
IMA Journal of Applied Mathematics (2021) 86, 856–895

https://doi.org/10.1093/imamat/hxab031

Advance Access publication on 10 August 2021

Origin, bifurcation structure and stability of localized states in Kerr dispersive

optical cavities

P. Parra-Rivas∗

OPERA-photonics, Université libre de Bruxelles, 50 Avenue F. D. Roosevelt, CP 194/5,

B-1050 Bruxelles, Belgium
∗Corresponding author: pparrari@ulb.ac.be

E. Knobloch

Department of Physics, University of California, Berkeley, CA 94720, USA

L. Gelens

Laboratory of Dynamics in Biological Systems, KU Leuven Department of Cellular and Molecular

Medicine, University of Leuven, B-3000 Leuven, Belgium

and

D. Gomila

Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat de

les Illes Balears, E-07122 Palma de Mallorca, Spain

[Received on 3 October 2020; revised on 26 April 2021; accepted on 10 June 2021]

Localized coherent structures can form in externally driven dispersive optical cavities with a Kerr-type

non-linearity. Such systems are described by the Lugiato–Lefever (LL) equation, which supports a large

variety of dynamical states. Here, we review our current knowledge of the formation, stability and

bifurcation structure of localized structures in the one-dimensional LL equation. We do so by focusing

on two main regimes of operation: anomalous and normal second-order dispersion. In the anomalous

regime, localized patterns are organized in a homoclinic snaking scenario, which is eventually destroyed,

leading to a foliated snaking bifurcation structure. In the normal regime, localized structures undergo a

different type of bifurcation structure, known as collapsed snaking. The effects of third-order dispersion

and various dynamical regimes are also described.

Keywords: bifurcation structure; homoclinic snaking; collapsed snaking; non-linear optics.

1. Introduction

Localized dissipative structures, hereafter referred to as LSs, emerge in a great variety of out of

thermo-dynamic equilibrium systems, ranging from plasma physics and non-linear optics to biology

and plant ecology (Akhmediev & Ankiewicz, 2008; Descalzi et al., 2011). The formation of such

states is associated with a double balance, between non-linearity and spatial coupling (e.g. diffusion,

dispersion and/or diffraction) on the one hand and energy dissipation and gain or driving on the other

(Akhmediev & Ankiewicz, 2008), and it is not related to the presence of intrinsic inhomogeneities in

the system. In non-linear optics, the confinement of light in optical cavities may lead to the formation

of LSs, which can be stationary or exhibit spatio-temporal dynamics including oscillations, excitability,

and chaos (Descalzi et al., 2011). In these cavities, the role of spatial coupling is played by either

© The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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LOCALIZED STRUCTURES IN KERR DISPERSIVE CAVITIES 857

beam diffraction or chromatic dispersion. In the first case, LSs have been studied in externally driven

diffractive non-linear Kerr cavities (Firth et al., 2002; Firth & Lord, 1996; Scroggie et al., 1994). In

this case, LSs consist of one-dimensional (1D) or two-dimensional (2D) spots of light embedded in

a homogeneous background and form in a plane transverse to the light propagation direction. These

LSs are therefore commonly known as ‘spatial cavity solitons’. In the second case, 1D LSs form in

wave-guided dispersive Kerr cavities, such as fibre cavities, whispering gallery mode resonators and

microresonators, where localization takes place along the propagation direction. In this context, LSs

are typically called ‘temporal cavity solitons’. Temporal LSs were experimentally demonstrated for

the first time by Leo et al. (2010) in the context of passive fibre cavities, and they were proposed as

key elements for all-optical information buffering. After this initial observation, interest in temporal

LSs has grown rapidly, in part due to their application in frequency comb generation (Del’Haye et

al., 2007; Kippenberg et al., 2011), which led in turn to the discovery of a wide range of different

types of stationary and dynamical LSs (Garbin et al., 2017; Herr et al., 2014; Leo et al., 2013a; Xue

et al., 2015).

Here, we review the origin, bifurcation structure and stability of the different types of temporal

LSs arising in passive Kerr dispersive cavities in both anomalous and normal dispersion regimes. In

the mean-field approximation, such cavities can be modelled by the well-known Lugiato–Lefever (LL)

equation (Chembo et al., 2017; Lugiato & Lefever, 1987)

∂tA = −(1 + iΔ)A + iν∂2
x A + i|A|2A + S (1.1)

with periodic boundary conditions

A(l + x, t) = A(x, t), ∂xA(l + x, t) = ∂xA(x, t), ∀ x, t, (1.2)

corresponding to a periodic domain of (large) period l. Here, A represents the normalized slowly varying

amplitude of the electric field circulating in the cavity, Δ is the normalized intra-cavity phase detuning

and S > 0 is the normalized driving field amplitude or pump. The parameter ν = ±1, with ν = 1 in the

anomalous dispersion regime and ν = −1 in the normal regime. In the following, we focus on solutions

of (1.1) that respect the reflection symmetry x → −x of the equation but also study solutions that break

this symmetry. We use Δ and S as control parameters, once ν is fixed, and take l = 160, solving (1.1)

on the domain −80 ≤ x ≤ 80.

In optics, the LL equation was first derived in the context of passive diffractive Kerr cavities (Lugiato

& Lefever, 1987) and later used to describe dispersive Kerr cavities, such as fibre cavities (Haelterman

et al., 1992), microresonators (Coen et al., 2013) and whispering gallery mode resonators (Chembo &

Menyuk, 2013). However, the LL equation had in fact appeared earlier in the context of plasma physics

and condensed matter physics (Kaup & Newell, 1978; Morales & Lee, 1974).

In one spatial dimension, the appearance of LSs is usually related to the presence of bistability

between two different, but coexisting, states and their formation is mediated by the locking or pinning

of fronts or domain walls (DWs) corresponding to heteroclinic orbits in a spatial dynamics description of

the system. One plausible situation is that a homogeneous state coexists with a subcritical Turing pattern

(Tlidi et al., 1994). In this case, the locking of the DWs between such states leads to the formation of

LSs consisting of a slug of the pattern embedded in a homogeneous background. Such structures are

known as ‘localized patterns’ (LPs). In the context of the LL equation (1.1), this scenario appears in the

anomalous dispersion regime, where LSs arise in the form of bright LPs. A second situation is related

to the presence of bistability between two different homogeneous states. An LS can then be seen as a
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858 P. PARRA-RIVAS ET AL.

portion of one homogeneous state embedded in the other (Coullet, 2002). This is the scenario that one

encounters in the normal dispersion regime, where the typical LSs are dark.

Owing to different DW locking processes, the LSs exhibit bifurcation structures with distinct

morphologies. In the anomalous regime, LPs are organized in a ‘snakes-and-ladders’ structure, whose

skeleton consists of two intertwined LP curves, which oscillate back-and-forth within a well-defined

parameter range as the LP grow in width. This bifurcation structure is referred to as ‘homoclinic

snaking’, a concept that goes back to the late ‘90s and the seminal paper ‘Heteroclinic tangles and

homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian Hopf bifurcation’, where

Woods & Champneys (1999) explain the formation of LPs through geometrical considerations, laying

the foundation for an important new field of study. In the normal regime, however, the dark LSs

are organized differently, in the so-called ‘collapsed homoclinic snaking’ structure, a structure that

is related to the presence of oscillatory tails in the DW profiles (Knobloch & Wagenknecht, 2005).

Our main concern in this article is to provide a detailed discussion of these two different bifurcation

structures in the context of passive dispersive Kerr cavities. To do so, we review the most relevant studies

regarding this topic, before presenting in Section 4 the new results that are essential to understanding

the emergence of these scenarios.

The paper is organized as follows. In Section 2, we introduce the stationary problem and review

the properties of homogeneous steady states (HSSs) and their linear stability in the main regimes

of operation (Section 2.1). We also present a spatial dynamical analysis of the system, where we

identify the bifurcations from which LSs may emerge and classify the different equilibria of the

equation (Section 2.2). Next, in Section 3, we use multiscale perturbation methods to reduce (1.1) to

different normal forms around each of the previously identified bifurcations and use these to find time-

independent small amplitude LS solutions. In Section 4, a similar reduction leads to the derivation

of the normal form associated with an essential codimension-two bifurcation of the system whose

unfolding contains both of the previous scenarios. Section 5 is then specifically devoted to the study of

the anomalous regime, the formation of bright LSs and the different bifurcation structures associated

with them. A similar study focusing on the normal regime, and on the formation and bifurcation

structure of dark LSs, is presented in Section 6. In Section 7, we present some of the oscillatory and

chaotic dynamics scenarios associated with both regimes. Section 8 demonstrates the impact of the loss

of spatial reversibility on these bifurcation structures. The paper concludes with a brief summary in

Section 9.

2. The stationary problem and spatial dynamics

In this work, we focus on the bifurcation structure and stability of steady states and therefore on the

solutions of the stationary LL equation

iν
d2A

dx2
− (1 + iΔ)A + i|A|2A + S = 0, (2.1)

or in terms of the real and imaginary parts of A ≡ U + iV ,

[L + N ]

[

U

V

]

+
[

S

0

]

=
[

0

0

]

, (2.2)
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LOCALIZED STRUCTURES IN KERR DISPERSIVE CAVITIES 859

where the linear (L) and non-linear (N ) operators are given by

L =
[

−1 Δ

−Δ −1

]

+
[

0 −ν

ν 0

]

∂2
x , N = (U2 + V2)

[

0 −1

1 0

] [

U

V

]

. (2.3)

This stationary equation supports different types of steady states, including spatially periodic, localized

and disordered states, as well as uniform or homogeneous states, which are characterized in detail in the

following section.

To fully understand the bifurcation structure of such states, it is essential to characterize their

temporal linear stability. If As is a stationary state of the system, i.e. a solution of (2.1), its temporal

stability can be computed by solving the eigenvalue problem

Lψ =σψ , L ≡ L + DN (As), (2.4)

obtained from the linearization of (1.1) about As, where DN (As) is the functional derivative of N with

respect to A, evaluated at As, and σ and ψ are the eigenvalues and eigenfunctions of L, respectively.

Linear stability can only be determined analytically in the simplest case, i.e. when As is a homogeneous

state. In other cases, the stability problem must be solved numerically by computing the eigenvalues of

the Jacobian matrix obtained from L after spatial discretization.

2.1 HSSs and linear stability analysis

The simplest steady state solution of (2.1) is obtained by setting d2A/dx2 = 0 and leads to the uniform

or HSS solutions Ah, namely

Ah = Uh + iVh, Uh =
S

1 + (Ih − Δ)2
, Vh ≡

(Ih − Δ)S

1 + (Ih − Δ)2
, (2.5)

where Ih ≡ |Ah|2 satisfies the classic cubic equation for optical bistability

I3
h − 2ΔI2

h + (1 + Δ2)Ih = S2. (2.6)

For Δ <
√

3, (2.6) is single valued and Ih is a monotone function of S, while for Δ >
√

3, Ih is triple

valued. In the latter case, Ih undergoes a pair of folds or saddle-node bifurcations SNb,t occurring at

It,b ≡ |At,b|
2 =

2Δ

3
±

1

3

√

Δ2 − 3, Ib ≤ It, (2.7)

created through a cusp or hysteresis bifurcation that takes place at Δ =
√

3. These saddle-node

bifurcations connect the three branches of HSS solutions, hereafter referred to as At
h, Am

h and Ab
h.

The temporal stability analysis of (1.1) around Ah follows on considering small perturbations of the

form (U, V) = (Uh, Vh) + ǫ(u1, v1) + O(ǫ2), where (u1, v1) = (aq, bq)e
iqx+σ t + c.c., and |ǫ| ≪ 1.

Inserting this ansatz in (1.1) and keeping terms of O(ǫ), we obtain the perturbation growth rate

σ(q) = −1 ±
√

4IhΔ − 3I2
h − Δ2 + (4Ih − 2Δ)νq2 − q4. (2.8)
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860 P. PARRA-RIVAS ET AL.

Fig. 1. HSSs and their linear stability. Panels (a)–(d) show the bifurcation diagram of Ah in the anomalous regime (ν = 1) for

Δ = 1.5, 1.75, 2.0, 2.5. Panels (e)–(h) show the same for the normal regime (ν = −1). Solid and dashed lines represent temporally

stable and unstable states, respectively. The different pictograms show the corresponding spatial eigenvalue configurations from

Fig. 3 describing stability in space. The folds SNb,t correspond to RTB or RTBH depending on the case. The spatial bifurcation

HH (see text) corresponds to the Turing instability and is marked with a purple dot. Adapted from Parra-Rivas et al. (2018a).

Thus, Ah is stable against perturbations of a given wavenumber q̄ if Re[σ(q̄)] < 0 and unstable

otherwise. The instability threshold corresponds to Re[σ(q)]qc
= 0 and dRe[σ(q)]qc

/dq = 0. These

two conditions lead to the equations

q4
c − ν(4Ih − 2Δ)q2

c + 3I2
h + Δ2 − 4IhΔ + 1 = 0, qc(q

2
c − ν(2Ih − Δ)) = 0. (2.9)

Equation (2.9)b shows there are two types of modes, uniform modes with qc = 0 responsible for the

saddle-nodes SNt,b and those with qc 	= 0 that trigger a Turing instability (Turing, 1952) at Ih := Ic.

In an infinite system qc =
√

ν(2 − Δ) and Ic = 1. In the context of non-linear optics this instability is

often referred to as a modulational instability. The Turing instability exists whenever ν(2 −Δ) > 0, and

therefore exists for Δ < 2 (Δ > 2) when ν = 1 (ν = −1).

In Fig. 1(a–d), we show how the stability of Ah changes as Δ varies in the anomalous regime (ν =
1). The solid (dashed) lines represent stable (unstable) states, and the purple dot indicates the Turing
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LOCALIZED STRUCTURES IN KERR DISPERSIVE CAVITIES 861

instability. Similarly, panels (e)–(h) in Fig. 1 show the stability of Ah in the normal regime (ν = −1)

for the same values of Δ. Note that in the anomalous regime, At
h is always unstable, but in the normal

regime, it is always stable. Thus, in the anomalous regime, only Ab
h can be (partially) stable, while in the

normal dispersion regime, Ab
h and At

h can both be stable in certain ranges of parameters and the system is

then said to exhibit bistability. This fact is essential for understanding the different types of LSs arising

in each of these scenarios, as well as their bifurcation structure.

2.2 The spatial dynamics picture

To understand the formation and origin of the different types of steady states arising in the system, it is

convenient to recast the stationary equation (2.1) as a 4D dynamical system

dy

dx
= A(Δ)y + N(y; S), y = (y1, y2, y3, y4)

T ≡ (U, V , Ux, Vx)
T , (2.10)

with

A(Δ) ≡

⎡

⎢

⎢

⎣

0 0 1 0

0 0 0 1

νΔ ν 0 0

−ν νΔ 0 0

⎤

⎥

⎥

⎦

, N(y; S) ≡

⎡

⎢

⎢

⎣

0

0

−ν(y1y2
2 + y3

1)

−ν(y2y2
1 + y3

2 − S)

⎤

⎥

⎥

⎦

, (2.11)

and then analyse its phase-space dynamics. In the context of pattern-forming systems, this technique

is usually known as the ‘spatial dynamics’ approach, and it allows one to understand the emergence of

LSs from a dynamical systems perspective (Haragus & Iooss, 2011). Equation (1.1) is invariant under

the spatial reflection x → −x, which leads to the invariance of the dynamical system (2.10) under the

involution

R(x, y1, y2, y3, y4) 
→ (−x, y1, y2, −y3, −y4).

When this symmetry holds, the system is said to be ‘spatially reversible’. The equivalence between

the spatial and temporal formulations permits one to establish a correspondence between the solutions

of (2.1) and those of the dynamical system (2.10). This duality is shown schematically in Fig. 2 for

the anomalous and normal regimes. For each regime, the left column shows a typical steady state

solution of (1.1), while the right column shows the equivalent orbit in the (y3, y1) phase plane projection

associated with (2.10). In this picture, the homogeneous solution Ab
h corresponds to a fixed point

yb
h = (Ub

h , Vb
h , 0, 0), while a spatially periodic state corresponds to a limit cycle yγ . An interesting

situation arises when different types of states (e.g. a fixed point and a limit cycle) coexist for the same

set of parameters. Different types of ‘heteroclinic orbits’ can then arise, corresponding to DWs or front

solutions of (2.1), leading to the complex scenarios explained below.

In the anomalous regime, the Turing bifurcation is subcritical when Δ > 41/30, leading to bistability

between the periodic Turing state P and Ab
h [Fig. 2(a)] and hence to the emergence of fronts like that

shown in Fig. 2(b), corresponding to a heteroclinic orbit connecting yb
h and yγ . These connections
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862 P. PARRA-RIVAS ET AL.

Fig. 2. Analogy between the stationary solutions of (1.1) and orbits of the spatial dynamical system (2.10) in the anomalous and

normal regime. For the solution of the LL equation, we plot U as a function of x, while in its spatial dynamics counterpart, we

show the projection on the (y3, y1) phase plane.

form as a result of a transverse or robust intersection between the unstable manifold of yb
h (Wu[yb

h])

and the stable manifold of yγ (Ws[yγ ]); the robustness of this intersection is in turn a consequence

of the dimensions of these manifolds, as further explained in Knobloch (2015). Furthermore, spatial

reversibility implies a similar intersection between Wu[yγ ] and Ws[yb
h], and hence the presence of a

heteroclinic cycle; homoclinic orbits in Ws[yb
h] ∩ Wu[yb

h] accumulate on this cycle. An example of such

an orbit is shown in Fig. 2(c), where the trajectory rotates several times around yγ before returning to

yb
h. Solutions of this type correspond to LPs containing a long plateau where the solution resembles the

spatially periodic pattern shown in Fig. 2(b). Each rotation around yγ generates an additional peak in the

profile of the LP. These orbits approach or leave Ab
h in an oscillatory manner, leading to the appearance

of oscillatory tails in the LP profile and correspond to Shilnikov or wild homoclinic orbits (Champneys

et al., 2007; Homburg & Sandstede, 2010). In contrast, orbits where the behaviour around the fixed

point is monotonic are known as ‘tame’ homoclinic orbits and correspond to ‘spikes’ (Verschueren &

Champneys, 2017).

The normal dispersion regime is very different as Ab
h and At

h can coexist in a stable way [Figs. 1

and 2(d)]. As a result, heteroclinic orbits can arise from the intersection between Ws[yb
h] and Wu[yt

h],

forming the DW shown in Fig. 2(e). As in the anomalous regime, spatial reversibility is responsible for

the formation of a variety of homoclinic orbits such as that shown in Fig. 2(f). The formation of such

LSs can be physically understood in terms of DWs that lock to one another, a mechanism that will be

discussed in Section 6.

The origin of the previous trajectories and their behaviour near the fixed point yh (i.e. Ah) can be

understood by analysing the spectrum of the linear operator A + DN evaluated at yh, which consists of

the four spatial eigenvalues

λ = ±
√

(Δ − 2Ih)ν ±
√

I2
h − 1. (2.12)
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LOCALIZED STRUCTURES IN KERR DISPERSIVE CAVITIES 863

Fig. 3. Schematic unfolding of the QZ point in the (Δ, S)-parameter space. Below Δ = 2, the lower fold SNb corresponds to

a RTBH bifurcation and the Turing instability to HH. At the QZ point (Δ = 2), these bifurcations collide, and for Δ > 2, SNb

becomes a RTB bifurcation and HH turns into a BD transition. These four lines organize the different type of equilibria of the

system. Adapted from Champneys (1998).

These eigenvalues lead to four different equilibrium configurations (regions A–D) depending on the

values of the parameters Δ and Ih (or S). These four configurations are depicted in the phase diagram

shown in Fig. 3 and are defined as follows: in A, yh is a saddle (s) with eigenvalues λ1,2 = ±a1,

λ3,4 = ±a2; in B, yh is a bi-focus (bi-f ) with the quartet of complex eigenvalues λ1,2,3,4 = ±a0 ± ib0;

in C yh is a double-centre (dc) with imaginary eigenvalues λ1,2 = ±ib1, λ3,4 = ±ib2; and in D, yh is a

saddle-centre (sc) with two real and two purely imaginary eigenvalues λ1,2 = ±a0, λ3,4 = ±ib0.

The transition from one region to an adjacent one occurs via the following codimension-one

bifurcations or transitions.

• A Belyakov–Devaney (BD) transition occurs between regions A and B. At this point, the spatial

eigenvalues are real: λ1,2 = ±a, λ3,4 = ±a.

• The transition between region B and region C is via a Hamiltonian–Hopf (HH) bifurcation, with

purely imaginary eigenvalues: λ1,2 = ±iqc, λ3,4 = ±iqc.

• The transition between region A and region D is via a reversible Takens–Bogdanov (RTB)

bifurcation with eigenvalues λ1,2 = ±a, λ3 = λ4 = 0.

• The transition between region C and region D is via a reversible Takens–Bogdanov–Hopf (RTBH)

bifurcation with eigenvalues λ1,2 = ±ib, λ3 = λ4 = 0.

Note that the spatial eigenvalues given by (2.12) can also be obtained from (2.8) by imposing σ(−iλ) =
0. As a result, the HH bifurcation corresponds to a Turing instability, while RTB and RTBH correspond

to SNb,t. This scenario is generic for reversible 4D dynamical systems (Champneys, 1998; Devaney,

1976; Haragus & Iooss, 2011), and is organized by a quadruple zero (QZ) codimension-two bifurcation

satisfying λ1 = λ2 = λ3 = λ4 = 0 (Iooss, 1995). Here, the QZ occurs at (Δ, S) = (2,
√

2), and it

organizes the appearance of the different types of steady-state solutions in the anomalous and normal

regimes (Godey et al., 2014; Parra-Rivas et al., 2014b). The transition between these different scenarios
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864 P. PARRA-RIVAS ET AL.

is shown in Fig. 1(a–d) for the anomalous regime, where Ih is plotted as a function of S for different

representative values of Δ. Figure 1(e–h) shows the transition between the different regimes for the

normal regime and the same values of Δ.

3. Weakly non-linear localized states

Close to the different spatial bifurcations discussed in Section 2, one can compute weakly non-linear

states using different approaches. One method consists in deriving the normal form associated with

the dynamical system (2.10) around each of the spatial bifurcations and solving the truncated system

(Godey, 2017). However, one can also follow another approach where such weakly non-linear states are

obtained from multiscale perturbation theory applied to (2.2). In this section, we review the main results

that one obtains using the latter method and refer to Burke et al. (2008) and Parra-Rivas et al. (2018a,

2016b) for a more detailed discussion.

Our two main bifurcation points of interest are the Turing bifurcation point (i.e. an HH spatial

bifurcation) and the fold points SNb,t (i.e. RTB or RTBH). In the neighbourhood of such bifurcations,

weakly non-linear time-independent states are captured by the ansatz:

A(x) − Ah ≈ ǫZ(X)eiqcx + c.c.,

where ǫ ≪ 1 measures the parameter distance from the bifurcation, qc is the characteristic wavenumber

of the marginal mode at the bifurcation (qc = 0 for the fold and qc 	= 0 for HH) and Z is an

envelope function describing spatial modulation occurring at a larger scale X = ǫαx, where α depends

on the specific case. In the following, we split the stationary solutions as (U, V)T =
(

Uh, Vh

)T +
(u(x, X), v(x, X))T , to separate the homogeneous part of the problem from the space-dependent one.

3.1 Weakly non-linear states near the HH bifurcation

To compute the weakly non-linear states near HH, we fix Δ, consider S = Sc + δǫ2 and propose the

expansions
(

Uh, Vh

)T =
(

Uc, Vc

)T + ǫ2
(

Uh
2 , Vh

2

)T + · · · and (u, v)T = ǫ
(

u1, v1

)T + ǫ2
(

u2, v2

)T +
ǫ3

(

u3, v3

)T + · · · , where (ui, vi)
T depend on both the short-scale x and the long-scale X ≡ ǫx. Inserting

these expansions into (2.2), keeping the terms of the same order in ǫ and solving the resulting linear

equations, we conclude that the asymptotic solution we are looking for can be written as

(U, V)T ≈ (Uc, Vc)
T +

S − Sc

δ
(U2, V2)

T +
√

S − Sc

δ
(u1, v1)

T , S − Sc → 0, (3.1)

where (Uc, Vc)
T is given by (2.5) evaluated at Ih = Ic. Here (U2, V2)

T represents the leading order

correction to the homogeneous solution, namely

(U2, V2)
T =

δ
(

Δ2 − 2 Δ + 2
)

(Δ − 2)

(

Δ2, 2 − Δ2 − Δ
)T

, (3.2)

while the space-dependent correction reads

(u1, v1)
T = 2

(

Δ

2 − Δ
, 1

)T

Z(X) cos(qcx + ϕ). (3.3)
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The amplitude Z(X) is the solution of the time-independent normal form around HH,

νC1ZXX + δC2Z + C3Z3 = 0, (3.4)

with the coefficients

C1 = −
2
(

Δ2 − 2 Δ + 2
)

Δ − 2
, C2 =

2
(

Δ2 − 2 Δ + 2
)

3
2

(Δ − 2)4
, C3 =

4
(

Δ2 − 2 Δ + 2
)2

(30 Δ − 41)

9 (Δ − 2)6
,

(3.5)

with C2 > 0 and C1 > 0 if Δ < 2, and negative otherwise.

When Z(X) ≡ Z, (3.4) leads to the constant solution Z =
√

−δC2/C3, which corresponds to the

spatially periodic pattern state

(U, V)T − (Uh, Vh)
T ≈ 2

(

Δ

2 − Δ
, 1

)T
√

C2

C3

(Sc − S) cos
(

qcx + ϕ
)

, (3.6)

where ϕ is an arbitrary phase. Note that these solutions exist whenever Δ < 2 and arise from HH sub-

or supercritically depending on the sign of C3. The case with C3 > 0 corresponds to Δ > 41/30 and

leads to a subcritical emergence of the pattern from HH (i.e. the pattern bifurcates towards S < Sc). In

contrast, for Δ < 41/30 the pattern arises supercritically, i.e. towards S > Sc. These results agree with

those obtained previously by different authors when studying the dynamics of periodic Turing patterns

near the HH point (Godey, 2017; Lugiato & Lefever, 1987; Miyaji et al., 2010; Périnet et al., 2017).

In the subcritical regime, solutions with large-scale modulation Z ≡ Z(X) are present, and these are

given by

Z(X) =

√

−2δC2

C3

sech

(√

−δC2

νC1

X

)

, (3.7)

corresponding to

(U, V)T − (Uh, Vh)
T ≈ 2

(

Δ

2 − Δ
, 1

)T
√

−2C2(S − Sc)

C3

sech

(√

−C2(S − Sc)

νC1

x

)

cos
(

qcx + ϕ
)

.

(3.8)

These solutions arise subcritically from Sc whenever νC1 > 0. Thus, in the anomalous regime (ν = 1),

they emerge subcritically when Δ < 2, but in the normal regime (ν = −1), they do so for Δ > 2.

The spatial phase ϕ of the background periodic pattern remains arbitrary, and there is no locking

with the envelope at any finite order in ǫ. However, calculations beyond all orders predict that two

specific values of ϕ, ϕ = 0, π are selected, both preserving the reversibility symmetry (x, A) → (−x, A)

of (1.1) (Burke & Knobloch, 2006; Chapman & Kozyreff, 2009; Kozyreff, 2012; Kozyreff & Chapman,

2006; Melbourne, 1998). Thus, there are two types of localized weakly non-linear solutions, one with a

maximum at the centre of the domain (x = 0), corresponding to ϕ = 0, and another with a minimum at

x = 0, associated with ϕ = π . In the following, we label these families Γ0 and Γπ , respectively.
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3.2 Weakly non-linear states near the saddle-node bifurcations SNb,t

Next, we look for weakly non-linear solutions around the saddle-node bifurcations SNr ≡ SNb,t and

focus on the case where they correspond to a RTB bifurcation. To do so, we again propose S ≈ Sr +δrǫ
2,

with Sr ≡ Sb,t, δr = δs
rδ (δs

b = −1, δs
t = 1, and δ > 0) and the asymptotic expansions

(

Uh, Vh

)T =
(

Ur, Vr

)T + ǫ
(

Uh
1 , Vh

1

)T + ǫ2
(

Uh
2 , Vh

2

)T +· · · , and (u, v)T = ǫ
(

u1, v1

)T + ǫ2
(

u2, v2

)T +· · · , where this

time (ui, vi)
T depend only on the long scale X ≡

√
ǫx. Proceeding similarly as in the previous case, we

can compute asymptotic weakly nonlinear LSs, which take the leading order form

(U, V)T = (Ur, Vr)
T +

√

S − Sr

δr

(Uh
1 + u1, Vh

1 + v1)
T , (3.9)

where (Ur, Vr)
T is given by (2.6) evaluated at Ih = Ir ≡ Ib,t and (Uh

1 , Vh
1 )T is the leading-order correction

to Ah, namely

(Uh
1 , Vh

1 )T =
√

δμr(1, ηr)
T , ηr = −

1

2
(Δ − Ir − 2U2

r ), μr =
μs

r
√

|Υr|
, (3.10)

where Υr ≡ 3η2
r Vr + 2ηrUr + Vr, μs

b = −1, μs
t = 1. Moreover, ηr > 0 (ηr < 0) if Δ < 2 (Δ > 2).

The space-dependent contribution is given by (u1, v1)
T = (Uh

1 , Vh
1 )TZ(X), where the amplitude Z(X)

is a solution of the time-independent normal form

νηrμr

δs
r

√
δ

ZXX + 2Z + Z2 = 0. (3.11)

This equation supports solutions of the form

Z(X) = −3 sech2

⎛

⎝

√

−
√

δ|Υr|
2νηr

X

⎞

⎠ , (3.12)

corresponding to tame weakly non-linear LSs,

(U, V)T − (Uh, Vh)
T ≈ −3μs

r

√

δs
r(S − Sr)

|Υr|
(1, ηr)

Tsech2

(
√

Cr

√

δs
r(S − Sr)x

)

, (3.13)

where the HSS term (Uh, Vh)
T contains the contribution of (Ub,t, Vb,t)

T and (Uh
1 , Vh

1 )T , provided

Cr ≡ −
√

|Υr|
2νηr

> 0. (3.14)

Thus, tame homoclinic orbits of the form (3.13) arise from the spatial RTB bifurcation at SNb in the

anomalous regime (ν = 1) whenever ηr = ηb < 0, and therefore when Δ > 2, and in the normal regime
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LOCALIZED STRUCTURES IN KERR DISPERSIVE CAVITIES 867

(ν = −1) whenever ηr = ηb > 0, a condition satisfied for
√

3 < Δ < 2. In contrast, such states emerge

from SNt only in the normal regime (i.e. ηr = ηt > 0), but do so for any value of Δ >
√

3.

When the folds SNb,t correspond to RTBH bifurcations the situation is rather more delicate

(Haragus & Iooss, 2011). In this case, new states, commonly known as ‘generalized solitary waves’,

may be present. These states are biasymptotic to a spatially periodic state of constant but arbitrarily

small amplitude. Embedded among these generalized solitary states are true homoclinic states, i.e.

exponentially localized states with no oscillations in their tail, as described by Kolossovski et al. (2002).

A proper computation of these states requires the application of a careful normal form approach to

(2.10), as done by Godey (2017) in the context of (1.1). However, as found by Gandhi et al. (2018), the

weakly non-linear solution (3.13), obtained through formal multiscale perturbation analysis that ignores

the centre eigenvalues, may provide a good approximation to such states provided one replaces Cr in

(3.13) by |Cr|. As far as we know, these types of states have not been studied in detail in the present

context and are left for a future work.

4. The origin of all localized structures: the QZ point

To completely understand the origin of the LSs, the different bifurcation scenarios and the transitions

between them in both the anomalous and normal regimes, it is essential to unveil the dynamics emerging

nearby the QZ codimension-two bifurcation. The first systematic study of the dynamical features of this

point was carried out by Iooss (1995) in a scenario involving a trivial state. Here, however, the QZ does

not take place on a trivial state but on a non-trivial one. In this section, we reduce the LL equation

(1.1) to the unfolded normal form associated with the QZ bifurcation. We show that the latter equation

captures the main local features of the system about QZ. In the following, we focus on the anomalous

regime and therefore fix ν = 1.

The HSS Ah undergoes a QZ bifurcation at (U
Q
h , V

Q
h )T = (1/

√
2, −1/

√
2) at the parameter space

point (Δ, S) = (ΔQ, SQ) ≡ (2,
√

2). To explore the dynamics of the system around QZ, we introduce

a small parameter ǫ measuring the distance from this point, Δ = ΔQ + ǫ2β, and write S = SQ + ǫ4η

and (U(x, t), V(x, t))T = (U
Q
h , V

Q
h )T + (u(x, t), v(x, t))T . We also introduce the slow scales X ≡ ǫx and

T ≡ ǫ4t, and the scaling (u, v) → ǫ4(u, v). Finally, we expand the deviation from QZ as a power series

in ǫ,

(u, v)T = ǫ(u1, v1)
T + ǫ2(u2, v2)

T + ǫ3(u3, v3)
T + ǫ4(u4, v4)

T + · · · , (4.1)

with (ui, vi) depending on X and T . Inserting this expansion in (1.1) and keeping all terms of the same

order in ǫ, one obtains at O(ǫ4) the required normal form about the QZ point,

ZT = −ZXXXX + βZXX + Z2 + η, (4.2)

where β ∝ Δ − ΔQ, η ∝ S − SQ are the two unfolding parameters, and (u4, v4)
T = (ξ1, ξ2)

TZ(X, T),

with ξi ∈ R. This equation has gradient structure, and therefore temporal dynamical states are excluded.

The simplest steady state is the HSS Zh given by Zh = ±
√

−η, composed of two solution branches Z±
h

connected by a fold at η = 0 (Fig. 4). For β < 0, the HSS undergo a Turing bifurcation at Zc = −β2/8

that gives rise to spatially periodic states with wavenumber q2
c = −β/2, while the fold corresponds to

a saddle-node bifurcation. The stability of Zh against spatio-temporal perturbations is shown in Fig. 4

using solid (dashed) lines for stable (unstable) states.
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868 P. PARRA-RIVAS ET AL.

Fig. 4. HSS solutions of 4.2, and possible unfolding of the QZ bifurcation as a function of β. The red line shows the two HSS

solution branches Z±
h

separated by a fold at η = 0. For β < 0, Z−
h

undergoes a HH bifurcation. At β = 0 HH collides with the

fold leading to the QZ point. For β > 0, HH becomes a BD and RTBH becomes RTB. Solid (dashed) lines correspond to stable

(unstable) states.

The time-independent version of (4.2) can be recast into the dynamical system

dz

dX
= A(β)z + N(z; η), z = (z1, z2, z3, z4)

T ≡ (Z, ZX , ZXX , ZXXX)T , (4.3)

with

A(β) ≡

⎡

⎢

⎢

⎣

0 1 0 0

0 0 1 0

0 0 0 1

0 0 β 0

⎤

⎥

⎥

⎦

, N(z; η) ≡

⎡

⎢

⎢

⎣

0

0

0

z2
1 + η

⎤

⎥

⎥

⎦

. (4.4)

The linearization of this dynamical system about Zh leads to a spatial eigenspectrum consisting of

the four eigenvalues satisfying λ4 − βλ2 − 2Zh = 0, i.e.

λ = ±

√

β ±
√

β2 + 8Zh

2
. (4.5)

Depending on the value of β, three possible scenarios may occur which are schematically described

in Fig. 4. For β < 0, Z−
h encounters a HH at (ηc, Zc) = −(β4/64, β2/8), such that Z−

h is a bi-focus

for η < ηc and double centre for η > ηc. The fold encountered at η = 0 corresponds to a RTBH

bifurcation with eigenvalues λ1,2,3,4 = (±i
√

|β|, 0, 0) from where the saddle-centre Z+ arises. In this

context, spatially periodic solutions may bifurcate from HH subcritically together with the two families

of wild homoclinic orbits corresponding to Γ0,π as described in Section 3.1. For β = 0, HSS encounters

the QZ bifurcation at (η, Zh) = (0, 0) as shown in Fig. 4. For β > 0 HH has become a BD and the

fold a RTB bifurcation with eigenvalues λ1,2,3,4 = (±
√

|β|, 0, 0). From this last point, tame homoclinic

orbits may arise as described in Section 3.2. Therefore, the normal form (4.2) captures the main spatial

dynamical features of the LL equation around the QZ bifurcation that takes place at the fold SNb, as

depicted in Fig. 1(b–d).

Note that the change of variable Z → Zh + Z transforms (4.2) into the quadratic SH equation

studied by Buffoni et al. (1996). Consequently, most of the results found in that work apply here as

well, although they require reinterpretation. A complete understanding of (4.2) thus requires further

analysis that is beyond the scope of the present paper.
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LOCALIZED STRUCTURES IN KERR DISPERSIVE CAVITIES 869

Fig. 5. Schematic representation of the different bifurcation scenarios around QZ in the anomalous regime that may arise as

Δ varies. In (a) Δ < 2, and a spatially periodic state (i.e. a limit cycle) arises from HH together with two families of LPs (i.e.

Shilnikov homoclinic orbits). In (b) Δ = 2 and a QZ occurs when HH collides with the saddle-node RTBH bifurcation. At this

point, the periodic pattern reemerges as a spike. In (c) Δ > 2 and the LPs and periodic patterns undergo a global bifurcation at

BD, leaving a single spike, which then survives until the saddle-node RTB where it disappears.

5. Localized structures in the anomalous regime: homoclinic and foliated snaking

In this section, we discuss the origin and bifurcation structure of the LSs arising in the anomalous

dispersion regime (ν = 1). The different bifurcation scenarios in this regime are organized by the QZ

point, as shown schematically in Fig. 5 and discussed in more detail in what follows. In Fig. 5(a), when

41/30 < Δ < 2, a spatially periodic pattern arises subcritically from HH together with two families

of LPs (Γ0,π ) that are ultimately responsible for the snakes-and-ladders bifurcation structure of the LPs

in the snaking regime. This snakes-and-ladders structure is also linked to the bifurcation features of the

periodic pattern (Parra-Rivas et al., 2018a). This scenario is presented in Sections 5.1 and 5.2. When

Δ = 2, the HH collides with the RTBH (i.e. SNb), leading to a QZ; see Fig. 5(b). At this point, the

spatially periodic pattern and the LPs come together forming spike LSs (i.e. tame homoclinic orbits)

for Δ > 2 (Parra-Rivas et al., 2018a). Figure 5(c) shows how the spike LSs bifurcate from RTB and

persist until the BD point, where they are destroyed in a broom homoclinic bifurcation, leading to the

emergence of spatially periodic patterns and LPs. These two scenarios are discussed in Section 5.3.

5.1 Bifurcation structure of periodic Turing patterns

As mentioned previously, the formation of LPs and their bifurcation structure are directly related to the

spatially periodic pattern arising from the HH bifurcation with wavenumber qc. Therefore, it is essential

to understand first the bifurcation features of such pattern states. For parameter values close to the HH

point, periodic patterns are well described by the approximate asymptotic expression (3.6). However,

as the system parameters shift from HH, the accuracy of (3.6) diminishes. In this case, it is essential to

use numerical path continuation algorithms to track the periodic solutions (Allgower & Georg, 1990;

Doedel et al., 1991a,b). These methods, based on a predictor-corrector approach, permit the numerical

tracking of a given state, here a spatially periodic state, as a function of a suitable control parameter. In
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870 P. PARRA-RIVAS ET AL.

Fig. 6. Bifurcation diagrams associated with the primary Turing pattern (P1, q = qc) emerging from HH for three representative

values of Δ, namely Δ = 1.2 in (a), Δ = 1.5 in (b) and Δ = 1.72 in (c). Panel (d) shows the phase diagram in the (Δ, S) parameter

space, where the main bifurcation curves relevant to spatially periodic states are plotted. The light blue area corresponds to the

region of bistability between Ah and P1, and spans the region between SN
p
1

and HH. The vertical dashed lines correspond to the

diagrams shown in panels (a)–(c). Panels (1) and (2) show two examples of P1 (q = qc) and P2 (q = 2qc) when Δ = 1.5. Adapted

from Parra-Rivas et al. (2018b).

the present case, the application of this technique leads to the bifurcation diagrams shown in Fig. 6(a–c),

where the energy E1 is defined as the L2-norm of A,

E1 ≡ ||A||2 ≡
1

l

∫ l/2

−l/2

|A(x)|2 dx. (5.1)

Figure 6(a) shows the bifurcation diagram for Δ = 1.2, corresponding to a cut of the (Δ, S)-phase

diagram shown in Fig. 6(d), where the main bifurcation curves of the system are plotted. For this value

of Δ, the primary periodic pattern P1 arises from HH supercritically and is therefore temporally stable

[see the blue brach in Fig. 6(a)]. Increasing S, this state connects with a subsidiary primary pattern P2

of wavenumber 2qc originating at pb2 and does so at a 2 : 1 spatial resonance SR2:1 (see close-up

view). With increasing S, the P2 pattern connects to a subsidiary primary pattern P4 with q = 4qc at

a second SR2:1 (not shown here). This process repeats, leading to a sequence of primary bifurcations

pb2i to patterns with wavenumber q = 2iqc (i = 0, 1, 2, . . . ) and associated SR2:1 points, as described

in Parra-Rivas et al. (2018b). Unlike HH, the subsidiary primary bifurcations cannot be characterized in

terms of spatial dynamics. However, as recently shown by Gärtner et al. (2019), they can be determined

analytically in terms of transversality conditions.
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LOCALIZED STRUCTURES IN KERR DISPERSIVE CAVITIES 871

Increasing Δ further, P1 becomes subcritical at the degenerate HH point D1 occurring at Δ = 41/30.

This situation is shown in Fig. 6(b) for Δ = 1.5. In this case, P1 is initially unstable but acquires stability

in a saddle-node bifurcation SN
p

1. A representative example of this periodic state is shown in Fig. 6(1).

Thereafter, P1 remains stable all the way until it reaches SN
p

2, where it again loses stability, prior to

connecting to P2 [see profile shown in Fig. 6(2)] at SR2:1. Thus, in this regime there is a parameter

interval where stable P1 and Ah coexist, an interval we refer to as the pattern-Ah bistability region [see

shaded box in Fig. 6(b)]. In the phase diagram shown in Fig. 6(d), the bistability region corresponds to

the light blue area between SN
p

1 and HH.

The bifurcation at pb2 becomes degenerate at D2 and beyond D2 the pattern P2 arises subcritically

and stabilizes at SN
p

3. At this stage, the bifurcation scenario is similar to that depicted in Fig. 6(c) for

Δ = 1.72, where P1 still connects with P2 in SR2:1, which now occurs very close to SN
p

3 [see the close-

up view of Fig. 6(c)]. This bifurcation scenario persists for all Δ < 2. In the limit Δ → 2 (i.e., when

approaching the QZ point), the phase diagram of Fig. 6(d) shows how HH and the subsidiary bifurcation

pb2 tend asymptotically to SNb, whereas SR2:1 tends to SN
p

3. The diagrams shown in Fig. 6(a–c) reflect

the bifurcations associated with P1 and P2 only, although similar transitions occur between P2 and P4,

P4 and P8, and so on (Parra-Rivas et al., 2018b).

Furthermore, these patterns undergo a variety of other instabilities, such as Eckhaus and Hopf

bifurcations, which have been analysed in detail by different authors (Delcey & Haragus, 2018;

Kholmyansky & Gat, 2019; Parra-Rivas et al., 2018b; Périnet et al., 2017). For example, Périnet

et al. (2017) and Delcey & Haragus (2018) perform an analytical study of the Eckhaus instability of

supercritical patterns very close to HH. In highly non-linear regimes, however, this approach is no

longer valid and stability must be computed numerically as done in Périnet et al. (2017), Parra-Rivas

et al. (2018b), Kholmyansky & Gat (2019) and Gomila et al. (2020).

We have focused here on the bifurcation structure of Turing patterns arising from HH, i.e. patterns

with wavenumber qc. However, the subsidiary patterns with wavenumber q = 2iqc, i = 1, 2, . . . that

emerge from Ah whenever Ih > Ic undergo similar behaviour and other bifurcation structures organized

through 3:1 spatial resonances (SR3:1), etc. are also present, as discussed further by Périnet et al. (2017).

5.2 LPs and the snakes-and-ladders structure

The weakly non-linear analysis carried out in Section 3 revealed that whenever 41/30 < Δ < 2, weakly

nonlinear LPs of the form (3.8) bifurcate subcritically from HH together with spatially periodic states

of wavenumber qc [see (3.6)]. Moreover, these LPs emerge in two families Γ0 and Γπ , corresponding to

ϕ = 0 and ϕ = π , respectively. Like the weakly non-linear patterns, these asymptotic LP solutions are

only valid very close to HH. However, the numerical path continuation methods applied in Section 5.1

allow one to characterize such states in highly non-linear regimes for parameters far from HH and to

compute their bifurcation diagrams.

Figure 7 shows the resulting diagram computed for Δ = 1.5, where instead of E1, we use the

bifurcation measure E2 ≡ ||A − Ah||2 to better visualize the solution branches. The two families of

solutions, Γ0 and Γπ , are plotted in blue and green, respectively. Both curves of solutions persist to finite

amplitude and undergo ‘homoclinic snaking’: a sequence of back-and-forth oscillations in S reflecting

the successive nucleation of a pair of pattern peaks, one of each side of the structure, as one follows

the diagram (i.e. Γ0 and Γπ ) upwards. These oscillations occur within an interval Sl < S < Sr, known

as the ‘snaking or pinning region’. The solution curves Γ0 and Γπ undergo a sequence of saddle-node

bifurcations SN
l,r
i at which the LPs repeatedly gain and lose temporal stability. Some representative

examples of these LPs are shown in Fig. 7(1–8). The profiles shown in panels (1–4) belong to Γ0 and
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Fig. 7. LPs and the homoclinic snaking structure. We show the L2-norm E2 as a function of S for Δ = 1.5. Solid (dashed) lines

correspond to temporally stable (unstable) states. The blue snaking curve corresponds to the Γ0 family of LPs. Panels (1)-(4)

show some representative examples along this curve. The green snaking curve corresponds to Γπ , and some representative LP

examples along this curve are shown in panels (5)–(8). The snaking or pinning region is delimited by Sl,r . The states Γ0 and Γπ

arise together in HH and connect with two periodic patterns of different wavelengths (see the red and orange curves). For both

Γ0,π the saddle-node bifurcations are labelled SN
l,r
i

from the bottom to the top, with i = 1, 2, 3, . . . Adapted from Parra-Rivas et

al. (2018a).

consist of an odd number of pattern peaks embedded in an Ab
h background. The solution profiles shown

in panels (5–8) belong to Γπ , and consist of an even number of pattern peaks embedded in Ab
h. The

saddle-node bifurcations on either side of these curves converge exponentially and monotonically to the

limits of the pinning region Sl and Sr.

In an infinite domain, the peak nucleation process continues indefinitely. In a finite domain, however,

this process must terminate, as the number of peaks allowed is constrained by the size of the domain.

In periodic domains, like ours, Γ0 and Γπ terminate near the saddle-node of one of the many subcritical

periodic patterns emerging from Ah for Ih > Ic as shown in Fig. 7.

Figure 8 shows a portion of the diagram shown in Fig. 7, where we plot the rung states connecting

Γ0 and Γπ . These branches correspond to travelling asymmetric states. These states move at a constant

speed determined by the parameters and are temporally unstable. The rung states arise from secondary

symmetry-breaking bifurcations (p
l,r
i ) occurring near SN

l,r
i on both Γ0 and Γπ . Some of these states are

shown in Fig. 8(1–4). In Fig. 8(1), the two-peak profile bifurcating from pl
1 is weakly asymmetric and

therefore very similar to the completely symmetric state on the unstable Γπ branch. As S increases, the

peak on the right decreases in amplitude [see profiles (2) and (3)] until it rejoins Γ0 in pr
1, becoming

the completely symmetric single peak LP shown in Fig. 8(4). The secondary bifurcations are pitchforks

so each rung actually includes a pair of branches of asymmetric states with identical E2 and related by

the reversibility symmetry A(x) → A(−x). The rung states form, together with the homoclinic snaking,
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LOCALIZED STRUCTURES IN KERR DISPERSIVE CAVITIES 873

Fig. 8. The snakes-and-ladders bifurcation structure. The homoclinic snaking curves Γ0 and Γπ are interconnected through

a series of rung branches corresponding to asymmetric states. The states arise from symmetry-breaking pitchfork bifurcations

labelled p
l,r
i

(i = 1, 2, 3, . . . ) occurring near the folds of the snaking curves. Labels (1)–(4) in the diagram correspond to the LP

states shown on the right. Adapted from Parra-Rivas et al. (2018a).

what is now known as a ‘snakes-and-ladders’ structure, first identified by Burke & Knobloch (2006,

2007) in the context of the Swift-Hohenberg equation.

As originally proposed by Woods & Champneys (1999), the emergence of these LPs, and the

homoclinic snaking that they undergo, is a consequence of a ‘heteroclinic tangle’ present within

Sl < S < Sr arising from the transversal intersection of the unstable manifold of Ab
h [Wu(Ab

h)] and

the stable manifold of a given spatially periodic pattern P [Ws(P)] as S varies and vice versa (Beck

et al., 2009). The first tangency between Wu(Ab
h) and Ws(P) at Sl corresponds to the birth of Shilnikov-

type homoclinic orbits bi-asymptotic to the bi-focus equilibrium Ab
h, while the last tangency at Sr

corresponds to their destruction. In fact, the actual scenario in the context of (1.1) is more complex,

as additional LPs and complexes arise from the heteroclinic tangle between the stable and unstable

manifolds of the high amplitude stable pattern and the low amplitude unstable pattern (Gomila et al.,

2007b). We refer to these works for a more detailed description of the heteroclinic tangle process.

Thus far, we have focused on a particular and representative detuning value: Δ = 1.5. However, the

snakes-and-ladders structure persists within a larger parameter range extending to Δ = 2. The region of

existence of this bifurcation structure can be computed by means of two-parameter continuation of the

saddle-nodes SN
l,r
i in the (Δ, S)-parameter space. In doing so, we obtain the phase diagram shown in

Fig. 9, where the main bifurcations of the system are plotted. The bifurcation curves include HH (purple

solid line), which becomes a BD transition for Δ > 2 (purple point-dashed line), the saddle-nodes SNb,t

of the homogeneous states, and the saddle-nodes SN
l,r
1 of the single-peak LS.

When Δ > 2 the snakes-and-ladders structure is no longer present but spike LSs remain and are now

organized in a new snaking structure called foliated snaking, as described next. On an infinite domain we

expect that this structure extends only up to the BD line (Champneys, 1998; Parra-Rivas et al., 2018a;

Verschueren & Champneys, 2021) but this appears not to be the case on finite periodic domains where

periodic arrays of spikes can be continued past the BD point into the region where the spike tails are
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Fig. 9. Phase diagram in the (Δ, S) parameter plane showing the main bifurcations of the system and the region of existence

and stability of the LSs. For Δ < 2 LPs exist between SNl
1

and SNr
1

and are organized within a snakes-and-ladders structure.

For Δ > 2 the homoclinic snaking is destroyed but LPs persist for parameters (Δ, S) below BD. In contrast, spike LSs exist and

undergo foliated snaking between SNl
1

and SNr
1
. The region of existence of stable LSs is shown in light orange. For large values of

Δ the system undergoes a Hopf (H) bifurcation and the spikes begin to oscillate, eventually leading to temporal and spatiotemporal

chaotic dynamics (light blue area). The Hopf bifurcation arises from a Fold-Hopf or Gavrilov-Guckenheimer codimension-two

point on SNr
1
. The inset shows a close-up view of the phase diagram around the QZ point where all the spatial bifurcations arise.

Adapted from Parra-Rivas et al. (2018a).

all monotonic (Knobloch & Yochelis, 2021). This is a consequence of the fact that on such domains the

global bifurcations (in space) that destroy these structures can no longer take place. This behaviour is

related to the scenarios shown in Fig. 5(b and c) and is addressed in more detail in the next section.

5.3 Foliated snaking and the remnants of homoclinic snaking

So far, we have focused on the bifurcation structure of spatially periodic patterns and the LPs emerging

from HH for Δ < 2. At Δ = 2 the system undergoes a QZ bifurcation resulting from the collision of

the HH and the RTBH at SNb. As a result, for Δ > 2, HH is replaced by a BD transition and Ab
h is stable

until SNb, which now corresponds to a RTB spatial bifurcation. At this point, one may wonder what

happens to the snakes-and-ladders bifurcation scenario, and whether LPs still exist or simply disappear.

Using the multiscale perturbation analysis of Section 3, one finds that whenever Δ > 2, weakly

nonlinear tame LSs [see (3.13)] bifurcate from SNb (i.e. a RTB). Although this solution is only valid

near SNb, numerical continuation of such states eventually leads to the bifurcation diagram shown in

Fig. 10. This bifurcation structure is known as ‘foliated snaking’ (Glasner, 2012; Ponedel & Knobloch,

2016). The small amplitude pulse emerging from SNb is like that shown in Fig. 10(1) and is associated

with the solution branch Γ u
1 . Decreasing S along Γ u

1 , this state grows in amplitude until it reaches

SNl
1, where it stabilizes and becomes the high amplitude ‘spike’ shown in Fig. 10(2), corresponding to

the solution branch Γ s
1 . Increasing S further, this state eventually undergoes a saddle-node bifurcation

(SNr
1) where it loses stability. Soon after SNr

1 is passed, a new small amplitude spike is nucleated at a

separation l/2 from the high amplitude peak as shown in Fig. 10(3). We label the corresponding solution

branch Γ u
12. The newly nucleated spike grows in amplitude as S decreases until it becomes identical to

the original spike. This occurs at a 2:1 spatial resonance SR2:1, where Γ u
12 connects with Γ u

2 and Γ s
2 ,

very close to SNl
2. Along Γ s

2 , the two spikes grow together as S increases [Fig. 10(4)], while the opposite
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LOCALIZED STRUCTURES IN KERR DISPERSIVE CAVITIES 875

Fig. 10. Bifurcation diagram showing the foliated snaking structure for Δ = 2.5. All the different unstable branches Γ u
n , with

n = 1, 2, 3, . . . emerge from SNb (RTB) and connect to one another through a sequence of 2:1 spatial resonances SR2:1 occurring

nearby SNl
i
. Stable (unstable) branches are labelled with solid (dashed) lines. The blue dots on the foliated snaking branches

correspond to the states shown in the panels on the right. Adapted from Parra-Rivas et al. (2018a).

occurs along Γ u
2 [see profile Fig. 10(5)] as the amplitude of the two-peak state decreases to zero at SNb

and the branch connects to Ab
h. Beyond SNr

2 (see Γ u
24), intermediate spikes nucleate midway between

the large spikes already present [Fig. 10(6)], and these grow to full amplitude by the time they reach

the next SR2:1 point near SNl
4 where Γ u

4 connects to Γ s
4 . Two characteristic states from these branches

are shown in Fig. 10(7 and 8). The very same process repeats, resulting in a cascade of equally spaced

states with 2n spikes.

The foliated snaking scenario resembles the bifurcation structure associated with the periodic

patterns discussed in Section 5.1. Indeed, the diagram shown in Fig. 10 is similar to that plotted

in Fig. 6(c) once the background field Ab
h is removed from the latter. A first explanation of this

similarity can be found in the spatial dynamics analysis carried out in Section 3. Let us imagine

a periodic pattern bifurcating from HH with q = qc in the regime Δ < 2. When the system

approaches QZ from below (Δ → 2−), qc → 0 and a spatially periodic pattern with domain-

size wavelength becomes indistinguishable from the spike shown in Fig. 10(2). This is the situation

described schematically in Fig. 5(b). Thus, in this limit, P1 becomes a single spike, P2 two equidistant

spikes, and so on. This new configuration persists for Δ > 2 preserving the bifurcation structure

of the qc > 0 patterns. Furthermore, on top of this bifurcation structure, similar foliated snaking

structures can be found for states with n ∈ N
+ equidistant peaks, where the different branches

also emerge from SNb but are now interconnected through n:1 spatial resonances SRn:1 (Parra-Rivas

et al., 2018a).

Foliated snaking organizes periodic patterns or patterns of equally spaced spikes, but it does not

reveal the existence and potential organization of the LPs discussed in Sec. 5.1. At the QZ point,

homoclinic snaking is destroyed, and for Δ > 2, LPs are organized differently (Parra-Rivas et al.,

2018a). To reveal this bifurcation scenario, one can path-continue any LP in the two parameters (Δ, S)
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Fig. 11. Reconnection of the remnants of the homoclinic snaking branches with foliated snaking for Δ > 2. The diagram shows,

through the bifurcation measure E3, two branches of foliated snaking, Γ u
2

and Γ s
2

(blue lines), corresponding to the two equally

spaced spikes shown in panel (4). The orange curve shows the remnants of two homoclinic snaking branches corresponding to

two-peak Γπ LPs. While foliated snaking arises from RTB-SNb (see vertical dot-dashed line), the LP branches emerge from a

global homoclinic bifurcation occurring at the BD transition (see vertical dashed line). Approaching BD, the LP peak separation

D grows drastically until it reaches the maximum separation l/2 exactly at the BD point. Panels (1–3) show the change in the

LP profiles along this curve. At the BD transition the LP becomes the state shown in panel (4). Adapted from Parra-Rivas et al.

(2018a).

from Δ < 2 to Δ > 2, and after that compute the solution branches as a function of S for a

fixed value of Δ. The result of this computational approach is shown schematically in Fig. 11. Here,

in order to better visualize the different solution branches, we defined a new bifurcation measure

E3 ≡ E2 · D, with D the separation between peaks in the LSs. The blue lines correspond to the

Γ
u,s

2 solution branches of the foliated snaking associated with two identical equally spaced spikes

[see Fig. 11(4)]. The orange lines show two branches of the two-peak LP homotopically related with

Γπ [see Fig. 7(b)]. The point-dashed vertical line in Fig. 11 marks the location of SNb (i.e. the RTB

bifurcation) where the foliated snaking emerges, while the vertical dashed line marks the position of

the BD transition. LP branches do not bifurcate from RTB, in contrast to the foliated snaking, but they

finish very close to BD. Indeed, the use of E3 reveals that D diverges when approaching BD, as can

also be seen in the profiles shown in panels Fig. 11(1–3). This scenario corresponds to that shown

in Fig. 5(c). Below BD, LPs still form through a heteroclinic tangle as described in Section 5.2, and

remnants of the homoclinic snaking branches can be found. The divergence in D undergone by the

LPs as S → SBD corresponds to the divergence of the wavelength of the periodic pattern involved in the

tangle, and it reveals the occurrence of a global homoclinic bifurcation at SBD. Indeed, in this homoclinic

bifurcation, periodic pattern states (limit cycles) turn into spikes (tame homoclinic orbits). This global

phenomenon appears in different contexts, and is referred to as ‘a blue sky catastrophe’ (Devaney,

1977), ‘a wavelength blow-up’ (Vanderbauwhede & Fiedler, 1992) or ‘a broom’ global bifurcation

(Verschueren & Champneys, 2017). The mathematical theory describing the system dynamics close to

this global bifurcation has been recently developed by Verschueren & Champneys (2021), and the same

transition has been identified in other systems (Knobloch & Yochelis, 2021; Verschueren & Champneys,

2017, 2021).
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6. Localized structures in the normal regime: collapsed snaking

In the normal dispersion regime (ν = −1), the emergence of LSs is related to the coexistence of

two different HSSs. In this regime, the stability and configuration of the different spatial bifurcations

undergone by Ah is very different from the anomalous regime, as shown in Fig. 1(e–h). In the monostable

regime (Δ <
√

3), Ah is always stable, and no LSs exist. For Δ >
√

3, however, the coexistence between

Ab
h and At

h allows for the formation of DWs (i.e., heteroclinic orbits) connecting them. Single DWs drift

with a constant speed, which depends on the control parameters of the system. However, at the Maxwell

point of the system, this speed vanishes. Close to this Maxwell point, DWs can interact and lock to one

another, thus also leading to zero speed. In this way, dark LSs of different widths can form. The resulting

LSs are organized in a particular bifurcation structure known as ‘collapsed snaking’, whose morphology

is a direct consequence of the DW interaction and locking (Knobloch & Wagenknecht, 2005; Yochelis

et al., 2006).

The formation of LSs in the normal regime has been addressed in a number of theoretical works

(Godey et al., 2014; Gärtner et al., 2019; Lobanov et al., 2015; Parra-Rivas et al., 2016a,b), and their

existence has been confirmed experimentally in microresonators (Nazemosadat et al., 2021; Xue et al.,

2015) and pulse-pumped fibre cavities (Garbin et al., 2017). In this section, we review the main results

regarding the origin and bifurcation structure of dark LSs in this regime.

6.1 Dark localized states and the collapsed snaking diagram

Figure 12 shows an example of collapsed snaking for Δ = 4, where E1 is plotted as a function of S.

The solution branches in red are those corresponding to Ah, whereas those associated with the LSs are

shown in blue.

In the range of parameters shown in the diagram, At
h (Ab

h) remains stable all the way until SNt (SNb).

In spatial dynamics terms, SNt corresponds to a RTB bifurcation and weakly non-linear states emerge

from it in the form of tame homoclinic orbits (see (3.13) in Section 3.2). Numerical continuation of

these solutions to parameter values far from SNt yields the blue solution curve Σ shown in Fig. 12.

Σ experiences a sequence of damped back-and-forth oscillations in S around the Maxwell point of the

system, S = SM , and eventually collapses onto it. The morphology of this snaking curve is very different

from the standard homoclinic snaking depicted in Section 5, which is why this diagram is known

as collapsed snaking (Knobloch & Wagenknecht, 2005; Yochelis et al., 2006). Some representative

examples of dark LSs along Σ are shown in Fig. 12(1–5).

Let us briefly discuss how these states arise and change along the diagram. The weakly non-linear

LSs first arise as unstable small amplitude holes in At
h and bifurcate from SNt. Following this unstable

branch towards higher values of S, the amplitude of the LSs increases, and eventually the branch Σ

undergoes a first saddle-node bifurcation SNr
1, where the LSs stabilize, and they remain stable until

SNl
1. At this stage, the LS resembles that depicted in panel (1) of Fig. 12. Soon after passing SNl

1, the

nucleation of a spatial oscillation (SO) around x = 0 takes place, such that the inner part of the LS

is filled with a portion of Ab
h. An example of this new state, once SNr

2 is passed, is shown in Fig. 12

(2). The SOs nucleation process continues with decreasing E1, leading to the sequence of LSs shown in

panels (3–5). Observe that minima at x = 0 turn to local maxima and back again as new SO are added.

As a consequence, the LSs widen as Σ asymptotically approaches the Maxwell point SM . Figure 12

(5) shows a LS close to SM . At this stage, one can easily identify two well-formed DWs, namely DWu

and DWd, connecting Ab
h and At

h. A close-up view of DWd is shown in Fig. 12(b) together with the

corresponding heteroclinic orbit. In terms of spatial dynamics, At
h is a saddle equilibrium, whereas Ab

h
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Fig. 12. Collapsed snaking bifurcation structure. Panel (a) shows the bifurcation structure for Δ = 4 in terms of E1(S). The

HSS Ah is shown in red, while the blue curve is the collapsed snaking branch Σ0. Solid (dashed) lines represent stable (unstable)

LS branches. The labels (1–5) on the stable branches correspond to the LSs shown to the right. The close-up view in the main

panel shows that the collapsed snaking behaviour persists asymptotically close to the Maxwell point SM . Panel (b) shows the

morphology of DWd corresponding to panel (5). The tails of the DW are defined by the spatial eigenvalues associated with the

equilibria A
b,t
h

. Adapted from Parra-Rivas et al. (2016b).

is a bi-focus, as shown by the spatial eigenvalues in Fig. 12(b). Thus, the heteroclinic orbit leaves At
h

monotonically, but it approaches Ab
h in a damped oscillatory fashion. The part of the DW that approaches

Ab
h in this manner is typically called an ‘oscillatory tail’.

Decreasing E1 further (see the bottom part of Fig. 12), the branch Σ eventually separates from SM ,

and continues to Ab
h, where it disappears close to HH as described below.

This situation is shown in detail in Fig. 13(a). In view of the periodic boundary conditions, when

DWu and DWd move apart from x = 0 they also approach one another at x = l/2 albeit back-to-

back. In this context, the resulting state is a bright LS with a SO like that shown in Fig. 13(1), once a

translation by l/2 has been taken into account. Thus, as E1 decreases the dark LS turn into bright LS.

Increasing S further, the bright state becomes that shown in Fig. 13(2) and very close to HH it reduces

to the asymptotic LS calculated in Section 3.1 for ϕ = 0. In the following, we therefore rename Σ as

Σ0. Due to finite domain size effects, Σ0 does not terminate exactly at HH, but at a subcritical pattern

[see Fig. 13(4)] emerging from it.

6.2 Secondary solution branches

Apart from the dark/bright LSs belonging to Σ0, there are other families of solutions which are

interconnected. Close to HH, the asymptotic analysis carried out in Section 3 shows that there must

be another family of states characterized by ϕ = π (Σπ ). Like Σ0 this curve arises subcritically from

the periodic pattern state, as shown in the close-up view of Fig. 13(a). At this stage, a Σπ state resembles

that depicted in panel Fig. 13(5), and possesses a minimum at x = 0. Moving away from HH, the two
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LOCALIZED STRUCTURES IN KERR DISPERSIVE CAVITIES 879

Fig. 13. Panel (a) shows the reconnection of the collapsed snaking branch Σ0, plotted in Fig. 12, with Ah near HH. The solution

curves Σπ and ΣI also arise near HH and also undergo collapsed snaking. Panel (b) shows the top part of the collapsed snaking

branch Σ0 shown in Fig. 12, together with Σπ and ΣI . The labels (1–14) correspond to the states shown on the right. Adapted

from Parra-Rivas et al. (2016b).

central peaks grow [see profile in Fig. 13(6)] until their amplitude reaches At
h [Fig. 13(7)]. The top of

the two peaks then flattens forming two plateaus around At
h, separated by a dark spike (hole) at x = 0.

During the flattening process, two DWs form that move farther and farther from x = 0 as one proceeds

up Σπ . Eventually, this state resembles a composition of two separate states: a dark spike and a dark

LS with several SOs [Fig. 13(8)]. During this process, Σπ snakes around SM as depicted in Fig. 13(b).

While following the Σπ branch upwards, the SOs progressively disappear eventually resulting in a state

formed of two identical dark spikes. When this occurs, Σπ collides with another collapsed snaking

curve ΣI [see the orange curve in Fig. 13(b)], corresponding to a pair of identical LS like that shown

in Fig. 13(10–12). Increasing E1, ΣI connects back to Ah at SNt but proceeding down in ΣI , each

of the constituent LS behaves the same way, and the branch eventually connects back to the periodic

pattern, but at a larger amplitude since ΣI in effect represents a single pulse state on the half-domain

[see Fig. 13(a)].

Thus far, we have focused on a particular value of the detuning, namely Δ = 4. One may wonder if

this type of LS and the collapsed snaking associated with them, persists to other parameter regimes. This

question is answered through a two-parameter continuation (in Δ and S) of the different saddle-node

bifurcations SN
l,r
i of Σ0 (Fig. 14). For increasing values of Δ, the region of bistability between At

h and

Ab
h expands, and so does the region of existence of dark LSs. When Δ decreases, however, both regions

shrink and the different saddle-node bifurcations (SN
l,r
i , for i = 1, 2, 3, . . . ) collide in a cascade of cusp

bifurcations, such that the widest LSs disappear first, while the single dark spike is the last to disappear.
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880 P. PARRA-RIVAS ET AL.

Fig. 14. Phase diagram in the (Δ, S) parameter space for the normal regime. The bifurcation lines plotted are: the HH-BD line,

the saddle-nodes of the Ah, SNb,t and a number of saddle-node bifurcations SN
l,r
i

(i = 1, 2, 3, . . . ) associated with the collapsed

snaking branch Σ0 shown in Fig. 13. The graded orange areas show the regions of existence of the different types of dark LSs.

Adapted from Parra-Rivas et al. (2016b).

In the range of parameters examined here, the periodic pattern that arises from HH is unstable.

Therefore, it does not play any role in the formation of LSs. Nevertheless, the periodic pattern might

stabilize at much larger values of Δ, potentially leading to a very rich scenario involving tristability

between the pattern, At
h and Ab

h. In such a situation, a new type of hybrid LSs may arise as has been

shown in other contexts (Zelnik et al., 2018). The exploration of such a potential scenario requires

further investigation.

6.3 DW locking as a mechanism forming localized structures

The emergence of dark LSs, and their organization in a collapsed snaking structure, can be understood

from a physical perspective based on the interaction and locking of DWs (Coullet et al., 1987). In our

system, DWs form between the two non-equivalent HSSs At
h and Ab

h, and they drift at constant speed

depending on the control parameters (Chomaz, 1992). At the Maxwell point SM , the speed is zero and

DWs are stationary. Close to that point, the interaction of two DWs with different polarity, DWu and

DWd, and separated by a distance D, can be phenomenologically described by the equation

dD/dt = ρe−|Q|Dcos(KD) + η ≡ f (D), (6.1)

where Q and K correspond to the real and imaginary parts of the spatial eigenvalue associated with Ab
h

(and so responsible for the oscillatory tail of the DW), ρ depends on the parameters of the system, and

η is proportional to the distance from the Maxwell point (i.e. η ∼ S − SM). Equation (6.1) cannot be

explicitly derived from the LL equation (1.1) for a number of reasons (e.g. the absence of an analytical

DW solution), and we present it here simply to illustrate the locking mechanism of DWs. However,

similar equations can be explicitly derived in other contexts (Clerc et al., 2010; Coullet, 2002; Coullet

et al., 1987; Escaff et al., 2015), and a perturbed version of (6.1) is found close to the onset of nascent

bistability (i.e. close to Δ =
√

3) (Clerc et al., 2020a; Tlidi et al., 2015).
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Fig. 15. Schematic representation of the interaction and locking of DWs. Panel (a) shows the equilibria of (6.1) for different

values of η: η = 0 in (1), and η1,2, with η2 > η1 in (2) and (3). Stable (unstable) states are labelled with full • (empty ◦) circles.

Panel (b) shows the bifurcation diagram arising from the locking mechanism shown in (a), where points on the stable (unstable)

parts of the diagram correspond to LSs with D equal to the stable (unstable) zeros of (a) for each value of S. Panel (c) represents

the information shown in panel (b) but using E1 instead of D. This last diagram is a schematic picture of the collapsed snaking

shown in Fig. 12.

Figure 15(a) shows f (D) for three different values of η (blue curves). The intersections of the curves

with the horizontal axis correspond to the equilibria of (6.1), and therefore to the locking of DWs

and subsequent formation of LSs. In all cases, stable and unstable separations (marked using • or ◦
respectively) alternate in D.

At S = SM [Fig. 15(a)(1)], the locking separations can be derived analytically and read D0
n =

π(2n+1)/2K. Each of these separations can be mapped to the bifurcation diagram shown in Fig. 15(b),

where D is plotted as a function of S and that sketched in Fig. 15(c), which shows E1 as a function of S.

In both diagrams, stable (unstable) solution branches are plotted using solid (dashed) lines. Panels (2)

and (3) in Fig. 15(a) show the situation for two different values of S slightly above SM . In panel (2) four

intersections, two stable ones and two unstable ones, are shown, which map to the vertical dashed line

(2) plotted in Fig. 15(b and c). With this mapping, the tangency shown in Fig. 15(a) corresponds to the

saddle-node bifurcations shown in panels (b) and (c). Increasing η a bit more [panel (3) in Fig. 15(a)]

leaves only one pair of stable/unstable equilibria, which defines the two points on the vertical dashed

line (3) in Fig. 15(b and c). Hence, the change in the locking separations in Fig. 15(a) arising from

shifting the blue curves upwards or downward (i.e. by changing S) determines the collapsed snaking

curves shown in Fig. 15(b and c).

7. Oscillatory and chaotic dynamics

The static LSs described in the previous sections can also exhibit very rich dynamical behaviour such as

temporal oscillations, also known as ‘breathing behaviour’, temporal chaos and spatiotemporal chaos,

which has been studied by many authors both experimentally and theoretically. In this section, we briefly

discuss, from a bifurcation perspective, some of the main features of the resulting dynamics in the

anomalous and normal regimes and refer to the original work for more details.

7.1 Breathers in the anomalous regime

In the anomalous regime, oscillatory and chaotic behaviour was first identified experimentally in a

series of seminal works in the context of fibre cavities (Leo et al., 2013a) and later in microresonators

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
m

a
t/a

rtic
le

/8
6
/5

/8
5
6
/6

3
4
7
2
0
2
 b

y
 U

n
iv

e
rs

ity
 o

f E
x
e
te

r u
s
e
r o

n
 1

6
 J

u
n
e
 2

0
2
2



882 P. PARRA-RIVAS ET AL.

Fig. 16. Bifurcation diagram and oscillatory behaviour in the anomalous regime for Δ = 7. This diagram shows the HSS
√

Ih in

red, the peak value of the spike intensity |A(0)| (blue curve), and the maxima and minima of the oscillation amplitude intensity

at x = 0. The different coloured areas correspond to different types of oscillatory dynamics: period-1 oscillations (P1), period-2

(P2), period-4 (P4), temporal chaos (TC) and spatiotemporal chaos (STC). The letter H denotes a supercritical Hopf bifurcation

while BCi correspond to boundary crises of the chaotic attractor. Panels (1–4) show the time series of the spike at its centre x = 0,

and panels (5–8) show the two-dimensional phase space obtained from the projection of the oscillatory dynamics on the variables

U(0) and V(0).

(Lucas et al., 2017; Yu et al., 2017). In these papers, a breather consists in a bright spike whose amplitude

oscillates in time with a fixed period, while preserving its position. The dynamics of dispersive Kerr

breathers have been analysed theoretically within the framework of (1.1) by a number of authors

(Leo et al., 2013a; Matsko et al., 2012; Parra-Rivas et al., 2014b) although oscillatory dynamics in

similar models had been studied earlier in other contexts (Barashenkov & Smirnov, 1996; Nozaki &

Bekki, 1985).

For intermediate values of the detuning (e.g. Δ = 7), the bifurcation scenario is like that depicted

in Fig. 16. The red curve represents the HSS Ah, the blue corresponds to the spike state while orange

crosses show the maxima and minima of the oscillation. The stable spike encounters a supercritical Hopf

bifurcation (H), where it starts to oscillate in amplitude with a single period as shown in the time trace

of Fig. 16(1), and in the 2D phase space projection shown in Fig. 16(2), where we also plot Ab
h and the

infinite-dimensional saddle corresponding to the unstable spike. Increasing S further, we see that this

cycle undergoes a period-doubling (PD) bifurcation, starting a route to a very complex scenario via a

sequence of oscillatory states characterized by period 2 [Fig. 16(2),(6)], period 4 [Fig. 16(3),(7)], and

temporal chaos [Fig. 16(4),(8)]. While increasing S, the temporal attractor approaches progressively the

saddle spike, leading to a collision that destroys the chaotic attractor, likely in a boundary crisis (BC)

(Grebogi et al., 1983). Above BC the only attractor of the system is Ab
h. This situation persists until

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
m

a
t/a

rtic
le

/8
6
/5

/8
5
6
/6

3
4
7
2
0
2
 b

y
 U

n
iv

e
rs

ity
 o

f E
x
e
te

r u
s
e
r o

n
 1

6
 J

u
n
e
 2

0
2
2
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a second BC is reached, where the previous route repeats in reverse order until the system enters into

spatiotemporal chaos.

Spatiotemporal chaos was first identified experimentally in fibre cavities (Anderson et al., 2016),

and later characterized theoretically in terms of the Lyapunov spectrum and the Yorke–Kaplan

dimension (Coulibaly et al., 2019; Liu et al., 2017). Furthermore, these studies show that spatiotemporal

chaos and the previous dynamical regimes can coexist for the same range of parameters. However, the

origin of such dynamics from a bifurcation perspective is not fully understood. The scenario shown

in Fig. 16 summarizes the variety of dynamical behaviours encountered in the system. With further

increase in Δ, the scenario remains qualitatively the same although the oscillations are enhanced and

the regions of chaotic behaviour broaden. Decreasing Δ, however, shifts H towards SNr
1, and the

complex oscillatory dynamics gradually fade away, leaving single period oscillations. Finally, H and

SNr
1 collide in a codimension-2 Gavrilov-Guckenheimer bifurcation (Gaspard, 1993; Guckenheimer

& Holmes, 1983) characterized by three temporal eigenvalues λa = 0, and λb,c = ±iω, with ω > 0

(Parra-Rivas et al., 2014b). One of the possible unfoldings of this bifurcation may lead to the appearance

of Shilnikov chaos (Gaspard, 1993), which may be related to the temporal chaos observed here, although

confirmation of this scenario requires further investigation.

On top of the dynamics just described, focusing on the single spike LS, one may wonder if LPs

coexisting with the previous states below the BD line exhibit a similar dynamical scenario. Indeed, the

dynamics of LP-breathers have recently been studied in the context of dispersive optical parametric

oscillators, and show very rich and unprecedented behaviour (Parra-Rivas et al., 2020). In our current

context, however, this question has not been investigated systematically and remains an open problem.

7.2 Breathers in the normal regime

In the normal regime, the oscillatory and chaotic dynamics of LSs have been demonstrated experimen-

tally for the first time in microresonators (Bao et al., 2018) and their study is restricted not only to

single peak dark states but also to wider LSs formed by several SOs (Parra-Rivas et al., 2016a,b). Here,

we briefly discuss some of the main features of the observed dynamics focusing on the single dark

spike LS.

Figure 17 shows the bifurcation scenario for Δ = 5.2, where we plot in red the HSS Ah and in blue

the spike amplitude at its centre (x = 0). As in the anomalous case, the LS encounters a supercritical

Hopf bifurcation (H), where it starts to oscillate in amplitude with a single period, as schematically

shown in the inset of Fig. 17. In Fig. 17(1), we show a portion of the 2D projection of the cycle

in the phase space, together with the projection of the unstable (saddle) LS. The amplitude of the

oscillation grows with increasing S (Fig. 17), and eventually the system undergoes the same dynamical

sequence as in the anomalous regime: the single period oscillations undergo a PD bifurcation starting

a route to temporal chaos, as depicted in panels (1–4) of Fig. 17. At some point, the chaotic attractor

[Fig. 17(4)] collides with the saddle, and the system undergoes a boundary crisis BC1 where the attractor

is destroyed, opening a parameter window where the systems falls to the static attractor At
h. This window

ends at a second boundary crisis BC2, where temporal chaos reappears again. From this dynamical state,

the system undergoes the same bifurcation sequence as just described but in reverse order, until the single

period oscillatory state is restored. Increasing S further, the amplitude of the oscillations decreases and

eventually the cycle dies at a second supercritical Hopf very close to SNr
1.

As Δ increases, the static window between BC1 and BC2 widens as BC2 progressively moves

towards H2, and BC1 towards H1. In contrast, decreasing Δ leads to a fusion of BC1 and BC2 and

the disappearance of the static window. With further reduction in Δ, the temporal chaos, period 4 and
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884 P. PARRA-RIVAS ET AL.

Fig. 17. Bifurcation diagram and oscillatory behaviour in the normal regime for Δ = 5.2. The diagram shows the HSS
√

Ih in red,

the peak values of the spike |A(0)| (blue curve), and the maxima and minima of the oscillation amplitude at x = 0. The different

coloured areas correspond to a different types of oscillatory dynamics: period 1 oscillations (P1), period 2 (P2), period 4 (P4) and

temporal chaos (TC). The letter H denotes supercritical Hopf bifurcations while BCi correspond to boundary crises of the chaotic

attractor. Panels (1)–(4) show a portion of the 2D phase space projection defined by U(0) and V(0). Adapted from Parra-Rivas et

al. (2016b).

period 2 cycles gradually fade away, and only the period 1 oscillation remains; for low values of Δ this

oscillation disappears as well (Parra-Rivas et al., 2016a,b). Dark LSs with several SOs undergo a similar

behaviour to that described here.

8. Broken spatial reversibility: effect of third-order dispersion

In the previous sections, we have described the bifurcation structure and main features of different types

of localized solutions of (1.1). This equation describes the dynamics of Kerr dispersive cavities in most

practical situations quite well. However, sometimes the modelling of the experimental setup requires

the addition of extra terms accounting for a number of physical effects which are not included. Many

authors have addressed this issue and the influence of such terms. In particular, we mention the case of

higher-order chromatic dispersion (Bahloul et al., 2014; Leo et al., 2013b; Milián & Skryabin, 2014;

Parra-Rivas et al., 2014a; Tlidi et al., 2013; Tlidi & Gelens, 2010), stimulated Raman scattering (SRS)

(Clerc et al., 2020b; Milián et al., 2015; Wang et al., 2018) or time-delayed feedback (Panajotov et al.,

2016; Tlidi et al., 2017).

The spatial reversibility of (1.1) is an essential ingredient not only for the formation of the LSs

studied previously but also for the bifurcation structure undergone by such states. Thus, while high-

order terms preserving spatial reversibility (e.g. fourth-order dispersion) lead to similar types of states

and bifurcation diagrams (Tlidi & Gelens, 2010), those breaking it (e.g. third-order dispersion or SRS)

result in important modifications of the LSs shape, and their dynamics and stability, as well as having

strong implications for their bifurcation structure (Burke et al., 2009; Makrides & Sandstede, 2014).

In this section, we examine the influence that the loss of spatial reversibility may have on the

bifurcation structure of the LSs studied previously, and for this purpose, we include the dispersive term
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Fig. 18. Implications of the loss of spatial reversibility for the snakes-and-ladders structure. Panel (a) shows the formation of

a stack of isolas (in red) for γ = 0.01 and the underlying snakes-and-ladders structure (in blue). Panel (b) shows the gradual

shrinking of the third isola shown in (a) as γ increases, namely for γ = 0.01, 0.02, 0.04, 0.06, 0.076. Panel (c) shows the speed c

of these isola states as a function of S when γ = 0.01 (upper) and γ = 0.04 (lower). Panel (d) shows three asymmetric LPs when

γ = 0.04.

γ ∂3
x A accounting for third-order chromatic dispersion (hereafter TOD), in (1.1):

∂tA = −(1 + iΔ)A + iν∂2
x A + γ ∂3

x A + iA|A|2 + S. (8.1)

As a result of the loss of spatial reversibility, the solutions of (8.1) are asymmetric and drift at constant

velocity depending of the control parameters of the system. Steadily drifting LS solutions satisfy the

time-independent ordinary differential equation

− (1 + iΔ)A + c∂xA + iν∂2
x A + γ ∂3

x A + iA|A|2 + S = 0, (8.2)

where the new variable x results from a change in the reference frame x → x − ct. The resulting

solutions can be obtained through path-continuation schemes, with the drift speed c calculated as part

of the solution.

8.1 Symmetry breaking in the anomalous regime: isolas of asymmetric states

The influence of TOD on patterns and LSs dynamics in the anomalous regime have been studied mostly

for large detuning, where the typical LSs are spikes. In this context, TOD may lead to the stabilization of

oscillatory and chaotic dynamics, and furthermore, to the shrinking of the LSs existence region (Milián

& Skryabin, 2014; Parra-Rivas et al., 2014a).

From a bifurcation perspective, the loss of spatial reversibility is responsible for the destruction of

the snakes-and-ladders structure, as first shown in a seminal paper by Burke et al. (2009) in the context

of the Swift-Hohenberg equation. In the LL equation studied here, TOD leads to the same destruction

for Δ < 2, whose main features are summarized in Fig. 18. Figure 18(a) shows in blue the snakes-

and-ladders structure composed of Γ0, Γπ and the rung states. When γ 	= 0, the pitchfork bifurcations

near each SN
l,r
i responsible for the rung states become imperfect, leading to the stack of isolas shown

in red. Figure 18(b) shows a close-up view of the diagram shown in Fig. 18(a) around the 3-peak LS

branches, where the corresponding isola is shown for several values of γ . Increasing γ leads to the

gradual shrinkage of the isolas until they eventually disappear. In the present case, this happens for
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Fig. 19. Implications of the loss of spatial reversibility for collapsed snaking. Panel (a) shows in blue the collapsed snaking branch

Σ0 associated with dark LSs in the absence of TOD. The orange curve Σ
γ
0

corresponds to the bifurcation structure computed in

the presence of TOD when γ = 0.7. The top part of the diagram shows the change in the collapsed snaking shown in blue, and

the labels (1)-(3) correspond to the dark asymmetric states shown on the right panels. The bottom part of the diagram shows the

collapsed snaking associated with the asymmetric bright LSs shown in panels (4–6). Panel (b) shows the speed c of dark and bright

LSs as a function of the LS width D. Panel (c) shows the morphology of DWd and DWu corresponding to the spatial eigenvalues

associated with Ab
h

and At
h
. Adapted from Parra-Rivas et al. (2017b).

γ ≈ 0.08. The drift speed c of the LP along the isola is shown as a function of S in Fig. 18(c) for two

values of γ , namely γ = 0.01 (top panel) and γ = 0.04 (bottom panel). Note that an increase in the

asymmetry of the LPs due to increasing γ results in an increase of their speed. Examples of asymmetric

LPs belonging to three different isolas are shown in Fig. 18(d) for γ = 0.04.

The formation of isolas is not the only scenario that one can find in the presence of a reversibility-

breaking term (Makrides & Sandstede, 2014). Indeed, for Δ > 2, where no snakes-and-ladders structure

exists in the absence of TOD, the loss of spatial reversibility leads to a reorganization of Γ0 and Γπ

giving rise to mixed homoclinic snaking (Parra-Rivas et al., 2014a). The transition between these two

scenarios has been studied in detail in the context of the SH equation (Makrides & Sandstede, 2014).

However, in the current context, this point remains an open question.

8.2 Symmetry-breaking in the normal regime: coexistence of dark and bright LSs

The influence of TOD on the LSs and their organization in the normal regime has also been addressed

in several papers, both theoretically (He et al., 2016; Lobanov et al., 2017; Parra-Rivas et al., 2017b;

Talla Mbé et al., 2017) and more recently experimentally (Anderson et al., 2020; Li et al., 2020).

From a bifurcation perspective, the loss of spatial reversibility in this regime leads to the coexistence

of bright and dark LSs (Parra-Rivas et al., 2017b) and to important modifications of the collapsed

snaking morphology as shown in Fig. 19. The diagram in blue corresponds to the collapsed snaking

branch Σ0 shown in Fig. 12 in the absence of TOD (γ = 0). The orange curve Σ
γ

0 shows how

Σ0 changes when spatial reversibility is broken and γ = 0.7. The top part of Σ
γ

0 corresponds to

the modified collapsed snaking structure associated with dark LSs. Labels (1)–(3) correspond to the

asymmetric dark LSs shown on the right. The bottom part of Σ
γ

0 corresponds to asymmetric bright
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states such as those shown in Fig. 19(4–6). The speed c of the dark and bright LSs along Σ
γ

0 is shown in

Fig. 19(b) as a function of the LSs width D. The speed oscillates along the snaking curves and for large

widths it asymptotically reaches a constant value corresponding to a LS like that shown in Fig. 19(6).

The emergence of bright LSs and the modification of collapsed snaking with γ can be understood by

examining the changes to the interaction and locking of DWs. The breaking of the spatial reversibility is

responsible for changing the spatial eigenvalues associated with the equilibria Ab
h and At

h, which in turn

leads to changes in the DWs tails as shown in Fig. 19(c). When γ 	= 0, oscillatory tails appear not only

around Ab
h but also around At

h, thereby changing the interaction and the locking of DWs. As a result,

stable bright and stable dark LS are both possible, a fact reflected in the change in Σ
γ

0 .

Another important effect on the DWs dynamics is that γ modifies the position of the Maxwell

point SM , and therefore the location of the snaking diagram which shifts to larger values of S as γ

increases. Moreover, by modifying the DW interaction, TOD is also responsible for an enlargement of

the locking regions of the different states and in consequence of their range of existence in parameter

space. The bright states described here, and the collapsed snaking associated with them, have recently

been identified in experiments in fibre cavities (Li et al., 2020).

9. Discussion and conclusions

It is a general (but useful!) observation that folds of homogeneous solutions of partial differential

equations on the real line serve as a source of the spatially modulated and ultimately spatially localized

structures found in many (reversible) systems. The reason is simple: in a spatial dynamics description of

such systems a fold is associated with a multiplicity two zero eigenvalue. When these become non-zero

away from the fold their effect is easily balanced by weak spatial modulation, and it is this balance that

leads to the presence of dark solitons near At
b and bright solitons near Ab

h in the LL equation. These states

are all initially unstable but numerical branch-following techniques show that they typically acquire

stability (and hence physical significance) in a process called snaking, following Woods & Champneys

(1999). However, this observation is more general and is also responsible for the presence of modulated

structures near transcritical bifurcations or indeed near (subcritical) Turing bifurcations, as exemplified

by a number of studies of reaction-diffusion equations (see, e.g. Knobloch & Yochelis, 2021, and the

references therein) or the equations of fluid dynamics (Beaume et al., 2018). Typically, one finds that

these localized structures extend between these special points, i.e. there are (one or more) branches

of localized structures connecting these points. This is fundamentally because branches of such states

cannot terminate in ‘mid-air’ or, for physical reasons, extend to infinity. Thus, the snaking structures are

responsible for the transformation of one spatially extended state of the system into another. In many

cases, the details of this transformation may be rather complex.

In this paper, we have illustrated these principles using the 1D LL equation, which models a

dispersive Kerr optical cavity and is an equation for the intra-cavity electric field envelope in the mean-

field approximation. We provided a detailed description of the different types of localized structures

arising in this system, unveiling their origin, bifurcation structure, and stability, but never losing sight of

the bigger picture.

The departure point of this work has been the determination of the temporal linear stability properties

of the simplest state of the system: the HSS (Section 2.1). In the anomalous regime, this analysis reveals

that a spatially periodic pattern arises from a Turing bifurcation and that it becomes subcritical in

the range 41/30 < Δ < 2, leading to a bistability scenario compatible with a homoclinic snaking

structure. In the normal regime, however, the main bistable scenario arises between two HSSs, Ab
h

and At
h, resulting in a collapsed snaking bifurcation structure. Locally, these snaking curves bifurcate
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from a number of ‘spatial’ codimension-one bifurcations of the HSS, including a HH and an RTB

bifurcation. These bifurcations in turn arise from a codimension-two point known as QZ [occurring at

(Δ, S) = (2,
√

2)], which organizes all the behaviour in the (Δ, S)-parameter space (Section 2.2). Near

these points, (1.1) can be reduced to a simpler weakly non-linear equation (i.e. a ‘normal form’) which

retains the essential dynamics of the system. This reduction is performed using multiscale perturbation

techniques (Section 3) and the resulting normal form supports the LS solutions found in (1.1) near these

points. A similar reduction has also been performed around the QZ point (Section 4). In each case, the

weakly non-linear solutions have been tracked away from the bifurcations that gave rise to them using

numerical continuation.

In the anomalous regime (Section 5), the standard snakes-and-ladders structure exists for Δ < 2.

The LSs corresponding to this scenario are bright LPs (Section 5.1). When Δ → 2−, the wavelength of

the spatially periodic pattern involved in the formation of the LPs diverges, and at Δ = 2 the periodic

state undergoes a global homoclinic bifurcation and the LPs become tame homoclinic orbits (i.e. spikes).

This transition destroys the snakes-and-ladders structure and replaces it for Δ > 2 by ‘foliated snaking’

of spike arrays (Section 5.2). Furthermore, LPs still form through a heteroclinic tangle below the BD

transition, and their solution branches connect to the foliated snaking via a global bifurcation that occurs

at the BD point.

In the normal regime (Section 6), the collapsed snaking scenario is present for Δ >
√

3 and the states

associated with it are the dark LSs, consisting in a portion of the low intensity state Ab
h embedded in the

high intensity At
h background. The formation of this bifurcation structure can be understood through the

interaction and locking of DWs (Coullet, 2002).

The LL equation (1.1) is a non-gradient system and may therefore undergo complex spatio-temporal

dynamics such as breathing, temporal chaos and spatiotemporal chaos, in addition to the steady states

studied previously. We have shown (Section 7) that in the anomalous regime bright spikes undergo

such dynamics for intermediate values of Δ as a consequence of a Gavrilov–Guckenheimer bifurcation.

In this context, single period oscillatory behaviour may undergo a PD route to temporal chaos and

ultimately to spatiotemporal chaos. In the normal regime, a similar scenario is found for dark LSs of

different widths. However, in this regime, spatio-temporal chaos is absent.

We have also examined the effects of breaking the spatial reversibility x → −x through third-order

chromatic dispersion (Section 8). In the anomalous regime, we have characterized how this symmetry-

breaking term destroys the snakes-and-ladders structure leading to a stack of isolas, which eventually

fade away as the symmetry-breaking increases. In the normal regime, the collapsed snaking associated

with dark LSs persists, but a similar snaking structure emerges as a result of the stabilization of

bright LSs.

There are several issues that have been left out of this work. One of these concerns the interaction

of LSs and the formation of bound states. In the anomalous regime, this point has been addressed

analytically (Vladimirov et al., 2018), numerically (Parra-Rivas et al., 2017a) and experimentally (Wang

et al., 2017). Another interesting point relates to the effects of higher-order dispersion that preserves

spatial reversibility (such as a fourth-order dispersion). In this context, the implications of fourth-order

dispersion in the anomalous regime have been analysed for low values of Δ, where it is responsible

for the stabilization of dark LPs and the emergence of new homoclinic snaking (Tlidi & Gelens, 2010).

However, the persistence of homoclinic snaking for larger values of Δ, and a complete understanding

of this regime is still lacking. Regarding the normal regime, the impact of this term on the bifurcation

structure of LSs remains an open question.

Another interesting point relates to the presence of stimulated Raman scattering. This last effect

breaks the spatial reversibility of the system, and its implications for the LSs bifurcation scenario
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and associated dynamics may be similar to those described in Section 8 when dealing with TOD. The

dynamics of spike LSs in the presence of the Raman effect have been studied in the anomalous regime

by different groups (Chen et al., 2018; Milián et al., 2015; Sahoo & Roy, 2019; Wang et al., 2018).

However, little is known about its impact on the bifurcation structure associated with spike states or the

LPs studied in this paper. In the normal regime, in contrast, the modification of the collapsed snaking

structure in the presence of stimulated Raman scattering was recently characterized by Parra-Rivas

et al. (2021).

Of course, in experiments noise is of paramount importance. In one dimension, it is known that

noise-activated barrier hopping plays an important role in driving the system towards the state of lowest

energy (Sakaguchi & Brand, 1996). However, in non-gradient systems such as the LL equation the

effect of noise is less simple to characterize but its consequences appear to be similar (Parra-Rivas

et al., 2017a). In general, temporal noise has the biggest effect in the vicinity of global bifurcations,

typically generating noisy dynamics but washing out much of the detailed structure present within

deterministic chaos. However, fluctuations also affect frequency comb generation (Chembo et al.,

2020) and play an important role in cavity solitons in connection with squeezed light (Oppo & Jeffers,

2007; Pérez-Arjona et al., 2007). In excitable regimes, fluctuations in pump intensity can nucleate new

structures, including localized structures, at preferred locations (Jacobo et al., 2010), while random

heterogeneities corresponding to quenched noise may degrade device performance. These effects all

merit future study.

From a mathematical point of view, one may wonder if the previous bifurcation scenarios persist

when a two-dimensional version of (1.1) is considered. Although several works have addressed the

study of LSs in the 2D LL equation in the context of diffractive cavities (Firth et al., 2002; Firth &

Lord, 1996; Scroggie et al., 1994), the characterization of the bifurcation structure and stability has only

focused on single LS (Gelens et al., 2008; Gomila et al., 2007a, 2005), and a complete and systematic

characterization is therefore necessary. In this context, the simplest extension of the present work should

focus on radially symmetric structures, described by a nonautonomous one-dimensional problem in the

radial coordinate (Lloyd & Sandstede, 2009; McCalla & Sandstede, 2010). One can even consider a 3D

scenario, where LS correspond to the so-called optical bullets (Gopalakrishnan et al., 2021). Although

these objects have received some attention in different dissipative systems (Javaloyes, 2016; Jenkins

et al., 2009; Veretenov & Tlidi, 2009), their full bifurcation structure remains at present an open problem

as well.
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