spatial eigenspectrum consisting of
the four eigenvalues satisfying A* — A% — 27, =0, 1ie.

B+ B%+8Z,

2

A=< 4.5)

Depending on the value of §, three possible scenarios may occur which are schematically described
in Fig. 4. For B < 0, Z; encounters a HH at (1.,Z,) = —(B*/64, 82/8), such that Z,  is a bi-focus
for n < 5, and double centre for > 7. The fold encountered at n = 0 corresponds to a RTBH
bifurcation with eigenvalues A, 53, = (&iy/[B].0,0) from where the saddle-centre Z* arises. In this
context, spatially periodic solutions may bifurcate from HH subcritically together with the two families
of wild homoclinic orbits corresponding to I5 ,, as described in Section 3.1. For 8 = 0, HSS encounters
the QZ bifurcation at (n,Z;,) = (0,0) as shown in Fig. 4. For § > 0 HH has become a BD and the
fold a RTB bifurcation with eigenvalues 4, 534 = (£+4/181,0,0). From this last point, tame homoclinic
orbits may arise as described in Section 3.2. Therefore, the normal form (4.2) captures the main spatial
dynamical features of the LL equation around the QZ bifurcation that takes place at the fold SN,, as
depicted in Fig. 1(b-d).

Note that the change of variable Z — Z;, 4 Z transforms (4.2) into the quadratic SH equation
studied by Buffoni et al. (1996). Consequently, most of the results found in that work apply here as
well, although they require reinterpretation. A complete understanding of (4.2) thus requires further
analysis that is beyond the scope of the present paper.
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(a) Limit cycle (c)
Broom
o global
Shilnikov bifurcation
homoclinic
orbit @ O
---@
HH RTBH BD RTB
(b)
Tame
homoclinic
orbit

Qz

FiG. 5. Schematic representation of the different bifurcation scenarios around QZ in the anomalous regime that may arise as
A varies. In (a) A < 2, and a spatially periodic state (i.e. a limit cycle) arises from HH together with two families of LPs (i.e.
Shilnikov homoclinic orbits). In (b) A = 2 and a QZ occurs when HH collides with the saddle-node RTBH bifurcation. At this
point, the periodic pattern reemerges as a spike. In (c) A > 2 and the LPs and periodic patterns undergo a global bifurcation at
BD, leaving a single spike, which then survives until the saddle-node RTB where it disappears.

5. Localized structures in the anomalous regime: homoclinic and foliated snaking

In this section, we discuss the origin and bifurcation structure of the LSs arising in the anomalous
dispersion regime (v = 1). The different bifurcation scenarios in this regime are organized by the QZ
point, as shown schematically in Fig. 5 and discussed in more detail in what follows. In Fig. 5(a), when
41/30 < A < 2, a spatially periodic pattern arises subcritically from HH together with two families
of LPs (I ) that are ultimately responsible for the snakes-and-ladders bifurcation structure of the LPs
in the snaking regime. This snakes-and-ladders structure is also linked to the bifurcation features of the
periodic pattern (Parra-Rivas et al., 2018a). This scenario is presented in Sections 5.1 and 5.2. When
A = 2, the HH collides with the RTBH (i.e. SN,), leading to a QZ; see Fig. 5(b). At this point, the
spatially periodic pattern and the LPs come together forming spike LSs (i.e. tame homoclinic orbits)
for A > 2 (Parra-Rivas et al., 2018a). Figure 5(c) shows how the spike LSs bifurcate from RTB and
persist until the BD point, where they are destroyed in a broom homoclinic bifurcation, leading to the
emergence of spatially periodic patterns and LPs. These two scenarios are discussed in Section 5.3.

5.1 Bifurcation structure of periodic Turing patterns

As mentioned previously, the formation of LPs and their bifurcation structure are directly related to the
spatially periodic pattern arising from the HH bifurcation with wavenumber g,.. Therefore, it is essential
to understand first the bifurcation features of such pattern states. For parameter values close to the HH
point, periodic patterns are well described by the approximate asymptotic expression (3.6). However,
as the system parameters shift from HH, the accuracy of (3.6) diminishes. In this case, it is essential to
use numerical path continuation algorithms to track the periodic solutions (Allgower & Georg, 1990;
Doedel et al., 1991a,b). These methods, based on a predictor-corrector approach, permit the numerical
tracking of a given state, here a spatially periodic state, as a function of a suitable control parameter. In
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FIG. 6. Bifurcation diagrams associated with the primary Turing pattern (P, ¢ = g.) emerging from HH for three representative
values of A, namely A = 1.21in (a), A = 1.5in (b) and A = 1.72 in (c). Panel (d) shows the phase diagram in the (A, S) parameter
space, where the main bifurcation curves relevant to spatially periodic states are plotted. The light blue area corresponds to the
region of bistability between Ay, and Py, and spans the region between SN’]7 and HH. The vertical dashed lines correspond to the
diagrams shown in panels (a)—(c). Panels (1) and (2) show two examples of P| (¢ = ¢.) and P> (¢ = 2¢g.) when A = 1.5. Adapted
from Parra-Rivas et al. (2018b).

the present case, the application of this technique leads to the bifurcation diagrams shown in Fig. 6(a—c),
where the energy E, is defined as the L?-norm of A,

2 1 12 2
Bi= WP =g [ AR d 5.1)

Figure 6(a) shows the bifurcation diagram for A = 1.2, corresponding to a cut of the (A, S)-phase
diagram shown in Fig. 6(d), where the main bifurcation curves of the system are plotted. For this value
of A, the primary periodic pattern P, arises from HH supercritically and is therefore temporally stable
[see the blue brach in Fig. 6(a)]. Increasing S, this state connects with a subsidiary primary pattern P,
of wavenumber 2¢,. originating at pb, and does so at a 2 : 1 spatial resonance SR,.; (see close-up
view). With increasing S, the P, pattern connects to a subsidiary primary pattern P, with ¢ = 4¢, at
a second SR,.; (not shown here). This process repeats, leading to a sequence of primary bifurcations
pb,: to patterns with wavenumber g = 2'g, (i = 0,1,2,...) and associated SR,.; points, as described
in Parra-Rivas et al. (2018b). Unlike HH, the subsidiary primary bifurcations cannot be characterized in
terms of spatial dynamics. However, as recently shown by Girtner et al. (2019), they can be determined
analytically in terms of transversality conditions.
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Increasing A further, P, becomes subcritical at the degenerate HH point D occurring at A = 41/30.
This situation is shown in Fig. 6(b) for A = 1.5. In this case, P, is initially unstable but acquires stability
in a saddle-node bifurcation SNII' . A representative example of this periodic state is shown in Fig. 6(1).
Thereafter, P; remains stable all the way until it reaches SN’;, where it again loses stability, prior to
connecting to P, [see profile shown in Fig. 6(2)] at SR,.;. Thus, in this regime there is a parameter
interval where stable P; and A, coexist, an interval we refer to as the pattern-A,, bistability region [see
shaded box in Fig. 6(b)]. In the phase diagram shown in Fig. 6(d), the bistability region corresponds to
the light blue area between SN’; and HH.

The bifurcation at pb, becomes degenerate at D, and beyond D, the pattern P, arises subcritically
and stabilizes at SN‘;7 . At this stage, the bifurcation scenario is similar to that depicted in Fig. 6(c) for
A = 1.72, where P; still connects with P, in SR,.;, which now occurs very close to SNI; [see the close-
up view of Fig. 6(c)]. This bifurcation scenario persists for all A < 2. In the limit A — 2 (i.e., when
approaching the QZ point), the phase diagram of Fig. 6(d) shows how HH and the subsidiary bifurcation
pb, tend asymptotically to SN,,, whereas SR,.; tends to SN"37 . The diagrams shown in Fig. 6(a—c) reflect
the bifurcations associated with P; and P, only, although similar transitions occur between P, and Py,
P, and Pg, and so on (Parra-Rivas et al., 2018b).

Furthermore, these patterns undergo a variety of other instabilities, such as Eckhaus and Hopf
bifurcations, which have been analysed in detail by different authors (Delcey & Haragus, 2018;
Kholmyansky & Gat, 2019; Parra-Rivas et al., 2018b; Périnet et al., 2017). For example, Périnet
et al. (2017) and Delcey & Haragus (2018) perform an analytical study of the Eckhaus instability of
supercritical patterns very close to HH. In highly non-linear regimes, however, this approach is no
longer valid and stability must be computed numerically as done in Périnet et al. (2017), Parra-Rivas
et al. (2018b), Kholmyansky & Gat (2019) and Gomila et al. (2020).

We have focused here on the bifurcation structure of Turing patterns arising from HH, i.e. patterns
with wavenumber ¢,.. However, the subsidiary patterns with wavenumber g = Ziqc, i=1,2,... that
emerge from A, whenever I, > I, undergo similar behaviour and other bifurcation structures organized
through 3:1 spatial resonances (SR;.;), etc. are also present, as discussed further by Périnet et al. (2017).

5.2 LPs and the snakes-and-ladders structure

The weakly non-linear analysis carried out in Section 3 revealed that whenever 41/30 < A < 2, weakly
nonlinear LPs of the form (3.8) bifurcate subcritically from HH together with spatially periodic states
of wavenumber ¢, [see (3.6)]. Moreover, these LPs emerge in two families I}, and I, corresponding to
¢ = 0 and ¢ = m, respectively. Like the weakly non-linear patterns, these asymptotic LP solutions are
only valid very close to HH. However, the numerical path continuation methods applied in Section 5.1
allow one to characterize such states in highly non-linear regimes for parameters far from HH and to
compute their bifurcation diagrams.

Figure 7 shows the resulting diagram computed for A = 1.5, where instead of E;, we use the
bifurcation measure B, = ||A — A,] |2 to better visualize the solution branches. The two families of
solutions, 17, and I, are plotted in blue and green, respectively. Both curves of solutions persist to finite
amplitude and undergo ‘homoclinic snaking’: a sequence of back-and-forth oscillations in S reflecting
the successive nucleation of a pair of pattern peaks, one of each side of the structure, as one follows
the diagram (i.e. Iy and I7.) upwards. These oscillations occur within an interval §; < § < §,, known
as the ‘snaking or pinning region’. The solution curves [, and I, undergo a sequence of saddle-node
bifurcations SNg’r at which the LPs repeatedly gain and lose temporal stability. Some representative
examples of these LPs are shown in Fig. 7(1-8). The profiles shown in panels (1-4) belong to 7, and
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F1G. 7. LPs and the homoclinic snaking structure. We show the Lp-norm Ej as a function of S for A = 1.5. Solid (dashed) lines
correspond to temporally stable (unstable) states. The blue snaking curve corresponds to the Iy family of LPs. Panels (1)-(4)
show some representative examples along this curve. The green snaking curve corresponds to I, and some representative LP
examples along this curve are shown in panels (5)—(8). The snaking or pinning region is delimited by S; ;.. The states Iy and I
arise together in HH and connect with two periodic patterns of different wavelengths (see the red and orange curves). For both

I,z the saddle-node bifurcations are labelled SNg’r from the bottom to the top, with i = 1,2, 3,... Adapted from Parra-Rivas et
al. (2018a).

consist of an odd number of pattern peaks embedded in an Az background. The solution profiles shown
in panels (5-8) belong to I, and consist of an even number of pattern peaks embedded in AZ. The
saddle-node bifurcations on either side of these curves converge exponentially and monotonically to the
limits of the pinning region S; and S,..

In an infinite domain, the peak nucleation process continues indefinitely. In a finite domain, however,
this process must terminate, as the number of peaks allowed is constrained by the size of the domain.
In periodic domains, like ours, 17, and I}, terminate near the saddle-node of one of the many subcritical
periodic patterns emerging from A, for I, > I, as shown in Fig. 7.

Figure 8 shows a portion of the diagram shown in Fig. 7, where we plot the rung states connecting
Iy and I',. These branches correspond to travelling asymmetric states. These states move at a constant
speed determined by the parameters and are temporally unstable. The rung states arise from secondary
symmetry-breaking bifurcations (pf’r) occurring near SNﬁ’r on both I}y and I'.. Some of these states are
shown in Fig. 8(1-4). In Fig. 8(1), the two-peak profile bifurcating from pl1 is weakly asymmetric and
therefore very similar to the completely symmetric state on the unstable I, branch. As S increases, the
peak on the right decreases in amplitude [see profiles (2) and (3)] until it rejoins I7 in py, becoming
the completely symmetric single peak LP shown in Fig. 8(4). The secondary bifurcations are pitchforks
so each rung actually includes a pair of branches of asymmetric states with identical E, and related by
the reversibility symmetry A(x) — A(—x). The rung states form, together with the homoclinic snaking,
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FiG. 8. The snakes-and-ladders bifurcation structure. The homoclinic snaking curves Iy and I are interconnected through
a series of rung branches corresponding to asymmetric states. The states arise from symmetry-breaking pitchfork bifurcations
labelled pf’r (i =1,2,3,...) occurring near the folds of the snaking curves. Labels (1)—(4) in the diagram correspond to the LP
states shown on the right. Adapted from Parra-Rivas ef al. (2018a).

what is now known as a ‘snakes-and-ladders’ structure, first identified by Burke & Knobloch (2006,
2007) in the context of the Swift-Hohenberg equation.

As originally proposed by Woods & Champneys (1999), the emergence of these LPs, and the
homoclinic snaking that they undergo, is a consequence of a ‘heteroclinic tangle’ present within
S; < § < §, arising from the transversal intersection of the unstable manifold of Az [wH (Az)] and
the stable manifold of a given spatially periodic pattern P [W*(P)] as S varies and vice versa (Beck
et al., 2009). The first tangency between W* (AZ) and W*(P) at S, corresponds to the birth of Shilnikov-
type homoclinic orbits bi-asymptotic to the bi-focus equilibrium A’;, while the last tangency at S,
corresponds to their destruction. In fact, the actual scenario in the context of (1.1) is more complex,
as additional LPs and complexes arise from the heteroclinic tangle between the stable and unstable
manifolds of the high amplitude stable pattern and the low amplitude unstable pattern (Gomila ef al.,
2007b). We refer to these works for a more detailed description of the heteroclinic tangle process.

Thus far, we have focused on a particular and representative detuning value: A = 1.5. However, the
snakes-and-ladders structure persists within a larger parameter range extending to A = 2. The region of
existence of this bifurcation structure can be computed by means of two-parameter continuation of the
saddle-nodes SNi’r in the (A, S)-parameter space. In doing so, we obtain the phase diagram shown in
Fig. 9, where the main bifurcations of the system are plotted. The bifurcation curves include HH (purple
solid line), which becomes a BD transition for A > 2 (purple point-dashed line), the saddle-nodes SN, ,

of the homogeneous states, and the saddle-nodes SNl]’r of the single-peak LS.

When A > 2 the snakes-and-ladders structure is no longer present but spike LSs remain and are now
organized in a new snaking structure called foliated snaking, as described next. On an infinite domain we
expect that this structure extends only up to the BD line (Champneys, 1998; Parra-Rivas et al., 2018a;
Verschueren & Champneys, 2021) but this appears not to be the case on finite periodic domains where
periodic arrays of spikes can be continued past the BD point into the region where the spike tails are
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FIG. 9. Phase diagram in the (4, S) parameter plane showing the main bifurcations of the system and the region of existence
and stability of the LSs. For A < 2 LPs exist between SN[1 and SN’l' and are organized within a snakes-and-ladders structure.
For A > 2 the homoclinic snaking is destroyed but LPs persist for parameters (A, S) below BD. In contrast, spike LSs exist and
undergo foliated snaking between SN/l and SN?. The region of existence of stable LSs is shown in light orange. For large values of
A the system undergoes a Hopf (H) bifurcation and the spikes begin to oscillate, eventually leading to temporal and spatiotemporal
chaotic dynamics (light blue area). The Hopf bifurcation arises from a Fold-Hopf or Gavrilov-Guckenheimer codimension-two
point on SN{. The inset shows a close-up view of the phase diagram around the QZ point where all the spatial bifurcations arise.
Adapted from Parra-Rivas et al. (2018a).

all monotonic (Knobloch & Yochelis, 2021). This is a consequence of the fact that on such domains the
global bifurcations (in space) that destroy these structures can no longer take place. This behaviour is
related to the scenarios shown in Fig. 5(b and c) and is addressed in more detail in the next section.

5.3 Foliated snaking and the remnants of homoclinic snaking

So far, we have focused on the bifurcation structure of spatially periodic patterns and the LPs emerging
from HH for A < 2. At A = 2 the system undergoes a QZ bifurcation resulting from the collision of
the HH and the RTBH at SN,,. As aresult, for A > 2, HH is replaced by a BD transition and Az is stable
until SN, which now corresponds to a RTB spatial bifurcation. At this point, one may wonder what
happens to the snakes-and-ladders bifurcation scenario, and whether LPs still exist or simply disappear.

Using the multiscale perturbation analysis of Section 3, one finds that whenever A > 2, weakly
nonlinear tame LSs [see (3.13)] bifurcate from SN, (i.e. a RTB). Although this solution is only valid
near SN, numerical continuation of such states eventually leads to the bifurcation diagram shown in
Fig. 10. This bifurcation structure is known as ‘foliated snaking’ (Glasner, 2012; Ponedel & Knobloch,
2016). The small amplitude pulse emerging from SN, is like that shown in Fig. 10(1) and is associated
with the solution branch I'}*. Decreasing S along I')’, this state grows in amplitude until it reaches
SN!, where it stabilizes and becomes the high amplitude ‘spike’ shown in Fig. 10(2), corresponding to
the solution branch I'}. Increasing S further, this state eventually undergoes a saddle-node bifurcation
(SN7) where it loses stability. Soon after SN is passed, a new small amplitude spike is nucleated at a
separation //2 from the high amplitude peak as shown in Fig. 10(3). We label the corresponding solution
branch I'f,. The newly nucleated spike grows in amplitude as S decreases until it becomes identical to
the original spike. This occurs at a 2:1 spatial resonance SR,.;, where I'f, connects with I} and I,
very close to SNIQ. Along I';, the two spikes grow together as S increases [Fig. 10(4)], while the opposite
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FiG. 10. Bifurcation diagram showing the foliated snaking structure for A = 2.5. All the different unstable branches I'’, with
n=1,2,3,... emerge from SN, (RTB) and connect to one another through a sequence of 2:1 spatial resonances SRj.| occurring
nearby SN%. Stable (unstable) branches are labelled with solid (dashed) lines. The blue dots on the foliated snaking branches
correspond to the states shown in the panels on the right. Adapted from Parra-Rivas et al. (2018a).

occurs along I')' [see profile Fig. 10(5)] as the amplitude of the two-peak state decreases to zero at SN,
and the branch connects to AZ. Beyond SN/, (see I',), intermediate spikes nucleate midway between
the large spikes already present [Fig. 10(6)], and these grow to full amplitude by the time they reach
the next SR,.; point near SN}, where I'}' connects to I';. Two characteristic states from these branches
are shown in Fig. 10(7 and 8). The very same process repeats, resulting in a cascade of equally spaced
states with 2" spikes.

The foliated snaking scenario resembles the bifurcation structure associated with the periodic
patterns discussed in Section 5.1. Indeed, the diagram shown in Fig. 10 is similar to that plotted
in Fig. 6(c) once the background field Az is removed from the latter. A first explanation of this
similarity can be found in the spatial dynamics analysis carried out in Section 3. Let us imagine
a periodic pattern bifurcating from HH with ¢ = ¢, in the regime A < 2. When the system
approaches QZ from below (A — 27), g. — 0 and a spatially periodic pattern with domain-
size wavelength becomes indistinguishable from the spike shown in Fig. 10(2). This is the situation
described schematically in Fig. 5(b). Thus, in this limit, P; becomes a single spike, P, two equidistant
spikes, and so on. This new configuration persists for A > 2 preserving the bifurcation structure
of the gq. > O patterns. Furthermore, on top of this bifurcation structure, similar foliated snaking
structures can be found for states with n € NT equidistant peaks, where the different branches
also emerge from SN, but are now interconnected through n:1 spatial resonances SR,.; (Parra-Rivas
et al.,2018a).

Foliated snaking organizes periodic patterns or patterns of equally spaced spikes, but it does not
reveal the existence and potential organization of the LPs discussed in Sec.5.1. At the QZ point,
homoclinic snaking is destroyed, and for A > 2, LPs are organized differently (Parra-Rivas et al.,
2018a). To reveal this bifurcation scenario, one can path-continue any LP in the two parameters (A, S)
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Fi1G. 11. Reconnection of the remnants of the homoclinic snaking branches with foliated snaking for A > 2. The diagram shows,
through the bifurcation measure E3, two branches of foliated snaking, Fz" and 1"2'“ (blue lines), corresponding to the two equally
spaced spikes shown in panel (4). The orange curve shows the remnants of two homoclinic snaking branches corresponding to
two-peak Iy LPs. While foliated snaking arises from RTB-SNj, (see vertical dot-dashed line), the LP branches emerge from a
global homoclinic bifurcation occurring at the BD transition (see vertical dashed line). Approaching BD, the LP peak separation
D grows drastically until it reaches the maximum separation //2 exactly at the BD point. Panels (1-3) show the change in the
LP profiles along this curve. At the BD transition the LP becomes the state shown in panel (4). Adapted from Parra-Rivas et al.
(2018a).

from A < 2to A > 2, and after that compute the solution branches as a function of S for a
fixed value of A. The result of this computational approach is shown schematically in Fig. 11. Here,
in order to better visualize the different solution branches, we defined a new bifurcation measure
E; = E, - D, with D the separation between peaks in the LSs. The blue lines correspond to the
r 2”"? solution branches of the foliated snaking associated with two identical equally spaced spikes
[see Fig. 11(4)]. The orange lines show two branches of the two-peak LP homotopically related with
I', [see Fig. 7(b)]. The point-dashed vertical line in Fig. 11 marks the location of SN, (i.e. the RTB
bifurcation) where the foliated snaking emerges, while the vertical dashed line marks the position of
the BD transition. LP branches do not bifurcate from RTB, in contrast to the foliated snaking, but they
finish very close to BD. Indeed, the use of E; reveals that D diverges when approaching BD, as can
also be seen in the profiles shown in panels Fig. 11(1-3). This scenario corresponds to that shown
in Fig. 5(c). Below BD, LPs still form through a heteroclinic tangle as described in Section 5.2, and
remnants of the homoclinic snaking branches can be found. The divergence in D undergone by the
LPs as § — Sgp corresponds to the divergence of the wavelength of the periodic pattern involved in the
tangle, and it reveals the occurrence of a global homoclinic bifurcation at Sgp,. Indeed, in this homoclinic
bifurcation, periodic pattern states (limit cycles) turn into spikes (tame homoclinic orbits). This global
phenomenon appears in different contexts, and is referred to as ‘a blue sky catastrophe’ (Devaney,
1977), ‘a wavelength blow-up’ (Vanderbauwhede & Fiedler, 1992) or ‘a broom’ global bifurcation
(Verschueren & Champneys, 2017). The mathematical theory describing the system dynamics close to
this global bifurcation has been recently developed by Verschueren & Champneys (2021), and the same
transition has been identified in other systems (Knobloch & Yochelis, 2021; Verschueren & Champneys,
2017, 2021).
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6. Localized structures in the normal regime: collapsed snaking

In the normal dispersion regime (v = —1), the emergence of LSs is related to the coexistence of
two different HSSs. In this regime, the stability and configuration of the different spatial bifurcations
undergone by A, is very different from the anomalous regime, as shown in Fig. 1(e-h). In the monostable
regime (A < ﬁ), A, is always stable, and no LSs exist. For A > V3 , however, the coexistence between
AZ and A}, allows for the formation of DWs (i.e., heteroclinic orbits) connecting them. Single DW's drift
with a constant speed, which depends on the control parameters of the system. However, at the Maxwell
point of the system, this speed vanishes. Close to this Maxwell point, DWs can interact and lock to one
another, thus also leading to zero speed. In this way, dark LSs of different widths can form. The resulting
LSs are organized in a particular bifurcation structure known as ‘collapsed snaking’, whose morphology
is a direct consequence of the DW interaction and locking (Knobloch & Wagenknecht, 2005; Yochelis
et al., 2000).

The formation of LSs in the normal regime has been addressed in a number of theoretical works
(Godey et al., 2014; Girtner et al., 2019; Lobanov et al., 2015; Parra-Rivas et al., 2016a,b), and their
existence has been confirmed experimentally in microresonators (Nazemosadat et al., 2021; Xue et al.,
2015) and pulse-pumped fibre cavities (Garbin et al., 2017). In this section, we review the main results
regarding the origin and bifurcation structure of dark LSs in this regime.

6.1 Dark localized states and the collapsed snaking diagram

Figure 12 shows an example of collapsed snaking for A = 4, where E, is plotted as a function of S.
The solution branches in red are those corresponding to A, whereas those associated with the LSs are
shown in blue.

In the range of parameters shown in the diagram, A;l (AZ) remains stable all the way until SN, (SN,).
In spatial dynamics terms, SN, corresponds to a RTB bifurcation and weakly non-linear states emerge
from it in the form of tame homoclinic orbits (see (3.13) in Section 3.2). Numerical continuation of
these solutions to parameter values far from SN, yields the blue solution curve X' shown in Fig. 12.
X experiences a sequence of damped back-and-forth oscillations in S around the Maxwell point of the
system, S = §,,, and eventually collapses onto it. The morphology of this snaking curve is very different
from the standard homoclinic snaking depicted in Section 5, which is why this diagram is known
as collapsed snaking (Knobloch & Wagenknecht, 2005; Yochelis er al., 2006). Some representative
examples of dark LSs along X' are shown in Fig. 12(1-5).

Let us briefly discuss how these states arise and change along the diagram. The weakly non-linear
LSs first arise as unstable small amplitude holes in A} and bifurcate from SN;. Following this unstable
branch towards higher values of S, the amplitude of the LSs increases, and eventually the branch X
undergoes a first saddle-node bifurcation SN, where the LSs stabilize, and they remain stable until
SNII. At this stage, the LS resembles that depicted in panel (1) of Fig. 12. Soon after passing SN/, the
nucleation of a spatial oscillation (SO) around x = 0 takes place, such that the inner part of the LS
is filled with a portion of AZ. An example of this new state, once SN} is passed, is shown in Fig. 12
(2). The SOs nucleation process continues with decreasing E, leading to the sequence of LSs shown in
panels (3-5). Observe that minima at x = 0 turn to local maxima and back again as new SO are added.
As a consequence, the LSs widen as X' asymptotically approaches the Maxwell point S,,. Figure 12
(5) shows a LS close to ;. At this stage, one can easily identify two well-formed DWs, namely DW,,
and DW,, connecting Afl and Az. A close-up view of DW, is shown in Fig. 12(b) together with the
corresponding heteroclinic orbit. In terms of spatial dynamics, A} is a saddle equilibrium, whereas AZ
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FiG. 12. Collapsed snaking bifurcation structure. Panel (a) shows the bifurcation structure for A = 4 in terms of E;(S). The
HSS Ay, is shown in red, while the blue curve is the collapsed snaking branch X. Solid (dashed) lines represent stable (unstable)
LS branches. The labels (1-5) on the stable branches correspond to the LSs shown to the right. The close-up view in the main
panel shows that the collapsed snaking behaviour persists asymptotically close to the Maxwell point Sy;. Panel (b) shows the
morphology of DW; corresponding to panel (5). The tails of the DW are defined by the spatial eigenvalues associated with the
equilibria AZ”. Adapted from Parra-Rivas et al. (2016b).

is a bi-focus, as shown by the spatial eigenvalues in Fig. 12(b). Thus, the heteroclinic orbit leaves AJ,
monotonically, but it approaches Aﬁ in a damped oscillatory fashion. The part of the DW that approaches
AZ in this manner is typically called an ‘oscillatory tail’.

Decreasing E; further (see the bottom part of Fig. 12), the branch X eventually separates from §,,,
and continues to A?, where it disappears close to HH as described below.

This situation is shown in detail in Fig. 13(a). In view of the periodic boundary conditions, when
DW, and DW,; move apart from x = O they also approach one another at x = [/2 albeit back-to-
back. In this context, the resulting state is a bright LS with a SO like that shown in Fig. 13(1), once a
translation by //2 has been taken into account. Thus, as E; decreases the dark LS turn into bright LS.
Increasing S further, the bright state becomes that shown in Fig. 13(2) and very close to HH it reduces
to the asymptotic LS calculated in Section 3.1 for ¢ = 0. In the following, we therefore rename X' as
%y- Due to finite domain size effects, X, does not terminate exactly at HH, but at a subcritical pattern
[see Fig. 13(4)] emerging from it.

6.2 Secondary solution branches

Apart from the dark/bright LSs belonging to X, there are other families of solutions which are
interconnected. Close to HH, the asymptotic analysis carried out in Section 3 shows that there must
be another family of states characterized by ¢ = 7 (X ). Like X, this curve arises subcritically from
the periodic pattern state, as shown in the close-up view of Fig. 13(a). At this stage, a X state resembles
that depicted in panel Fig. 13(5), and possesses a minimum at x = 0. Moving away from HH, the two
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FiG. 13. Panel (a) shows the reconnection of the collapsed snaking branch X, plotted in Fig. 12, with A near HH. The solution
curves Xz and X7 also arise near HH and also undergo collapsed snaking. Panel (b) shows the top part of the collapsed snaking
branch ¥ shown in Fig. 12, together with X and X;. The labels (1-14) correspond to the states shown on the right. Adapted
from Parra-Rivas ef al. (2016b).

central peaks grow [see profile in Fig. 13(6)] until their amplitude reaches A} [Fig. 13(7)]. The top of
the two peaks then flattens forming two plateaus around A’ , separated by a dark spike (hole) at x = 0.
During the flattening process, two DWs form that move farther and farther from x = 0 as one proceeds
up X . Eventually, this state resembles a composition of two separate states: a dark spike and a dark
LS with several SOs [Fig. 13(8)]. During this process, X snakes around S,, as depicted in Fig. 13(b).
While following the X branch upwards, the SOs progressively disappear eventually resulting in a state
formed of two identical dark spikes. When this occurs, X collides with another collapsed snaking
curve X, [see the orange curve in Fig. 13(b)], corresponding to a pair of identical LS like that shown
in Fig. 13(10-12). Increasing E;, X, connects back to A, at SN, but proceeding down in X}, each
of the constituent LS behaves the same way, and the branch eventually connects back to the periodic
pattern, but at a larger amplitude since X; in effect represents a single pulse state on the half-domain
[see Fig. 13(a)].

Thus far, we have focused on a particular value of the detuning, namely A = 4. One may wonder if
this type of LS and the collapsed snaking associated with them, persists to other parameter regimes. This
question is answered through a two-parameter continuation (in A and S) of the different saddle-node
bifurcations SNﬁ’r of X (Fig. 14). For increasing values of A, the region of bistability between A}, and
AZ expands, and so does the region of existence of dark LSs. When A decreases, however, both regions

shrink and the different saddle-node bifurcations (SNf’r, fori=1,2,3,...) collide in a cascade of cusp
bifurcations, such that the widest LSs disappear first, while the single dark spike is the last to disappear.
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Fi1G. 14. Phase diagram in the (A, S) parameter space for the normal regime. The bifurcation lines plotted are: the HH-BD line,

the saddle-nodes of the Ay, SN, , and a number of saddle-node bifurcations SNﬁ’r (i=1,2,3,...) associated with the collapsed
snaking branch X shown in Fig. 13. The graded orange areas show the regions of existence of the different types of dark LSs.
Adapted from Parra-Rivas et al. (2016b).

In the range of parameters examined here, the periodic pattern that arises from HH is unstable.
Therefore, it does not play any role in the formation of LSs. Nevertheless, the periodic pattern might
stabilize at much larger values of A, potentially leading to a very rich scenario involving tristability
between the pattern, Az and Az. In such a situation, a new type of hybrid LSs may arise as has been
shown in other contexts (Zelnik et al., 2018). The exploration of such a potential scenario requires
further investigation.

6.3 DW locking as a mechanism forming localized structures

The emergence of dark LSs, and their organization in a collapsed snaking structure, can be understood
from a physical perspective based on the interaction and locking of DWs (Coullet et al., 1987). In our
system, DWs form between the two non-equivalent HSSs A and AP, and they drift at constant speed
depending on the control parameters (Chomaz, 1992). At the Maxwell point S,,, the speed is zero and
DWs are stationary. Close to that point, the interaction of two DWs with different polarity, DW, and
DW ,, and separated by a distance D, can be phenomenologically described by the equation

dD/dt = pe~'%Pcos(KD) + n = f(D), (6.1)

where Q and K correspond to the real and imaginary parts of the spatial eigenvalue associated with AZ
(and so responsible for the oscillatory tail of the DW), p depends on the parameters of the system, and
n is proportional to the distance from the Maxwell point (i.e. n ~ S — §,,). Equation (6.1) cannot be
explicitly derived from the LL equation (1.1) for a number of reasons (e.g. the absence of an analytical
DW solution), and we present it here simply to illustrate the locking mechanism of DWs. However,
similar equations can be explicitly derived in other contexts (Clerc et al., 2010; Coullet, 2002; Coullet
et al., 1987; Escaff et al., 2015), and a perturbed version of (6.1) is found close to the onset of nascent
bistability (i.e. close to A = V/3) (Clerc et al., 2020a; Tlidi et al., 2015).
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FiG. 15. Schematic representation of the interaction and locking of DWs. Panel (a) shows the equilibria of (6.1) for different
values of n: n = 0in (1), and 0y », with np > 7 in (2) and (3). Stable (unstable) states are labelled with full e (empty o) circles.
Panel (b) shows the bifurcation diagram arising from the locking mechanism shown in (a), where points on the stable (unstable)
parts of the diagram correspond to LSs with D equal to the stable (unstable) zeros of (a) for each value of S. Panel (c) represents
the information shown in panel (b) but using E{ instead of D. This last diagram is a schematic picture of the collapsed snaking
shown in Fig. 12.

Figure 15(a) shows f(D) for three different values of 1 (blue curves). The intersections of the curves
with the horizontal axis correspond to the equilibria of (6.1), and therefore to the locking of DWs
and subsequent formation of LSs. In all cases, stable and unstable separations (marked using e or o
respectively) alternate in D.

At § = §,, [Fig. 15(a)(1)], the locking separations can be derived analytically and read Dg =
m(2n+1)/2K. Each of these separations can be mapped to the bifurcation diagram shown in Fig. 15(b),
where D is plotted as a function of S and that sketched in Fig. 15(c), which shows E; as a function of S.
In both diagrams, stable (unstable) solution branches are plotted using solid (dashed) lines. Panels (2)
and (3) in Fig. 15(a) show the situation for two different values of S slightly above S,,. In panel (2) four
intersections, two stable ones and two unstable ones, are shown, which map to the vertical dashed line
(2) plotted in Fig. 15(b and c). With this mapping, the tangency shown in Fig. 15(a) corresponds to the
saddle-node bifurcations shown in panels (b) and (c). Increasing 7 a bit more [panel (3) in Fig. 15(a)]
leaves only one pair of stable/unstable equilibria, which defines the two points on the vertical dashed
line (3) in Fig. 15(b and c). Hence, the change in the locking separations in Fig. 15(a) arising from
shifting the blue curves upwards or downward (i.e. by changing S) determines the collapsed snaking
curves shown in Fig. 15(b and c).

7. Oscillatory and chaotic dynamics

The static LSs described in the previous sections can also exhibit very rich dynamical behaviour such as
temporal oscillations, also known as ‘breathing behaviour’, temporal chaos and spatiotemporal chaos,
which has been studied by many authors both experimentally and theoretically. In this section, we briefly
discuss, from a bifurcation perspective, some of the main features of the resulting dynamics in the
anomalous and normal regimes and refer to the original work for more details.

7.1 Breathers in the anomalous regime

In the anomalous regime, oscillatory and chaotic behaviour was first identified experimentally in a
series of seminal works in the context of fibre cavities (Leo et al., 2013a) and later in microresonators
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FiG. 16. Bifurcation diagram and oscillatory behaviour in the anomalous regime for A = 7. This diagram shows the HSS /T, in
red, the peak value of the spike intensity |A(0)| (blue curve), and the maxima and minima of the oscillation amplitude intensity
at x = 0. The different coloured areas correspond to different types of oscillatory dynamics: period-1 oscillations (P1), period-2
(P2), period-4 (P4), temporal chaos (TC) and spatiotemporal chaos (STC). The letter H denotes a supercritical Hopf bifurcation
while BC; correspond to boundary crises of the chaotic attractor. Panels (1—4) show the time series of the spike at its centre x = 0,
and panels (5-8) show the two-dimensional phase space obtained from the projection of the oscillatory dynamics on the variables
U(0) and V(0).

(Lucas et al.,2017; Yu et al., 2017). In these papers, a breather consists in a bright spike whose amplitude
oscillates in time with a fixed period, while preserving its position. The dynamics of dispersive Kerr
breathers have been analysed theoretically within the framework of (1.1) by a number of authors
(Leo et al., 2013a; Matsko et al., 2012; Parra-Rivas et al., 2014b) although oscillatory dynamics in
similar models had been studied earlier in other contexts (Barashenkov & Smirnov, 1996; Nozaki &
Bekki, 1985).

For intermediate values of the detuning (e.g. A = 7), the bifurcation scenario is like that depicted
in Fig. 16. The red curve represents the HSS A, the blue corresponds to the spike state while orange
crosses show the maxima and minima of the oscillation. The stable spike encounters a supercritical Hopf
bifurcation (H), where it starts to oscillate in amplitude with a single period as shown in the time trace
of Fig. 16(1), and in the 2D phase space projection shown in Fig. 16(2), where we also plot AZ and the
infinite-dimensional saddle corresponding to the unstable spike. Increasing S further, we see that this
cycle undergoes a period-doubling (PD) bifurcation, starting a route to a very complex scenario via a
sequence of oscillatory states characterized by period 2 [Fig. 16(2),(6)], period 4 [Fig. 16(3),(7)], and
temporal chaos [Fig. 16(4),(8)]. While increasing S, the temporal attractor approaches progressively the
saddle spike, leading to a collision that destroys the chaotic attractor, likely in a boundary crisis (BC)
(Grebogi et al., 1983). Above BC the only attractor of the system is AZ' This situation persists until
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a second BC is reached, where the previous route repeats in reverse order until the system enters into
spatiotemporal chaos.

Spatiotemporal chaos was first identified experimentally in fibre cavities (Anderson et al., 2016),
and later characterized theoretically in terms of the Lyapunov spectrum and the Yorke—Kaplan
dimension (Coulibaly et al., 2019; Liu et al., 2017). Furthermore, these studies show that spatiotemporal
chaos and the previous dynamical regimes can coexist for the same range of parameters. However, the
origin of such dynamics from a bifurcation perspective is not fully understood. The scenario shown
in Fig. 16 summarizes the variety of dynamical behaviours encountered in the system. With further
increase in A, the scenario remains qualitatively the same although the oscillations are enhanced and
the regions of chaotic behaviour broaden. Decreasing A, however, shifts H towards SN, and the
complex oscillatory dynamics gradually fade away, leaving single period oscillations. Finally, H and
SNj collide in a codimension-2 Gavrilov-Guckenheimer bifurcation (Gaspard, 1993; Guckenheimer
& Holmes, 1983) characterized by three temporal eigenvalues A, = 0, and Ape = +iw, with w > 0
(Parra-Rivas et al., 2014b). One of the possible unfoldings of this bifurcation may lead to the appearance
of Shilnikov chaos (Gaspard, 1993), which may be related to the temporal chaos observed here, although
confirmation of this scenario requires further investigation.

On top of the dynamics just described, focusing on the single spike LS, one may wonder if LPs
coexisting with the previous states below the BD line exhibit a similar dynamical scenario. Indeed, the
dynamics of LP-breathers have recently been studied in the context of dispersive optical parametric
oscillators, and show very rich and unprecedented behaviour (Parra-Rivas et al., 2020). In our current
context, however, this question has not been investigated systematically and remains an open problem.

7.2 Breathers in the normal regime

In the normal regime, the oscillatory and chaotic dynamics of LSs have been demonstrated experimen-
tally for the first time in microresonators (Bao er al., 2018) and their study is restricted not only to
single peak dark states but also to wider LSs formed by several SOs (Parra-Rivas et al., 2016a,b). Here,
we briefly discuss some of the main features of the observed dynamics focusing on the single dark
spike LS.

Figure 17 shows the bifurcation scenario for A = 5.2, where we plot in red the HSS A;, and in blue
the spike amplitude at its centre (x = 0). As in the anomalous case, the LS encounters a supercritical
Hopf bifurcation (H), where it starts to oscillate in amplitude with a single period, as schematically
shown in the inset of Fig. 17. In Fig. 17(1), we show a portion of the 2D projection of the cycle
in the phase space, together with the projection of the unstable (saddle) LS. The amplitude of the
oscillation grows with increasing S (Fig. 17), and eventually the system undergoes the same dynamical
sequence as in the anomalous regime: the single period oscillations undergo a PD bifurcation starting
a route to temporal chaos, as depicted in panels (1-4) of Fig. 17. At some point, the chaotic attractor
[Fig. 17(4)] collides with the saddle, and the system undergoes a boundary crisis BC; where the attractor
is destroyed, opening a parameter window where the systems falls to the static attractor AZ- This window
ends at a second boundary crisis BC,, where temporal chaos reappears again. From this dynamical state,
the system undergoes the same bifurcation sequence as just described but in reverse order, until the single
period oscillatory state is restored. Increasing S further, the amplitude of the oscillations decreases and
eventually the cycle dies at a second supercritical Hopf very close to SN7.

As A increases, the static window between BC; and BC, widens as BC, progressively moves
towards H,, and BC; towards H;. In contrast, decreasing A leads to a fusion of BC; and BC, and
the disappearance of the static window. With further reduction in A, the temporal chaos, period 4 and
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Fic. 17. Bifurcation diagram and oscillatory behaviour in the normal regime for A = 5.2. The diagram shows the HSS +/7}, in red,
the peak values of the spike |A(0)| (blue curve), and the maxima and minima of the oscillation amplitude at x = 0. The different
coloured areas correspond to a different types of oscillatory dynamics: period 1 oscillations (P1), period 2 (P2), period 4 (P4) and
temporal chaos (TC). The letter H denotes supercritical Hopf bifurcations while BC; correspond to boundary crises of the chaotic
attractor. Panels (1)—(4) show a portion of the 2D phase space projection defined by U(0) and V(0). Adapted from Parra-Rivas et
al. (2016b).

period 2 cycles gradually fade away, and only the period 1 oscillation remains; for low values of A this
oscillation disappears as well (Parra-Rivas et al., 2016a,b). Dark LSs with several SOs undergo a similar
behaviour to that described here.

8. Broken spatial reversibility: effect of third-order dispersion

In the previous sections, we have described the bifurcation structure and main features of different types
of localized solutions of (1.1). This equation describes the dynamics of Kerr dispersive cavities in most
practical situations quite well. However, sometimes the modelling of the experimental setup requires
the addition of extra terms accounting for a number of physical effects which are not included. Many
authors have addressed this issue and the influence of such terms. In particular, we mention the case of
higher-order chromatic dispersion (Bahloul er al., 2014; Leo et al., 2013b; Milidn & Skryabin, 2014;
Parra-Rivas et al., 2014a; Tlidi et al., 2013; Tlidi & Gelens, 2010), stimulated Raman scattering (SRS)
(Clerc et al., 2020b; Milian et al., 2015; Wang et al., 2018) or time-delayed feedback (Panajotov et al.,
2016; Tlidi et al., 2017).

The spatial reversibility of (1.1) is an essential ingredient not only for the formation of the LSs
studied previously but also for the bifurcation structure undergone by such states. Thus, while high-
order terms preserving spatial reversibility (e.g. fourth-order dispersion) lead to similar types of states
and bifurcation diagrams (Tlidi & Gelens, 2010), those breaking it (e.g. third-order dispersion or SRS)
result in important modifications of the LSs shape, and their dynamics and stability, as well as having
strong implications for their bifurcation structure (Burke et al., 2009; Makrides & Sandstede, 2014).

In this section, we examine the influence that the loss of spatial reversibility may have on the
bifurcation structure of the LSs studied previously, and for this purpose, we include the dispersive term
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yagA accounting for third-order chromatic dispersion (hereafter TOD), in (1.1):
3,A =—(14iA)A+ivd?A +yd2A +iAlA]> + 8. (8.1)

As aresult of the loss of spatial reversibility, the solutions of (8.1) are asymmetric and drift at constant
velocity depending of the control parameters of the system. Steadily drifting LS solutions satisfy the
time-independent ordinary differential equation

— (1 +iA)A+ DA+ ivd?A+ yd3A +iAJAP +S =0, (8.2)

where the new variable x results from a change in the reference frame x — x — ct. The resulting
solutions can be obtained through path-continuation schemes, with the drift speed c calculated as part
of the solution.

8.1 Symmetry breaking in the anomalous regime: isolas of asymmetric states

The influence of TOD on patterns and LSs dynamics in the anomalous regime have been studied mostly
for large detuning, where the typical LSs are spikes. In this context, TOD may lead to the stabilization of
oscillatory and chaotic dynamics, and furthermore, to the shrinking of the LSs existence region (Milidn
& Skryabin, 2014; Parra-Rivas et al., 2014a).

From a bifurcation perspective, the loss of spatial reversibility is responsible for the destruction of
the snakes-and-ladders structure, as first shown in a seminal paper by Burke ez al. (2009) in the context
of the Swift-Hohenberg equation. In the LL equation studied here, TOD leads to the same destruction
for A < 2, whose main features are summarized in Fig. 18. Figure 18(a) shows in blue the snakes-
and-ladders structure composed of I, I, and the rung states. When y # 0, the pitchfork bifurcations
near each SNg’r responsible for the rung states become imperfect, leading to the stack of isolas shown
in red. Figure 18(b) shows a close-up view of the diagram shown in Fig. 18(a) around the 3-peak LS
branches, where the corresponding isola is shown for several values of y. Increasing y leads to the
gradual shrinkage of the isolas until they eventually disappear. In the present case, this happens for
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F1G. 19. Implications of the loss of spatial reversibility for collapsed snaking. Panel (a) shows in blue the collapsed snaking branch
X associated with dark LSs in the absence of TOD. The orange curve Eg)/ corresponds to the bifurcation structure computed in
the presence of TOD when y = 0.7. The top part of the diagram shows the change in the collapsed snaking shown in blue, and
the labels (1)-(3) correspond to the dark asymmetric states shown on the right panels. The bottom part of the diagram shows the
collapsed snaking associated with the asymmetric bright LSs shown in panels (4-6). Panel (b) shows the speed ¢ of dark and bright
LSs as a function of the LS width D. Panel (c) shows the morphology of DW,; and DW,, corresponding to the spatial eigenvalues
associated with AZ and A;l. Adapted from Parra-Rivas et al. (2017b).

y ~ 0.08. The drift speed c of the LP along the isola is shown as a function of § in Fig. 18(c) for two
values of y, namely y = 0.01 (top panel) and y = 0.04 (bottom panel). Note that an increase in the
asymmetry of the LPs due to increasing y results in an increase of their speed. Examples of asymmetric
LPs belonging to three different isolas are shown in Fig. 18(d) for y = 0.04.

The formation of isolas is not the only scenario that one can find in the presence of a reversibility-
breaking term (Makrides & Sandstede, 2014). Indeed, for A > 2, where no snakes-and-ladders structure
exists in the absence of TOD, the loss of spatial reversibility leads to a reorganization of Iy and I,
giving rise to mixed homoclinic snaking (Parra-Rivas et al., 2014a). The transition between these two
scenarios has been studied in detail in the context of the SH equation (Makrides & Sandstede, 2014).
However, in the current context, this point remains an open question.

8.2 Symmetry-breaking in the normal regime: coexistence of dark and bright LSs

The influence of TOD on the LSs and their organization in the normal regime has also been addressed
in several papers, both theoretically (He ef al., 2016; Lobanov et al., 2017; Parra-Rivas et al., 2017b;
Talla Mbé et al., 2017) and more recently experimentally (Anderson et al., 2020; Li et al., 2020).

From a bifurcation perspective, the loss of spatial reversibility in this regime leads to the coexistence
of bright and dark LSs (Parra-Rivas et al., 2017b) and to important modifications of the collapsed
snaking morphology as shown in Fig. 19. The diagram in blue corresponds to the collapsed snaking
branch ¥, shown in Fig. 12 in the absence of TOD (y = 0). The orange curve Z‘g shows how
%, changes when spatial reversibility is broken and y = 0.7. The top part of Eg corresponds to
the modified collapsed snaking structure associated with dark LSs. Labels (1)—(3) correspond to the
asymmetric dark LSs shown on the right. The bottom part of Z‘g corresponds to asymmetric bright
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states such as those shown in Fig. 19(4-6). The speed c of the dark and bright LSs along 2(’)/ is shown in
Fig. 19(b) as a function of the LSs width D. The speed oscillates along the snaking curves and for large
widths it asymptotically reaches a constant value corresponding to a LS like that shown in Fig. 19(6).

The emergence of bright LSs and the modification of collapsed snaking with y can be understood by
examining the changes to the interaction and locking of DWs. The breaking of the spatial reversibility is
responsible for changing the spatial eigenvalues associated with the equilibria AZ and A}, which in turn
leads to changes in the DWs tails as shown in Fig. 19(c). When y # 0, oscillatory tails appear not only
around AZ but also around A;l, thereby changing the interaction and the locking of DWs. As a result,
stable bright and stable dark LS are both possible, a fact reflected in the change in Z‘g .

Another important effect on the DWs dynamics is that y modifies the position of the Maxwell
point S,,, and therefore the location of the snaking diagram which shifts to larger values of S as y
increases. Moreover, by modifying the DW interaction, TOD is also responsible for an enlargement of
the locking regions of the different states and in consequence of their range of existence in parameter
space. The bright states described here, and the collapsed snaking associated with them, have recently
been identified in experiments in fibre cavities (Li et al., 2020).

9. Discussion and conclusions

It is a general (but useful!) observation that folds of homogeneous solutions of partial differential
equations on the real line serve as a source of the spatially modulated and ultimately spatially localized
structures found in many (reversible) systems. The reason is simple: in a spatial dynamics description of
such systems a fold is associated with a multiplicity two zero eigenvalue. When these become non-zero
away from the fold their effect is easily balanced by weak spatial modulation, and it is this balance that
leads to the presence of dark solitons near A} and bright solitons near Az in the LL equation. These states
are all initially unstable but numerical branch-following techniques show that they typically acquire
stability (and hence physical significance) in a process called snaking, following Woods & Champneys
(1999). However, this observation is more general and is also responsible for the presence of modulated
structures near transcritical bifurcations or indeed near (subcritical) Turing bifurcations, as exemplified
by a number of studies of reaction-diffusion equations (see, e.g. Knobloch & Yochelis, 2021, and the
references therein) or the equations of fluid dynamics (Beaume ez al., 2018). Typically, one finds that
these localized structures extend between these special points, i.e. there are (one or more) branches
of localized structures connecting these points. This is fundamentally because branches of such states
cannot terminate in ‘mid-air’ or, for physical reasons, extend to infinity. Thus, the snaking structures are
responsible for the transformation of one spatially extended state of the system into another. In many
cases, the details of this transformation may be rather complex.

In this paper, we have illustrated these principles using the 1D LL equation, which models a
dispersive Kerr optical cavity and is an equation for the intra-cavity electric field envelope in the mean-
field approximation. We provided a detailed description of the different types of localized structures
arising in this system, unveiling their origin, bifurcation structure, and stability, but never losing sight of
the bigger picture.

The departure point of this work has been the determination of the temporal linear stability properties
of the simplest state of the system: the HSS (Section 2.1). In the anomalous regime, this analysis reveals
that a spatially periodic pattern arises from a Turing bifurcation and that it becomes subcritical in
the range 41/30 < A < 2, leading to a bistability scenario compatible with a homoclinic snaking
structure. In the normal regime, however, the main bistable scenario arises between two HSSs, Az
and Aj, resulting in a collapsed snaking bifurcation structure. Locally, these snaking curves bifurcate
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from a number of ‘spatial’ codimension-one bifurcations of the HSS, including a HH and an RTB
bifurcation. These bifurcations in turn arise from a codimension-two point known as QZ [occurring at
(A, = (2, \/5)], which organizes all the behaviour in the (A, S)-parameter space (Section 2.2). Near
these points, (1.1) can be reduced to a simpler weakly non-linear equation (i.e. a ‘normal form’) which
retains the essential dynamics of the system. This reduction is performed using multiscale perturbation
techniques (Section 3) and the resulting normal form supports the LS solutions found in (1.1) near these
points. A similar reduction has also been performed around the QZ point (Section 4). In each case, the
weakly non-linear solutions have been tracked away from the bifurcations that gave rise to them using
numerical continuation.

In the anomalous regime (Section 5), the standard snakes-and-ladders structure exists for A < 2.
The LSs corresponding to this scenario are bright LPs (Section 5.1). When A — 27, the wavelength of
the spatially periodic pattern involved in the formation of the LPs diverges, and at A = 2 the periodic
state undergoes a global homoclinic bifurcation and the LPs become tame homoclinic orbits (i.e. spikes).
This transition destroys the snakes-and-ladders structure and replaces it for A > 2 by ‘foliated snaking’
of spike arrays (Section 5.2). Furthermore, LPs still form through a heteroclinic tangle below the BD
transition, and their solution branches connect to the foliated snaking via a global bifurcation that occurs
at the BD point.

In the normal regime (Section 6), the collapsed snaking scenario is present for A > +/3 and the states
associated with it are the dark LSs, consisting in a portion of the low intensity state AZ embedded in the
high intensity A} background. The formation of this bifurcation structure can be understood through the
interaction and locking of DWs (Coullet, 2002).

The LL equation (1.1) is a non-gradient system and may therefore undergo complex spatio-temporal
dynamics such as breathing, temporal chaos and spatiotemporal chaos, in addition to the steady states
studied previously. We have shown (Section 7) that in the anomalous regime bright spikes undergo
such dynamics for intermediate values of A as a consequence of a Gavrilov—Guckenheimer bifurcation.
In this context, single period oscillatory behaviour may undergo a PD route to temporal chaos and
ultimately to spatiotemporal chaos. In the normal regime, a similar scenario is found for dark LSs of
different widths. However, in this regime, spatio-temporal chaos is absent.

We have also examined the effects of breaking the spatial reversibility x — —x through third-order
chromatic dispersion (Section 8). In the anomalous regime, we have characterized how this symmetry-
breaking term destroys the snakes-and-ladders structure leading to a stack of isolas, which eventually
fade away as the symmetry-breaking increases. In the normal regime, the collapsed snaking associated
with dark LSs persists, but a similar snaking structure emerges as a result of the stabilization of
bright LSs.

There are several issues that have been left out of this work. One of these concerns the interaction
of LSs and the formation of bound states. In the anomalous regime, this point has been addressed
analytically (Vladimirov et al., 2018), numerically (Parra-Rivas et al., 2017a) and experimentally (Wang
et al., 2017). Another interesting point relates to the effects of higher-order dispersion that preserves
spatial reversibility (such as a fourth-order dispersion). In this context, the implications of fourth-order
dispersion in the anomalous regime have been analysed for low values of A, where it is responsible
for the stabilization of dark LPs and the emergence of new homoclinic snaking (Tlidi & Gelens, 2010).
However, the persistence of homoclinic snaking for larger values of A, and a complete understanding
of this regime is still lacking. Regarding the normal regime, the impact of this term on the bifurcation
structure of LSs remains an open question.

Another interesting point relates to the presence of stimulated Raman scattering. This last effect
breaks the spatial reversibility of the system, and its implications for the LSs bifurcation scenario
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and associated dynamics may be similar to those described in Section 8§ when dealing with TOD. The
dynamics of spike LSs in the presence of the Raman effect have been studied in the anomalous regime
by different groups (Chen et al., 2018; Milidn et al., 2015; Sahoo & Roy, 2019; Wang et al., 2018).
However, little is known about its impact on the bifurcation structure associated with spike states or the
LPs studied in this paper. In the normal regime, in contrast, the modification of the collapsed snaking
structure in the presence of stimulated Raman scattering was recently characterized by Parra-Rivas
et al. (2021).

Of course, in experiments noise is of paramount importance. In one dimension, it is known that
noise-activated barrier hopping plays an important role in driving the system towards the state of lowest
energy (Sakaguchi & Brand, 1996). However, in non-gradient systems such as the LL equation the
effect of noise is less simple to characterize but its consequences appear to be similar (Parra-Rivas
et al., 2017a). In general, temporal noise has the biggest effect in the vicinity of global bifurcations,
typically generating noisy dynamics but washing out much of the detailed structure present within
deterministic chaos. However, fluctuations also affect frequency comb generation (Chembo et al.,
2020) and play an important role in cavity solitons in connection with squeezed light (Oppo & Jeffers,
2007; Pérez-Arjona et al., 2007). In excitable regimes, fluctuations in pump intensity can nucleate new
structures, including localized structures, at preferred locations (Jacobo et al., 2010), while random
heterogeneities corresponding to quenched noise may degrade device performance. These effects all
merit future study.

From a mathematical point of view, one may wonder if the previous bifurcation scenarios persist
when a two-dimensional version of (1.1) is considered. Although several works have addressed the
study of LSs in the 2D LL equation in the context of diffractive cavities (Firth er al., 2002; Firth &
Lord, 1996; Scroggie et al., 1994), the characterization of the bifurcation structure and stability has only
focused on single LS (Gelens et al., 2008; Gomila ez al., 2007a, 2005), and a complete and systematic
characterization is therefore necessary. In this context, the simplest extension of the present work should
focus on radially symmetric structures, described by a nonautonomous one-dimensional problem in the
radial coordinate (Lloyd & Sandstede, 2009; McCalla & Sandstede, 2010). One can even consider a 3D
scenario, where LS correspond to the so-called optical bullets (Gopalakrishnan et al., 2021). Although
these objects have received some attention in different dissipative systems (Javaloyes, 2016; Jenkins
etal., 2009; Veretenov & Tlidi, 2009), their full bifurcation structure remains at present an open problem
as well.
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